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Tundra and boreal ecosystems encompass the northern circumpolar
permafrostregion and are experiencing rapid environmental change with
importantimplications for the global carbon (C) budget. We analysed
multi-decadal time series containing 302 annual estimates of carbon dioxide

(CO,) flux across 70 permafrost and non-permafrost ecosystems, and 672
estimates of summer CO, flux across 181 ecosystems. We find anincrease in
the annual CO, sink across non-permafrost ecosystems but not permafrost
ecosystems, despite similar increases in summer uptake. Thus, recent
non-growing-season CO, losses have substantially impacted the CO, balance
of permafrost ecosystems. Furthermore, analysis of interannual variability
reveals warmer summers amplify the C cycle (increase productivity and
respiration) at putatively nitrogen-limited sites and at sites less reliant on
summer precipitation for water use. Our findings suggest that water and
nutrient availability will be important predictors of the C-cycle response of
these ecosystems to future warming.

High-latitude ecosystems store nearly half the terrestrial C stocks'.
The northern circumpolar permafrost region, which includes most
of the tundra biome and a large fraction of the boreal forest biome?,
represents only 15% of the Earth’s soil area but stores approximately
one-third (approximately 1,460-1,600 Pg) of global soil organic C*>.
Permafrost ecosystems are currently warming three to four times faster
than the global mean®’, making this critical soil C pool increasingly
vulnerable to decomposition. Althoughincreased plant C uptake may
offset some portion of soil C losses, the climate impact of CO, and
methane (CH,) C emissions from the permafrost region over the next
century will likely be comparable to a high-emissions nation®. However,
these permafrost Closses are notaccounted for in the emissions targets
setforthinthe Parisaccord®. Evidence from remote sensing and model-
ling efforts suggest that both gross primary productivity (GPP)° *and
ecosystem respiration (R,.,)’** are increasing across high latitudes;
however, the magnitude of this C-cycle amplification and its effect on
decadaltrendsinthe net ecosystemexchange (NEE; the relatively small
difference between GPP and R,.,,) of CO, with the atmosphere remain
highly uncertain®>"*°,

Previous ground-based syntheses of decadal changesin NEE in per-
mafrost ecosystems were limited by a scarcity of year-round (annual)
measurements, leading to contradictory conclusions®”. Between
1990 and 2009, annual NEE measurements binned by decade sug-
gested that tundra ecosystems were becoming anincreasing CO, sink
(accumulating ecosystem C over time)". However, a separate analysis
of the same time period based on the difference between trends of
growing-season and non-growing-season NEE suggested that upland
tundra ecosystems were becoming an increasing CO, source (losing
ecosystem C over time)°. Since the publication of these time series
studies, the number of sites directly measuring non-growing-season
NEE (via eddy covariance or chambers) has more than doubled,
capturing critical autumn, winter and springtime dynamics'. These
more recent ground-based estimates suggest that non-growing-season
CO, losses are currently higher than process model estimates of
growing-season CO, uptake and are expected to increase in coming
decades”. However, estimates of recent decadal NEE trends vary
considerably depending on the modelling approach, especially in
the permafrost zone** %2, Thus, a comprehensive time series analysis
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Fig.1| Distribution of sites containing summer (June-August) and annual CO, flux measurements across tundra and boreal forest ecosystems.

Figure reproduced with permission fromref. 51, Elsevier.

of ground-based, annual measurements is needed to help constrain
recenttrajectoriesinthe CO,balance of ecosystems across this rapidly
warming region.

Although climate warming is probably contributing to an ampli-
fication of the annual C cycle of northern ecosystems, field-based
observations of the C-cycle response to interannual temperature
anomalies remain empirically unexplored. Direct temperature
limitation of plant and microbial metabolism is well documented
globally?*** and is exacerbated under high-latitude growing-season
conditions*?, However, evidence from warming experiments reveals
that the responses of GPP and R,, to temperature are rarely of equal
magnitude, resulting in variable effects of temperature on NEE across
ecosystems®®* ™, This is partially because GPP and R, are constrained
by additional resources that limit plant and microbial processes and
mediate their temperature response®>*, Water and nitrogen (N) avail-
ability are expected to limit both productivity and decomposition
in ecosystems as temperature and CO, concentrations continue to
rise?***8, collectively influencing the NEE response to temperature.
Consequently, the magnitude of the GPP and R, response to tem-
perature is expected to vary with the local resource limitations of
plant and microbial communities, resulting in differentialimpacts on
net CO, balance across sites®. Thus, an empirical understanding of
how resource availability dictates the temperature response of NEE
across ecosystems will be critical to constraining future projections

under warming>***~*,

Here we present acomprehensive time series analysis of CO, flux
observations across ecosystems within the tundraand boreal biomes,
including the first analysis of full-year (annual) NEE observations.
Our objectives were to (1) describe differences in decadal trends of
NEE, GPP and R, between permafrost and non-permafrost ecosys-
tems at the growing season and annual scale; and (2) determine how
ecosystem-level factors such as permafrost presence, biome type,
water balance and N availability affect the interannual C-cycle response
to temperature across these ecosystems.

Long-termtrendsin C fluxes
We analysed decadal trends and drivers of interannual variability
based on available data containing 6,741 monthly fluxes from 349
sites (1989-2022), 672 summer growing-season fluxes (June, July and
August) from 181 sites (1992-2022) and 302 annual fluxes across 70
sites (1995-2022) (Fig.1and Supplementary Fig.1). Most of these data
areincludedin the ABCflux dataset®, with some additional aggregate
estimates fromother sites (Methods and Supplementary Tables1and 2).
To explore decadal trends in aggregate CO, fluxes over time, we fit
aseries of linear mixed-effects models with year as a fixed effect, an
autoregressive correlation structure (corCAR1), and random slopes
and intercepts for each site®*,

During the 92 day summer (June-August), we found strong
evidence for increased net CO, uptake (decreasing NEE) across the
time series. Notably, the observed change in summer NEE was similar
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a Summer NEE
100 Permafrost slope = -3.0 + 0.8 gCmyr™ (P < 0.001)
Non-permafrost slope = -2.6 + 0.9 g Cm2yr™ (P = 0.005)
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Fig.2|Slopes from linear mixed-effects models showing decadal changesin
summer and annual NEE across high-latitude ecosystems. Slopes are reported
ts.e., with error bands on the lines representing 95% confidence intervals.
a, During the summer (June-August), permafrost and non-permafrost

b Annual NEE
Permafrost slope =1.7+1.5gCm 2yr" (P=0.28)
100 Non-permafrost slope = -4.8 £ 2.5 gCm2yr" (P=0.05)
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ecosystems show similar decreases in NEE (increased land C uptake). b, Annual
trends diverge, with non-permafrost sites showing a statistically significant
decrease in NEE (greater C uptake) and permafrost sites trending towards
increasing NEE (greater C losses) through time.

between ecosystems with permafrost (-3.0+0.8g Cm2yr’, con-
ditional R* (R?.,,4.) = 0.75, P<0.001; Fig. 2a) and those without
(2.6 £09gCm?2yr? R* .4 =0.79, P=0.005; Fig. 2a). However,
the presence of permafrost led to a strong divergence in the annual
(12month) trends. Across non-permafrost ecosystems, the annual net
CO, sink increased more than that in the summer alone, with annual
NEE decreasingatarateof 4.8 +2.4gCm2yr'(R’,,. =0.79,P=0.05;
Fig. 2b). In contrast, we did not detect a statistically significant trend
in annual NEE across permafrost ecosystems, although the overall
slope was positive (decreasing CO, sink, 1.7 +1.5gCm72yr?, P=0.28;
Fig. 2b). This positive trend was statistically significant across North
American permafrostsites (3.7+1.7gCm2yr?, R% .4 = 0.46,P<0.05;
Supplementary Table 4), which encompassed 82% of our annual per-
mafrost observations. These diverging annual trends highlight large
differences in the trajectories of non-summer (September-May) CO,
losses, which are offsetting increased summer gains in permafrost
ecosystems but not non-permafrost ecosystems.

Decadal trendsinboth GPP and R, revealed clear amplification of
the annual C cycle across permafrost ecosystems, with non-significant
trends observed in the same direction but with greater variability
across non-permafrost ecosystems (Fig. 3). In permafrost ecosystems,
R...increased atarate of 3.1+1.1gCm2yr? (R%,.q = 0.83, P=0.005;
Fig. 3b) during the summer and at a rate of 6.1+3.2gCm>yr™
(R%.ona. = 0.81, P=0.06; Fig. 3d) annually, suggesting that half the R,.,
increases in these ecosystems occurred during non-summer months
(September-May). C uptake alsoincreased in permafrost ecosystems,
withsummer GPP decreasingatarate of -6.8 +2.1g Cm~yr (negative
scale, decreasing GPP denotes increasing land uptake; R*.,.q = 0.77,
P=0.001; Fig. 3a) and annual GPP decreasing at a similar rate of
-6.3+29gCm?2yr! (R4 =0.89, P=0.03; Fig. 3c). Thus, greater
increasesin productivity thanrespirationled toanincreased summer
CO, sink in permafrost ecosystems (Fig. 2a), supporting the idea that
increasing non-summer R, is responsible for shifting permafrost
systems towards an annual CO, source'* (Fig. 2b). Conversely, we
foundless evidence for a consistent amplification of GPP or R,.,across
non-permafrost ecosystems (Fig. 3), despite net increases in summer
and annual CO, uptake (decreasing NEE; Fig. 2). Interestingly, this sug-
geststhatrates of GPP are increasingrelative to R, in non-permafrost
sites where both fluxes are increasing, but also that the ratio of GPP

to R.., may be increasing in sites where both fluxes are declining or
remaining relatively stable though time.

An analysis of monthly flux trends revealed further evidence that
permafrost ecosystems are experiencing greater amplification of the
CO,cyclethan non-permafrost ecosystems (Fig. 4 and Supplementary
Table 6). Generally, NEE during summer months (June-August) trended
towards greater CO, uptake (negative NEE slopes), with greater CO,
release (positive NEE slopes) in the autumn and early winter (Fig. 4a).
We found much stronger evidence for increased GPP and R, across
permafrost ecosystems (Fig. 4b,c), consistent with the greater ampli-
fication we observed in summer and annual fluxes. September GPP
gainsin permafrost ecosystems suggest alengthening growing season
(Fig.4b) but thisincreased late-growing-season CO, uptake was accom-
panied by increased respiratory CO, losses (Fig. 4c), leading to little
change in September NEE (Fig. 4a). Critically, increases in R, in per-
mafrost ecosystems extended into early winter (October-December;
Fig.4c), suggesting that deeper summer thaw is enhancing soil decom-
position after plants become dormant and offsetting summer GPP
gains'”**** (Figs. 2 and 4a).

Drivers of temperature effects on summer C flux

To assess how interannual variation in summer air temperature influ-
enced summer CO, exchange across sites, we used a meta-regression
approach to characterize how environmental factors affect the rela-
tionship between temperature and CO, fluxes. This analysis was inde-
pendent of our time series analysis and instead focused directly on
environmental controls over the relationship between temperature and
Ccycling. For eachsite with =5 years of data (Supplementary Fig.1and
Supplementary Table 7), we calculated standardized slopes describing
therelationship between temperature anomaly and CO, flux anomaly
during the summer (June-August). We then used these temperature—
flux slopes as dependent variables in separate variance-weighted
regressions, with permafrost presence, biome type and soil C:N ratio
as categorical predictors (Methods). To assess the effect of summer
water availability across sites, we calculated anindex of summer water
use as the difference in millimetres between the 30 year mean summer
actual evapotranspiration (AET, ) and mean summer annual precipi-
tation (MAP,,...,) and used it as a predictor variable. Here, sites with
positive values are lessreliant on precipitation for their summer water
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Fig.3|Decadal trends of summer annual GPP and R, .. Slopes are reported
ts.e., with error bands on lines representing 95% confidence intervals. a,b, Rates
of summer (June-August) GPP (a) and R, (b) increased significantly and ata
much greater rate in permafrost sites (green) than non-permafrost sites (orange),
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highlighting a greater amplification of the C cycle over time in these ecosystems.

c,d, Estimates of annual GPP (c¢) and R,,, (d) show similar trends but with greater
uncertainty due to alower number of annual observations.

use, probably due to the presence of a high water table and subsidies
from snow-melt. Climate variables and soil C:N ratio were derived using
the TerraClimate*’ and SoilGrids’® datasets. Site-based permafrost
presence was confirmed by site investigators or based on the TTOP
model**? when site-based information was unavailable.

We did not find strong evidence that the temperature response
of NEE differed between permafrost and non-permafrost ecosys-
tems (P = 0.14) but non-permafrost ecosystems had a more consist-
ently positive relationship between NEE and air temperature anomaly
(lower-than-average CO, uptake in warmer-than-average summers;
P=0.08;Fig.5a, top).Similarly, we did not find strong evidence that the
temperature response of NEE differed by biome (P=0.15; Fig. 5a, middle)
but boreal forest ecosystems tended to have a positive relationship
between NEE and summer temperatures (decreased summer CO, sink
in warmer years; P=0.10; Fig. 5a, middle), whereas tundra ecosystems
showed both positive and negative relationships. In contrast, the
effects of temperature on GPP and R, were more uniform regardless of
permafrost presence or biome. Warmer summers consistently led to
both higher plant CO, uptake (GPP negative scale, P= 0.04 across allsites;

Fig. 5b, top and middle) and respiratory CO, losses (P < 0.001 across all
sites; Fig. 5¢, top and middle). Thus, warmer years consistently ampli-
fied the summer C cycle (GPP and R..,) but the combined effect of this
amplification on CO, balance (NEE) was more variable across ecosystems.

Although warmer summers tended to have both higher GPP and
R, soil C:N ratio (calculated on a mass basis) emerged as a domi-
nant constraint over this temperature amplification of the summer
C cycle. This finding was present when the C:N ratio was used as a
categorical (Fig. 5b,c, bottom) and as a continuous predictor variable
(Extended DataFig.1and Methods). In putatively N-poor ecosystems
(C:Nratio >15insurfacesoils, below which microbial N-use efficiency
has been shown to drop precipitously®®), warmer growing seasons
led to higher GPP (increased CO, uptake, GPP negative scale; Fig. 5b,
bottom) and R, (increased CO, losses; Fig. 5¢c, bottom). Interestingly,
these relationships were opposite in more N-rich sites, where both
GPP and R, tended to be lower than average during warmer years
(Fig.5b,c, bottom). Although relationships of fluxes with temperature
were not consistently negative across all N-rich ecosystems (P=0.08
for GPP, P=0.28 for R,.,), they differed strongly from the uniformly
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Fig. 4 |Decadal changes in NEE, GPP and R, by month. a-c, The monthly CO,
flux changes in NEE (a), GPP (b) and R, (c) are shown. The y axis reflects the slope
of change over time based on linear mixed-effects models with arandom effect for
site. Positive slope values indicate increasing NEE over time (decreasing net CO,
uptake) and negative slope values indicate decreasing NEE over time (increasing
net CO, uptake). Negative GPP slopes represent increasing productivity (CO,
uptake), and positive R.., slopes represent increasing respiratory losses to the
atmosphere. Error bars reflect the s.e. for each slope. Asterisks denote statistical
significance of the slopes not adjusted for multiple comparisons; *P < 0.05,
**P<0.01,**P< 0.001. Model parameters can be found in Supplementary Table 6.

positive temperature responses observed across more N-limited
ecosystems (P < 0.001 for both GPP and R..,)). Interestingly, although
soil C:Nratio strongly affected the magnitude and direction of the GPP
and R, response to warmer summers, it did not consistently predict
the response of net C balance (NEE).

Beyond soil N availability, we found evidence that water avail-
ability also controlled the C-cycle response to temperature across
ecosystems. In many permafrost ecosystems, water is perched near
the soil surface on the thaw front, which prevents downward drain-
age, providing a source of near-surface summer water beyond rainfall.
Ecosystems that regularly used water in excess of summer precipita-
tion (long-term mean AET, .., Was greater than MAP,...) showed
higher-than-average GPP (R*=0.09, P= 0.05; Fig. 6b) and R.., (R*=0.16,
P=0.008; Fig. 6¢) during warm years. As the mean and interannual
variability of summer GPP at most sites (mean =-356gCm~2yr?,
s.d.=71g Cm™2yr) was greater than R,., (mean=269g Cm2yr?,
s.d.=51g Cm™2yr™), the similar relative temperature sensitivity of
these processesalso resulted insome evidence for higher-than-average
CO, uptake (lower NEE) in warm years at sites that were less reliant on
summer precipitation for water use (R*=0.07, P=0.07; Fig. 6a). Both
MAP,,imer and AET,.me. Were individually correlated with a positive
NEE response to temperature (higher-than-average NEE in warmyears;
Extended DataFig. 2) across ecosystems but did not consistently affect
GPPorR,,.

Historically, high-latitude ecosystems have served as net annual
C sinks for millennia®* ¢, We found strong evidence that net summer
CO, uptake has increased across these ecosystems inrecent decades,
with similar trends in permafrost and non-permafrost ecosystems.
However, trends in non-summer months led to astrong divergencein
theannual CO,budgets of these ecosystems (Fig. 2b).In non-permafrost
ecosystems, the annual net CO, sink increased more than during the
summer alone, suggesting that longer growing seasons areincreasing
annual plant uptake relative to respiration. By contrast, non-summer
respiratory losses negated summer gains in permafrost ecosystems,
leading tono detectableincreasein the annual CO,sink (Figs.2 and 3).
Previous ground-based syntheses have suggested that permafrost
ecosystems may have represented anet CO,sourceinrecent decades®”,
with non-growing-season CO, losses increasing over time®'**, but have
beenunable todirectly detect these changes due to datascarcity. Our
analysis of an expanded dataset suggests that permafrost ecosystems
may have remained neutral or a small net CO, sink in recent decades
but provides empirical evidence that increased non-growing-season
CO, losses have negated increases in summer CO, uptake.

Importantly, thesite-level observationsincluded in our analysis do
notevenly represent the distribution of these ecosystems across high
latitudes (Fig. 1), making it important to consider how these results
scale globally™. Our results regarding permafrost ecosystems are
largely driven by North American observations (where the annual sink
appearsto be decreasing; Supplementary Table 4), whereas the smaller
number of annual observations from Eurasian ecosystems (20% of
annual NEE observations; Supplementary Table 2) limit the inference
regarding past trajectories using data from this region alone. This
highlights the urgent need for increased ground-based monitoring
of these critical landscapes'®. By contrast, trends in non-permafrost
ecosystems may be more strongly driven by observations from
Eurasia™?, where trends were more consistent thanin North America
based on subset analyses (Supplementary Table 4) and both land
masses were equally represented (51% North American and 49%
Eurasian for annual NEE observations; Supplementary Table 2). The
divergent annual NEE trajectories with permafrost presence in our
dataarelargelyinline withrecent trends produced by satellite-driven,
process-based models?, although they run contrary to those produced
by atmospheric inversion models?. Cross-validation of our models
using aleave-one-out approach (that is, iteratively removing one site
at a time and refitting models), and refitting the time series models
in a Bayesian framework, suggested that conclusions surrounding
changes in NEE were relatively robust but that trends in GPP and R,
were more likely subject to greater biases due tositeinclusion (Methods
and Supplementary Table 5). Thus, although this work represents
an extensive time series analysis of annual flux measurements from
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Fig. 5|Site factors predicting the summer CO, flux response to summer air
temperature. a-c, Results from linear regressions of the effects of ecosystem
factors (permafrost presence (top), biome (middle) and soil C:N ratio (bottom))
on therelationship between summer air temperature and summer NEE (a), GPP
(b) and R, (c). Standardized slopes reflect the effect of 1 s.d. (z-score) of summer
temperature on C flux (also in units of s.d.). Error bars denote 95% confidence
intervals, indicating consistent positive or negative relationships when not

overlapping with the dashed zero line. Sample sizes (n = number of sites) are
presented above each bar for each group. On average, both GPP (negative
scale; b, top) and R., (¢, top) increase in warmer years regardless of permafrost
presence but markedly less so in N-rich (soil C:N ratio <15) systems, which have
significantly lower rates of both CO, uptake and release during warmer years
(b, bottom; ¢, bottom).

northernecosystems, itis critical to acknowledge the historical spatial
biases presentin the dataset.

Theinterannual NEE trends we observed underscore arapid ampli-
fication of the C cycle in permafrost ecosystems’ . The presence of
permafrost contributes to a short window for plant and microbial
activity”, leading to greater sensitivity to global change factors (for
example, warming, CO,fertilization and nutrient feedbacks). Our time
series shows decadal amplification of both summer GPP and R., across
permafrost ecosystems (Figs. 3 and 4), with GPP effects dominating
during the summer months and leading to increasing net CO, uptake
duringthistime (Fig. 2a). Critically, early winter (October-December)
CO, losses have also increased markedly in permafrost ecosystems
(Fig.4c), presumably due to warming-induced deepening of the active
layer (thawed soil)***’, which lengthens the period for microbial decom-
position of soil C*°. Here, increased late-season CO, losses offset sum-
mer Cgains, resultinginlittle detectable change in the average annual
budget across permafrost systems (Fig. 2b), with some indication of a
shift towards C neutrality or future net C release. By contrast, decadal
trends of increasing GPP and R, were less consistent (more variable)
across non-permafrost ecosystems but their combined changes have
resulted in anincreased net annual C sink (Fig. 2b).

Summer water use emerged as an important control over the
magnitude and direction of the summer C-cycle response to tempera-
tureacross northern ecosystems'*®', Ecosystems that regularly use soil
water in excess of summer precipitation (30 year AET,mmer > MAPmmer)
responded to warmer summers with both higher productivity and
respiration, suggesting that plants and microbes may be better able to
take advantage of increased temperatures where summertime water
subsidies (for example, perched surface water) are more available? "2,
This temperature amplification of GPP and R, largely cancelled out
in these systems, resulting in only a weak trend towards an increased
netsummer CO,sinkinwarmer years (lower NEE; Fig. 6a). Conversely,
sites with higher total MAP,,mer and AET e (greater absolute rates
of water exchange) showed a significantly reduced summer CO, sink

(higher NEE) in warm years, despite no consistent effects on the tem-
perature sensitivity of GPP or R., alone (Supplementary Fig. 2). These
higher-precipitation sites were largely non-permafrost landscapes that
may lack perched surface water and be more closely tied to timing and
availability of summer precipitation, consistent with positive correla-
tions between precipitation and NEE at high latitudes®. High-latitude
precipitation patterns are expected to change markedly along with
temperatures over the next century®***, Our results suggest that the net
changesin precipitation versus evapotranspiration, rather than these
variablesindividually, may ultimately determine the GPP and R, (and
together the NEE) response to warmer summer temperatures across
these ecosystems. It also highlights C-cycle dynamics in ecosystems
that access perched soil water that is likely to change, with access
decreasing as permafrost degrades in awarmer world®.

Our results further point to N limitation as an important control
over temperature amplification of the summer C cycleinnortherneco-
systems, with more N-rich (lower C:Nratio) soils showing adiminished
GPP and R, response to temperature. Soil C:N ratio is the dominant
control over the temperature sensitivity of microbial respiration (Q,,)
globally, with decomposition being more sensitive to temperature in
soilswithahigher C:Nratio, particularly in permafrost ecosystems>*°°,
This causes N mineralization®” and productivity®® to be more tempera-
ture sensitive, ultimately leading to a greater temperature response
of GPP and R,,in more N-limited soils (Fig. 5b,c, bottom). Conversely,
the soil microbial response to temperature is more muted in soils
with alower C:N ratio® and plant productivity is more likely to be lim-
ited by resources and stressors that are positively, negatively or neu-
trally related to temperature®*°”, Our findings imply that long-term
increases insummer temperatures may lead to an amplification of the
Ccycleinmore N-limited ecosystems. The impacts of warming may be
less consistentinmore N-rich ecosystems, potentially decelerating the
C cycle in ecosystems where temperature effects are driven by other
factors (for example, soil drying and herbivory). Understanding these
dynamics will be particularly important in permafrost ecosystems

Nature Climate Change


http://www.nature.com/natureclimatechange

Article

https://doi.org/10.1038/s41558-024-02057-4

O Non-permafrost @ Permafrost

a
w () h
wl
Z5 104 Higher
G g NEE in
oa warm

he]
9 years
[Che]
ER
© 2 Lower
32 NEE in
g ~ warm
Pt pP=0.07 @& [ON®) yyears

\ T \
-50 0 50 100

Lower
GPPin
warm
years

Higher
GPPin
warm
years

-0.5

(standardized slope)
o

-1.04

Temperature effect on GPP &

Higher
Reco iN
warm

years

(standardized slope)
o

Temperature effecton R, ©

Lower
_05 i Reoo In
10{R?=0.16 ‘;V:;r’;‘
P=0.008
‘ @
-50 0o 50 100

Water availability index (mm)

Fig. 6 | Effects of summer water use on summer CO, flux response to air
temperature. a—c, Lines reflect linear regressions of the effects of summer
water availability (x axis, 30 year mean AET,me: minus 30-year MAP e ON
the relationship between summer air temperature and NEE (a), GPP (b) and
R.., (c).Standardized slopes reflect the effect of 1s.d. (z-score) of summer
temperature on1s.d. of summer C flux. Points to the right of the dashed zero
line on the x axis indicate sites where summer water use regularly exceeds
inputs (summer precipitation) and near-surface soil water may be especially
important. Points above the dashed zero line on the y axis represent sites where
higher-than-average summer temperatures lead to higher-than-average NEE
(a)and R, (c), or lower-than-average GPP (b). Larger points indicate greater
confidencein the slope for each site and reflect model weights. Error bands
represent 95% confidence intervals.

where large (currently unavailable) stocks of N may enter actively
cycling N pools with increased thaw” .

Insummary, our decadal analysis of annual, ground-based meas-
urements shows significant amplification of the C cycle across per-
mafrost ecosystems. Increased respiration from permafrost soils
during the non-growing season is probably causing these ecosystems
tobecome adecreasing CO,sink (increasing NEE), despite concurrent
increases in summer CO, uptake. Conversely, combined changes in
GPPandR.., haveledto decadalincreasesinthenet CO,sink (decreas-
ing NEE) across non-permafrost ecosystems. Critically, temperature
increases over the next century will coincide with large regional
changes in both precipitation and N availability, particularly in per-
mafrost ecosystems®>**’*”7_ Qur results suggest that although greater
N availability may initially increase rates of ecosystem C cycling’®%,
thelong-termeffects of N enrichment may resultin reduced sensitivity
of the C cycle (GPP and R,.,) to warmer summer temperatures®®*%,
Similarly, our results suggest that temperature-induced amplification
of summer GPP and R, will be constrained by water availability, with

greater rates of temperature-induced amplification occurringinsites
that are less reliant on summer precipitation for water use®®, These
findings provide empirical evidence that changing conditions in the
permafrost region are affecting the trajectory of annual C dynamics
in ecosystems within the tundra and boreal biomes**>" and suggest
that local resource availability will constrain the C-cycle response to
warming across this region®**>°7%,
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Methods

Data compilation

The majority of the data used in our analysis are published as the
ABCflux database, which consists of monthly gap-filled estimates
of NEE, GPP and R..,*". As the primary objective of this work was to
assess long-term trends in annual and summer fluxes, we included
published fluxes reported at these timesteps, which were unable to be
parsed into monthly timesteps (and therefore not suitable for inclu-
sion in ABCflux). These additional aggregate fluxes were compiled
duringaworking group through the US National Center for Ecological
Analysis and Synthesis in 2019. After data cleaning, this resulted in 75
additional summer NEE fluxes across 12 sites, along with 50 and 51
summer fluxes of GPP and R, across 8 sites. At the annual timestep,
this resulted in 29 additional annual NEE fluxes across 4 sites, and 22
annual fluxes of GPP and R, across 3 sites. Many of these additional
aggregate fluxes were included in a recent upscaling study™. Finally,
more recent monthly observations that were unavailable when ABC-
flux was published (that is, observations after 30 September 2020)
were solicited from site investigators during the Permafrost Carbon
Network meeting in December 2021, with data accepted through the
end of 2022. This resulted in 275 monthly NEE and GPP (and 299 R..,)
estimates notincludedin ABCflux, with 6 additional ecosystems repre-
sented and updated flux estimates for timeseries from 3 sites currently
represented in ABCflux.

We calculated summer ecosystem fluxes of NEE, GPP and R, as
the sum of June, July and August for sites with monthly data, with-
out gap-filling (that is, all 3 months were required for inclusion). For
summer fluxes incorporated from the literature, we standardized
growing-season estimates to 92 days to make them comparable to the
summer (June-August) calculated using ABCflux. Similarly, annual
fluxes were calculated in ABCflux by summing NEE, GPP and R, across
the 12 month calendar year (that is, January-December). We did not
include years with missing months and, in the case of eddy covariance
towers, only included annual estimates of GPP and R, when the site
also had afull12 months of NEE (required for GPP and R, calculations).
The monthly NEE fluxes calculated in the ABCflux database were pri-
marily (79%) measured using the eddy covariance method, with GPP
and R, derived using the night-time partitioning method. ABCflux
also includes NEE measured using chamber and diffusion methods
(approximately 10-20 chambers per site), which include at least 3
temporal measurements per month for summer months (June-August)
and atleast1temporal replicate during non-summer months. Further
detailsregarding the data coverage, limitations and uncertainties are
described in the ABCflux data description®. Our final dataset is sum-
marized in Supplementary Tables1and 2.

Foreachsiteinouranalysis, we used the TerraClimate database* to
provideinterannual estimates of summer air temperature (calculated
asthe 3 monthmeanofJune,July and August) and precipitationand AET
(calculated asthe sum of June, July and August). We calculated the mean
summertime water use for each site as the difference between 30 year
mean evapotranspiration and precipitation. Permafrost presence and
biome type (tundra or boreal) were reported by investigators or based
onliterature reports fromthesite. Sites where permafrostinformation
was unavailable were categorized as permafrost when in the continu-
ousor discontinuous zone based on the Permafrost Extent and Ground
Temperature Map®"*. Finally, we calculated the soil C:Nratio at each site
based on estimates of C and N pools from the SoilGrids 2.0 dataset™.

Time series analyses of decadal fluxes

Aninitial Akaike-information-criterion-based assessment of candidate
linear mixed-effects models thatincluded time, permafrost, biome and
climaticvariables (temperature, precipitation and evapotranspiration)
revealed the consistent presence of permafrost-by-year interactions
across the most parsimonious models (lowest Akaike information
criterion). Climate, biome and permafrost presence are inherently

correlated across high-latitude ecosystems (the presence of permafrost
requires mean annual temperatures <0 °C for a minimum of 2 years)
and this dataset was not designed to meaningfully parse these factors.
Our primary goal was to assess long-term annual trends in NEE across
permafrost ecosystems compared with non-permafrost ecosystems
andsowe chose asimplified, spatially agnostic approach to detecting
change’. Totest whether C fluxes were increasing through time, we ana-
lysed our compiled summer and annual estimates of NEE, GPP and R,
asdependentvariablesinlinear mixed-effects models (fit separately for
permafrostand non-permafrost ecosystems), withmeasurement year
as the fixed effect and random slopes and intercepts for each site. We
applied an autoregressive variance structure (corCAR1) to all models
to account for potential autocorrelation’. Model fits were assessed
for normality and heteroscedasticity of residuals, with little effect of
individual sites driving long-term trends across the dataset (Supple-
mentary Fig.2).Inaddition to annual and growing-season changes, we
analysed trends in monthly fluxes but were unable to achieve model
convergence for many months using our more restrictive model. For
consistency, we analysed all monthly trends using a simplified model
thatincluded arandomintercept (but notslope) for ecosystemand an
uncorrelated within-group covariance structure.

Uncertainty and sensitivity analyses of time series models

As the number of sites collecting data has increased since the begin-
ning of our time series, we re-ran our models on a subset of the data
to assess the robustness of our findings to temporal biases in data
collection. We re-ran the models on the subset of observations from
2003 to present, representing the most recent 20 years of data. This
represents 85% and 81% of summer and annual NEE estimates, 87%
and 74% of summer and annual GPP, and 85% and 81% of summer and
annual R, estimates, respectively (Supplementary Table 3). Similarly,
we subset our data by landmass and re-ran the models separately for
North America (including Greenland) and Eurasia (Supplementary
Table 4) to assess the effect of broad-scale spatial patterns in data
collection on our results. North America (largely Alaska) represents
82% of our annual observations of permafrost NEE (Supplementary
Table 2). To further assess the uncertainty in the slope estimates of our
full time series models, we refit all models (with an identical random
effects and autocorrelation structure) in a Bayesian framework using
the brms package in R (Supplementary Table 5). For Bayesian models
we assigned the fixed effect parameters from the frequentist model
outputsas prior distributions, with relatively uninformative priors for
the random effects and covariance parameters (Student’s t; degrees
of freedom (v) =3, location (u) = 0, scale (g) = 47) and Lewandowski-
Kurowicka-Joe (shape () =1) distributions, respectively), and thenran
each time series model 8 separate Markov chain Monte Carlo chains,
resulting in 64,000 total samples in the posterior distribution. We
further assessed the robustness of the frequentist model findings using
leave-one-out cross-validation based on cluster-wise exclusion using
the cv package in R, Further descriptions of these analyses accompany
theresultsin Supplementary Tables 3-5. Collectively, these additional
analyses pointtoagreater degree of confidence in NEE time series than
inGPP or R, time series (Supplementary Tables 3-5), perhaps due to
the larger sample size for NEE observations (Supplementary Table 2).

Meta-regression of factors influencing summer C flux
response to temperature

To assess how ecosystem characteristics affect the summer C-cycle
response to temperature, we used a meta-regression approach. For
each site in the dataset containing at least 5 years of summer data
(June-August, n =47 for NEE, n =43 for GPP, n = 44 for R,.,; Supple-
mentary Table 6), we calculated standardized slopes for the relation-
ship between summer temperature anomaly (in standard deviations
from the 30 year mean) and C flux anomaly (in standard deviations
from the interannual mean across available years). We used these

Nature Climate Change


http://www.nature.com/natureclimatechange

Article

https://doi.org/10.1038/s41558-024-02057-4

slopes and their associated errors as response variables in a series of
variance-weighted regression models (thatis, linear models weighted
byinverse of site-level standard errors of temperature slopes). Predic-
tor variables included permafrost presence, biome (boreal versus
tundra), 30 year mean summer precipitation, 30 year mean AET,mers
mean summer water use (evapotranspiration minus precipitation)
and ssoil C:N ratio.

As soil N availability in deeper horizons changes with thaw
depth during the summer in permafrost systems, we chose to use the
mass-based C:N ratio of surface soil (top 5cm) as an index of relative
plant N limitation across these ecosystems. Unlike climatic factors,
which co-vary with ecosystems in this dataset, soil C:N ratio was less
consistently related to permafrost or biome type across these sites
(Supplementary Table 7). When used as a continuous predictor across
ecosystems, we found evidence for soil C:N ratio effects on both GPP
and R, response to temperature (Extended DataFig.1). However, the
gridded productused to create these soil C:Nratio estimates is subject
to considerable uncertainty across sites*. Given the relatively small
number of observations in our dataset, we chose to bin observations
of soil C:Nratio using a threshold of >15 to denote N limitation (Fig. 5).
We chose this threshold because it is slightly higher than the aver-
age C:N ratio of fungal biomass (approximately 13 on a mass basis®),
which dominates microbial biomass in high-latitude systems®, but
is still likely a conservative threshold for N limitation as microbial N
use efficiency appears to increase with soil C:N ratio up to 20 (ref. 53).

Data availability

Monthly flux dataare archived and freely available from the Oak Ridge
National Laboratory Distributed Active Archive Center at https://daac.
ornl.gov/cgi-bin/dsviewer.pl?ds_id=1934. Aggregated fluxes are availa-
blewith code at Zenodo (https://doi.org/10.5281/zenodo.10987900)%.

Code availability
Codeassociated with this workis archived at Zenodo (https://doi.org/
10.5281/zen0d0.10987900)58,
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higher than average NEE (that is lower summer CO, uptake; panels a, b) or
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