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Abstract— A key challenge for machine intelligence is to learn
new visual concepts without forgetting the previously acquired
knowledge. Continual learning (CL) is aimed toward addressing
this challenge. However, there still exists a gap between CL and
human learning. In particular, humans are able to continually
learn from the samples associated with known or unknown labels
in their daily lives, whereas existing CL and semi-supervised
CL (SSCL) methods assume that the training samples are
associated with known labels. Specifically, we are interested in
two questions: 1) how to utilize unrelated unlabeled data for
the SSCL task and 2) how unlabeled data affect learning and
catastrophic forgetting in the CL task. To explore these issues,
we formulate a new SSCL method, which can be generically
applied to existing CL models. Furthermore, we propose a novel
gradient learner to learn from labeled data to predict gradients
on unlabeled data. In this way, the unlabeled data can fit into the
supervised CL framework. We extensively evaluate the proposed
method on mainstream CL methods, adversarial CL (ACL),
and semi-supervised learning (SSL) tasks. The proposed method
achieves state-of-the-art performance on classification accuracy
and backward transfer (BWT) in the CL setting while achieving
the desired performance on classification accuracy in the SSL
setting. This implies that the unlabeled images can enhance the
generalizability of CL models on the predictive ability of unseen
data and significantly alleviate catastrophic forgetting. The code
is available at https://github.com/luoyan407/grad_prediction.git.

Index Terms— Continual learning (CL), gradient prediction,
semi-supervised learning (SSL).

NOMENCLATURE
Symbol  Definition
X; ith training sample.
Vi Label of the ith training sample.
t; The i-th task training sample.
X ith unlabeled sample.
12 Loss function.
Zi Logit of the ith training sample.
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Parameters of the classification model f.
Parameters of the gradient learner h.
Learning rate for updating 6.

Learning rate for updating w.
Hyperparameter controlling the proportion
of the magnitude.

A Coefficient with respect to the fitness loss.
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I. INTRODUCTION

ONTINUAL learning (CL) models observe sets of

labeled data through a sequence of tasks [1], [2]. The
tasks may vary over time, e.g., images with novel visual
concepts (i.e., classes) or addressing different problems from
the previous tasks [3]. CL is analogous to human learning.
Humans are able to continually acquire, adjust, and transfer
knowledge and experiences throughout their lifespan. The
key challenges are twofold. First, the learning models can
abruptly forget previously absorbed knowledge while learning
new information in novel tasks, i.e., suffer from catastrophic
forgetting [4]. Second, how to employ the knowledge learned
from previous tasks to quickly adapt to novel tasks.

Previous CL methods presume that the labels associated
with the data are known [5], [6], [7], [8], [9], [10], [11].
This assumption may be divergent from human learning,
where a considerable amount of labels associated with the
unlabeled data could be novel and unrelated to the known
labels. Furthermore, large-scale labeled data may not always
be available due to the limits of labor-intensive and expensive
human annotations. Moreover, the classes of a task are distinct
from the ones in the other tasks, or the task’s labels may
be of a different form, e.g., category versus bounding box.
Therefore, we do not presume any constraint that restricts
the correlation between the labels associated with unlabeled
data and the ones associated with labeled data. Instead, the
unlabeled data could have either the same or different class
labels as the labeled data, which is shown in Fig. 1. As a
result, the fundamental challenge lies in the generalizability
of learning in this SSCL setting. The CL models not only
generalize the knowledge learned from preceding tasks to the
current task but also should leverage unlabeled data that are
associated with unknown labels to boost the learning process.

The labels that are known to the learning process play an
important role in an end-to-end learning paradigm, even in
the SSL setting. Through the labels and the predefined loss
functions, the gradients are computed to back-propagate to
neurons in each layer. This gradient-based learning process
is key to updating the models to make more precise predic-
tions [5], [6], [7], [8], [9], [10], [12], [13], [14], [15]. However,
when the underlying labels of unlabeled data are unknown,
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Fig. 1. Conceptual comparison between the challenge in the novel
semi-supervised CL (SSCL) problem and the one in the semi-supervised
learning (SSL) problem. The key difference is that the underlying classes with
respect to the unlabeled data could be unknown in the SSCL problem, while
the ones in SSL are assumed to be from the known classes. To suitably adapt
to the CL paradigm, we do not impose such a constraint on the novel SSCL
problem. Instead, the underlying labels of unlabeled data can be from either
known classes or unknown classes. The faded-out samples in task 2 indicate
that the samples in task 1 are not available in task 2 according to the protocol.

it is a challenge to generate the gradients that improve the
generalizability of models in the SSCL setting.

Conventionally, pseudo labeling, i.e., predicting labels by a
teacher network for the unlabeled data and taking them as the
ground-truth labels for training a student network, is widely
used for SSL [16], [17], [18], [19]. However, it may not
work in the SSCL setting as the classes of a task are distinct
from the ones in the other tasks or the task’s labels may
be of a different form. In contrast to the pseudo-labeling
methods, learning to predict pseudo gradients on unlabeled
samples is straightforward and effective as predicting labels
is skipped. Moreover, the pseudo gradients are aligned with
the knowledge learned from samples in various categories,
while the gradients generated by pseudo-labeling methods are
aligned with a specific category as an unlabeled sample is
conventionally labeled as a category in the CL set.

To utilize unlabeled data in the supervised CL framework,
we propose a novel gradient-based learning method that learns
from the labeled data to predict pseudo gradients for the
unlabeled data, as shown in Fig. 2. Specifically, a novel
gradient learner learns the mapping between features and the
corresponding gradients generated with labels. We follow [5],
[14] to conduct extensive experiments on CL benchmarks, i.e.,
MNIST-R, MNIST-P, iCIFAR-100, CIFAR-100, and minilm-
ageNet. To verify the generalization ability of the proposed
method, we follow [20] to evaluate the proposed method on
SVHN, CIFAR-10, and CIFAR-100. The main contributions
of this work are summarized as follows.

1) We propose a novel SSCL method that leverages the
rich information from unlabeled data to improve the
generalizability of CL models.

2) We propose a learning method that learns to predict gra-
dients for unlabeled data. To the best of our knowledge,
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Fig. 2. Problem of semi-supervised CL. Conventional supervised CL requires
labels to compute gradients for model update (see blue flows). In contrast,
this work proposes to predict gradients so that the unlabeled images can be
incorporated in the CL paradigm for better generalizability (see red flows).

this is the first work that generates pseudo gradients
without ground-truth labels.

3) Extensive experiments and ablation studies show that
the proposed method improves the generalization per-
formance on all metrics. This implies that learning with
unlabeled data is helpful for improving the predictive
ability and alleviating catastrophic forgetting of CL
models.

4) We provide empirical evidence to show that the proposed
method can generalize to the SSL task.

II. RELATED WORK
A. Continual Learning

CL is a learning paradigm where a model learns through
a sequence of tasks [1], [2], [21]. CL is a branch of online
learning [22], [23], where the challenge is to balance the reten-
tion of knowledge from preceding tasks with the acquisition
of new information for future tasks. However, catastrophic
forgetting is a common issue in this paradigm [4]. There
are three types of CL, namely, task-incremental learning,
domain-incremental learning, and class-incremental learn-
ing [24]. Task-incremental learning solves a sequence of
distinct tasks when the task ID is provided along the process.
Domain-incremental learning adapts to changing input data
distributions while maintaining performance on the original
task. Class-incremental learning solves a sequence of distinct
tasks and infers the task ID. Compared to domain-incremental
learning, task-incremental learning, and class-incremental
learning emphasize recognizing and classifying new classes
without forgetting previous knowledge, which are closely
related to the proposed method.

There are a number of works that can be cast into the
category of task-incremental learning [5], [7], [8], [12], [14],
[15], [25], [26], [27]. Specifically, Lopez-Paz and Ranzato [5]
proposed a memory-based method, namely, GEM, to impose
a constraint on the gradients with respect to the training
samples and the memory. Along the same line, Luo et al. [15]
introduced a gradient alignment method DCL that enhances
the correlation between the gradient and the accumulated
gradient. Recently, Ebrahimi et al. [14] proposed an adversarial
CL (ACL) approach that aims to factorize task-specific and
task-invariant features simultaneously. Unlike GEM, where
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the training samples are observed one by one, the training
process of ACL would repeat multiple times on every task. All
the aforementioned works follow a supervised CL paradigm
that requires ground-truth labels. However, how unlabeled
data may influence the CL problem remains unclear. In this
work, we propose the SSCL paradigm, where the model
occasionally observes unlabeled data. The class-incremental
learning problem aims to learn visual concepts in new tasks
while retaining the visual concepts learned in the previous
tasks [11], [26]. Correspondingly, the samples in the coresets
would be repeatedly observed in this problem, whereas CL
only observes each sample once. In this setting, Carvalho et
al. introduce a catastrophic forgetting solution based on knowl-
edge amalgamation (CFA) that learns a student network from
multiple heterogeneous teacher models. Lee et al. [11] leverage
unlabeled data with a knowledge distillation method to boost
class-incremental learning. Notably, the experimental protocol
in [11] is different from that of SSCL. The class-incremental
learning with unlabeled data maintains three sets of samples
through the learning process, i.e., the samples that have been
seen in the previous tasks, the samples that are related to the
current task and have not been seen before, and the unlabeled
samples are selected by a confidence-based strategy from a
data pool. In contrast, SSCL only observes the samples that are
related to the current task and the unlabeled samples randomly
selected from the data pool. For a fair comparison, we utilize
the knowledge distillation method in [11] to generate pseudo
labels for unlabeled samples as the baselines. This work
follows the experimental protocols used in GEM [5] and
ACL [14], which are widely adopted task-incremental learning
schemes.

Except for the aforementioned methods, the task incremen-
tal learning problem and class incremental learning problem
can be solved by dark experience replay (DER) [28] and
eXtended-DER (X-DER) [29] simultaneously. DER exploits a
buffer (i.e., dark experience) storing data from previous tasks
to train a student model. X-DER leverages memory updates
and future preparation to improve DER.

From the perspective of the strategies, the common strate-
gies tackling the continual problem can be divided into
three categories: rehearsal-based, regularization-based, and
knowledge distillation-based methods. Rehearsal-based meth-
ods address catastrophic forgetting by replaying training
samples stored in a memory buffer [28], [30]. In contrast,
regularization-based methods prevent catastrophic forgetting
by regularizing the model’s parameters so that they do not
change much when new data is presented [28]. Moreover,
knowledge distillation can be used to prevent catastrophic
forgetting by transferring knowledge from a previous model
(teacher) to a new model (student) [28], [30].

B. Semi-Supervised Learning

SSL, a machine learning technique, involves training a
model using both labeled and unlabeled data [31], [32], [33],
[34]. This task aims to utilize a small set of labeled data along
with a larger set of unlabeled data, enabling the model to estab-
lish connections and make predictions on unseen data. For
example, Fierimonte et al. [31] proposed a fully decentralized
approach to SSL using privacy-preserving matrix completion,
specifically addressing the challenge of distributed learning.
Duan et al. [32] introduced a novel method that incorporates
low-confidence samples into SSL through mutex-based con-

sistency regularization. Another approach by Yang et al. [35]
leverages a contrastive learning-based loss function and aug-
mented samples generated via an interpolation-based approach
to guide training.

Existing methods are mainly based on pseudo-labeling
or self-training, i.e., leveraging the labeled data to predict
artificial labels for the unlabeled data [36], [37]. Most modern
deep learning-based models follow this line of research [17],
[20], [38], [39], [40]. Particularly, the noisy student model [19]
employs the teacher—student method to train on ImageNet [41]
with unlabeled images from JFT [42], which is an in-house
dataset at Google and has 100 million labeled images
with 15000 labels, to achieve state-of-the-art performance.
In addition, Zhang et al. [20] proposed a meta-objective to
alternatingly optimize the weights and the pseudo labels such
that the learning process can leverage unlabeled data. To
utilize the abundant unlabeled data, these SSL models assign
predicted labels to unlabeled data to generate gradients for
back-propagation. In contrast, the proposed method instead
predicts pseudo gradients for back-propagation, bypassing the
need for a loss function with pseudo-labeled data. Different
from conventional (semi-)supervised learning, where visual
concepts are unchanging during the learning process, the visual
concepts of a task in CL are different from those of the
other tasks through the whole learning process. As a result,
unlabeled data that are labeled as known classes would break
the protocol of the split of classes in various tasks of CL [5].
Instead, CL is in favor of a more generic hypothesis of
unlabeled data, that is, the underlying labels of unlabeled data
could be unknown. A natural choice is to sample unlabeled
images from external datasets, rather than treating training
images as unlabeled images. In conventional SSCL [20], the
visual concepts that are related to the unlabeled samples are
presumed to be known for computing gradients. Different from
SSCL, the proposed SSCL in this work does not require this
hypothesis. As a result, without known labels, it is unable to
compute the gradients for back-propagating the errors. Instead
of computing the gradients with the labels, we study how
to predict the pseudo gradients by measuring the suitability
between unlabeled samples and predicted pseudo gradients in
learning a certain visual concept.

C. Gradient-Based Methods

Gradient-based methods refer to a family of optimization
algorithms used to find the parameters of a machine learning
model that minimize a certain objective function [43]. These
methods rely on computing the gradients of the objective
function with respect to the model parameters and using those
gradients to iteratively update the parameters until conver-
gence. The gradient is a measure of how the loss function
changes as a function of the model’s parameters [5], [15],
[39], [44].

The learning process is composed of forward propagation
and back-propagation. Jaderberg et al. [45] proposed a learning
framework with synthetic gradients to allow layers to be
updated in an asynchronous fashion. The proposed pseudo
gradients can be used as ground-truth gradients in such a
learning framework when the labels of training images are
missing. In particular, [S5] and [15] use the information of
gradients to form a constraint to improve the performance of
CL. Reference [44] have a similar flavor, that is, they aim to
learn an optimizer to adaptively compute the step length for the
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Fig. 3. Overview of the proposed gradient learning and gradient prediction process with the gradient learner /(-; ®). The backbone network is shared between

the two processes.

vanilla gradients. In contrast to these gradient-based methods
that rely on labeled data to compute gradients, the proposed
method predicts pseudo gradients by maximizing their fitness
within the loss function applied to labeled data.

Stochastic optimization methods often use gradients to
update a model’s parameters. In the literature, stochastic
gradient descent (SGD) [46] takes the anti-gradient as the
parameters’ update for the descent, using the first-order
approximation [47]. In a similar manner, several first- and
second-order methods are devised to guarantee convergence
to local minima under certain conditions [48], [49], [50].
Nevertheless, these methods are computationally expensive
and may be not feasible for learning settings with large-scale
high-dimensional data. In contrast, adaptive methods, such as
Adam [51], RMSProp [52], and Adabound [53], show remark-
able efficacy in a broad range of machine learning tasks [52],
[53]. Moreover, Zhang et al. [54] proposed an optimization
method that wraps an arbitrary optimization method as a
component to improve learning stability. These methods are
contingent on vanilla gradients to update a model. In this work,
we study how the predicted gradients influence the learning
process.

III. PROBLEM SET-UP

The training process of supervised learning methods gen-
erally requires a training dataset D, = {(x;, y,-)}ézl that
consists of samples s; = (x;, y;), where x; € X represents
a sample and y; € ) represents a target vector, where ) is
the target label space. The samples presumably are identically
and independently distributed variables that follow a fixed
underlying distribution D [5]. With all samples, supervised

learning methods attempt to find a model f : X LN Y to
map feature vectors to the target vectors, where 6 are the
parameters of f. In contrast to supervised learning, SCL is
more human-like and will observe the continuum of data

D[l' = {(xia tia yi)l('xi7 yl) ~ Dl;7 ti S T}

where f; indicates the ith task and 7 is a set of tasks. A task
is a specific learning problem. Different from supervised
learning, which has a fixed distribution, each task is associated
with an underlying distribution in the SCL setting. The SCL

models are defined as [ : X x 7T LN Y. Correspondingly, the
loss of SCL is defined as

LoDy ==

| Dy (xisti,yi) €Dy

C(fo(xis 1), yi) (D

where f(-; 0) is simplified as fy(-). With the loss function £
and a training sample (x;, t;, y;), the gradient can be computed,
ie., (0£/0z;)(9z;/00), where z; = fo(x;, t;). Typically, £ is
the cross-entropy loss in the classification task. Note that we
follow the convention of classification literature [55], [56], [57]
to define the input of £ as logits z and ground-truth labels y,
instead of predicted labels and ground-truth labels. Finally, the
model is updated with the computed gradient, that is,

0 «—60—n——r )

where 7 is the learning rate for updating 6. Let ©2(X) be the
set of classes associated with all labeled data X, and Q(X)
be the set of classes associated with all unlabeled data X.
We assume that Q2 (X) C Q(X). In other words, the underlying
labels associated with unlabeled data are likely to be unknown
to the learning process.

In this study, we introduce the concept of SSCL, which
involves the use of both labeled and unlabeled data to train
CL models. If the input is unlabeled data, the model update is
shown in (2) cannot be performed. This is because the under-
lying labels associated with the unlabeled data are unknown
to the learning process. We assume that the set of classes
associated with all labeled data X is a subset of the set
of classes associated with all unlabeled data X, denoted as
Q(X) C Q2(X). When training with unlabeled data, there is
no label available to feed into the loss function, which makes
it impossible to compute the update shown in (2). Thus, it is
crucial to use unlabeled samples to predict pseudo gradients,
represented as (dg|x;/d6), which can then be used to update
the model through back-propagation.

IV. METHODOLOGY

In this section, we introduce how to train a gradient learner
in a CL framework, and how to use the resulting gradient
learner to predict gradients of unlabeled data. We also discuss
the sampling policy for unlabeled data and the geometric
interpretation of the proposed gradient prediction. Fig. 3 shows
an overview of the proposed SSCL method, which includes
gradient learning and gradient prediction process.

A. Gradient Learning

In a CL framework, a model is designed to learn the map-
ping from raw data to the logits that minimize the predefined
continual loss. During the training process, at the ith training
step or episode, the generated logits z; with respect to the input
x; is passed to the continual loss £. With the corresponding y;,
£(z;, y;) is computed to yield the gradient (0£/9z;). We aim
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to compute the pseudo gradient g and use it to back-propagate
the error and update the parameters 6 by the chain rule. They
can be mathematically summarized as

Forward: z; = fy(x;, ;) ®)
ol 0¢ 9z; 0Ly 08;

Backward: — = ——Z, - __ft g )
96~ 9z 96 03l;, 9o

When the learning process is fed with unlabeled data x;,
it is desirable to have the logits and corresponding gradient
so that X; can straightforwardly fit into the SCL framework.
Therefore, we propose a gradient learner 4 that aims to learn
the mapping from the logits z; to the gradients (0¢/dz;), that
is,

8 = h(zj; w) ®)

where w is the parameters of 4 and g; is the predicted gradient
that is expected to work as (9¢/dz;) for back-propagation.

To guarantee that the predicted gradients can mimic the
gradients’ efficacy in the learning process, we formulate the
fitness of the predicted gradients with respect to the logits
as a learning problem. We define the fitness loss function to
quantify the effect of the predicted gradients by fitting them
back in the loss, i.e.,

Lac(ziy &y vi) = €(zi — ngi, yi)- 6)

By observing triplet (z;, gi, y;) at each training step, the min-
imization of fg will iteratively update the proposed gradient
learner A(-; ) through back-propagation. As depicted in (6),
the predicted gradients aim to minimize the fitness loss, rather
than mimicking the vanilla gradients (3¢/dz) in terms of
direction and magnitude.

However, the gradients are sensitive in the learning process
and a small change in gradients could lead to a divergence
of training. To obtain robustly predicted gradients, instead of
directly using the output of A(-; w) in the fitness loss (6),
we reference the magnitude 7; of the vanilla gradient. With
7;, the predicted gradient can be accordingly normalized, i.e.,

ol

T =| o I )
where o € [0,1] is a hyperparameter that controls the
proportion of the magnitude of the predicted gradient to 7; and
z; is generated by (x;,#;, ;). On the other hand, the output
of the proposed gradient learner is a gradient that is subtle
and crucial to the learning process. To properly update the
proposed gradient learner, we apply a simple yet practically
useful version of the loss scale technique [58], [59], [60] to
the fitness function. Specifically, the left-hand side in (6) is
multiplied with a predefined coefficient A. Finally, the fitness
loss is computed with more robust g;, that is,

Cie(zi, & yi) = 2(zi — g, vi).- ®)

Once the fitness loss is set, triplet (z, g, y) at each training
step suffices to fit into the model learning. Specifically, the
proposed gradient learner would be updated with (9¢5,/0g;),
ie.,

gi =atg/llgll,

00 03 o)

where 7 is the learning rate for updating w. The model
learning formed by the fitness loss (6) and the update func-
tion (9) is generic and any gradient-based methods, e.g.,

Algorithm 1 Gradient Learning & Prediction

1: Input: (x;,%,y) € Dy, X4, 0, 0, &, A, 1, 1)
2z = f(xi, 15 0)

34 =z, yi)

4: Compute the gradient w.r.t. z;, i.e. g—ﬁ’

5: Update the model 6 <« 6 — ngf g—g

6 gi = h(zi; w)

7 & =ongi/lgll, w =I5,

8: Lyiy = AM(zi —ng, yi)

9: Compute the gradient w.r.t g;, i.e. aae—;’

10: Update the gradient learner w < w — ﬁ%’%

11: if X; is not equal to & then
122 zlg = f(x, 15 0), glg, = h(zlz; ©)

— J9¢
132 glg, =augly/llglz I, @ =I5l
ol

14 0 < 0 —ngly, —5

15: end if

multilayer perceptron (MLP) [61], deep networks [55], [56],
[57], or transformer [62], can be used. Without loss of gen-
erality, we use the baseline gradient-based method, i.e., MLP,
in this work.

The process of learning to predict pseudo gradients is
described in lines 6-10 in Algorithm 1.

B. Gradient Prediction

To avail the additional unlabeled data in the learning process
for better generalizability, the proposed gradient learner h
will predict gradients when the learning process is fed with
unlabeled data x. Given X;, the predicted gradient is computed
in a similar way as (5) and (7) describe, but we use t;_; =
1(0€/0z;—1)|| (i.e., the last labeled sample prior to the nth
step), rather than t;, as the label of X; is absent to produce
1(8€/9z;)||. Once the predicted gradient g|;, is computed, the
model can be updated as

981z,
30
To maintain flexibility in leveraging external unlabeled data,
we follow the basic idea of probability theory to presume that
unlabeled data are sampled from a distribution. In contrast
to the use of labeled data, where we assume all labeled data
will be used during the training process, it is possible that no
unlabeled data are sampled at some learning steps. In other
words, the training process will revert to supervised learning if
no unlabeled data is used. Mathematically, it can be formulated
as

0 <0 —ngl;, (10)

~ f,‘ ND}?’

if
. ifg<p

a, otherwise

(1)

where ¢ is a random variable following a distribution and p is
a predefined threshold. Without loss of generality, we assume
the distribution is a standard uniform distribution 2/(0, 1).
When p is set to 1, it indicates that the learning process will
always draw several unlabeled data from a set X of unlabeled
data. When p is set to 0, it indicates that the learning process
will not draw any unlabeled data. In other words, p manages
the transition from SCL to SSCL.
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Fig. 4. Comparison between the predicted gradient g and the gradients

(3€(z, )/06) generated with pseudo labels y. Assume the proposed gradient
learner is trained with the samples in categories cat and dog, given an
unlabeled image X, the proposed gradient learner would take all learned
class-specific knowledge (i.e., with respect to categories cat and dog) into
account, instead of taking one category (i.e., cat or dog) into account in pseudo
labeling methods.

The process of predicting gradients is described in lines 11—
14 in Algorithm 1, and the symbols used in the algorithm are
depicted in Nomenclature.

C. Connection to Pseudo Labeling

Note that we do not assume that the underlying classes
that are associated with the unlabeled data are the same as
or similar to the known classes. As a result, the distributions
of the unlabeled samples could be very different from the
labeled samples. Hence, directly predicting pseudo-label for
back-propagation may not be suitable in the SSCL setting.

When labels are unavailable, a common practice to utilize
unlabeled samples is by training a teacher model with labeled
samples and then predicting pseudo labels on unlabeled sam-
ples [11], [19], [63], [64]. Pseudo labeling [11], [19], [64] is
viewed as a teacher—student learning framework, i.e.,

mingnize e 1 (X, 1), ¥i) (12)

$ = argmax| 5" (%, )], (13)
J

minimize (i 1), D) (14)

where frch (respective stn) stands for teacher (respective
student), 0’ (respective 6) are the weights of the teacher
(respective student), ((x;, ), y;) is a labeled sample, and x
is an unlabeled sample. In short, the teacher would be trained
with labeled samples by (12). When it comes across unlabeled
sample X, the teacher first predicts an one-hot pseudo label
by (13) and then y is viewed as the label for training the
student by (14). A common alternative to one-hot pseudo
labels in (13) is the probabilities with respect to each class,
which is used in leveraging unlabeled data in the class-
incremental learning [11]. To generate probabilistic labels, the
softmax function is usually applied. We denote the one-hot
pseudo labeling method and the probabilistic pseudo labeling
method as 1-PL and P-PL for simplicity.

The difference between gradient prediction and pseudo
labeling is shown in Fig. 4. As teacher models have a chance
of generating incorrect labels, the resulting gradients would
vary with different pseudo-labeling. Instead, the proposed
gradient learner is trained with labeled samples so the
predicted gradients are generated with implicit knowledge
that maps visual appearance to various visual concepts, rather
than one. For example, given training samples of a cat and
dog, when the proposed gradient learner observes a fox
image to predict the pseudo gradient, the pseudo gradient
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Fig. 5. Geometric interpretation of supervised learning (top) and SSL

(bottom). Through leveraging the semantics of unlabeled images, the gen-
eralizability of models is expected to be improved. Experimental results in
Tables II-VI validate this finding.

would be aligned with the learned knowledge of both cat and
dog, instead of only cat or only dog. Therefore, the pseudo
gradients generated by the proposed gradient learner have
better generalizability than the ones generated by pseudo-
labeling methods. Last but not least, as indicated in (6), the
predicted gradients are generated to minimize the fitness loss,
while the gradients generated by pseudo labeling methods aim
to reproduce the gradients generated with ground-truth labels.
Ideally, if the pseudo labels are identical to the ground-truth
labels, the gradients generated with pseudo labels would be
identical to the gradients generated with ground-truth labels.
However, this rarely happens in practice as unlabeled data
have no labels or the underlying labels are unknown.

On the other hand, each task in SSCL has a limited number
of labeled samples, and the visual concepts of any two tasks
are different. With limited labeled samples, it is difficult
to predict correct pseudo labels. Thus, predicting pseudo
gradients is more straightforward and effective in this case.

Furthermore, pseudo-labeling methods have many more
parameters than the proposed gradient learner. Although the
outputs of the teacher model and the proposed gradient learner
are supposed to be of the same dimension, the inputs are
different. The former takes images as input whereas the latter
takes CL models’ output as input. Thus, the teacher models
usually have the same as or more parameters (> 1M) than the
student models [11], [17], [19], whereas the proposed gradient
learner is a small MLP with fewer parameters (< 10K).

D. Geometric Interpretation

Fig. 5 shows the geometric interpretation of gradient pre-
diction by comparing SSL (bottom) with supervised learning
(top). In this illustrative example, given two labeled images,
s1 and s, and one unlabeled image, X1, the predicted gradient
—glz, helps boost the convergence, i.e., 6/, is closer to the
underlying local minimum 6* than 6;,,. This also impacts
the generalizability. Given an unseen labeled triplet (x, ¢, y),
we have inequality £(f(x; 91‘/4-2)’ t,y) < L(f(x;0i12),t,y).
This implies that the CL model with pseudo gradients is likely
to be closer to a local minimum than the one that is not using it.
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E. Tradeoff: Overwhelming Versus Generalizing

It is desirable to use as much unlabeled data as possible,
as long as the data improves the generalizability of the CL
models. Unfortunately, this goal is difficult to achieve. The
reasons are twofold. First, as shown in Fig. 1, since the
underlying classes of the unlabeled images are unknown, the
distributions of unlabeled data could be considerably different
from the ones of the labeled data. Second, gradient learning
and prediction are challenging as it is a regression task in a
high-dimensional space and the values of gradients are usually
small but influential. Last but not least, in contrast to the
classification task, where the labels are one-hot vectors that
are in [0, 1], the ranges of vanilla gradients are determined by
the labeled data and lie in (—oo, +00). Therefore, the gradient
learning task is by nature very challenging.

As a result, when more unlabeled data are used in the learn-
ing process, it is more prone to accumulate prediction errors
that harm the training quality. Specifically, predictive errors in
the back-propagation could overwhelm the knowledge learned
from the given labeled data. Therefore, achieving a good
tradeoff between overwhelming and generalizing is important
in the SSCL problem. In this work, we use a probabilistic
threshold p to implement this tradeoff.

V. EXPERIMENT

A. Experimental Set-Up

We follow the experimental protocols used in GEM [5]
and ACL [14], which are cast into the category of task-
incremental learning. In the training scheme of [5], the models
will observe training samples and no training samples will be
observed for a second time. The training and test samples are
randomly assigned to n tasks according to classes and each
task has training and test samples with different classes from
the other tasks. Similarly, [14] randomly assigns the samples
into n tasks, but in each task, there are multiple epochs that
repeat the stochastic process over the training samples as the
conventional supervised learning. After the training on every
task is done, the trained models would be evaluated with all the
samples of all tasks, including the tasks that the CL process has
gone through and the tasks that have not been executed yet.
Furthermore, to understand the generalization ability of the
proposed method in the SSL task, we follow the experimental
protocols used in [20] to evaluate the proposed method.

B. Datasets

In the GEM training scheme, we use the following
datasets. MNIST permutation (MNIST-P) [25] is a variant
of MNIST [65], which consists of 70k images of size 28 x 28.
Each image is transformed by a fixed permutation of pixels.
MNIST rotation (MNIST-R) [5] is similar to MNIST-P, but
each image is rotated by a fixed angle between 0° and 180°.
Incremental CIFAR-100 (iCIFAR-100) [26] is a variant of
the CIFAR-100 [66], which consists of 60k images of size
32 x 32 that are split into multiple subsets by the classes.

In the ACL training scheme, we use CIFAR-100 [14] and
minilmageNet [67]. CIFAR-100 is also split into multiple
subsets like iCIFAR-100. Instead of being used once, the
images in each task are repeatedly used in every epoch.
minilmageNet is a variant of ImageNet [41], which consists
of 60k images of size 84 x 84 with 100 classes.

Following GEM and ACL, all training samples are split
into 20 tasks. Briefly, each task on iCIFAR-100, CIFAR-100,
and minilmageNet has five classes. For MNIST-P and MNIST-
R, each task has ten classes and is performed with different
permutations or rotations from the other tasks.

For the experiments on MNIST-R, MNIST-P, iCIFAR-100,
and CIFAR-100, we use Tiny ImageNet as the unlabeled
dataset. For the experiments on minilmageNet, we use the
unlabeled images from MS COCO [68]. Both unlabeled
datasets are widely used large-scale real-world datasets.
Hence, the unlabeled pool is representative and general for
various CL tasks.

In the semi-supervised training scheme, we follow the same
experimental protocols used in [20] to evaluate the proposed
method on SVHN [69], CIFAR-10, and CIFAR-100 [66]. The
numbers of labeled data are 1k, 4k, and 10k for SVHN,
CIFAR-10, and CIFAR-100, respectively.

C. Metrics and Methods

To comprehensively validate the performance of the pro-
posed method, we conduct experiments based on the training
schemes of GEM and ACL. DCL [15] achieves state-of-the-art
performance on MNIST-P, MNIST-R, and iCIFAR-100, and is
considered as another baseline in the GEM training scheme.

CL has three key metrics, namely, average accuracy (ACC),
backward transfer (BWT), and forward transfer (FWT) [5],
ie.,

T
1

ACC = — Rr; 15
T; T, (15)
1 T-1

BWT = —— Rr, — R;; 16
T—1§ T , (16)
1 T

FWT=—— Ri_i;,—b 17
T_li; L (17)

where R; ; is the test classification accuracy that is evaluated
on the test set of the jth task when training on the ith task,
T is the number of tasks, and b; is the test classification
accuracy at random initialization at the ith task. Average
accuracy indicates the predictive ability of the trained models
on all tasks. BWT measures the effect of how learning a task
t influences the performance on previous tasks k < t. A large
negative score is referred to as catastrophic forgetting while
a positive score implies that learning new tasks generalizes
to previous tasks. Correspondingly, FWT measures the effect
of how learning a task ¢ influences the performance of future
tasks k > t. A positive score implies that learning a task
generalizes to future tasks, which is similar to zero-shot
learning. In the ACL training scheme, we use the same metrics,
i.e., average accuracy and BWT, as [14]. We denote a baseline
as backbone (if any) continual algorithm, e.g., ResNet GEM.
Similarly, we denote the proposed method as backbone (if
any) continual algorithm + proposed, which indicates the
proposed method is used to leverage the information from
unlabeled images. Also, following [11] and [20], we report
the performance of 1-PL, P-PL, and MG for the purpose
of comparison in the CL setting. Specifically, the teacher
model takes images as input to predict pseudo labels when
the learning process encounters unlabeled images. The teacher
model is composed of the same backbone as the CL model
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TABLE I

HYPERPARAMETERS WITH RESPECT TO THE PROPOSED METHOD.
BS DENOTES BATCH Si1ZE OF UNLABELED IMAGES

Setting  Dataset Method Backbone BS p a A he
MNIST-R GEM MLP 4 0.15 0.001 0.30 (64,16)
MNIST-R DCL MLP 4 015 0.001 030 (64,16)
MNIST-P GEM MLP 4 015 0.001 050 (64,16)
MNIST-P DCL MLP 4 015 0001 049 (64,16)

SSCL
iCIFAR-100 GEM ResNet-18 4 030 0.005 200 (12832)
iCIFAR-100 DCL ResNet-18 4 030 0.005 250 (12832)
iCIFAR-100 GEM EffNet-B1 4 020 0005 2.00 (12832)
iCIFAR-100 DCL EffNet-B1 4 035 0.005 200 (12832)
CIFAR-100 ACL AlexNet 64 030 0.001 020 (12832)
minilmageNet ACL AlexNet 64 035 0.001 0.15  (128,32)
SVHN Conv-Large [70] 0.001 2.00 (128,32)

SSL CIFAR-10 Conv-Large 0.001  1.00 (128,32)
CIFAR-100 Conv-Large 0.001 1.00  (128,32)

and a linear transformation layer that generates pseudo labels
in each task. In other words, 1-PL and P-PL have many more
parameters than the baseline and the proposed method.

D. Hyperparameters and Implementation Details

We use the same training hyperparameters in GEM [5],
DCL [15], and ACL [14]. More details can be found in
these works or in our code repository. Here, we focus on the
hyperparameters that are related to the proposed method. There
are five hyperparameters, namely, threshold p, magnitude ratio
«, loss scale A, network architecture h,, and batch size of
unlabeled images. The hyperparameters with respect to the
proposed method used in the SSCL and SSL setting are
reported in Table I. In particular, we follow [20] to use the
unlabeled data with p = 1.0 in SSL.

Specifically, this work follows the same experimental pro-
tocol used in [5] and [15] to evaluate the proposed method
on MNIST-R, MNIST-P, and iCIFAR-100, while it follows
the same experimental protocol used in [14] to evaluate
the proposed method on CIFAR-100 and minilmageNet. All
hyperparameters that are used with the baselines are used with
the proposed method as well.

Without loss of generality, we use MLP as the gradient
learner h(-; w) ( h, for short). Assume the gradient is in
R™, we denote (dimension of the first layer output, dimension
of the second layer output, ..., dimension of the penultimate
layer output) for simplicity. For instance, given m = 5, archi-
tecture (64, 16) indicates the MLP consists of three layers,
the first one is a linear operation with a coefficient matrix of
size 5 x 64, the second one is with a coefficient matrix of
64 x 16, and the last one is with a coefficient matrix of size
16 x 5.

Similar to other supervised learning methods, a few learning
steps may not be adequate to train a good gradient learner.
Hence, the gradient learner is trained from the very beginning,
but the predicted gradients are used after 50 learning steps in
the GEM and DCL training scheme, and after five learning
steps in the ACL training scheme.

Note that restricted to the shared and private module design
in ACL [14], which requires a fixed dimension of the input
features, the batch size of unlabeled images has to be the same
as the batch size of training samples, that is, 64.

E. Generalization Performance

Tables II-IV report the performance of the proposed method
with comparison to the compared baselines on MNIST-
R, MNIST-P, and iCIFAR-100. EWC [25], iCARL [26],
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TABLE I

PERFORMANCE ON MNIST-R. ALL METHODS USE MLP AS THE BACK-
BONE NETWORK [5], [15]. THE PROPOSED GRADIENT LEARNER
HAS 1824 PARAMETERS. ACCURACY IS IN (%). THE TOP PERFOR-
MANCE Is HIGHLIGHTED IN BOLD. MG AND PG STAND FOR
META GRADIENT [20] AND PREDICTED GRADIENT (PRO-
POSED), RESPECTIVELY. FT AND COS INDICATE THE
FITNESS LOSS AND THE COSINE SIMILARITY LOSS,
RESPECTIVELY

Methods Accuracy BWT FWT
EWC [25] 54.61 -0.2087 0.5574
GEM [5] 83.35 -0.0047 0.6521
DCL [15] 84.08 0.0094 0.6423
GEM + 1-PL 74.58 -0.0782 0.6319
GEM + P-PL 79.39 -0.0380 0.6453
GEM reproduced 83.03 -0.0061 0.6482
GEM + MG 84.97 0.0051 0.6552
GEM + proposed 86.54 0.0227 0.6537
DCL + 1-PL 82.12 0.0022 0.6275
DCL + P-PL 83.34 0.0033 0.6359
DCL reproduced 84.88 0.0088 0.6526
DCL + MG 85.74 0.0168 0.6518
DCL + proposed 86.26 0.0106 0.6620
TABLE III

PERFORMANCE ON MNIST-P. ALL METHODS USE MLP AS THE BACK-
BONE NETWORK [5], [15]. THE PROPOSED GRADIENT LEARNER
HAS 1824 PARAMETERS

Methods Accuracy BWT FWT

EWC [25] 59.31 -0.1960 -0.0075
GEM [5] 82.44 0.0224 -0.0095
DCL [15] 82.58 0.0402 -0.0092
GEM + 1-PL 80.61 0.0327 -0.0014
GEM + P-PL 80.58 0.0224 -0.0039
GEM reproduced 82.35 0.0251 -0.0101
GEM + MG 82.30 0.0332 -0.0170
GEM + proposed 82.91 0.0316 -0.0072
DCL + 1-PL 81.57 0.0479 0.0002
DCL + P-PL 80.95 0.0219 -0.0083
DCL reproduced 82.83 0.0279 -0.0100
DCL + MG 82.48 0.0423 -0.0078
DCL + proposed 82.97 0.0402 -0.0038

MAS [71], A-GEM [72], LUCIR [30], BiC [73], HAL [74],
DER [28], X-DER [29], CFA [75], MutexMatch [32],
interpolation-based contrastive learning (ICL) [35], and the
glimpse network [76] use the same ResNet backbone. Com-
pared to these baselines, the proposed method achieves higher
average accuracy and BWT, e.g., ResNet GEM + proposed.
This implies that the proposed method effectively utilizes the
information of unlabeled images to improve the predictive
ability, alleviate catastrophic forgetting, and enhance zero-shot
learning ability. Moreover, the proposed method consistently
improves the average accuracy, BWT, and FWT of the base-
lines with the same backbone, e.g., ResNet GEM reproduced
versus ResNet GEM + proposed.

In the ACL setting (i.e., Tables V and VI), the average accu-
racy and BWT of the baseline are improved by the proposed
method. Moreover, the standard deviation with respect to the
proposed method over 5 runs is smaller than the corresponding
baseline. This implies the proposed method is more stable than
the baseline.

On the other hand, 1-PL and P-PL yield lower accuracies
than the proposed method. This is because the pseudo labels
are likely to be incorrect as the training samples are not
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TABLE IV

PERFORMANCE ON ICIFAR-100. ResNet INDICATES RESNET-18. EffNet
STANDS FOR EFFICIENTNET (B1) [57]. THE PROPOSED GRADIENT
LEARNER HAS 4896 PARAMETERS

Methods Accuracy BWT FWT

EWC [25] 48.33 -0.1050 0.0216
iCARL [26] 51.56 -0.0848 0.0000
MAS [71] 49.45 -0.0674 0.0157
A-GEM [72] 67.14 0.0037 0.0087
LUCIR [30] 58.71 0.0177 -0.0067
BiC [73] 60.92 -0.0010 -0.0023
HAL [74] 63.85 0.0017 0.0088
DER [28] 65.72 0.0011 0.0053
X-DER [29] 68.32 0.0223 0.0017
CFA [75] 67.41 0.0124 -0.0026
MutexMatch [32] 68.09 0.0156 0.0021
ICL [35] 67.23 0.0084 -0.0012
Glimpse [76] 66.87 0.0169 -0.0031
ResNet GEM [5] 66.67 0.0001 0.0108
ResNet DCL [15] 67.92 0.0063 0.0102
EffNet GEM [15] 80.80 0.0318 -0.0050
EffNet DCL [15] 81.55 0.0383 -0.0048
ResNet GEM + 1-PL 65.44 0.0861 -0.0030
ResNet GEM + P-PL 65.55 0.0511 -0.0033
ResNet GEM reproduced 66.92 0.0132 -0.0048
ResNet GEM + MG 67.24 0.0614 -0.0001
ResNet GEM + proposed 68.74 0.0619 0.0055
ResNet DCL + 1-PL 66.43 0.0765 0.0051
ResNet DCL + P-PL 67.78 0.0704 0.0078
ResNet DCL reproduced 67.55 0.0048 -0.0117
ResNet DCL + MG 66.07 0.0524 0.0184
ResNet DCL + proposed 68.53 0.0574 -0.0038
EffNet GEM + 1-PL 78.33 0.0855 -0.0106
EffNet GEM + P-PL 77.46 0.0535 0.0077
EffNet GEM reproduced 81.44 0.0128 0.0105
EffNet GEM + MG 83.95 0.0294 -0.0256
EffNet GEM + proposed 85.51 0.0219 0.0148
EffNet DCL + 1-PL 77.12 0.0862 -0.0160
EffNet DCL + P-PL 76.82 0.0821 0.0097
EffNet DCL reproduced 83.47 0.0266 -0.0185
EffNet DCL + MG 85.06 0.0488 -0.0043
EffNet DCL + proposed 85.70 0.0378 0.0017

TABLE V

PERFORMANCE ON CIFAR-100 IN ACL SETTING. THE TRAINING PRO-
CESS Is REPEATED FIVE TIMES, AND THE AVERAGE ACCURACY
AND STANDARD DEVIATION ARE REPORTED [14]. ACL USES
ALEXNET [55] AS BACKBONE. THE PROPOSED GRADIENT
LEARNER HAS 1427 PARAMETERS

Methods Accuracy BWT
A-GEM [12] 54.38+3.84 -0.219940.0405
ER-RES [13] 66.7810.48 -0.150140.0111
PNN [77] 75.25+0.04 0

HAT [9] 76.96+£1.23 0.0001£0.0002
ACL [14] 78.08+1.25 0=£0.0001
ACL reproduced 78.17£1.32 0.01+£0.0168
ACL + proposed 78.46+1.05 0.01+0.0123

adequate and the visual concepts vary from task to task
(the analysis of pseudo labeling is provided in Section VI).
Incorrect pseudo-labels lead to the gradients that guide the
learning process in unpredictable directions. Note that the
BWTs of 1-PL and P-PL are higher than the others. This
results from lower accuracy. As indicated in the definition of
BWT (16), when the test classification accuracy R;; on the ith
task with the model trained in the ith task is low, it will lead to

TABLE VI

PERFORMANCE ON MINIIMAGENET IN ACL SETTING. THE TRAINING
PROCESS IS REPEATED FIVE TIMES, AND THE AVERAGE ACCURACY
AND STANDARD DEVIATION ARE REPORTED [14]. ACL USES
ALEXNET [55] AS BACKBONE. THE PROPOSED GRADIENT
LEARNER HAS 1427 PARAMETERS

Methods Accuracy BWT
A-GEM [12] 52.43+£3.10 -0.152340.0145
ER-RES [13] 57.32+£2.56 -0.113440.0232
PNN [77] 58.96+3.50 0
HAT [9] 59.45+0.05 -0.00044-0.0003
ACL [14] 62.07£0.51 0+0
ACL reproduced 62.69+1.01 0-£0.0042
ACL + proposed 63.88+0.39 0-£0.0000
TABLE VII

SEMI-SUPERVISED CLASSIFICATION ERROR RATES (%) OF THE CONV-
LARGE [70] ARCHITECTURE ON THE SVHN, CIFAR-10, AND
CIFAR-100 DATASETS. THE NUMBERS OF LABELED DATA ARE
1K, 4K, AND 10K FOR THESE THREE DATASETS, RESPEC-
TIVELY. WE FOLLOW THE EXACT EXPERIMENTAL PROTO-
coL USED IN [20] AND USE THE OFFICIAL IMPLEMEN-

TATION CODE TO CONDUCT THIS EXPERIMENT. THE
META-OBJECTIVE DEFINED IN [20] Is USED AS
THE FITNESS LOSS TO LEARN TO PREDICT
PSEUDO GRADIENTS FOR UNLABELED

IMAGES

Method SVHN CIFAR-10  CIFAR-100
Co-training [78] 3.29 8.35 34.63
TNAR-VAE [79] 3.74 8.85 -
ADA-Net [80] 4.62 10.30 -
DualStudent [81] - 8.89 32.77
MG [20] 3.15 7.78 30.74
MG reproduced 3.53 7.82 30.74
MG + proposed 3.45 7.46 30.02

high BWT. In other words, when overall ACC is high, BWT
tends to be relatively low. Similarly, FWT tends to be high
(i.e., 0.0216) when the corresponding accuracies over tasks
are low (i.e., 48.33%).

Since the proposed method is generic, we also evaluate it
in the SSL setting [20]. The meta-objective defined in [20] is
used as the fitness loss to learn to predict pseudo gradients for
unlabeled images. The experimental results on SVHN [69],
CIFAR-10, and CIFAR-100 are reported in Table VII. The
proposed method can improve the performance of the SSL
task. This implies that the proposed method generally works
with the unlabeled data with the pseudo labels that share the
same or similar distributions as the labeled data.

VI. ANALYSIS

This section provides a series of experiments to analyze the
proposed method. All analyses are based on iCIFAR-100.

A. Effects of Visual Diversity

Here, we study the influence of the variance between
training images and the unlabeled images on the model perfor-
mance. In addition to the Tiny ImageNet from Section V-B,
we selected a variety of datasets, namely, MS COCO [68],
CUB-200 [82], FGVC-aircraft [83], and Stanford-cars [84],
as the source of unlabeled images. The classes in these datasets
overlap with the ones in CIFAR-100 to various degrees. The
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TABLE VIII

EFFECTS OF VISUAL DIVERSITY OF X ON THE CLASSIFICATION PERFOR-
MANCE (%) ON ICIFAR-100 WITH RESNET GEM

Source Accuracy BWT FWT

T=0 66.92 0.0132 -0.0048
Tiny ImageNet [41] 68.74 0.0619 0.0055
MS COCO [68] 67.78 0.0562 0.0006
CUB-200 [82] 68.03 0.0460 0.0041
FGVC-aircraft [83] 67.05 0.0385 0.0159
Stanford-cars [84] 67.41 0.0465 -0.0028

TABLE IX

EFFECTS OF RANDOM NOISE ON THE PERFORMANCE (%) WITH RESNET
GEM. THE NOISE FOLLOWS A UNIFORM DISTRIBUTION U(—1,1)
OR A UNIT NORMAL DISTRIBUTION N (0, 1), AND IS USED AS
PREDICTED GRADIENTS. THE EXPERIMENTAL DETAILS ARE
DESCRIBED IN SECTION VI-B

Setting Accuracy BWT FWT

No noise 66.92 0.0132 -0.0048
No noise + proposed 68.74 0.0619 0.0055
Uu(-1,1) 54.10 0.1978 -0.0121
U(—-1,1) + proposed 67.71 0.0533 0.0004
N(0,1) 45.29 0.2121 0.0032
N(0,1) + proposed 67.08 0.0502 0.0007

performance is reported in Table VIII. Overall, the proposed
method shows improvement with all unlabeled image sources.
The images in Tiny ImageNet are similar to the ones in
MS COCO, where both are natural images but have different
image resolutions. The resolution of images in Tiny ImageNet
is closer to that in CIFAR-100 than MS COCO. Therefore,
using Tiny ImageNet images leads to the most performance
improvement. In contrast, the images in FGVC-aircraft are the
most dissimilar to the ones in CIFAR-100 and the accuracy
improvement is marginal. On the other hand, using CUB-200
leads to higher accuracy than using MS COCO. This is because
CUB-200 shares similar visual concepts with CIFAR (i.e.,
bird), and both the two datasets are object-centered, whereas
the images of MS COCO contain multiple objects and are
nonobject-centered.

B. Using Random Noise as Pseudo Gradients

To evaluate the efficacy of the proposed method, we use
random noise as the predicted gradients. The random noise
is either generated by a uniform distribution #/(—1,1) or a
normal distribution A/(0, 1). The results with the same exper-
imental set-up as Table IV are shown in Table IX. Specifically,
U(=1,1) or N(0,1) indicates that the corresponding noise
is used to replace gl (see line 13 in Algorithm 1), while
proposed indicates that the corresponding noise is used to
replace g|;, (see line 12 in Algorithm 1) and they will be the
input to the equations in line 13 in Algorithm 1. As shown,
U(-1,1) or N(0,1) produces much lower accuracy than
the other settings. Note that the random noise disturbs the
training for all the tasks so that the accuracies of preceding
tasks are low when computing the BWT scores for the current
task. As discussed in Section V-E, this leads to high BWTs,
according to the definition of BWT (16).
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TABLE X

EFFECTS OF DIFFERENT NUMBERS OF LABELED IMAGES ON ICIFAR-100.
L-Ratio INDICATES THE AMOUNT OF LABELED IMAGES IN ICIFAR-100
USED FOR TRAINING. ABOUT 20% OF UNLABELED IMAGES ARE
SAMPLED FROM TINY IMAGENET. THE SETTING IS THE SAME
AS THE ONE USED IN TABLE IV AND RESNET GEM Is USED
IN THIS ANALYSIS

Method L-Ratio Accuracy BWT FWT
20% 48.02 0.0420 0.0033
40% 60.09 0.0822 -0.0004

MG [20] 60% 61.40 0.0699 -0.0047
80% 63.21 0.0541 0.0006
100% 67.24 0.0614 -0.0001
20% 50.38 0.0693 -0.0011
40% 61.10 0.1045 -0.0039

Proposed 60% 61.38 0.0582 0.0107
80% 64.60 0.0552 0.0003
100% 68.74 0.0619 0.0055

C. Effects of Number of Labeled/Unlabeled Images

To understand how the numbers of labeled and unlabeled
images affect the performance of CL, we conduct an analysis
to show the performance of using different amounts (range
from 0% to 100%) of labeled and unlabeled images. Without
using any unlabeled images, it implies the method is a regular
SCL method. We compare our proposed method with Meta-
gradient [20] and the results with different amounts of labeled
(unlabeled) images are reported in Table X (see Table XI).
For results in Table X, we use 20% of unlabeled images for
training. An observation is that the performance increases as
more labeled images are used for training. On the contrary,
using more unlabeled images, which follow very different dis-
tributions in comparison to the labeled images, does not always
lead to better performance. As discussed in Section IV-E
and shown in Fig. 1, the distributions of unknown classes’
samples could be very different from the ones of known
classes’ samples. Therefore, using more unlabeled images of
the unknown classes would lead to a performance drop.

D. How Hyperparameters Range Across Datasets

In this section, we study how key hyperparameters p, o,
and A are robust to the training on different datasets when
using the same unlabeled data. Fig. 6 shows the curves of the
accuracy with respect to p, «, and A. Overall, the curves with
respect to iCIFAR-100 and MNIST-R are similar to each other.
Specifically, as the values of p, «, and A exceed a certain
point, it would lead to a significant drop in accuracy. The
hyperparameters used in this work (see Table I) are selected
in the optimal range.

E. Ablation Study

As introduced in the experimental setup, the proposed
method depends on five hyperparameters. This section shows
the corresponding ablation studies and the results are shown
in Fig. 7. As discussed in Section IV, p reflects the tradeoff
between overwhelming and generalizing. As p increases, the
accuracy drops significantly. This is as expected in the earlier
discussion. Moreover, we can observe that the architecture of
the proposed gradient learner is more critical to the proposed
method in terms of accuracy, BWT, and FWT, compared to
the other hyperparameters.
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Fig. 6. Effects of p (top), « (middle), and A (bottom) on accuracy across
datasets (i.e., iCIFAR-100 and MNIST-R).

TABLE XI

EFFECTS OF DIFFERENT NUMBERS OF UNLABELED IMAGES ON ICIFAR-
100. U-Ratio IS THE AMOUNT OF UNLABELED IMAGES IN TINY
IMAGENET USED FOR TRAINING. THE SETTING IS THE SAME AS
THE ONE USED IN TABLE IV AND RESNET GEM Is USED IN
THIS ANALYSIS

Method U-Ratio Accuracy BWT FWT
0% 66.92 0.0132 -0.0048
10% 66.43 0.0539 -0.0118
20% 67.24 0.0614 -0.0001
MG [20] 40% 67.03 0.0601 -0.0010
60% 66.95 0.0579 -0.0037
80% 66.71 0.0536 -0.0059
100% 66.27 0.0456 0.0018
0% 66.92 0.0132 -0.0048
10% 67.80 0.0525 0.0084
20% 68.74 0.0619 0.0055
Proposed 40% 67.53 0.0630 0.0140
60% 67.99 0.0644 0.0099
80% 67.91 0.0581 -0.0021
100% 66.96 0.0573 0.0000

FE. Training Loss, Validation Accuracy, and Fitness Loss

The losses and accuracy against tasks are shown in Fig. 8.
As shown, the proposed method can improve the predictive
ability of CL models, i.e., EfficientNet GEM and Efficient-
Net DCL, when unlabeled data and corresponding predicted
gradients are used. The loss is decreased and the accuracy
is increased. On the bottom row, the curves of the fitness
loss versus task show that the fitness loss (6) across tasks
is minimized by the proposed gradient learner.

G. Pseudo Labeling Versus Gradient Prediction

This section examines how pseudo labeling and gradient
prediction work in the CL method. Moreover, we investigate
the correlations between the gradients generated by various
methods and its performance.

To understand the efficacy of pseudo-labeling methods,
we first inspect the gradients generated with pseudo-labels
and the accuracy of pseudo-label prediction on training
samples. We take the gradients generated with ground-truth
labels as a reference and compute the cosine similarity
cos((0€/02)|x.r.y, (3£/32)|,, 3) between the gradients gener-
ated with two types of labels, where x,7,y are training
samples and y are pseudo labels. In this way, the discrepancy
can be quantified as the cosine similarity. In other words,
if pseudo labels are the same as the ground-truth labels, the
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Fig. 7. Ablation study of the proposed method with various hyperparameters
detailed in Section V. The metrics are classification accuracy (left), BWT
(middle), and FWT (right). ResNet GEM is used for the analysis.

cosine similarity between the gradients generated with pseudo
labels and ground-truth labels should be 1, which indicates
the resulting gradients are fully aligned. As shown in Fig. 9,
the cosine similarities generated by 1-PL and P-PL are stably
around 0.4. The drop from 1 to 0.4 results from the incorrect
pseudo labels. The accuracies of 1-PL and P-PL are lower
than 1%. The reasons for the low accuracy are twofold. First,
in CL, all samples are only observed once and the number
of training samples with respect to a class is relatively small,
e.g., 500 on iCIFAR-100. Thus, there is not enough data to
train a high-performance teacher model. Second, the classes
of samples used for training at a task are distinct from those
of the other tasks. This dynamic results in the difficulty of
training a strong teacher model.

Next, we examine how the gradients generated by various
methods correlate with the performance. Note that the pre-
dicted gradients aim to minimize the fitness loss (6), while
the pseudo labeling methods aim to maximize the similar-
ity between the gradients generated with pseudo labels and
ground-truth gradients labels. Hence, the predicted gradients
are expected to differ from the ground-truth-generated gra-
dients. As shown in Fig. 10, ResNet GEM + P-PL yields
a higher cosine similarity than ResNet DCL + P-PL, but
achieves a lower accuracy. In contrast, the proposed method’s
(i.e., with gradient prediction) accuracy is clearly proportional
to the cosine similarity. On the other hand, we observe that
discriminative features produced by a strong backbone will
lead to better-predicted gradients in terms of the geometric
relationship.
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training samples and the dynamical change of visual concepts at each task, the
pseudo label prediction performs badly (lower than 1%). This is consistent
with the drop in the cosine similarity, which should be 1 if the predicted
pseudo labels are correct. (a) ResNet GEM 1-PL. (b) ResNet DCL 1-PL.
(c) ResNet GEM P-PL. (d) ResNet DCL P-PL.
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H. Computational Complexity for Training

Table XII reports the runtime and GPU memory for training
models. For ResNet models, the training time per image ranges
from 13 to 25 ms, with MG being the fastest and P-PL being
the slowest. For EfficientNet models, training is generally
slower, ranging from 56 to 109 ms per image. GPU memory
usage per image is around 190-200 MB for ResNet models
and 750-760 MB for EfficientNet. There is little difference
between methods. In general, MG and the proposed method

TABLE XII
COMPUTATIONAL COMPLEXITY ON ICIFAR-100
Methods Training Time GPU Mem
(ms/Image) (MB/Image)
ResNet GEM + 1-PL 25 194
ResNet GEM + P-PL 25 194
ResNet GEM 18 193
ResNet GEM + MG 14 194
ResNet GEM + proposed 19 193
ResNet DCL + 1-PL 24 194
ResNet DCL + P-PL 25 194
ResNet DCL 15 193
ResNet DCL + MG 13 193
ResNet DCL + proposed 16 193
EffNet GEM + 1-PL 108 753
EffNet GEM + P-PL 109 753
EffNet GEM 60 756
EffNet GEM + MG 61 750
EffNet GEM + proposed 62 756
EffNet DCL + 1-PL 108 763
EftNet DCL + P-PL 108 763
EffNet DCL 57 759
EftNet DCL + MG 56 757
EffNet DCL + proposed 61 759

are faster than the other methods (i.e., baseline, 1-PL, and P-
PL). In particular, the proposed gradient learner method has
comparable speed to MG for both ResNet and EfficientNet
models, while using slightly less memory.

VII. CONFUSION MATRIX

To comprehensively understand the efficacy of the pro-
posed predicted gradients, we visualize the confusion matrices
generated by various methods on iCIFAR-100 in Figs. 11
and 12. The ith row of the confusion matrix indicates the test
classification accuracies over 20 tasks with the model trained
on the ith task. Similarly, the jth column indicates the results
are evaluated on the test set of the jth task.

As shown in Fig. 11, leveraging extra unlabeled images
with the proposed method will have lower accuracies on early
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tasks than the baseline as the proposed gradient learner does
not have sufficient training samples for learning. With more
and more training samples being observed, better-predicted
gradients are produced to improve the performance of late
tasks. In addition, the accuracies of 1-PL and P-PL are overall
lower due to the disturbance caused by the incorrect pseudo
labels. As discussed in Section V-E, low R;; leads to a high
BWT score.

Table IX shows that using random noise as predicted
gradients yields higher BWT than the other settings. Again,
this is because the random noise disturbs the learning process,
which leads to low accuracies (see Fig. 12). More importantly,
Fig. 12 shows that random noise + proposed is more robust
than the method with only random noise.

VIII. CONCLUSION

In this work, we study how to exploit the semantics of the
unlabeled data to improve the generalizability of CL methods.
Existing semi-supervised (continual) learning presumes that
the labels associated with unlabeled data are known to the
learning process. We relax the constraint, i.e., the labels asso-
ciated with unlabeled data could be known or unknown to the
learning process. Correspondingly, we propose a new SSCL
method, where a novel gradient learner is trained with labeled
data and utilized to generate pseudo gradients when the input
label is absent. The proposed method is evaluated in the CL
and ACL settings. The experimental results show that the
average accuracy and BWT are both improved by the proposed
method and achieve state-of-the-art performance. This implies
that utilizing the semantics of the unlabeled data improves
the generalizability of the model and alleviates catastrophic
forgetting. Last but not least, we provide empirical evidence to
show that the proposed method can generalize to the SSL task.
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