
Aggregate Signatures with Versatile Randomization and
Issuer-Hiding Multi-Authority Anonymous Credentials

Omid Mir∗
Johannes Kepler University Linz

LIT Secure and Correct Systems Lab
Linz, Austria
mir@ins.jku.at

Balthazar Bauer
IRIF, CNRS
Paris, France

Balthazar.Bauer@ens.fr

Scott Gri�y
Brown University
Providence, USA

scott_gri�y@brown.edu

Anna Lysyanskaya
Brown University
Providence, USA

anna_lysyanskaya@brown.edu

Daniel Slamanig
AIT Austrian Institute of Technology

Vienna, Austria
daniel.slamanig@ait.ac.at

ABSTRACT
Anonymous credentials (AC) o�er privacy in user-centric identity
management. They enable users to authenticate anonymously, re-
vealing only necessary attributes. With the rise of decentralized
systems like self-sovereign identity, the demand for e�cient AC
systems in a decentralized setting has grown. Relying on conven-
tional AC systems, however, require users to present independent
credentials when obtaining them from di�erent issuers, leading
to increased complexity. AC systems should ideally support being
multi-authority for e�cient presentation of multiple credentials
from various issuers. Another vital property is issuer hiding, en-
suring that the issuer’s identity remains concealed, revealing only
compliance with the veri�er’s policy. This prevents unique iden-
ti�cation based on the sole combination of credential issuers. To
date, there exists no AC scheme satisfying both properties simulta-
neously.

This paper introduces Issuer-Hiding Multi-Authority Anony-
mous Credentials (IhMA), utilizing two novel signature primitives:
Aggregate Signatures with Randomizable Tags and Public Keys and
Aggregate Mercurial Signatures. We provide two constructions of
IhMAwith di�erent trade-o�s based on these primitives and believe
that they will have applications beyond IhMA. Besides de�ning the
notations and rigorous security de�nitions for our primitives, we
provide provably secure and e�cient constructions, and present
benchmarks to showcase practical e�ciency.

CCS CONCEPTS
• Security and privacy! Cryptography; Privacy-preserving
protocols.

∗First and corresponding author; remaining authors in alphabetical order.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623203

KEYWORDS
Aggregate Signatures, Anonymous Credentials, Multi-Authority,
Issuer-Hiding, Equivalence-class signatures, Mercurial Signatures

ACM Reference Format:
Omid Mir, Balthazar Bauer, Scott Gri�y, Anna Lysyanskaya, and Daniel
Slamanig. 2023. Aggregate Signatures with Versatile Randomization and
Issuer-Hiding Multi-Authority Anonymous Credentials. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623203

1 INTRODUCTION
Authentication and authorization are essential and security-critical
tasks in a digital world. They are aimed to ensure that the communi-
cation partner is the one it claims to be and to enforce access control
to digital resources such as services. A central concept is that of
a digital identity, which can be seen as a collection of attributes
(e.g., name, age, nationality, gender, etc.) representing a (real-world)
entity in the digital realm.

On the Internet, a widely adopted practice is to have centralized
identity providers (IdP), e.g., Google or Meta, to maintain the digital
identity of users. Other services can then simply rely on the identity
provided by the IdP. From a privacy perspective, however, this is
problematic as users lose control over their digital identity (all their
attributes reside at the IdP), and the IdP learns all the services a
user consumes on the Internet (and data related to the use).

Already in the 1980s, Chaum [24, 25] envisioned cryptographic
techniques for creating more privacy-friendly and user-centric solu-
tions to authentication and authorization. They put users in control
of their identity and allow users to selectively reveal information
(i.e., attributes) about their digital identities in an unlinkable and
thus untraceable way. Such techniques are commonly known as
anonymous credentials (ACs), and there is a vast body of research
into di�erent approaches to construct such AC systems [2, 3, 12, 17–
20, 27, 32, 35, 39, 49, 52, 54].

While early AC systems such as U-Prove [51] and Idemix [22] did
not see a widespread adoption, nowadays related techniques such as
direct anonymous attestation (DAA) [14, 15] and Enhanced Privacy
ID (EPID) [13] are deployed in billions of devices. Most recently,
ACs have seen adoption within the popular Signal messenger to
realize private groups [23]. They also see increasing popularity in

30

https://orcid.org/0000-0003-1691-5291
https://orcid.org/0009-0003-1469-5405
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0000-0002-3567-3550
https://orcid.org/0000-0002-4181-2561
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623203
https://doi.org/10.1145/3576915.3623203
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623203&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

the form of anonymous tokens (with private or public metadata
bit) [31, 42, 56]. Among the applications are private browsing with
DDoS protection being standardized by the IETF1 (Privacy Pass [31]
and Private Access Tokens [45]) or the PrivateStats by Facebook2
to privately collect client-side telemetry from WhatsApp.
Decentralized identity. Like with centralized IdPs, all AC solu-
tions mentioned so far are in a centralized setting, i.e., a single party
called the issuer is issuing credentials to users. Today we however
see a trend to move away from this centralized setting towards
a decentralized identity. A popular concept in the decentralized
identity space is that of self-sovereign identity (SSI) with Sovrin3
being a prominent example. In SSI users are collecting certi�ed
attributes (called veri�able credentials) from di�erent sources and
then presenting (subsets of) veri�able credentials from this col-
lection. There is an increasing push towards standardization of
this veri�able credentials concept within W3C4 and large e�orts
such as the future European data infrastructure (Gaia-X)5 or the
European Blockchain Services Infrastructure (EBSI)6 are adopting
this approach.

Within the veri�able credential initiative in W3C, it is also ob-
served that privacy related features are important. In particular
well-known features from AC systems such as supporting selective
disclosure and proving predicates about attributes7. To realize this
functionality within W3C it is intended to base this upon the BBS+
signature scheme8, a well-known building block for ACs currently
being standardized as the BBS variant [58] within the IETF9.
Privacy in a decentralized setting.The aforementioned approach
allows to preserve privacy in a setting where a user wants to show
a single veri�able credential issued by a single party. However, for
a decentralized setting, where typically a subset of a collection
of veri�able credentials from di�erent issuers needs to be shown,
the problem of how to e�ciently realize this arises. A naive way
is to conduct a parallel credential showing with all the required
veri�able credentials. However, apart from reduced e�ciency, this
also has privacy implications. In particular, every veri�able creden-
tial reveals the exact issuer providing a lot of contextual partial
information, e.g., a passport issued from a certain country or a
driving license issued by a certain state reveals geographic infor-
mation. This can be highly privacy intrusive in many settings and
undermining the very objective of SSI systems [10]. Consequently,
it would be desirable to be able to show a credential in a way that it
is only revealed that it comes from one of a larger set of issuers ac-
ceptable by a veri�er. A set of recent independent works introduced
a property providing this features for AC systems, which is called
issuer-hiding [6, 10, 27]. While this is a step towards countering the
above privacy issues, these works only consider single issuers and
are thus not yet suitable for a decentralized setting with multiple
issuers.

1https://datatracker.ietf.org/wg/privacypass/about/
2https://research.fb.com/privatestats
3https://sovrin.org/
4https://www.w3.org/TR/vc-data-model/
5https://gaia-x.eu/
6https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
7https://www.w3.org/TR/vc-data-model/#privacy-considerations
8https://w3c-ccg.github.io/ldp-bbs2020/
9https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/

ACs in a decentralized setting. Due to not being directly compa-
rable as they are either only threshold or require a dedicated infras-
tructure (i.e., a transparency log, Byzantine system, or a blockchain)
and TDAC by [49] and the lack of space we defer to [47] for a dis-
cussion of existing approaches in a decentralized setting due to
Garman et al. [36], Sonnino et al. [57], Doerner et al. [33] and Rosen-
berg et al. [53].

Finally, and most related, we want to discuss the work by Hébant
and Pointcheval [40]. The authors introduced the concept of (trace-
able) Multi-Authority Anonymous Credentials (MA-ACs). Loosely
speaking, their approach to realize MA-ACs is based on so called
aggregate signatures with randomizable tags and allows to aggre-
gate showings of credentials of di�erent issuers (but with respect to
the same tag) into one compact showing. Due to randomizability of
signatures and tags, it is possible to produce unlinkable showings.
Moreover, the tag component has a secret part representing the user
secret. While this is an interesting concept, it does not provide an
e�cient way of providing the issuer-hiding (IH) feature [6, 10, 27].
There is an obvious generic way to use a succinct NIZK (i.e., a
zk-SNARK) and prove that the aggregated signature veri�es for the
given attributes under a subset of issuer keys without revealing
which ones. While this can lead to an asymptotically compact solu-
tion, the prover will concretely be very expensive due to the size
of the veri�cation keys (they are of size G3+2=2 each with = being
the maximum number (types) of attributes) and the complexity of
the veri�cation equation in [40] which is proven with a zk-SNARK.
Switching to non-succinct Schnorr-type NIZK obtained via Fiat-
Shamir as done in [6] (in Construction 2), however, will result in a
non-compact showing of size$ (= ·) with being the number of
issuers used in the aggregated showing (even when ignoring the
size of the proof corresponding to the non-shown attributes).

In this paper, our goal is to e�ciently combine these features and
propose the �rst AC system that is speci�cally designed to provide
multi-authority and issuer-hiding features at the same time.
Aggregate signatures.Aggregate signatures, introduced by Boneh
et al. in [9], allow to combine multiple signatures f8 for messages
<8 and associated public keys vk8 into a single signature f , that
authenticates the entire set of messages w.r.t the set of public keys.
Ideally, the aggregated signatures is of length identical to a single
signatures and thus allows to compress a set of signatures into a
single one.

This primitive is valuable in optimizing storage and bandwidth
and minimizing cryptographic overhead in scenarios such as com-
pressing certi�cate chains or aggregating signatures in blockchains.
Many di�erent variants have been proposed [4, 8, 38, 50] and we
will brie�y mention some relevant schemes. Sequential aggrega-
tion, studied in [44], requires signers to interact sequentially. Syn-
chronized aggregation, examined in [1], assumes synchronization
among signers such that in every time period C each signer only
contributes one signature at most. Indexed or tag-based aggregated
signatures, introduced in [40], allow aggregation of signatures for
di�erent messages under di�erent public keys if they share the
same tag or index. These signatures are useful for constructing an
AC system.

Unfortunately, existing aggregate signature schemes do not ex-
plicitly possess properties to make them amenable for the design of

31

https://datatracker.ietf.org/wg/privacypass/about/
https://research.fb.com/privatestats
https://sovrin.org/
https://www.w3.org/TR/vc-data-model/
https://gaia-x.eu/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://www.w3.org/TR/vc-data-model/#privacy-considerations
https://w3c-ccg.github.io/ldp-bbs2020/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

e�cient decentralized AC systems with advanced properties. We
will close this gap by introducing aggregate (structure-preserving)
signatures with the ability to randomize signatures, tags, (mes-
sages,) and veri�cation keys.

1.1 Our Contribution
Our contribution in this paper is twofold:

Aggregate signatures with randomization features. The key
technique to achieve our goal is to introduce tag-based aggregate
signatures with randomizable tags and public keys. We further ex-
tend them to additionally support randomization ofmessages resem-
bling the functionality of equivalence class signatures (SPSEQ) [35].
For both of these types of schemes we provide rigorous formal se-
curity models as well as instantiations that are provably secure in
this model. More precisely, we introduce:
Aggregate signatures with randomizable keys and tags (AtoSa10 for
short) where signatures are associated to tags (consisting of a pri-
vate and a public part) and signatures with respect to the same tag
can be aggregated. Aside from signatures, veri�cation keys and
tags can be randomized. Tags and veri�cation keys are de�ned
with respect to equivalence classes and randomization switches
between representatives of these classes.11 Then existing signa-
tures can be adapted to ones that verify under the randomized
public keys and tags. We provide an AtoSa scheme based on the
well-known Pointcheval-Sanders (PS) signatures [52]. PS signatures
have already served as a basis for various privacy-preserving prim-
itives such as group signatures and anonymous credentials [52],
redactable [54, 55] or dynamically malleable signatures [5]. They
are very e�cient and have interesting features such as support for
blind signing, i.e., signing of committed (hidden) messages, and
e�cient ways of proving their knowledge.
Aggregate Mercurial Signatures with Randomizable Tags (ATMS)
extend the functionality of AtoSa to support the randomization of
messages, i.e., equivalence classes of messages similar to (SPSEQ).
This means that in addition to AtoSa existing signatures can be
adapted to verify under randomized messages (i.e., other represen-
tatives of the message class). Consequently, we obtain a version of
mercurial signatures [30] that is both aggregatable and has random-
izable tags. To the best of our knowledge, this is the �rst instance
of an aggregate structure-preserving signature (and, additionally
the �rst aggregatable SPSEQ). We provide an ATMS construction
inspired by the message-indexed SPS in [29], which on itself is a
variant of Ghada�’s SPS [37] scheme.
Restrictions of our Constructions. We should mention that in con-
trast to standard aggregate signatures, our constructions 1) either
require that all aggregated messages and corresponding veri�ca-
tion keys are known before requesting the �rst signature or 2) to
make the same assumption as within synchronized aggregate sig-
natures [1, 41]. In particular, adapted to our setting, latter means
that every issuer ensures that for each tag only a single signature

10The (ancient) Greek transliteration of the old Persian name Utau\a. Atossa means
“bestowing very richly” or “well trickling” or “well granting”. It refers to an Achaemenid
empress who was the daughter of Cyrus the Great, and the wife of Darius the Great.
11This can be seen as aggregate signatures with randomizable tags as introduced in
[40] with the additional features of randomizable keys with appropriate signature
adaption.

is issued. We will present our results based on the �rst approach
and discuss adaptions for the second (which do not change any of
the interfaces or security de�nitions and proofs). Since our main
application is anonymous credentials, depending on the concrete
application scenario either the �rst or the second approach can be
chosen. It remains an interesting open question to get fully dynamic
signatures without any of the above assumptions.

Like other types of signatures with randomization features, we
also expect that our schemes will �nd applications beyond the one
presented here.

Issuer-Hiding Multi-Authority Anonymous Credentials.We
present a rigorous formal model for issuer-hiding multi-authority
anonymous credentials (IhMA). Then we present two constructions
based on AtoSa (called IhMAAtoSa) and ATMS (called IhMAATMS)
respectively, where both are concretely very e�cient but o�er some
trade-o�s (as discussed below). Thus this represents an important
contribution to the �eld of ACs in that it provides a solution that
addresses the challenges of user privacy and scalability in multi-
authority (decentralizing) settings. In our constructions, obtaining
a credential amounts to obtaining signatures on desired attributes
from a set of issuers on di�erent attributes, but under the same
tag (which can be thought of as the user’s identity in credential
schemes). Showing simply amounts to randomizing signatures from
issuers that should be shown as well as the tags and aggregating
them. Finally, one provides the aggregated signature and either
opens (subsets of) attributes or proves predicates over them along
with proof of knowledge of the secret tag part.

Supporting the issuer-hiding feature [7, 27] works roughly as
follows: Each veri�er generates a so-called key-policy, which de�nes
a set of issuers (via their veri�cation keys) that the veri�er would
accept an (aggregated) credential from. This policy is a collection
of SPSEQ signatures on veri�cation keys of the AtoSa or ATMS
scheme. Since the equivalence classes of the SPSEQ (the message
space) match with the key equivalence class of AtoSa and ATMS,
showing a credential then works as above, but all veri�cation keys
of the AtoSa or ATMS are randomized, and the respective SPSEQ
signatures in the key-policy are adapted accordingly.

For the IhMAATMS scheme, instead of directly signing attributes,
we use the framework of Fuchsbauer et al. [35]. Here the signature
scheme is used to sign set commitments to attribute sets. Moreover,
in order to prove the anonymity of this construction as an additional
contribution we introduce a generalization of the decisional uber
assumption family by Boyen [11] along with an interactive version.
Using this approach is however not straightforward as we have
to make set commitments compatible with the message space of
our ATMS. While IhMAAtoSa and IhMAATMS share a common aim,
the di�erences in constructions entail certain trade-o�s in terms of
functionality and e�ciency:

• Credential size: The IhMAATMS scheme can yield a �xed-sized
credential, while the IhMAAtoSa scheme does not achieve this
without utilizing Zero Knowledge Proof of Knowledge (ZKPOK)
of signatures.

• E�ciency: The IhMAATMS scheme is more e�cient at showing
and verifying credentials compared to the IhMAAtoSa scheme.

• Need for a trusted party: The IhMAATMS scheme requires a
trusted party, while the IhMAAtoSa scheme does not. This is

32

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

because IhMAATMS relies on a trusted party to hold a trapdoor to
generate set commitments, whereas IhMAAtoSa does not require
such a trusted party.

• Expressiveness: The IhMAATMS supports revealing a subset of
attributes from a set of attributes per issuer, i.e., selective disclo-
sure per issuer. The IhMAAtoSa scheme only supports a single
attribute for each credential. Consequently, it only supports se-
lective disclosure over all issuers. However, both schemes allow
for proving arbitrary predicates over signed messages.

Overall, the choice of the concrete construction depends on the
speci�cs of the use case or application and priorities set in the
overall system.

1.2 Comparison of IhMA with Previous Work
We have already discussed that there is only one dedicated MA-AC
scheme [40]. This is however not issuer-hiding (IH) and as men-
tioned, adding IH comes with a signi�cant overhead. In Table 1, we
compare our IhMA approaches to other schemes in the literature
that provide the IH feature [6, 10, 27] and for comparison we use the
naive approach to achieve MA, i.e., parallel showings of single cre-
dentials, which we indicate by ⇡. We compare them in terms of the
size of credential |Cred|, communication cost of showing |Show|,
and computational cost of showing Show for user (P) and veri�er
(V). We provide concrete analysis for our schemes’ communication
cost in our full version [47]. To ensure a fair comparison between
the schemes, we consider a typical case of : out of = attributes from
 out of # issuers where = is the total number of attributes given
to the user by # issuers, and : is the number of attributes involved
in the showing (and the number of issuers involved).

With respect to credential size |Cred|, the naive approach to
MA leads to $ () complexity. Our IhMAATMS scheme maintains
a constant credential size even when there are > 1 issuers, while
our IhMAAtoSa scheme has $ () credentials. However, we can
aggregate credentials and then during showing apply a ZKPOK of
a PS signature, which allows us to reduce the credential size to a
constant size. In contrast, others have a credential size linear in the
number of issuers .

In terms of communication cost in showing (|Show|), our schemes
require sending the randomized vks of the issuers, along with two
signatures (one for the credential and one for the key policy), over-
all giving$ (). In [6], the communication size is based on sending
 blinded credentials and blinded signatures in the key policy
and provide a ZKPOK of having correctly done so. The scheme in
[10] is similar to [6], but the size of the policy is �xed. Finally, in the
scheme described in [27], one needs to prove knowledge of out
of # veri�cation keys (a linear sized OR statement) and sends them
along with credentials. Note that the size of ZKPOK includes
many group elements and signi�cantly more than only transferring
 veri�cation keys, as it is the case for our constructions.

When it comes to the computational cost of showing, i.e., Show (P)
and Show (V), our IhMAAtoSa scheme has aminimal computational
cost for provers as they only need to perform a small/constant
number of operations for aggregation, along with exponenti-
ations for randomizing the veri�cation keys vk. Our IhMAATMS
scheme involves additional computation in the creation of a wit-
ness for set commitments corresponding to undisclosed attributes

(a multi-exponentiation of $ (D)). In [6], this cost includes proving
knowledge of : signatures (in the key policy), credentials, and :
disclosed attributes. Similarly, [10] requires the computation of gen-
erating witness for their aggregator (accumulator) on credentials,
proving knowledge of : credential, but it does not need to prove
knowledge of signatures in the policy. Moreover, in [27], proving
knowledge of -out-of-# veri�cation keys is necessary, along with
the computation of generating witness on undisclosed attributes
for set commitments on credentials. Again, the cost of ZKPOK
for credentials or committed attributes is signi�cantly more expen-
sive than in our case, which is needed only to prove a secret key
and some multi-exponentiation for creating witness. We should
mention here that by leveraging ZKPOK, arbitrary relationships
can be proved on attributes.

In summary, while the e�ciency of di�erent schemesmay appear
to be close asymptotically, our IhMA approaches are signi�cantly
more e�cient than existing approaches while providing both prop-
erties simultaneously. Indeed, we only need$ (:) group operations
in G8 . In contrast, other schemes require proving knowledge of
signatures or keys, which is signi�cantly more expensive.

2 PRELIMINARIES
Notation. We use BG = (?,G1,G2,G) , 4, %, %̂) BGGen(1_) to
denote a bilinear group generator for asymmetric type 3 groups,
where ? is a prime of bitlength _. When applying a scalar 0 com-
ponentwise to a vector T 2 G=1 we write T0 = ()01 ,)

0
2 , . . . ,)

0
=). We

write [G]R to denotes denote representative G of the equivalence
class for given relation R. Given a �nite set (, we denote by G (

or G
$
 (the sampling of an element uniformly at random from (.

For an algorithm A, let ~ A(G) be the process of running A on
input G with access to uniformly random coins and assigning the
result to ~. With A

B we denote that A has oracle access to B. We
use hOi to denote oracles de�ned in games and use n to indicate a
negligible function. We assume all algorithms are polynomial-time
(PPT) unless otherwise speci�ed and public parameters are an im-
plicit input to all algorithms in a scheme.

Indexed Di�e-Hellman Message Space M
�
iDH [29]. Given a

bilinear group (G1,G2,G) , ?, 4,6, 6̂) BGGen(1_), an index set
I, and a random oracle � : I ! G1, M�

iDH is an indexed Di�e-
Hellman (DH) message space if M�

iDH ⇢ {(83, "̃) | 83 2 I,< 2

Z? , "̃ = (� (83)<, 6̂<) 2 G1 ⇥G2} and the following index unique-
ness property holds: for all (83, "̃) 2 M

�
iDH, (83

0, "̃ 0) 2 M
�
iDH,

83 = 83 0) "̃ = "̃ 0. One can de�ne the equivalence class for
each message "̃ = (",#) 2 M̃

�
iDH, as EQiDH (",#) = {("A ,#) |

9 A 2 Z? }. One can e�ciently decide subset membership by check-
ing 4 (", %̂) = 4 (⌘,#). The uniqueness property guarantees that no
two messages use the same index, which needs to be ensured by
signers. We use the Camenisch-Stadler notation [21] for ZKPOK.
Please refer to the full version for complete de�nitions [47].

3 AGGREGATE SIGNATURES WITH
RANDOMIZABLE KEYS AND TAGS

Now we introduce a novel primitive named AtoSa where one can
aggregate signatures of di�erent messages under di�erent keys

33

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Comparison of AC schemes in MA setting (=: Attributes; :: Disclosed attributes, D: Undisclosed attributes, # : Total
issuers in policy, : issuers in showing)

[27] ‡ [10]¢¢ [6]¢¢ IhMAAtoSa IhMAATMS
IH X X X X X
MA ⇡ ⇡ ⇡ X X

|Cred | $ (#) $ (#) $ (#) $ (#)
¢ $ (#)

¢

|Show| $ (· #) $ (: ·) $ (: · 2) $ () $ ()
Show (P) $ (D#) $ (: ·) $ (: · 2) $ ()† $ (D ·)
Show (V) $ (:#) $ (: ·) $ (: · 2) $ (:) $ (: ·)
¢ We present the scheme in a way that supports ad-hoc attribute/issuer aggregation, but for �xed signatures, a constant size credential is achievable. For
ATMS we will show how to achieve this in Section 5.2.

¢¢ refers to proving knowledge of credentials and signatures of key policy in Showing.
† Since the ad-hoc aggregation cost is negligible, it is skipped here. Also, without considering IH, it becomes$ (1) .
‡ This scheme uses standard assumptions in the ROM while other schemes use the GGM.

only if they are associated with the same tag (consisting of a private
and a public part). Moreover, apart from allowing randomizing sig-
natures, veri�cation keys as well as tags can be randomized. Unlike
mercurial signatures, our AtoSa scheme does not allow for random-
ization of messages. Tags and veri�cation keys are de�ned with
respect to equivalence classes and randomization switches between
representatives of these classes. We introduce a comprehensive
formal model and a construction which as a starting point takes PS
signatures [52]. For our AtoSa scheme we show how to integrate
tags into PS signatures, use the above discussed features to make
them aggregatable, and show that the key-randomization features
of PS signatures (cf. [26] with �2 = 0) applies to our modi�cation.

3.1 Formal De�nitions
The public key randomization is similar to that of mercurial sig-
natures [30], which allow to de�ne equivalence classes on the key
space [vk]Rvk , [sk]Rsk . Let a tag be (g,T), where g and T are the se-
cret and public parts of tag respectively. For the tag randomization,
we de�ne equivalence classes [T]Rg ([g]Rg for secret parts) on the
tag space T similar to [vk]Rvk and [sk]Rsk as:

Rg =

(
(T0,T) 2 (G⇤1)

✓
⇥ (G⇤1)

✓
| 9` 2 Z⇤? : T0 = T`

(g 0, g) 2 (Z⇤?)
✓
⇥ (Z⇤?)

✓
| 9` 2 Z⇤? : g 0 = g · `

)

We denote the space of all tags as T and the messages space is
Z? . In contrast to SPSEQ (and mercurial) signatures, we do not
consider equivalence classes on the message space for AtoSa.

De�nition 1 (Aggregate Signatures with Randomizable Public Keys
and Tag (AtoSa)). An AtoSa for parameterized equivalence rela-
tions Rg , Rsk and Rvk, consists of the following algorithms:

Setup(1_) ! pp: On input the security parameter _, output the
public parameters pp.

KeyGen (pp) ! (sk, vk): On input the public parameters pp, out-
put a key pair (sk, vk).

VKeyGen (sk): On input a secret key sk, output a veri�cation key
vk.

GenAuxTag(() ! ({aux9 }9 2 [=] , (g,T)): Given a message-key set
(= {(< 9 , vk9) 9 2 [=] }, output auxiliary data {aux9 }9 2 [=] cor-
related to (vk9 ,< 9) and a tag pair (g,T), where all vk9 should
be distinct.

Sign(sk9 , g, aux9 ,< 9) ! f 9 : On input a secret key sk9 , tag’s secret
g , auxiliary data aux9 andmessage< 9 2 Z? , output a signature
f 9 for (g,T) and< 9 under the veri�cation key vk9 .

Verify(vk9 ,T,< 9 ,f 9) ! {0, 1}: Given a veri�cation key vk9 , tag’s
public T, message< 9 and signature f 9 , output 1 if f 9 is valid
relative to vk9 ,< 9 and T, and 0 otherwise.

AggrSign(T, {(vk9 ,< 9 ,f 9)}✓9=1) ! f : Given ✓ signatures, (f 9)9 2 [✓]
for messages (< 9)9 2 [✓] under veri�cation keys, (vk9)9 2 [✓] on
the same tagT, output an aggregate signaturef on all messages
M = (< 9)9 2 [✓] under the tag T and aggregated veri�cation
key avk = (vk9)9 2 [✓] .

VerifyAggr(avk,T,M,f) ! {0, 1}: Given an aggregated veri�ca-
tion key avk, tag T, messagesM and signature f , output 1 if f
is valid relative to avk,M and T, and 0 otherwise.

ConvertTag(T, `) ! T0: On input a tag T and randomness `,
output a new randomized tag T0 2 [T]Rg .

RndSigTag(vk,T,<,f, `) ! (f 0,T0): (Randomize Signature and
Tag together) Given a signature f on a message < under
tag T and vk, and randomness `. Return a randomized sig-
nature and tag (f 0,T0) s.t Verify(vk,T0,<,f 0) = 1, where
T0 ConvertTag(T, `).

ConvertSK(sk,l) ! sk0: On input a sk and key converter l ,
output a new secret key sk0.

ConvertVK(vk,l) ! vk0: On input a vk and key converter l ,
output a new public key vk0.

ConvertSig(vk,<,T,f,l) ! f 0: On input a vk, message<, tag T,
signature f , and key converter l , return a new signature f 0
s.t Verify(vk0,T,<,f 0) = 1, where vk0 ConvertVK(vk,l).

We note that VKeyGen is only required in the security de�nition
and is never used in the construction. Although the signer receives
the tag secret key g , we replace this with a ZKP in our IhMA scheme.

3.2 Security De�nitions
Correctness. We require that honest signatures verify as expected,
but need to consider all the randomizations and aggregation.

Unforgeability. We model unforgeability following the ideas in
the chosen-key model [9, 46], where the adversary A is given a
single public key vk0 and access to a signing oracle on the challenge
key. The adversary wins if the aggregate signature, f , is a valid
aggregate signature on a vector of messages M = (<1, . . . ,<=)

34

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

under keys (vk1, . . . , vk=), and f is nontrivial, i.e., the adversary
did not request a signature on a< 9 for vk9 = vk0 or more precisely
where vk9 is in the same equivalence class as the challenge key vk0.
A has the power to choose all public keys except the challenger’s
public key vk0. For our instantiation, however, we have to work in
a slightly weakened model which is equivalent to the certi�ed-keys
model [43, 44]. In this setting the A registers pairs of (vk, sk) with
exception of the challenge key. Tomodel this, we have the adversary
output the secret keys of the veri�cation keys they provide in our
security games. In the real world, such a key registration can be
realized by requiring issuers to prove knowledge of their sk, which
in the formal analysis allows a reduction to extract the secret key.

De�nition 2 (Unforgeability). An AtoSa signature is unforgeable
if for all PPT algorithmsA having access to the oracleOSign() , there
exists a negligible function n such that: Pr[ExpUnfAtoSa,A(_) =
1]  n (_) where the experiment ExpUnfAtoSa,A(_) is de�ned in
Fig. 1 and & is the set of queries that A has issued to the OSign.

Privacy guarantees. Similar to mercurial signatures [30], we de-
�ne the following privacy notion for randomized keys vk and tags:

De�nition 3 (Public key class-hiding). For all PPT adversaries A,
and pp Setup(1_) there exists a negligible n such that:

Pr

26666664

(vk1, sk1) KeyGen(pp) ; (vk02, sk
0
2) KeyGen(pp) ;

A
$
 Z? ; vk12 = ConvertVK(vk1, A) ; sk12 = ConvertSK(sk1, A) ;

1 {0, 1};10 A
Sign(sk1,·),Sign(sk12 ,·) (vk1, vk12) : 1

0 = 1

37777775


1
2
+n (_)

De�nition 4 (Tag class-hiding). For all PPT adversaries A there
is a negligible function n (·) such that

Pr

"
1 {0, 1},BG BGGen(1_),T T ,T(0)

 T ,

T(1)
 [T]R ,1⇤ A(BG,T,T(1)

) : 1⇤ = 1

#
�
1
2
 n (_)

The tag class-hiding property for Rg is implied by the DDH as-
sumption.

The following de�nition guarantees that a signature with tag T on a
message< under vk output by ConvertSig and fed into RndSigTag
produces a uniformly random signature under a uniformly random
tag (from the respective tag class) and uniformly random key (from
the respective key class).

De�nition 5 (Origin-hiding of ConvertSig). For all _, and pp 2
Setup(1_), for all (vk,<,f,T,l, `), if Verify(vk,T,<,f) = 1, and
(l, `) 2 (Z⇤?)

2, then (f 0,T0) RndSigTag(vk,T,<,ConvertSig(vk,
<,T,f,l), `) outputs uniformly random elements in signature
space and [T]Rg) such that Verify(vk0,T0,<,f 0) = 1, and vk0

$

ConvertVK(vk,l) is a uniformly random element of [vk]Rvk .

We also require a similar de�nition for ConvertTag and the tag
randomization:

De�nition 6 (Origin-hiding of ConvertTag). For all _, for all pp 2
Setup(1_), for all (vk,<,f,T, `), if Verify(vk,T,<,f) = 1, and
` 2 Z⇤? , then (f 0,T0) RndSigTag(vk,ConvertTag(T, `),<,f, `)
outputs uniformly random elements in the signature space and
[T]Rg such that Verify(vk,T0,<,f 0) = 1.

3.3 Construction
We construct the AtoSa scheme based on the PS signature [52].
We can observe that to make PS signatures (⌘8 , B8) aggregateable,
we need the ⌘8 components to be identical for all signatures to be
aggregated. While in the original PS construction ⌘ is a random
element independently chosen during signing, this can be emulated
in AtoSa by generating⌘ for all signatures via a hash function based
on some common information embedded in aux. For example, aux,
could be a concatenation of all the messages and the tag. This
technique was implicitly used in Coconut [57] and Camenisch et
al. [16], and has recently been formalized by Crites et al. in [29].

We note that we should be careful when computing ⌘, i.e., in
choosing aux, as in PS signatures one can forge signatures when
obtaining two signatures on two di�erent messages with respect
to the same element ⌘. To prevent forgeries when aiming to ag-
gregate signatures, a unique base ⌘ for a set of messages signed
under the same tag is required. Therefore, we compute ⌘ as a hash
of a concatenation of the messages to be signed and corresponding
veri�cation keys, denoted as aux. This approach ensures that every
signer computes signatures on the same base ⌘. We also introduce
a new de�nition and function:

Aux binding. To ensure this property of ⌘ while making our
construction modular, we de�ne a straightforward property of
GenAuxTag((), i.e., no adversary can “open” an aux to two mes-
sages for the same signer. This de�nition is paired with the function
VerifyAux which is called by Sign.

De�nition 7 (Aux binding). We split aux into a preimage and an
opening: (2,>). For all PPTA, and pp Setup(1_) and (sk, vk)
VKeyGen(1_) there exists a negligible n such that:

Pr

2666666664

(⌘, aux = (2,>), aux = (2 0,> 0), g,<, g 0,<0) A(vk);
VerifyAux(sk, (2,>), g,<) = 1
^ VerifyAux(sk, (2 0,> 0), g 0,<0) = 1;
2 = 2 0 ^ ([g]Rg < [g 0]Rg _< <<0)

3777777775
 n (_)

We will then hash the preimage, 2 in our construction to reduce to
the GPS assumption [29] e�ectively. The > value in this de�nition
may seem unnecessary, but it will become useful whenwe introduce
our IhMA construction in Section 5. We’ve left aux binding out of
our de�nition and rather de�ned it in our construction in order
to make our de�nition more generic as aux binding is simply a
propertywe use in the proof to ensure that our construction satis�es
the de�nition of AtoSa.

Synchronicity assumption. We note that when we do not want
to �xmessages and veri�cation keys in aux beforehand, thenwe can
make assumption as in synchronized aggregate signatures [1, 41]
and require each signer to only issue a single signature per tag. In
this case aux only contains the tag and in the construction below
we set 2 = %d1 | |%d2 and De�nition 7 is trivially satis�ed.

We involve the tag in signatures by exponentiating the compo-
nent⌘with the secret part of the tag⌘d and compute the component
B using this value, which clearly can be checked via a pairing with
the tag’s public part and veri�ed like a standard PS signature. More-
over, AtoSa allows the randomization of tag, vk and signatures via a
change of representatives tag, vk and a matching signature update.

35

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

ExpUnfAtoSa,A (_) :

• & := ;; pp Setup(1_) ;
• (vk0, sk0) KeyGen(pp) ;
• (9 0, avk =

�
vk9

�
92 [✓] ,0sk = (sk9)92 [✓]\90 ,M⇤ = (<⇤9)92 [✓] , (g

⇤,T⇤),f⇤) A
O
(pp, vk0)

• (vk⇤9) :=
�
VKeyGen

�
sk9

� �
92 [✓]\90 ,

return:

©≠≠
´

VerifyAggr (avk,T⇤,f⇤,M⇤) = 1 ^ 89 2 [✓], 9 < 9 0 :
[vk⇤9]Rvk = [vk9]Rvk ^ [vk0]Rvk = [vk90]Rvk
^ 8(<,T) 2 & :< <<⇤9 _ [T]Rg < [T⇤]Rg

™ÆÆ
¨

O
Sign

(<, aux, (g,T)) :
• f Sign(sk0,g, aux,<)

• & = & [{<,T},
return f

Figure 1: Experiment ExpUnfAtoSa,A(_)

Our construction. The construction is as follows:

Setup(1_): Run BG = (?,G1,G2,G) , %, %̂, 4) BGGen(1_) with
a prime number order ? , where % is a generator of G1, %̂ a
generator ofG2. Pick� as a hash function:� : {0, 1}⇤ ! G1.
Output public parameters pp = {BG,� }.

KeyGen (pp): Choose (G,~1,~2)
$
 Z? and set the secret key

sk = (G,~1,~2) and veri�cation key vk = (.̂1 = %̂~1 , .̂2 =
%̂~2 , -̂ = %̂G).

VKeyGen (sk): On input a secret key sk = (G,~1,~2), output vk =
(.̂1 = %̂~1 , .̂2 = %̂~2 , -̂ = %̂G).

GenAuxTag((): Given a set (= {(< 9 , vk9)9 2 [✓] }, choose (d1, d2)
$

Z? , set 2 = %d1 | |%d2 | | (< 9 , vk9)9 2 [✓] . Next set all aux9 =
(2,?). Compute ⌘ = � (2) and output aux and a tag pair
(g = (d1, d2),T = ()1 = ⌘d1 ,)2 = ⌘d2)).

VerifyAux(sk, aux, g,< 9) Parse aux as (2,>). Check that g 2 2 (i.e.,
that 2 has the form %d1 | |%d2 | |...) and (< 9 , vk) 2 2 where vk
is a veri�cation key related to sk (in the same equivalence
class). Also check that no other vk9 in aux has the same
equivalence class as sk. This can be done by checking that

.̂2 = .̂
~2
~1
1 and that -̂ = .̂

G
~2
2 . If these checks pass, it means

that this is in the same equivalence class as the veri�er’s key.
If the check doesn’t pass, it means the vk9 is not in the same
equivalence class.

Sign(sk9 , g, aux9 ,< 9): Given a sk9 = (~19 ,~29 , G 9), g , aux9 and a
message< 9 . If VerifyAux(sk9 , aux9 , g,< 9) < 1 return?. Else,
parse aux as (2,>) and compute ⌘ = � (2) and output:

f 9 =
�
⌘0, B 9

�
=
�
⌘0 = ⌘d1 , B 9 = (⌘d1)G 9+~19 ·< 9 · (⌘d2)~29

�

Verify(vk9 ,T,< 9 ,f 9): Given a vk9 , tag T = ()1,)2), message< 9
and signature f 9 , parse f 9 as

�
⌘0, B 9

�
and return 1 if the

following checks hold and 0 otherwise:

4 (⌘0, -̂ · .̂<1
1)4 ()2, .̂2) = (B 9 , %̂) ^)1 = ⌘0 < 1G

AggrSign(T, {(vk9 ,< 9 ,f 9)}✓9=1): Given ✓ valid signatures such that
89 2 [✓], f 9 = (⌘0, B 9) for< 9 under vk9 and the same tag
T, where 9 2 [✓], outputs an aggregate signature f on the
messages M = (< 9)9 2 [✓] under the tag T and aggregated

veri�cation key avk = (vk9)9 2 [✓] as: f 0 =
⇣
⌘0, B 0 =

Œ✓
9=1 B 9

⌘
.

VerifyAggr(avk,T,M,f): Given an avk, tag T, messages M and
aggregate signature f = (⌘0, B), it outputs 1 if the following

checks holds and 0 otherwise:

4
©≠
´
⌘0,

÷
9 2 [✓]

-̂ 9 · .̂
< 9

19
™Æ
¨
4
©≠
´
⌘d2 ,

÷
9 2 [✓]

.̂29
™Æ
¨
= 4

⇣
B, %̂

⌘
^)1 = ⌘0 < 1G

ConvertTag(T, `) ! T0: On input a tag T and randomness `,
output a randomized tag T0 = T` = () `1 ,)

`
2).

RndSigTag(vk,T,<,f, `) ! (f 0,T0): Given a signature f on mes-
sage< under a valid tag T and vk, and randomness `. Return
a randomized signature f 0 and a randomized tag:

f 0 =
�
⌘0` , B`

�
, T0 ConvertTag(T, `)

where is a valid signature for a new tag representative T0 2
[T]Rg .

ConvertSK(sk,l): On input sk and a key converterl 2 Z⇤? , output
a new secret key sk0 as sk0 = sk · l .

ConvertVK(vk,l): On input vk and a key converter l 2 Z⇤? , out-
put a new public key as vk0 = vkl .

ConvertSig(vk,<,T,f,l): On input a vk, message <, signature
f , tag T, and key converterl 2 Z⇤? , return a new signaturef 0

s.t.Verify(vk0,T,<,f 0) = 1, where vk0
$
 ConvertVK(vk,l)

as follows: f 0 = (⌘0, B 0 = Bl).
The correctness of our construction follows from inspection. We
formally show the unforgeability and privacy notations.

T������ 8 (U�������������). Our construction achieves the
EUF-CMA security stated in Def 2, under the hardness of GPS as-
sumption, in the random oracle model.

T������ 9 (P������). Our construction is origin-hiding of Con-
vertSig, origin-hiding of RndSigTag, tag class hiding and has public
key class-hiding based on Def. 5, Def. 6, Def. 4, and Def. 3, respectively.

The proofs of Theorem 9 and Theorem 8 are provided in the full
version [47].

4 AGGREGATE MERCURIAL SIGNATURES
WITH RANDOMIZABLE TAGS

We now present an aggregate mercurial signature with random-
izable tags (ATMS). Similar to AtoSa, (see Def. 1), one can aggre-
gate mercurial signatures of di�erent messages under di�erent
keys under the same tag and randomize those signatures, public
keys, and tags. ATMS di�ers from AtoSa by in addition support-
ing equivalence classes on the message space. This further allows
the randomization of messages, leading to a feature known from

36

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

structure-preserving signature on equivalence classes (SPSEQ) and,
more precisely, mercurial signatures.
To achieve the aggregation property, we follow the strategy pre-
sented by Crites et al. in context of threshold SPS [29], where
the authors de�ne a so called Indexed Di�e-Hellman message
space M

�
iDH. But the main problem with this approach, as it is

de�ned over both groups, is that we can not de�ne indistinguish-
able equivalence classes over G:1 ⇥G

:
2 , since spanning both groups

makes DDH easy and would yield trivial linkability. Note that given
both (("1,"2), (#1,#2)) and ((" 01,"

0
2), (#

0
1,#
0
2)), one can easily

link them together by checking that 4 ("1,# 02) = 4 ("2,# 01) and
4 (" 01,#2) = 4 (" 02,#1) hold. So we adapt M�

iDH and de�ne a new
message space called a Tag-based DHmessage spaceM�

TDH and its
corresponding EQ relation. We essentially de�ne one equivalence
class per group and tie them together via the message, the tag, and
an index obtained via some auxiliary information (similar to the aux
in the case of AtoSa). Indeed we adapt the Di�e-Hellman message
space MDH to a Tag-based DH message space M�

TDH for a tuple
(aux,⌘,T,",#), which includes a tag T with auxiliary data aux
(instead of the 83).

This new message space then allows us to aggregate and de-
�ne an equivalence (EQ) relation which gives an indistinguishable
message space.

4.1 Formal De�nitions
We begin our de�nitions by introducing Tag-based DH message
space M�

TDH and give an instantiation in the random oracle model
(ROM). Then we de�ne a new EQ relation regarding this message
space M�

TDH, and �nally, we de�ne our new primitive ATMS.

A Tag-based DHmessage space. We adapt the message indexing
technique introduced by [29] (cf. Def. 2) to tags:

De�nition 10 (A Tag-based DH message space (M�
TDH)). Let �

be a random oracle. For the aux and tag T = (⌘d8)82 [:] , we de�ne
M

�
TDH as a tag based DH message space, if the following property

hold: For the messages vector (M,N) = ("1, . . . ,": ,#1, . . . ,#:)
there exists<8 2 Z? s.t. for each tuple (aux,)8 = ⌘d8 ,"8 =)<8

8 ,#8 =
%̂<8), the following holds: 4 ("8 , %̂) = 4 ()8 ,#8).

We provide an instantiation in Fig. 2. Let us assume WLOG a mes-
sage vector with the length : = 2 as m = (<1,<2), this can be
generalized to any length : > 1.

M
�
TDH (T = (⌘d1 ,⌘d2), aux,m) :

• ⌘ � (aux)
• for 8 2 [2]:

– "8 ⌘<8d8

– #8 %̂<8

• return (M,N)

� (aux) :
• If&� [aux] =?:
• A

$
 Z?

• &� [aux] %A :=
⌘

• return&� [aux]

Figure 2: Tag based Di�e-Hellman message space in ROM

Equivalence relations (EQ) overM�
TDH. Let the message space

M
�
TDH be de�ned as (M,N) = ("1,": ,#1, . . . ,#:) 2 (G⇤1)

:
⇥

(G⇤2)
: such that for (⌘,T), and 8 2 [:]: 4 ("8 , %̂) = 4 ()8 ,#8). Now

we can de�ne a family of equivalence relations IR✓ so that for any
✓ with 1 < :  ✓ . We de�ne the following equivalence relation
RTDH 2 IR✓ and the equivalence class [(M,N)]RTDH of a message
vector with size : . More concretely, for a �xed bilinear group BG
and (:, ✓), we de�ne RTDH 2 IR✓ as follows:

De�nition 11 (Equivalence relations of M�
TDH message spaces). If

vectors of a pair (M,N) 2 (G⇤1)
:
⇥ (G⇤2)

: is a message vector from
M

�
TDH, then the equivalence relations [(M,N)]RTDH de�ned as

RTDH =
⇢
(M,N), (M0,N0) 2 (G⇤1 ⇥ G

⇤

2)
:
⇥ (G⇤1 ⇥ G

⇤

2)
:
, 9(`,h) 2 Z⇤? :

M0 = M`h ,N0 = Nh

�

Note that the EQ relation for an aggregate signature on a set of
vectorsM = ((M9 ,N9))9 2 [✓] is the family (set) of relation as above,
while all vectors use the same randomnessM = ((M`h

9 ,Nh9))9 2 [✓] .
For instance, the 9 ’th message vector (M9 ,N9) 2 [(M,N)]

R
9
TDH

is

in the class R 9TDH 2 IR
✓ and if one more signature-message pair is

added to the set, we have R 9+1TDH 2 IR
✓ , where 9 + 1 < ✓ . Moreover,

we consider the EQ relation for veri�cation keys vk and Tag similar
to AtoSa and indicate as Rvk and Rg as stated in Def. 3.1. We again
denote by T the space of all tags and present the ATMS in Def. 12.

De�nition 12 (Aggregate Mercurial Signatures with Randomizable
Tag (ATMS)). An ATMS scheme, associated with the parameterized
equivalence relations IR✓ , RTDH, Rg and Rvk, and also message
space M�

TDH consists of the algorithms:

Setup(1_) ! pp: On input the security parameter _, output the
public parameters pp.

KeyGen (pp) ! (sk, vk): On input the public parameters pp, out-
put a key pair (sk, vk).

VKeyGen (sk): On input a secret key sk, output a veri�cation key
vk.

GenAuxTag(() ! (aux9 , (g,T)): Given a set (=
� �
M9 ,N9

�
, vk9

�
9 2 [=]

of messages and keys, output auxiliary data aux9 and a tag
pair (g,T) where g is the secret part and T is the public part
of tag and all vk9 should be distinct.

Sign(sk9 , g, aux9 , (M9 ,N9)) ! f 9 : On input a secret key sk9 , tag’s
secret g , auxiliary data aux9 and message vector (M9 ,N9) 2
M

�
TDH, output a signature f 9 under the g , vk9 and (M9 ,N9).

Verify(vk9 ,T, (M9 ,N9),f 9) ! {0, 1}: Given a veri�cation key vk9 ,
tag’s public T, message vector (M9 ,N9) and signature f 9 ,
output 1 if f 9 is valid relative to vk9 , (M9 ,N9) and T, and 0
otherwise.

VerifyTag(T, g,f) ! {0, 1}: Given a tag’s public T, tag’s secret
signature f , output 1 if T is valid relative to f , and g , and 0
otherwise.

AggrSign(T, (vk9 , (M9 ,N9),f 9)✓9=1) ! f 0 Given ✓ signed mes-
sages (M9 ,N9) in f 9 under vk9 for 9 2 [✓] and the same tag
T, output a signaturef on themessagesM = ((M9 ,N9))9 2 [✓]
under the tag T and veri�cation key avk = (vk9)9 2 [✓] .

VerifyAggr(avk,T,M,f) ! {0, 1}: Given a veri�cation key avk,
tag T, messages M and signature f , output 1 if f is valid
relative to avk,M and T, and 0 otherwise.

ConvertTag(T, `) ! T0: On input a tag T and randomness `, out-
put a randomized tag T0 2 [T]Rg (i.e., a new representative
of tag).

37

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

ChangRep((M,N),f,T, (`,h)) ! (f 0,T0): On input a represen-
tative (M,N) 2 [(M,N)]RTDH , T 2 [T]Rg , signature f and
randomness (`,h), return a new signature ((M0,N0),T0,f 0),
where M0 = M`h

^ N0 = Nh 2 [(M,N)]RTDH and T0
ConvertTag(T, `) are the new representatives and f 0 is valid
for (M0,N0) and [T]Rg .
This will also apply for a set representativeM such that one
can get a new set representativeM0 by scaling all message
with the same (`,h).

ConvertSK(sk,l) ! sk0: On input a sk and key converter l ,
output a new secret key sk0.

ConvertVK(vk,l) ! vk0: On input a vk and key converter l ,
output a new public key vk0.

ConvertSig(vk,T, (M,N),f,l) ! f 0: On input a vk, message vec-
tor (M,N), signature with tag (f,T), and key converterl , re-
turn a new signature f 0 such thatVerify(vk0,T, (M,N),f 0) =
1, where vk0 ConvertVK(vk,l).

The VerifyTag and VKeyGen are only used for the security game.

4.2 Security De�nitions
Correctness. As usual we require that honest signatures verify as
expected, but need to consider all the randomizations as well as the
aggregation.
Unforgeability. The unforgeability game follows the unforgeabil-
ity de�nition of AtoSa (see Def. 2). It is slightly modi�ed to �t
with our additional EQ relation (Def. 11), i.e., unforgeability is de-
�ned with respect to message classes and in addition need to check
VerifyTag.

De�nition 13 (Unforgeability). An ATMS is unforgeable if for all
PPT A having access to the oracle O

Sign() there exists a negligi-
ble function n s.t: Pr[ExpUnfATMS,A(_) = 1]  n (_) where the
experiment ExpUnfATMS,A(_) is de�ned in Fig. 3 and & is the set
of queries that A has issued to O

Sign() .

Privacy guarantees. Similar as in Section 3, we consider the
privacy notations Origin-hiding of ConvertSig, and Public key class-
hiding (it is the same as Def. 3). We note that all de�nitions can
be updated due to M

�
TDH message space (receptively EQ relations

of M�
TDH) instead of the vector M. Origin-hiding of ConvertSig

de�nition can be updated straightforwardly as follows:

De�nition 14 (Origin-hiding of ConvertSig for ATMS). For all _,
and pp 2 Setup(1_), for all (vk, (M,N),f,T,l,h, `), if Verify(vk,T,
(M,N),f) = 1, and (l,h, `) 2 (Z⇤?)

3, thenf 0 ChangRep((M,N),
ConvertSig(vk,T, (M,N),f,l),T, (h, `)) outputs a uniformly ran-
dom element in the respective space s.t.Verify(vk0,T0, (M0,N0),f 0) =
1, where vk0

$
 ConvertVK(vk,l) outputs a uniformly random el-

ement of [vk]Rvk .

However, since this is a variant of SPSEQ we consider the adap-
tion property similar to [35] below, an additional property which
guarantees that signatures from ChangRep and Sign are identically
distributed. This de�nition also covers Origin-hiding ofConvertTag.

De�nition 15 (Perfect Adaption of Signatures). An ATMS scheme
perfectly adapts signatures if for all (vk,T, (M,N),f, `,h)with (M,N) 2
M

�
TDH ^ Verify(vk,T, (M,N),f) = 1 ^ (`,h) 2 Z⇤? we have that

the output of (f 0,T0) ChangRep(f, (M,N),T, (`,h)) is a uni-
formly random element in the respective space, conditioned on
Verify(vk,T` , (M`h ,Nh),f 0) = 1.

4.3 Construction
Our construction is inspired by the message-indexed SPS by Crites
et al. [29], which is a variant of Ghada�’s SPS [37]. We use the tag-
based message de�nitionM

�
TDH (Def. 10) instead of the message-

indexed (Def. 2). For simplicity, we assume a message vector with
the length : = 2 as (M,N) = (("1,"2), (#1,#2)), but this can be
straightforwardly generalized to any length : > 1. Similar to the
construction in Section 3.3, we again need aux binding to make this
particular construction work.

De�nition 16 (Aux binding for ATMs). We split aux into a preim-
age and an opening: (2,>). For all PPTA, and pp Setup(1_) and
(sk, vk) VKeyGen(1_) there exists a negligible n such that:

Pr

26666664

(aux = (2,>), aux = (20,>0),g, (M,N),g 0, (M0,N0)) A(vk) ;
VerifyAux(sk, (2,>),g, (M,N)) = 1
^ VerifyAux(sk, (20,>0),g 0, (M0,N0)) = 1^
2 = 20 ^ (g < g0 _ (M,N) < (M0,N0))

37777775
 n (_)

Synchronicity assumption. Same as in Section 3.3, instead of
�xing messages and veri�cation keys in aux, we can make same
assumption as in synchronized aggregate signatures and simply set
2 = %d1 | |%d2 in the construction below and De�nition 7 is trivially
satis�ed.

Our construction. The construction is as follows:
Setup(1_): Run BG = (?,G1,G2,G) , %, %̂, 4) BGGen(1_) with

a prime number order ? , where % a generator of G1, %̂ a
generator of G2 and � a hash function: � : {0, 1}⇤ ! G1,
output pp = (G1,G2,G) , %, %̂,�).

KeyGen(pp): Given pp, sample sk = (G,~1,~2, I1, I2)
$
 (Z⇤?)

5,
and vk = (-̂ = %̂G , .̂1 = %̂~1 , .̂2 = %̂~2 , /̂1 = %̂I1 , /̂2 = %̂I2).

VKeyGen (sk): Given sk = (G,~1,~2, I1, I2), return vk = (-̂ =
%̂G , .̂1 = %̂~1 , .̂2 = %̂~2 , /̂1 = %̂I1 , /̂2 = %̂I2).

GenAuxTag((): Given a set (= {(M9 ,N9 , vk9)9 2 [=] }, choose (d1, d2)
$
 Z? , set g = (d1, d2),T = ()1 = ⌘d1 ,)2 = ⌘d2), and
2 =

⇣
%d1 | |%d2 | | (N9 , vk9)9 2 [=]

⌘
, where ⌘ = � (2) and aux9 =

(2,> =?).
VerifyAux(sk, aux, (g1, g2), (("1,"2), (#1,#2))) : Extract ()1,)2),

parse aux as (2,>). Check that ((M,N), [VKeyGen(sk)]) 2
aux (i.e., 2 = ...| | ((M,N), [VKeyGen(sk)]) | |...) s.t no other
vk in aux related to sk and check that ()1,)2) = (⌘g1 ,⌘g2) .
Compute ⌘ := � (2) . Output

”2
8=1 4 ("8 , %̂) = 4 (⌘

g8 ,#8).
Sign

�
sk9 , g, aux9 , (M,N)

�
: Given a sk9 , g, aux9 = (2,?), and mes-

sage (M,N) = (("1,"2), (#1,#2)) 2 M
�
TDH. Parse g as

(d1, d2). Run VerifyAux(sk, aux, g, (M,N)) and verify that
this outputs 1. If so compute ⌘ = � (2) and output a sig-
nature as:

f = (⌘,1 =
÷
9 2 [2]

⌘d 9 ·I 9 , B = (⌘G ·

÷
9 2 [2]

"
~ 9
9)) .

Verify(vk,T, (M,N),f): Given a vk, tag T = ()1 = ⌘d1 ,)2 = ⌘d2),
message (M,N) and signature f = (⌘,1, B) return 1 if the

38

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

ExpUnfATMS,A (_) :

• & := ;; pp Setup(1_) ;
• (vk0, sk0) KeyGen(pp) ;
• (90, avk =

�
vk9

�
92 [✓] , ask = (sk9)92 [✓]\90 ,M

⇤ = ((M⇤9 ,N
⇤
9))92 [✓] ,T

⇤,g⇤,f⇤) A
O
(pp, vk0)

• (vk⇤9 := VKeyGen(sk9))92 [✓],9<90 Return:

©≠≠≠
´

VerifyAggr
�
avk,T⇤,f⇤,M⇤

�
= 1 ^ VerifyTag(T⇤,f⇤,g⇤) ^ 89 2 [✓], 9 < 90 :

[vk⇤9]Rvk = [vk9]Rvk ^ [vk0]Rvk = [vk90]Rvk^

8((M,N),T) 2 & : [(M,N)]RTDH < [(M⇤9 ,N
⇤
9)]RTDH _ [T]Rg < [T⇤]Rg

™ÆÆÆ
¨

O
Sign

((g,T), aux, (M,N)) :

• f Sign(sk0,g, aux, (M,N))
• & = & [{(M,N),T},

Return f

Figure 3: Experiment ExpUnfATMS,A(_)

following holds and 0 otherwise:

4 (⌘, -̂)
÷
9 2 [2]

4 ("9 , .̂9) = 4 (B, %̂) ^ 4 (1, %̂) =
÷
9 2 [2]

4 ()9 , /̂ 9)

2€
9=1

4 ()9 ,# 9) = 4 ("9 , %̂)

VerifyTag(T, g,f): Given g = (g1, g2), f = (⌘,1, B), output 1 if
)8 = ⌘g8 for all 8 2 {1, 2}, and 0 otherwise.

AggrSign(T, (vk8 , (M8 ,N8),f8)✓8=1): Given ✓ valid signatures f8 =
(⌘,18 , B8) for (M8 ,N8) under vk8 and the same tag T for 8 2
[✓], return ? if all ⌘ are not the same, else output a signature
f on the messagesM = ((M8 ,N8))82 [✓] under the tag T and
aggregated veri�cation key avk = (vk1, . . . , vk✓) as follows:
f =

⇣
⌘,1 0 =

Œ✓
8=1 18 , B

0 =
Œ✓
8=1 B8

⌘
.

VerifyAggr(avk,T,M,f): Given avk = (vk1, . . . , vk✓), tagT = ()1 =
⌘d1 ,)2 = ⌘d2), messagesM and signature f = (⌘,1, B), check
if the following checks holds and 0 otherwise:÷

82 [✓]

4 (⌘, -̂8)
÷
92 [2]

4 ("8 9 , .̂8 9) = 4 (B, %̂) ^ 4 (1, %̂) =
÷
82 [✓]

÷
92 [2]

4 ()9 , /̂8 9)

€
92 [2]^82 [✓]

4 ()9 ,#8 9) = 4 ("8 9 , %̂)

ConvertTag(T, `) ! T0: On input a tag T and randomness `,
output a randomized tag T0 = (⌘d1` ,⌘d2`).

ChangRep(f, (M,N),T, (`,h)): On input a representative (M,N)
2 [(M,N)]RTDH , T 2 [T]Rg , signature f = (⌘,1, B), and
(`,h) 2 (Z⇤?)

2, output:

f 0 =
�
⌘0 ⌘`h ,1 0 1` , B 0 B`h ,T0 ConvertTag(T, `)

�
,

which is a valid signature for new representatives (M`h =
M0,Nh = N0) 2 [(M,N)]RTDH and T0 = (⌘d1` ,⌘d2`) 2
[T]Rg .

ConvertSK(sk,l) ! sk0: On input a sk and key converterl 2 Z⇤? ,
output a new secret key as sk0 = sk · l .

ConvertVK(vk,l) ! vk0: On input a vk and key converter l 2
Z⇤? , output vk0 = vkl = (-̂l , .̂l1 , .̂l2 , /̂l1 , /̂

l
2).

ConvertSig(vk, (M,N),f,T,l) ! f 0: On input a vk, message
(M,N), signature f with tag T, and key converter l 2 Z⇤? ,
returns a new signature f 0 as: f 0 = (⌘,1l , Bl).

Note that one can reduce the number of paring operations in
VerifyAggr by using batching veri�cation techniques (cf. [34]).

T������ 17 (P������). Our construction is origin-hiding of Con-
vertSig (Def. 5), public key class-hiding (Def. 3), and provides perfect
adaption of signatures (Def. 15).

T������ 18 (U�������������). Our construction is EUF-CMA
secure regarding the de�nition 13 in the generic group model for
Type-III bilinear groups.

The proofs of Theorem 18 and Theorem 17 are provided in the full
version [47].

5 APPLICATION TO AC
As our core application we present Issuer-Hiding Multi-Authority
Anonymous Credentials (IhMA). In a multi-authority setting [40],
credentials come from ✓-di�erent credential issuers. Naively, the
showing of credentials requires ✓-independent credentials to be
shown. This can be overcome [40] by leveraging aggregate signa-
tures, obtaining a compact AC systemwith compact-size credentials,
and showing costs. However, verifying a user’s credentials needs
knowledge of all issuers’ veri�cation keys, which might violate
user privacy. Thus, in the vein of [6] we introduce the issuer-hiding
property for multi-authority credentials. We recall that here the
veri�er can de�ne a set of acceptable issuers in an ad-hoc manner.
Then a user can prove that the subset of credentials shown were
issued by acceptable issuers without revealing which credential cor-
responds to which issuer. This is an important feature, especially in
multi-authority settings where disclosing issuer keys can reveal too
much information compared to a single issuer setting and already
lead to identi�cation of the user.

5.1 Formal De�nition
Our de�nition supports multiple users (D 9)9 2 [✓] and multiple cre-
dential issuers (CI9)9 2 [✓] . An issuer can generate a key pair of secret
and veri�cation keys (8sk, 8vk) via IKeyGen(). Similarly, users runs
UKeyGen() to generate a user key pair (Dsk,Dvk). Each issuer can
then issue a credential (cred) on an attribute (0) or attribute-set
(A) to a user who can verify the received credential locally. Indeed,
when we use AtoSa, we consider an attribute 0 (i.e., the attribute
set includes only one attribute); when we use ATMS, we consider
an attribute set, A. We use the notation A, to de�ne security and
formal de�nitions for consistency of de�nitions.

Users can then use the CredAggr algorithm to aggregate all cre-
dentials and create a single credential valid for all attributes and
veri�cation keys. To de�ne the set of accepted issuers, a veri�er
generates a key-policy ?>; usingGenPolicies (it is known as Presen-
tation policies in [6]), which can be checked for well-formedness by

39

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

everyone. Finally, with an aggregate credential (disclosing a subset
attributes ⇡) and some key-policy ?>; from the veri�er, a user uses
Show to derive a proof, which a veri�er can verify.

De�nition 19 (Issuer-Hiding Multi-Authority Credentials (IhMA)).
An IhMA is de�ned by the following algorithms/protocols:

• Setup: On input a security parameter _, output public parameters
pp (implicit input to all algorithms) .

• IKeyGen: Generate a key pair (8sk, 8vk) for an issuer 8 .
• UKeyGen: Take a message-key set (, generate a user key pair
(Dsk,Dvk) which acts as user’s identity and auxiliary data aux.

• Issuance: In this protocol, an issuer 8 associated to (8sk, 8vk) cre-
ates a credential cred on an attributes-set A to a user D associated
to (Dsk,Dvk) as follows:

[CredObtain(Dsk, 8vk,A) $ CredIssue(8sk,Dvk,A)] ! cred

• CredAggr: Take as input a Dsk of user and a list of credentials
(8vk,A8 , cred8) for 8 2 [✓] and output an aggregated credential
cred of attributes-set {A8 }82 [✓] :

CredAggr
⇣
Dsk, {(8vk,A8 , cred8)}82 [✓]

⌘
! cred

• GenPolicies: A veri�er with the secret key Esk can de�ne policies
de�ning sets of issuers {ivk}82 [=] they are willing to accept for
certain Show sessions, we have:

GenPolicy(Esk, {ivk}82 [=]) ! ?>;, where =  ✓

Note that ?>; de�nes the sets of accepted issuers by a veri�er, but
not which attributes a veri�er needs to disclose. Thus, ?>; can
be reused for multiple contexts, reducing the number of policies.

• Show: In this protocol, a user D with (Dsk,Dvk) runs CredShow
and interacts with a veri�er running CredVerify to prove that
she owns a valid credential cred on disclosed attribute sets ⇡ ✓
{A8 }82 [✓] issued respectively by one or some credential issuers
in ?>; :CredShow(Dsk, ?>;, {(8vk,A8)}82 [✓] , cred,⇡) $

CredVerify(?>;, (8vk8)82 [✓] ,⇡)

�
! (0, 1)

Due to the lack of space we refer to the full version [47] for our
security model.

5.2 Constructions
Now we are ready to describes our two constructions of IhMA, the
�rst being based on AtoSa (Def. 1) and SPSEQ [35] and the second
based on ATMS (Def. 12), a set commitment scheme SC [35, 48], and
SPSEQ . To enhance users’ privacy and prevent issuers from learn-
ing attributes issued by other issuers, we change how aux for the
signatures is computed. In particular, we commit to the attributes
(messages) instead of including them in plaintext. For example, this
can be achieved using a hash-based commitment scheme, where a
commitment value 2 is generated by computing 2 := � 0(0, A) with
� 0 being a hash function modeled as a random oracle, 0 being the
attributing being committed to, and A a su�ciently large random
value. When issuing a credential, users can reveal the relevant mes-
sage (attribute) 0, the opening > , and the commitment value 2 . The
signer then veri�es if the 2 is correct for 0 and > before issuing the
corresponding credential. We modify GenAuxTag(S) and VerifyAux
in AtoSa and ATMS as follows:

• GenAuxTag(S): Given (= {(< 9 , vk9)9 2 [✓] }, choose (d1, d2)
$

Z? , set 2 = %d1 | |%d2 | | (2< 9 | |vk9)9 2 [✓] , where 2< 9 is a hash com-
mitment to 9 ’th message and all vk are distinct. Output aux =
(2,> 9) and tag g = ((d1, d2), ()1 = ⌘d1 ,)2 = ⌘d2)) with ⌘ = � (2).

• VerifyAux(sk, aux, g,< 9) Parse aux as (2,>). Check that g 2 C (i.e.,
that 2 has the form: %d1 | |%d2 | |...) check that 2 9 exists such that
(2 9 , vk) 2 C and Open(2 9 ,>,< 9) = 1 where vk is a veri�cation
key related to sk (in the same equivalence class). Also check that
no other vk in aux has the same equivalence class as sk.

In our IhMA schemes, tags are user identities and are used to verify
the user before issuing attributes.

5.2.1 AtoSa based IhMA Construction in Fig. 4. Here, every issuer
creates a credential (signature) f18 on an attribute 08 for the user D
with tag g (and the respective aux) veri�ed with 8vk by the AtoSa
scheme. We cannot reveal the secret part of the tag to signers
(issuers) as this would violate the security of the user. To obtain
a credential through the Issuing protocols, a user is required to
disclose the public parts of tag as identity to the issuer and then
authenticate their identity via a ZKPOK.
Interactive signing. We can adapt the signing in a way that sign-
ers (issuers) don’t learn (d1, d2) as follows:

• D sends (aux, (⌘,T), c), where aux = %d1 | |%d2 | | (2<8 , vk8)82 [=]
and
c = ZKPOK {(d1, d2) :)1 = ⌘d1 ^)2 = ⌘d2 ^ D1 = %d1 ^ D2 = %d2 }.

• Signer (issuer) checks if proof c is valid and if so outputs
(⌘0 = ⌘d1 , B = (⌘d1)G 9+~19 ·< 9 · (⌘d2)~29)

We note that this interactive signing outputs signatures that are
identical to that output by Sign and this is used in Issuance. For the
Show protocol, we assume that veri�er(s) have signed all accepted
issuer keys using an SPSEQ scheme [35]. A user D can take ?>; and
the set of disclosed credentials ⇡ , aggregates the respective cre-
dentials (signatures) and randomizes the aggregated signature and
tag. We note that alternatively, a user could already after Issuance
aggregate all credentials to a constant-size (single) credential and
then in Show protocol can provide a ZKPOK of the signature and
selectively disclose the required attributes (as originally done for
PS signatures in [52]). This also yields constant size credentials as
noted in Table 1. We stick with the former approach here as it is
more e�cient for showing credentials, but one can easily switch
to the other option. Moreover, In IhMAAtoSa, only one attribute
per vk can be issued. However, if an issuer needs to issue multiple
attributes, they can easily generate multiple vks.

To hide the issuer’s keys, D randomizes them using a random l
and adapts the signature for these randomized keys usingConvertSig.
So far, we have created a compact randomized credential (proof)
for attributes in ⇡ where issuer veri�cation keys of this signature
are hidden. The next step is to show that these random veri�ca-
tion keys correspond to those keys signed by the veri�er (using
SPSEQ signatures) in ?>; . In this direction, D �rst collects signa-
tures in ?>; according to issuer keys that are needed in the proof.
Then D runs ChangRep of SPSEQ to randomize messages (which
are issuer public keys) and signatures with the same randomness
l used in convert, i.e., randomized keys. Randomized issuer keys
in a credential match with the messages signed by veri�er in ?>; .

40

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

Finally, D uses the randomized tag as a pseudonym for communica-
tion and provides a ZKPOK of secret part of tag (secret keys and
randomness) used in the credentials.

5.2.2 ATMS based IhMA Construction in Fig. 5. We use the frame-
work in [35] in which one can combine mercurial or SPSEQ with a
set commitment such that a credential is a signature on set com-
mitment SC. One can then open a subset of messages from this
commitment while randomizing both set commitment and signa-
ture together. This provides unlinkability and selective disclosure
at the same time (see [35]). Unlike the previous construction, we
can aggregate credentials immediately after receiving them and
have a constant-size credential but still avoid zero-knowledge proof
of a signature in showing protocol (because of compatibility of EQ
message relation of ATMS and SC randomization).

In the Show protocol, similar to the previous construction, D
�rst collects the signatures required to prove the attributes ⇡ from
?>; . Then, for issuer-hiding similar to AtoSa it randomizes these
SPSEQ signatures usingChangRep of SPSEQ withl . For preparing
a proof for ⇡ , a user (D) randomizes issuer veri�cation keys in
credentials using ConvertVK and converts the ATMS signature
using ConvertSigwithl . Subsequently,D randomizes the signature
with a tag using ChangRep. Finally, D opens a subset of attributes
⇡ from the set commitments. Now a veri�er can check if these
attributes are in the set commitments signed by some issuers in
?>; . Same as in the �rst construction, since all issuer keys are
randomized due to the SPSEQ signature the issuers are hidden. We
run a ZKPOK to prove that D knows all secret values related to the
randomized tag like before. The only point left is the signing of set
commitments, which is de�ned in one source group in [35], but we
need both groups. Subsequently, we show how one can combine
set commitments with a tag-based DH message space.

Set commitments for M
�
TDH. The main point here is that we

need to convert the set commitments space toM
�
TDH, which can

be smoothly done as follows: In addition to credentials issuers, we
also de�ne a Trusted Authority TA who holds the trapdoor U of
the set commitment scheme and can create commitments for the
attributes of users who want to register in the system. WLOG, let
us for simplicity assume only one attribute set A = (A,[), where
we have a �xed constant [which is never opened in practice and it
is the same for all (it is just required for anonymity). It works as:
• The user sends a tag T and aux to TA.
• TA computes a set commitment in both groups (C = (⇠1,⇠2), Ĉ =
(⇠̂1, ⇠̂2)) (i.e., (M,N)) with tag, where (⇠2, ⇠̂2) are dummy com-
mitments for a �xed constant [and the other one for the (real)
attribute set A. More precisely: TA computes the commitment
in G1 to base ⌘d8 and the one in G2 in base %̂ : ⇠1 = (⌘5A (U))d1 ,
⇠̂1 = %̂ 5A (U) , ⇠2 = (⌘[)d2 and ⇠̂2 = %̂[such that such that we
have

”
82 [2] 4 ()8 , ⇠̂8) = 4 (⇠8 , %̂), where ⌘ = � (2), aux = (2,>),

2 = %d1 | |%d2 | | (2A8 | |vk9)9 2 [2] , returns (C, Ĉ). Note that 2A :=
� 0(A, A).

Note that U is a trapdoor kept by TA, but TA does not need to
know (d1, d2) (e.g., ⇠8 be computed as ()1) 5A (U)). A multiparty
computation protocol can also be used to hide other user details
from TA. A user can �rst randomize set commitment exactly like
our tag-based message with (`,h) as (C`h , Ĉh) and useh as opening

information to open any subset values from ⇠̂1 and still verify as
follows: verifying the OpenSubset works 4 (%, ⇠̂1) = 4 (% 5⇡ (U) ,,).
Consequently, we do not need any fundamental change on SC
construction, and it works as stated in [48]. In our construction, we
make it explicit as:
• SC.Commit3 (A,U,T,⌘) ! ((C, Ĉ),$): On input a set A = (A,[),
T and ⌘, compute a commitment: ⇠1 = () 5A (U)1), ⇠̂1 = %̂ 5A (U) ,
⇠2 = ()[2) and ⇠̂2 = %̂

[, output ((C, Ĉ),$) with $?.
Now, we can use the same technique as AtoSa to not reveal (d1, d2)
to issuers when signing the above commitments (C, Ĉ) as follows:
Interactive signing. We can adapt the signing in a way that sign-
ers (issuers) don’t learn (d1, d2) as follows:
• D sends (aux,T, (C, Ĉ), c), where
c = ZKPOK{(d1, d2) :)1 = ⌘d1^)2 = ⌘d2^D1 = %d1^D2 = %d2 },
where %d1 and %d2 are in aux.

• Signer (issuer) checks if proof c is valid and if so outputs
(⌘ = � (2),1 =

Œ
)I88 , B = (⌘G ·

Œ
82 [2] (⇠8)

~8)).
Again we note that this interactive signing outputs signatures that
are identical to that output by Sign and this is used in Issuance.
Achieving constant-size credentials. This can be achieved by
following these steps: 1) Users can obtain the (⌘U8) values from
the TA instead of the commitments. 2) During the issuing phase,
users can aggregate all the credentials received from issuers. 3) The
commitments can then be recomputed using randomness and the
obtained information, eliminating the need to store them. Note that
in this case the size of the |Show| operation will become linear
with respect to # instead of .

T������ 20. The above IhMA constructions in Fig. 5 and in Fig. 4
are correct, unforgeable, anonymous, and issuer-hiding.

To prove the anonymity of ATMS, we need to de�ne a variant
of the uber assumption, which we present in the full version [47]
along with the proof of Theorem 20. Moreover, in the full ver-
sion [47] we discuss how additional features can be obtained via
slight modi�cations of the so far presented approaches.

6 IMPLEMENTATION AND EVALUATION
In the following we present our evaluation based on a Python li-
brary in which we implement our primitives ATMS and AtoSa as
well as our IhMA protocols (Fig. 5 and Fig. 4). Our implementation
is based upon the bplib library12 and petlib 13 with OpenSSL bind-
ings14. We use the popular pairing friendly curve BN256 which
provides e�cient type 3 bilinear groups at a security level of around
100 bits. Our measurements have been performed on an Intel Core
i5-6200U CPU at 2.30GHz, 16GB RAM running Ubuntu 20.04.3.

Benchmark of Primitives. Table 2 shows the mean of the execu-
tion time of each algorithm over 500 runs such that AggrSign and
VerifyAggr are computed assuming two signers (= = 2); the other al-
gorithms are independent of =. ChR/Rnd stands for ChangRep and
signature randomization (RandSign) for the ATMS and AtoSa, re-
spectively. PC stands for Pre-Computation, and in ATMS it includes

12https://github.com/gdanezis/bplib
13https://github.com/gdanezis/petlib
14https://github.com/dfaranha/OpenPairing

41

https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

- Setup(1_) : Run ppAtoSa ⌃1 .Setup(1_) ^ ppSPSEQ ⌃2 .Setup(1_) , output pp = (ppAtoSa, ppSPSEQ) . The attribute space is Z? .
- UKeyGen(pp, S) : Run ({aux9 }, (g,T)) GenAuxTag(pp,() , and return (Dsk = g,Dvk = T, {aux9 }) to D.

- IKeyGen(pp) : Generate (sk, vk)
$
 ⌃1 .KeyGen(pp) , return (8sk = sk, 8vk = vk) to an issuer 8 .

- Issuance: On input (T, aux8 ,08) , D and each issuer 8 act as follows for an attribute 08 :
• D sends (T, aux8 ,c) , to an issuer 8 , where c is a zero knowledge proof that the user knows the secret part of the given tag.
• Issuer checks c is valid and runs f8 ⌃1 .Sign(8sk,T, aux8 ,08) and outputs (f8 ,08) to D or aborts if Sign outputs ?.
• D takes (8vk, cred8 = (08 ,f8))82 [✓] , checks ⌃1 .Verify(8vk,08 , cred8)82 [✓] , and saves cred = {cred8 = (f8 ,g),A}82 [✓] , where A = (08)82 [✓] .

- Gen-Policies: Generate a key pair (Esk, Epk) ⌃2 .KeyGen(pp) , run f28 ⌃2 .Sign(Esk, 8vk) for 8 2 � where 8vk is a message vector for SPSEQ , return ?>; =
(Evk, (8vk,f28)82 [�]) .

- Show: On input cred = {(f8 ,g,A)82 [✓] }, ?>; = (Evk, (8vk,f28)82 [�]) , an ⇡ (a set of attributes) from = ✓ � issuers (|⇡ | = =), D prepares a proof for ⇡ as:
(1) Run f ⌃1 .AggrSign(T, (8vk,08 ,f8))82 [⇡] with avk = {8vk}82 [⇡] . For l 2 Z⇤? , run avk0 ⌃1 .ConvertVK(avk,l) , f0 ⌃1 .ConvertSig(avk,⇡,T,f,l) , and

randomize (f00,T0) ⌃1 .RandSign(vk,T,<,f0,h) for h 2 Z⇤? .

(2) Run (f028 , avk
0
)

$
 ⌃2 .ChangRep(M8 = vk8 ,f28 ,l)82 [=] where avk0 is the same as avk0 ⌃1 .ConvertVK.

(3) Prove in zero knowledge that the user knows the secret key for the tag T0, yielding c , send (f00,Nym = T0,f028 ,c)82 [=] to a veri�er V.
- CredVerify: Output 1, if c ^ ⌃1 .VerifyAggr(avk0,T0,⇡,f0) ^ ⌃2 .Verify(Evk,M,f02) = 1, whereM = avk0 and T0 = Nym. Output 0 if this check fails.

Figure 4: Our IhMA scheme (⌃1 and ⌃2 denote AtoSa and SPSEQ [35], respectively)

- Setup(1_) : Run ppATMS ⌃1 .Setup(1_) ^ ppSPSEQ ⌃2 .Setup(1_) ^ ppSC SC.Setup, output pp = (ppATMS, ppSPSEQ , ppSC) .

- IKeyGen(pp) : Generate (sk, vk)
$
 ⌃1 .KeyGen(pp) , return (8sk = sk, 8vk = vk) to an issuer 8 .

- UKeyGen(pp,() : Run ((g,T), aux) GenAuxTag(() , and return (Dsk = g,Dvk = T) to D.
Then, TA and D interact to computes ((Ĉ8 ,C8)82 [✓]) SC.Commit3 (A8 ,U,T) , for all attribute sets.

- Issuance: The interaction between an issuer 8 and a user D for one attribute-set A 2 Zp and (C, Ĉ) acts as follows:
• D hands over (T, (C, Ĉ), aux8 ,c) to an issuer 8 , where c is zero knowledge proof the secret parts of the tag.
• An issuer 8 checks that the proof is correct, then runs f ⌃1 .Sign(8sk,T, aux8 , (C, Ĉ)) , and outputs (A,T,f) = cred8 .
• D takes (8vk, cred8) for 8 2 [✓], checks ⌃1 .Verify(8vk,T, (C8 , Ĉ8),f8)82 [✓] = 1, and outputs

{cred = (f8 ,g), (A8 ,C8 , Ĉ8)82 [✓] }.
- Gen-Policies: Generate a key pair (Esk, Epk) ⌃2 .KeyGen(pp) , run f28 ⌃2 .Sign(Esk, 8vk) for 8 2 � , return ?>; = (Evk, (8vk,f28)82 [�]) .
- Show: On input cred = {(f8 ,Dsk,A8)82 [✓] }, ?>; = (Evk, (8vk,f28)82 [�]) , and ⇡ ✓ A from = ✓ � issuers, D prepares a proof for ⇡ as:

(1) Run (f028 , avk
0
) ⌃2 .ChangRep(M8 = vk8 ,f28 ,l)82 [=] for l 2 Z⇤? .

(2) Run f ⌃1 .AggrSign(T, (8vk, (C8 , Ĉ8),f8))82 [=] . Convert credentials and issuer keys
avk0 ⌃1 .ConvertVK(avk,l) and f0 ⌃1 .ConvertSig(avk, (C, Ĉ),f,T,l) .

(3) Run (f0,T0)
$
 ⌃1 .ChangRep(f, (M8 ,N8)82 [=] ,T, (`,h)) for (`,h) , where (M8 ,N8) = (C8 , Ĉ8) , and f0 is valid for (C08 = C`h

8 , Ĉ08 = Ĉh
8)82 [=] . Create witnesses for

attributes,9 SC.OpenSubset(⇠̂19 ,� 9 ,$ 9 ,3 9) for 9 ^ 3 9 2 ⇡ . Aggregate witness, SC.AggregateAcross({⇠̂19 ,3 9 ,,9 }92 [✓]) , randomize, 0 , `h .
(4) Prove in zero knowledge that the user knows the secret key for the tag T0, yielding c , send (f0,, 0,T0,f028 ,c,M = {(C08 , Ĉ

0

8) })82 [=] to V.
- CredVerify: Output 1, if c ^ ⌃1 .VerifyAggr(avk0,T0,M,f0) ^ ⌃2 .Verify(Evk,M,f02) ^ SC.VerifySubset(C

0,⇡,, 0) = 1, whereM = avk0 is veri�ed by Evk.

Figure 5: Our IhMA scheme (⌃1 and ⌃2 denote ATMS and SPSEQ [35], respectively)

converting messages to theM�
TDH message space and generating

tags. While in AtoSa, PC includes generating tags and aux using
Pedersen commitment, but note that one could also use a hash based
commitment instead. We can observe that signing is faster than
verifying the signature – due to the pairing operation in the latter.
Moreover, veri�cation of ATMS is slower than AtoSa because of
additional pairing operations that are needed to check if messages
are inM

�
TDH. We increase the number (=) of signers from 2 to 10

Table 2: Running times for ATMS and AtoSa (ms)

PC Sign Verify Convert ChR/Rnd AggrSign VerifyAggr
AtoSa 6 2,5 8,4 4 2,7 0.005 9

ATMS 8.6 3 33 5,4 7,4 0.01 72

and show the running time in Fig. 6. Since aggregation is almost
free (for = = 10 is 0.05 ms), we omit it. We should also note that the
result are stated without considering VerifyAux algorithm.

IhMA Benchmarks. IhMA is based upon Schnorr-style discrete
logarithm ZKPOK. Our library supports Damgård’s technique [28]

Figure 6: Running times of VerifyAggr in ATMS& AtoSa (ms)

for obtaining malicious-veri�er interactive zero-knowledge proofs
of knowledge during the showing and also NIZK obtained via the
Fiat-Shamir heuristic. We interpret signers as issuers here and also
show = as a number of issuers involved in Showing. For example,
= = 2 means showing two credentials from 2 di�erent issuers.
Issuing. This protocol does not depend on =, and results are as
follows: 1) For IhMA based on AtoSa, including generation of sig-
nature, tag, user keys, and aux, it takes 8 ms. 2) For IhMA based

42

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Sco� Gri�y, Anna Lysyanskaya, and Daniel Slamanig

on AtoSa, including generation of tag and encoding messages to
M

�
TDH, with two attributes in each credential it takes 10 ms.

Showing. Fig. 7a shows the runtime of showing for IhMA based
on AtoSa. In this experiment, we increase the number of issuers
= from 2 to 10 and assume that all attributes are disclosed during
veri�cation (the worst-case scenario). Each issuer issues only one
attribute, giving a total of = attributes. Fig. 7b shows the time for
showing a credentials of IhMA based on ATMS. Here, we have a
di�erent setting; we can encode a set of attributes in a credential as
we use set commitments. For our evaluation, we have the following
parameters: = represents the number of the issuer, C the number of
attributes in each set (each credential issued), 3 < C is the number
of disclosed attributes from each attribute set � in the respective
commitment ⇠ . Here we increase = from 2 to 10, set C = 2, and
3 = 1. The total disclosed attributes length |⇡ | = 3 · = and the total
attribute |�| = = · C range from 2 to 10 and 4 to 20, respectively.

(a) Running times of IhMAAtoSa (b) Running times of IhMAATMS

Figure 7: Running times of IhMA (ms)

7 CONCLUSION AND OPEN QUESTIONS
This paper introduces the Issuer-Hiding Multi-Authority Anony-
mous Credentials (IhMA). MA means proving possession of at-
tributes from multiple independent credential issuers requires the
presentation of independent credentials. Meanwhile, Ihmeans veri-
fying a user’s credential does not require disclosing multiple issuers’
public keys. Our proposed solution involves the development of
two new signature primitives with versatile randomization features
which are independent of interest: 1) Aggregate Signatures with
Randomizable Tags and Public Keys (AtoSa) and 2) Aggregate Mer-
curial Signatures (ATMS), which extend the functionality of AtoSa
to support the randomization of messages additionally.

Open Questions and Future Work. Finally, we still have several
open questions that merit further investigation. 1) An interesting
open question is whether it is possible to present constructions in
a fully dynamic setting, i.e., there are no assumptions about prior
knowledge of messages and veri�cation keys, nor requirement for a
stateful issuer to keep track of the signed information aux. 2) Revo-
cation is another intriguing avenue. While issuer revocation in our
scheme is straightforward, as revoked issuers can be excluded from
the key policy, user revocation poses greater challenges. The user
revocation within our framework, and for issuer-hiding anonymous
credentials in general, are an interesting future work.

Acknowledgements. This work has in part been carried out within
the scope of Digidow, the Christian Doppler Laboratory for Private

Digital Authentication in the Physical World. Omid Mir acknowl-
edge �nancial support by the Austrian Federal Ministry for Digital
and Economic A�airs, the National Foundation for Research, Tech-
nology and Development, the Christian Doppler Research Associ-
ation, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler
Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH
and Co KG, Österreichische 24 Staatsdruckerei GmbH, and the State
of Upper Austria. Daniel Slamanig was supported by the European
Commission through ECSEL Joint Undertaking (JU) under grant
agreement n�826610 (C���4D�����), the European Union through
the Horizon Europe research programme under grant agreement
n�101073821 (S������) and by the Austrian Science Fund (FWF)
and netidee SCIENCE under grant agreement P31621-N38 (P�����).
Anna Lysyanskaya and Scott Gri�y are supported by NSF Awards
2247305, 2154941 and 2154170, as well as funding from the Peter G.
Peterson Foundation and Meta.

REFERENCES
[1] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. 2010. Synchronized

aggregate signatures: new de�nitions, constructions and applications. In ACM
CCS 2010, Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov (Eds.).
ACM Press, 473–484. https://doi.org/10.1145/1866307.1866360

[2] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-Size Dynamic k-TAA. In
SCN 06 (LNCS, Vol. 4116), Roberto De Prisco and Moti Yung (Eds.). Springer,
Heidelberg, 111–125. https://doi.org/10.1007/11832072_8

[3] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous credentials light.
In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.).
ACM Press, 1087–1098. https://doi.org/10.1145/2508859.2516687

[4] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. 2007. Unrestricted
Aggregate Signatures. In ICALP 2007 (LNCS, Vol. 4596), Lars Arge, Christian
Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki (Eds.). Springer, Heidelberg,
411–422. https://doi.org/10.1007/978-3-540-73420-8_37

[5] Johannes Blömer and Jan Bobolz. 2018. Delegatable Attribute-Based Anony-
mous Credentials from Dynamically Malleable Signatures. In ACNS 18 (LNCS,
Vol. 10892), Bart Preneel and Frederik Vercauteren (Eds.). Springer, Heidelberg,
221–239. https://doi.org/10.1007/978-3-319-93387-0_12

[6] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.
2021. Issuer-Hiding Attribute-Based Credentials. In International Conference on
Cryptology and Network Security. Springer, 158–178.

[7] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.
2022. Issuer-Hiding Attribute-Based Credentials. Cryptology ePrint Archive,
Report 2022/213. https://eprint.iacr.org/2022/213.

[8] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. 2007.
Ordered Multisignatures and Identity-Based Sequential Aggregate Signatures,
with Applications to Secure Routing. Cryptology ePrint Archive, Report 2007/438.
https://eprint.iacr.org/2007/438.

[9] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and
Veri�ably Encrypted Signatures from Bilinear Maps. In EUROCRYPT 2003 (LNCS,
Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, 416–432. https://doi.org/10.
1007/3-540-39200-9_26

[10] Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume Piolle. 2022. Hidden
Issuer Anonymous Credential. Proc. Priv. Enhancing Technol. 2022, 4 (2022),
571–607. https://doi.org/10.56553/popets-2022-0123

[11] Xavier Boyen. 2008. The Uber-Assumption Family (Invited Talk). In PAIRING 2008
(LNCS, Vol. 5209), Steven D. Galbraith and Kenneth G. Paterson (Eds.). Springer,
Heidelberg, 39–56. https://doi.org/10.1007/978-3-540-85538-5_3

[12] Stefan Brands. 2000. Rethinking Public Key Infrastructures and Digital Certi�cates:
Building in Privacy. MIT Press, Cambridge-London. http://www.credentica.com/
the_mit_pressbook.html

[13] Ernie Brickell and Jiangtao Li. 2012. Enhanced Privacy ID: A Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities. IEEE Trans. Depend-
able Secur. Comput. 9, 3 (2012), 345–360. https://doi.org/10.1109/TDSC.2011.63

[14] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous
Attestation. InACMCCS 2004, Vijayalakshmi Atluri, Birgit P�tzmann, and Patrick
McDaniel (Eds.). ACM Press, 132–145. https://doi.org/10.1145/1030083.1030103

[15] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and
Rainer Urian. 2017. One TPM to Bind Them All: Fixing TPM 2.0 for Provably
Secure Anonymous Attestation. In 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 901–920. https://doi.org/10.1109/SP.2017.22

[16] Jan Camenisch, Manu Drijvers, Anja Lehmann, Gregory Neven, and Patrick Towa.
2020. Short Threshold Dynamic Group Signatures. In SCN 20 (LNCS, Vol. 12238),

43

https://doi.org/10.1145/1866307.1866360
https://doi.org/10.1007/11832072_8
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-319-93387-0_12
https://eprint.iacr.org/2022/213
https://eprint.iacr.org/2007/438
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.56553/popets-2022-0123
https://doi.org/10.1007/978-3-540-85538-5_3
http://www.credentica.com/the_mit_pressbook.html
http://www.credentica.com/the_mit_pressbook.html
https://doi.org/10.1109/TDSC.2011.63
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1109/SP.2017.22

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Clemente Galdi and Vladimir Kolesnikov (Eds.). Springer, Heidelberg, 401–423.
https://doi.org/10.1007/978-3-030-57990-6_20

[17] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. 2015. Composable and Modular Anonymous Credentials: De�ni-
tions and Practical Constructions. In ASIACRYPT 2015, Part II (LNCS, Vol. 9453),
Tetsu Iwata and Jung Hee Cheon (Eds.). Springer, Heidelberg, 262–288. https:
//doi.org/10.1007/978-3-662-48800-3_11

[18] Jan Camenisch and Anna Lysyanskaya. 2001. An E�cient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revocation. In
EUROCRYPT 2001 (LNCS, Vol. 2045), Birgit P�tzmann (Ed.). Springer, Heidelberg,
93–118. https://doi.org/10.1007/3-540-44987-6_7

[19] Jan Camenisch and Anna Lysyanskaya. 2003. A Signature Scheme with E�cient
Protocols. In SCN 02 (LNCS, Vol. 2576), Stelvio Cimato, Clemente Galdi, and
Giuseppe Persiano (Eds.). Springer, Heidelberg, 268–289. https://doi.org/10.1007/
3-540-36413-7_20

[20] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous
Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS, Vol. 3152), Matthew
Franklin (Ed.). Springer, Heidelberg, 56–72. https://doi.org/10.1007/978-3-540-
28628-8_4

[21] Jan Camenisch and Markus Stadler. 1997. E�cient Group Signature Schemes
for Large Groups (Extended Abstract). In CRYPTO’97 (LNCS, Vol. 1294), Bur-
ton S. Kaliski Jr. (Ed.). Springer, Heidelberg, 410–424. https://doi.org/10.1007/
BFb0052252

[22] Jan Camenisch and Els Van Herreweghen. 2002. Design and Implementation of
The Idemix Anonymous Credential System. In ACM CCS 2002, Vijayalakshmi
Atluri (Ed.). ACM Press, 21–30. https://doi.org/10.1145/586110.586114

[23] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The Signal Private
Group System and Anonymous Credentials Supporting E�cient Veri�able En-
cryption. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna (Eds.). ACM Press, 1445–1459. https://doi.org/10.1145/3372297.3417887

[24] David Chaum. 1985. Security Without Identi�cation: Transaction Systems to
Make Big Brother Obsolete. Commun. ACM 28, 10 (1985), 1030–1044. https:
//doi.org/10.1145/4372.4373

[25] David Chaum. 1986. Showing Credentials Without Identi�cation: Signatures
Transferred BetweenUnconditionally Unlinkable Pseudonyms. In EUROCRYPT’85
(LNCS, Vol. 219), Franz Pichler (Ed.). Springer, Heidelberg, 241–244. https://doi.
org/10.1007/3-540-39805-8_28

[26] Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, and
Erkan Tairi. 2021. Updatable Signatures and Message Authentication Codes.
In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer, Heidelberg,
691–723. https://doi.org/10.1007/978-3-030-75245-3_25

[27] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. 2022. Improved
constructions of anonymous credentials from structure-preserving signatures on
equivalence classes. In IACR International Conference on Public-Key Cryptography.
Springer, 409–438.

[28] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. 2000. E�cient Zero-
Knowledge Proofs of KnowledgeWithout Intractability Assumptions. In PKC 2000
(LNCS, Vol. 1751), Hideki Imai and Yuliang Zheng (Eds.). Springer, Heidelberg,
354–372. https://doi.org/10.1007/978-3-540-46588-1_24

[29] Elizabeth Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel
Slamanig. 2022. Threshold Structure-Preserving Signatures. Cryptology ePrint
Archive, Paper 2022/839. https://eprint.iacr.org/2022/839 https://eprint.iacr.org/
2022/839.

[30] Elizabeth C. Crites and Anna Lysyanskaya. 2019. Delegatable Anonymous Cre-
dentials from Mercurial Signatures. In CT-RSA 2019 (LNCS, Vol. 11405), Mitsuru
Matsui (Ed.). Springer, Heidelberg, 535–555. https://doi.org/10.1007/978-3-030-
12612-4_27

[31] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.
PoPETs 2018, 3 (2018), 164–180. https://doi.org/10.1515/popets-2018-0026

[32] Dominic Deuber, Matteo Ma�ei, Giulio Malavolta, Max Rabkin, Dominique
Schröder, and Mark Simkin. 2018. Functional Credentials. PoPETs 2018, 2 (April
2018), 64–84. https://doi.org/10.1515/popets-2018-0013

[33] Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner. 2023.
Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance.
Cryptology ePrint Archive, Paper 2023/602. https://doi.org/10.1109/SP46215.
2023.00120 https://eprint.iacr.org/2023/602.

[34] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Østergaard
Pedersen. 2009. Practical Short Signature Batch Veri�cation. In CT-RSA 2009
(LNCS, Vol. 5473), Marc Fischlin (Ed.). Springer, Heidelberg, 309–324. https:
//doi.org/10.1007/978-3-642-00862-7_21

[35] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-
Preserving Signatures on Equivalence Classes and Constant-Size Anonymous
Credentials. Journal of Cryptology 32, 2 (April 2019), 498–546. https://doi.org/10.
1007/s00145-018-9281-4

[36] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-
mous Credentials. In NDSS 2014. The Internet Society.

[37] Essam Ghada�. 2016. Short Structure-Preserving Signatures. In CT-RSA 2016
(LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 305–321. https://doi.
org/10.1007/978-3-319-29485-8_18

[38] Rishab Goyal and Vinod Vaikuntanathan. 2022. Locally Veri�able Signature
and Key Aggregation. Cryptology ePrint Archive, Report 2022/179. https:
//eprint.iacr.org/2022/179.

[39] Lucjan Hanzlik and Daniel Slamanig. 2021. With a Little Help from My Friends:
Constructing Practical Anonymous Credentials. In ACM CCS 2021, Giovanni
Vigna and Elaine Shi (Eds.). ACM Press, 2004–2023. https://doi.org/10.1145/
3460120.3484582

[40] Chloé Hébant and David Pointcheval. 2022. Traceable Constant-Size Multi-
authority Credentials. In Security and Cryptography for Networks - 13th Inter-
national Conference, SCN 2022, Amal�, Italy, September 12-14, 2022, Proceedings
(Lecture Notes in Computer Science, Vol. 13409), Clemente Galdi and Stanislaw
Jarecki (Eds.). Springer, 411–434. https://doi.org/10.1007/978-3-031-14791-3_18

[41] Susan Hohenberger and Brent Waters. 2018. Synchronized Aggregate Signa-
tures from the RSA Assumption. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821),
Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer, Heidelberg, 197–229.
https://doi.org/10.1007/978-3-319-78375-8_7

[42] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-
mous Tokens with Private Metadata Bit. In CRYPTO 2020, Part I (LNCS, Vol. 12170),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 308–336.
https://doi.org/10.1007/978-3-030-56784-2_11

[43] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. 2013. Aggregating CL-Signatures
Revisited: Extended Functionality and Better E�ciency. In FC 2013 (LNCS,
Vol. 7859), Ahmad-Reza Sadeghi (Ed.). Springer, Heidelberg, 171–188. https:
//doi.org/10.1007/978-3-642-39884-1_14

[44] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. 2006.
Sequential Aggregate Signatures and Multisignatures Without Random Oracles.
In EUROCRYPT 2006 (LNCS, Vol. 4004), Serge Vaudenay (Ed.). Springer, Heidelberg,
465–485. https://doi.org/10.1007/11761679_28

[45] Anna Lysyanskaya. 2022. Security Analysis of RSA-BSSA. Cryptology ePrint
Archive, Report 2022/895. https://eprint.iacr.org/2022/895.

[46] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. 2004. Se-
quential Aggregate Signatures from Trapdoor Permutations. In EUROCRYPT 2004
(LNCS, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer, Heidel-
berg, 74–90. https://doi.org/10.1007/978-3-540-24676-3_5

[47] Omid Mir, Balthazar Bauer, Scott Gri�y, Anna Lysyanskaya, and Daniel Slamanig.
2023. Aggregate Signatures with Versatile Randomization and Issuer-Hiding
Multi-Authority Anonymous Credentials. Cryptology ePrint Archive (2023).

[48] Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer. 2023. Practical
Delegatable Anonymous Credentials From Equivalence Class Signatures. Proc.
Priv. Enhancing Technol. 2023, 3 (2023), 488–513. https://doi.org/10.56553/popets-
2023-0093

[49] Omid Mir, Daniel Slamanig, and René Mayrhofer. 2023. Threshold Delegatable
Anonymous Credentials with Controlled and Fine-Grained Delegation. IEEE
Transactions on Dependable and Secure Computing (2023).

[50] Gregory Neven. 2008. E�cient Sequential Aggregate Signed Data. In EURO-
CRYPT 2008 (LNCS, Vol. 4965), Nigel P. Smart (Ed.). Springer, Heidelberg, 52–69.
https://doi.org/10.1007/978-3-540-78967-3_4

[51] Christian Paquin and Greg Zaverucha. 2013. U-Prove Cryptographic Speci�cation
V1.1 (Revision 3). https://www.microsoft.com/en-us/research/publication/u-
prove-cryptographic-speci�cation-v1-1-revision-3/

[52] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In
CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 111–126.
https://doi.org/10.1007/978-3-319-29485-8_7

[53] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. 2022.
zk-creds: Flexible Anonymous Credentials from zkSNARKs and Existing Iden-
tity Infrastructure. Cryptology ePrint Archive, Report 2022/878. https:
//eprint.iacr.org/2022/878.

[54] Olivier Sanders. 2020. E�cient Redactable Signature and Application to Anony-
mous Credentials. In PKC 2020, Part II (LNCS, Vol. 12111), Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas (Eds.). Springer, Heidelberg, 628–
656. https://doi.org/10.1007/978-3-030-45388-6_22

[55] Olivier Sanders. 2021. Improving Revocation for Group Signature with Redactable
Signature. In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer,
Heidelberg, 301–330. https://doi.org/10.1007/978-3-030-75245-3_12

[56] Tjerand Silde and Martin Strand. 2022. Anonymous tokens with public meta-
data and applications to private contact tracing. In International Conference on
Financial Cryptography and Data Security. Springer, 179–199.

[57] Alberto Sonnino,Mustafa Al-Bassam, Shehar Bano, SarahMeiklejohn, andGeorge
Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Credentials
with Applications to Distributed Ledgers. In NDSS 2019. The Internet Society.

[58] Stefano Tessaro and Chenzhi Zhu. 2023. Revisiting BBS Signatures. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 691–721.

44

https://doi.org/10.1007/978-3-030-57990-6_20
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/978-3-030-75245-3_25
https://doi.org/10.1007/978-3-540-46588-1_24
https://eprint.iacr.org/2022/839
https://eprint.iacr.org/2022/839
https://eprint.iacr.org/2022/839
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1515/popets-2018-0013
https://doi.org/10.1109/SP46215.2023.00120
https://doi.org/10.1109/SP46215.2023.00120
https://eprint.iacr.org/2023/602
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-29485-8_18
https://eprint.iacr.org/2022/179
https://eprint.iacr.org/2022/179
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1007/978-3-031-14791-3_18
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/978-3-642-39884-1_14
https://doi.org/10.1007/978-3-642-39884-1_14
https://doi.org/10.1007/11761679_28
https://eprint.iacr.org/2022/895
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.56553/popets-2023-0093
https://doi.org/10.56553/popets-2023-0093
https://doi.org/10.1007/978-3-540-78967-3_4
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://doi.org/10.1007/978-3-319-29485-8_7
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-75245-3_12

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison of IhMA with Previous Work

	2 Preliminaries
	3 Aggregate Signatures with Randomizable Keys and Tags
	3.1 Formal Definitions
	3.2 Security Definitions
	3.3 Construction

	4 Aggregate Mercurial Signatures With Randomizable Tags
	4.1 Formal Definitions
	4.2 Security Definitions
	4.3 Construction

	5 Application to AC
	5.1 Formal Definition
	5.2 Constructions

	6 Implementation and Evaluation
	7 Conclusion and Open Questions
	References

