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A B S T R A C T   

Laser powder bed fusion (LPBF) based additive manufacturing (AM) holds great promise to efficiently produce 
high-performance metallic parts. However, LPBF processes tend to incur stochastic melt pool (MP) spattering, 
which would roughen workpiece in-process surface, thus weakening inter-layer bonding and causing issues like 
porosity, powder contamination, and recoater intervention. Understanding the consequential effect of MP 
spattering on layer surface is important for LPBF process control and part qualification. Yet it remains difficult 
due to the lack of process monitoring capability for concurrently tracking MP spatters and characterizing layer 
surfaces. In this work, using our lab-designed LPBF-specific fringe projection profilometry (FPP) along with an 
off-axis camera, we quantitatively evaluate the correlation between MP spattering and in-process layer surface 
roughness for the first time to reveal the potential influence of MP spatters on process anomaly and part defects. 
Specifically, a method of automatically and accurately extracting and registering MP spattering metrics is 
developed by machine learning of the in-situ off-axis camera imaging data. Each image is analyzed to obtain the 
MP's center location and the spatter count and ejection angle. These MP spatter signatures are registered for each 
monitored MP across each layer. Then, regression modeling is used to correlate each layer's registered MP spatter 
signature and its processing parameters with the layer's surface topography measured by the in-situ FPP. We find 
that the attained MP spatter feature profile can help predict the layer's surface roughness more accurately (> 50 
% less error), in contrast to the conventional approaches that would only use nominal process setting without any 
insight of real process dynamics. This is because the spatter information can reflect key process changes including 
the deviations in actual laser scan parameters and their effects. The results also corroborate the importance of 
spatter monitoring and the distinct influence of spattering on layer surface roughness. Our work paves a foun
dation to thoroughly elucidate and effectively control the role of MP spattering in defect formation during LPBF.   

1. Introduction 

Additive manufacturing (AM) attracts significant interests in recent 
decades due to its capability of fabricating parts with complex geometry. 
Laser powder bed fusion (LPBF) based AM is one of the most popular 
technologies in metal printing and adopted by various industries such as 
automobile, biomedical, and aerospace mainly for part prototyping 
[1–3]. Although widely used, LPBF based AM (LPBF-AM) faces chal
lenges to be advanced toward industrial-scale additive production that 
demands process repeatability and part qualities. In LPBF 
manufacturing processes where laser sinters and fuses powder on the 
substrate or previous layers, there is complex physics interplaying 
among powder, laser, workpiece, and inert gas flow in chamber, 

inducing process anomalies like spattering and part defects like porosity 
and crack. Currently, researchers have developed various in-situ moni
toring methods with a focus on capturing -melt pool (MP) behavior and 
morphology [4,5]. However, most of these approaches are limited 
within a small region of interest (ROI) and a small number of layers. To 
establish comprehensive models of LPBF process-structure-property re
lationships for process and part qualification, more research is needed to 
monitor all types of phenomena in a continuous or near-continuous 
manner as well as quantify the effects of not only melt pools but also 
their associated spattering at a large scale across bigger area and 
through more layers. 
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1.1. Spattering phenomenon in LPBF-AM 

Spattering is used to describe the material ejection from melt pools 
during LPBF printing process. A spatter can be categorized as a “droplet 
spatter” caused by vapor recoil pressure and Marangoni effect [6], or an 
un-sintered “powder spatter” caused by vapor-induced entrainment 
[7,8]. A more detailed categorization of spatters is based on the for
mation mechanism, dividing into solid spatter, metallic jet, entrainment 
melting spatter (caused by gas flow), and defect induced spatter. In [9], 
the effect of scan speed on plume morphology and spatter generation 
was evaluated, showing that scan speed has direct impact on spatter 
formation. In [10], Schwerz et al. reported that the spatial location of 
the build and the gas flow direction in the build chamber are also key 
factors for spatter formation. The authors also studied the effect of layer 
thickness on the spatter formation, showing that larger (>80 μm) layer 
thicknesses had higher spatter count. Furthermore, the authors inferred 
that the spatter re-deposition locations would primarily exhibit lack-of- 
fusion flaws. Researchers have also demonstrated the detrimental effects 
of spattering on LPBF printed parts since it could cause many defect 
modalities [11]. For instance, severe defects such as recoater streaking 
and lack of fusion flaws could be induced by high-rise spatters and 
oxidized spatters [10,12–14]. All the existing research on various for
mation mechanisms and possible consequences of spattering in LPBF 
indicates a critical need for spatter monitoring and data analysis to 
understand and control its impacts on part properties during LPBF. 

State-of-art monitoring methods, such as high-fidelity simulations 
and synchrotron X-ray imaging, have been used to identify spatter- 
induced defect formation mechanisms and features [15,16]. However, 
these methods are expensive in terms of computation time and equip
ment cost. Therefore, researchers would rather employ high-speed 
cameras to monitor the spatters and estimate their redeposited loca
tion [8,10,13,17,18]. But with such methods using relatively more 
affordable cameras (especially in contrast to high-end cameras and X- 
ray based equipment), it is difficult to trace the spatters completely from 
their ejection to landing during a LPBF printing process. Besides, these 
camera-based monitoring methods usually have limited ROI and cannot 
capture the spatter phenomenon fully in part scale. Overall, existing 
LPBF monitoring methods do not offer in-situ comprehensive spatter 
characterization capability due to the limited equipment accessibility, 
small field-of-view, or short monitoring duration. 

On the other hand, research has emerged on analyzing available 
monitoring data for spatter features and their correlations to process 
characteristics and part properties. Repossini et al. [18] studied the ef
fect of processing parameters on the spatter signatures for maraging 
steel prints in LPBF. They found that the spatter count is strongly related 
to the processing regime (i.e., conduction, transition, or keyhole). Also, 
they pointed out that the spatial location of spatters must be considered 
for evaluating their effects on part properties, especially for complex 
geometries. Similarly, Zhang et al. [17] found that spatter number, melt 
pool plume area, and plume orientation are directly correlated with the 
melt pool stability and the process parameters (laser power and scan 
speed). Besides, the authors found that the spatter orientation was not a 
direct indicator of process parameters. Moreover, spatters have been 
known to possibly interfere with the powder recoating for next layer, or 
be remelted during the print of subsequent layer(s), or persist across 
many layers [11]. Therefore, the behavior and evolution of landed 
spatters can play a significant role in determining the final forming of 
parts. In [19], authors studied the effect of spatter inclusions, which are 
larger than the powder layer thickness and could not be re-melted, using 
tensile test samples. These spatter inclusions occur more easily while 
printing un-sieved or re-used powder (> 5 cycles of reuse). It was also 
found that the spatter particle sizes were at least three times larger than 
the feedstock powders. The mechanical testing of these tensile samples 
revealed that the samples printed with re-used powders that tended to 
generate spatter inclusions had poorer tensile properties compared to 
the samples printed with fresh powders. 

Overall, most of the existing research focus on characterizing the 
formation mechanism and dynamics of spatters. It remains unclear how 
spattering varies across each layer while printing a part and how the 
spatters would affect an in-process layer's surface roughness thus the 
printed part's properties, especially the internal defects (e.g., pores, 
cracks) that can be caused by the weak inter-layer bonding. This is 
mainly due to the limitations of current in-situ monitoring methods that 
cannot simultaneously provide spatiotemporally resolved spatter met
rics and surface features. As such, there is a gap in developing capable 
multi-monitoring system and data analytics methods to acquire and 
analyze localized spatter signatures for detecting and predicting end- 
part properties. 

1.2. Surface roughness of LPBF prints: in-process layers and as-built parts 

To clarify, surface roughness of LPBF prints could refer to the surface 
roughness of workpiece in process, i.e., the in-process layer surface 
roughness due to the layer-by-layer processing nature of LPBF-AM, as 
well as the surface roughness of as-printed parts. Surface roughness of a 
printed part is known to be a critical part property related to the final 
mechanical performance such as fatigue life, because the exterior sur
face roughness can induce surface defects that initiate cracking and 
fracture. Researchers pay lots of attention and effort to characterize the 
as-built part's outside surface roughness. In [20–22], authors discovered 
the relationship between the processing parameters and the up-skin 
build surface roughness. All of these works reveal that with lower or 
higher energy density, the surface of the final part is rougher due to lack 
of fusion or material vaporization. Down-skin surface roughness is also 
studied in [23–25], and results reflect a weak correlation between pro
cessing parameters and down-skin surface roughness primarily due to 
decreased thermal conductivity of powder underneath melt pools. As the 
current surface roughness modeling or characterization work concen
trates on the static exterior surface quality of a final printed part, there is 
a significant lack of studies on the dynamic interior layer surface 
roughness of a workpiece in a LPBF process. However, one should note 
that external roughness can be greatly reduced by post-processing such 
as machining and can no longer affect the end-use heavily, while the in- 
process layer surface roughness may induce internal defects that are 
hard to access for treatment or removal and can persist in the final parts. 
Particularly a rough in-process layer surface will weaken the inter-layer 
bonding and cause issues like porosity, powder contamination, and 
recoater intervention in LPBF. The in-process layer surface roughness 
during LPBF can cause severe, stubborn interior defects such as pores 
and cracks. Recently, researchers have used in-situ thermographic in
spection to infer powder layer thickness based on a 1D thermal diffusion 
model and neural networks. Such an indirect thickness measurement 
method is prone to error and limited in resolution. Nevertheless, it has 
largely demonstrated the importance of knowing powder layer thickness 
for capturing possible causes and effects of rough powder surfaces such 
as catastrophic recoater crashes or abrasion and thermal distortions 
[26]. Therefore, elucidating the consequential effect of MP spattering on 
layer surface roughness is important for LPBF process control and part 
qualification, but has been overlooked and under-developed so far. It is 
desired to quantitatively understand the influence of spattering on layer 
surface roughness by correlating the in-situ monitored layer signatures 
of spatters and surfaces. Yet it remains difficult due to the lack of process 
monitoring capability for concurrently tracking MP spatters and char
acterizing layer surfaces with sufficient speed and accuracy. 

1.3. Overview of this work 

In this proof-of-concept work using a regular vision camera with 
relatively low sampling rate (compared to the laser scan speed) and 
limited resolution that can mainly observe large or high-temperature 
spatters which are melted, we aim to collect representative spatters 
and study the effect of powder agglomeration spatters and liquid 
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spatters in LPBF processes. More tracked spatters and other types of 
spatters with smaller size, such as gas entrained spatter and powder 
spatter, can be studied in a similar framework as laid out in this work 
using a high-profile camera. Then, using our experiment data collected 
from a LPBF print of a multi-layer fatigue testing bars under different 
process settings, we conduct a correlation analysis between the spatter 
signatures and the layer's surface roughness metric acquired from the 
cost-effective f Fringe projection profilometry (FPP) system. Further
more, to elucidate the significant effect of spattering on internal layer's 
surface roughness, we develop and compare different regression models 
that use an input of different combinations of spatter signature and 
processing parameters (laser power, laser scan speed, hatching) to pre
dict the layer's surface roughness. 

The remaining of this paper is divided into the following sections. 
The experimental setup and design for spatter monitoring and signatures 
registration are elaborated in Section 2.1. Our in-situ two-sensor com
bined monitoring system - off-axis camera and FPP is employed as 
introduced in Section 2.2. Details about the machine learning model for 
spatter segmentation and feature extraction are included in Section 2.3. 
The methodology section ends with an explanation of the metric to be 
used for surface roughness characterization and the regression analysis 
to predict surface roughness from the processing parameters and in-situ 
monitored spatter signatures in Section 2.4. With a demonstration case 
of LPBF processing of 16 fatigue bars, we present the spatter registration 
and layer surface roughness measurement results in Sections 3.1 and 
3.2. Sections 3.3 and 3.4 investigate the impact of laser scan parameters 
including power, scan speed, and hatching angle on spatter generation 
and layer surface quality. Section 3.5 evaluates the significance of 
spattering effect on layer surface roughness with a thorough correlation 
analysis using various combinations of nominal laser scan parameters 
and spatter signatures. Finally, Section 4 presents conclusive remarks on 
our work and recommendations for future improvement. 

2. Methods 

2.1. LPBF machine and experimental design 

In this work, in-situ spatter monitoring and in-process layer surface 
measurement are performed during an experimental LPBF print of 16 
standard fatigue test specimens (ASTM E466 standards) using Inconel 
718 metal powder (particle size range - 20 to 60 μm) and a commercial 
DMLS machine - EOS M290. The schematic setup for this print is shown 
in Fig. 1.The nominal layer thickness is 40 μm, and the hatching strategy 
adopts a 67◦ rotation. 

One of the objectives of this experiment is to study the spatter phe
nomenon at different LPBF process regimes - conduction, transition, and 
keyhole, which are classified based on the research performed in pro
cessing parameters effect on MP geometry and morphology [5,27]. 
Conduction regime represents the processing regime of insufficient laser 
melting, which is usually due to lower volumetric energy density and 
can form shallow melt pools and lack-of-fusion defects. On the other 
hand, keyhole regime is induced by high energy density with severe 
vaporization and can form deep melt pools and porous defects. Transi
tion regime is categorized empirically with optimal processing param
eters and can form minimal porosity defects compared to the conduction 
and keyhole. The other objectives, which include the study of fatigue 
life, microstructure, and in-situ process signatures of the printed samples 
and their correlation, are reserved for other disseminations. 

Corresponding to the three process regimes, the 16 fatigue bars are 
printed under various processing parameters, i.e., laser power (P), laser 
scan speed (V), hatching space (HS), as shown in Table 1. In order to 
consider the overall impact of laser scan parameters (P, V, HS) and 
nominal layer thickness (t), two different scaling factors, Surface Energy 
Density (SED) and Volumetric Energy Density (VED), are calculated 
using Eqs. (1) and (2), respectively. Researchers have been attempting to 
correlate SED and VED with end-part property such as up-skin surface 

roughness and porosity ratio [25,28]. It is interesting to evaluate the 
performance of our method against existing methods. Therefore, in 
Section 3.5, we compare our layer surface roughness prediction models 
that use spattering signature with the common practice that would use 
VED. Contour scan is enabled for this experiment with laser power of 80 
W and scan speed of 800 mm/s, and the internal printing time for one 
layer is around 120 s. 

SED =
P

V • HS
(1)  

VED =
P

V • HS • t
(2)  

2.2. In-situ monitoring of LPBF process 

Fig. 2 shows our lab-designed in-situ monitoring system, which is 
employed in this work to monitor spattering location and signatures as 
well as characterize in-process layer surface property. 

Fig. 1. Schematic of our LPBF machine setup for printing 16 fatigue test bars. 
Bars enclosed in red box are used for surface roughness analysis through Fringe 
Projection Profilometry. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Table 1 
Our LPBF experimental process setting for printing the 16 fatigue samples.  

Sample 
# 

Power 
(W) 

Velocity 
(m/s) 

Hatching 
Space 
(μm) 

SED 
(J/ 
mm2) 

VED 
(J/ 
mm3) 

Processing 
Regimes  

1  200  1.00  110  1.82  45.45 Conduction  
2  250  1.00  110  2.27  56.82 Conduction  
3  300  1.50  110  1.82  45.45 Conduction  
4  250  0.75  110  3.03  75.75 Transition  
5  285  0.96  110  2.70  67.47 Transition  
6  300  1.00  110  2.73  68.19 Transition  
7  350  1.00  110  3.18  79.55 Keyhole  
8  200  0.50  110  3.64  90.91 Keyhole  
9  250  0.50  110  4.55  113.6 Keyhole  
10  300  0.50  110  5.45  136.4 Keyhole  
11  200  1.00  80  2.50  62.50 Conduction  
12  200  1.00  120  1.67  41.67 Conduction  
13  250  0.50  80  6.25  156.3 Keyhole  
14  250  0.50  120  4.17  104.2 Keyhole  
15  200  1.50  110  1.21  30.30 Conduction  
16  250  1.00  100  2.50  62.50 Conduction  
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2.2.1. Off-axis camera-based spatter monitoring system 
The in-situ off-axis camera-based spattering monitoring is imple

mented to capture powder agglomeration spatters and liquid droplet 
spatters across the build plate. A high-speed camera (FASTEC IL5Q) is 
placed outside the build chamber of the LPBF printer (EOS M290), 
facing the building platform (Fig. 2). This camera tracks the laser scan 
on each layer and captures images of laser and MP along with the build 
plate at a rate of 1000 frames-per-second (fps). A representative image 
resulting from the off-axis camera is shown in Fig. 3. The MP with large 
liquid droplet spatters is captured and used to extract information of MP 
coordinates on build plate as well as several spatter signatures including 
spatter ejection angle and counts. The acquired camera data is then 
analyzed using image processing methods. First, a perspective trans
formation is applied to correct the camera angle induced distortions. 
Details of the perspective transformation method are presented in our 
previous publication [29]. After perspective transformation, these im
ages are segmented by a machine learning method as introduced in 
Section 2.3. 

2.2.2. Fringe projection profilometry (FPP) for in-process layer surface 
measurement 

FPP is an optical profilometry technology for characterizing the 
difference between the fringe pattern reflected from target object and 
the reflected fringe pattern from reference plane. It is widely used for 
measuring surface topography or part geometry in various fields. 

Preliminary work has shown that FPP can measure the in situ surface 
topography of a printed part on a layer basis [30,31]. Recently, we have 
developed a LPBF-specific FPP system and method to improve the 
measurement accuracy by employing 2-dimensional Fast Fourier 
Transform (2DFFT) to assist the phase unwrapping process for unfolding 
the phase discontinuity [32,33]. Our in-house FPP setup (Fig. 2) is 
comprised of the DLP optical projector (LightCrafter 4710 EVM G2, 
Texas Instruments, Dallas, TX) with a resolution of 1920 × 1080 pixels, a 
12 Mega-Pixel CMOS camera (FL3-U3-120S3C-C, Flea3, Tele-dyne FLIR, 
Wilsonville, OR), and a computer unit to control and synchronize the 
system. 

To quantify surface properties from the distorted fringe patterns, a 
FPP image pixel intensity value is encoded and transformed into phase 
value through a three-step phase shifting algorithm. The standard 
gamma correction is implemented to characterize the nonlinear sensor 
response between the camera and the LED projector. Wrapped phase of 
each pixel is calculated using Eq. (3), where N is the total number of 
fringe patterns projected onto the target object, Ii is the acquired image 
intensity for phase pattern i, and δi is the shifted phase (0, 23 π, and 43 π) for 
three-step phase shifting algorithm. 

ϕ(x, y) = arctan

(
−

∑N
i=1Icalibrated

i (x, y)sin(δi)
∑N

i=1Icalibrated
i (x, y)cos(δi)

)

(3) 

The wrapped phase is then unwrapped using our new reference 
guided phase unwrapping method aided by 2DFFT [32]. A layer surface 
topography is derived by converting its unwrapped phase map to a 
height map using an experiment-calibrated ratio. 

With the above-described FPP method, we can compute the in- 
process layer surface topography during LPBF and use it to further 
calculate the layer surface roughness Sa. Herein, the surface roughness 
Sa across the surface area defined by the image pixels indexed up to M 
and N along the profile coordinates x and y is referred to as the arith
metic mean of the profile height deviation from the mean value. Z(x, y), 
as shown in Eq. (4). 

Sa =
1

M • N

∫ N

y=1

∫ M

x=1
|Z(x, y) |dxdy (4)  

2.3. A machine learning based framework of spatter monitoring data 
analysis for extracting and registering spatter features 

2.3.1. Image segmentation via deep learning based segmentation neural 
network 

Segmentation neural networks have been used to extract and eval
uate MP, plume and spatter information [34] but yield limited accuracy. 
In contrast, we adopt a state-of-art deep semantic segmentation neural 
network (NN), which is trained and tested based on DeepLabV3+ ar
chitecture with a variation of ResNet NN model [35] as an encoder 
backbone. Developed in [36], the DeepLabV3+ is a deep learning based 
neural network composed of encoder and decoder for the image seg
mentation purpose. Comparing to other convolutional NNs, Resnet 
prevents the gradient vanishing problem for training deeper NN by 
implementing residual connection to couple convolutional layers. 
Moreover, the NN structure utilizes a dilated convolution operation to 
effectively extract features from input image and upscale the output 
from encoder as the segmented output. The details of the dilated 
convolution are included in the Appendix (Section A1). The input to the 
NN is a spatter image acquired in-situ using the off-axis high-speed 
camera (Section 2.2.1) and the output is a segmented image with labels 
of background, spatters, and MP & plume. To exclude the noise from the 
large portion of background, the acquired off-axis camera images are 
first cropped to focus on the ROI. Specifically, our deep semantic seg
mentation NN is trained using 200 manually labeled images. To train the 
NN, the dataset is split into 80 % for training and 20 % for testing. The 
specific structure used for spatter segmentation is DeepLabV3+ with 

Fig. 2. Our in-situ LPBF process monitoring system that integrates an off-axis 
camera and an in-house fringe projection profilometer for measuring the 
spatters and layer surface, respectively. 

Fig. 3. A representative spattering monitoring image captured by our off-axis 
camera with annotations of melt pool and spatter. 
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ResNet 18 as detailed in Table 2. The features are extracted through 
ResNet 18 convolutional operation. Then, the output from encoder is 
concatenated with the 1 × 1 convolution filtered input image and is 
further upscaled to the designed segmented output size. 

The performance of the trained NN is evaluated by a cross-entropy 
loss function as shown in Eq. (5), where M is the number of possible 
classes of classified labels, poc is the predicted probability that obser
vation o belongs to class c, and yoc is the actual probability that obser
vation o belongs to class c. After each epoch of training, the cross- 
entropy loss function is evaluated and used to optimize the model. 

Cross Entropy Loss = −
∑M

c=1
yoclog(poc) (5)  

2.3.2. Spatter signatures extraction and registration 
To register the spatter signatures, each MP's center coordinates are 

determined after a perspective transformation using intensity-based 
thresholding method (elaborated in our previous publication [29]). 
With the ML based segmented images, we obtain spatter signatures 
associated with each MP, including the spatter count and spatter's 
ejection angle relative to laser scan direction. Then, the spatter signa
tures are registered by assigning them to the corresponding MP's center 
coordinates. 

Specifically, after the machine learning based image segmentation, 
each pixel of in-situ monitored MP images is assigned with a specific 
label – (MP plume, spatter, background). Then, the Density-based spatial 
clustering of applications with noise (DBSCAN) algorithm is imple
mented to segregate pixels with spatter label into different clusters based 
on their density and spatial coordinates. The result from DBSCAN is the 
total count of spatters captured at this MP frame. The MP's center 
registration framework is further improved in this work by filtering the 
errors induced by the misclassified pixels. The areas of clustered groups 
that are formed by pixels with the label of MP core are compared; and 
the MP center coordinates are computed using the clustered group with 
the largest area. Using the segmented output from machine learning 
output, the spatter ejection angle is also characterized and registered as 
the spatter signatures. As shown in Fig. 4, the spatter ejection angle is 
defined as the relative angle between the spatters and the laser scan 
direction which is set as reference. 

Overall, spatter quantity and spatter ejection angle are registered as 
two spatter signatures from the off-axis monitoring data using Deep
labV3+ image segmentation model and the DBSCAN clustering algo
rithm. The flow diagram (Fig. 5) presents the spatter registration process 
of the work. 

2.4. Correlation analysis between spatter and in-process layer surface 

Support Vector Machine (SVM)-based regression models are 
employed to correlate the in-situ monitored spatter signatures and/or 
processing parameters with the in-process layer surface roughness. SVM 

is originally a classification method by defining margins [37]. As pro
posed in [38,39], SVM shows proven accuracy in correlating sparse data 
with high dimension features. As a brief introduction, the SVM based 
regression model utilizes the sparseness from a SVM classification model 
and introduce an ϵ error function to replace the quadratic error function 
from a logistic regression model. 

Eϵ(y(x) − ŷ ) =

{
0, if |y(x) − ŷ |〈ϵ
∣y(x) − ŷ∣ − ϵ, otherwise (6) 

As indicated in Eq. (6), the absolute error for a SVM regression model 
is calculated with the sensitivity factor ϵ between the regression model 
output y(x) and target output ŷ. The sensitivity defines the error tube or 
boundary for the model, and any output at or out of the boundary are 
called as support vectors. 

In this work, to quantitatively evaluate the significance of spattering 
among other potential factors - particularly the laser scan parameters, 
we develop different SVM models with various combinations of features 
and compare their performance. These SVM models use a Gaussian 
kernel filter to correlate the surface topography feature with in-situ 
monitored signature and/or specified process parameters. The input to 
the regression model is a subset of the following features: (1) laser 
power, (2) scan velocity, (3) hatching space, (4) laser scan angle derived 
from in-situ monitoring data, and (5) the average of in-situ registered 
spatter counts for each layer. The output is a corresponding layer's 
surface roughness. To obtain ground truth data for training and testing 
SVM models of the LPBF process and surface property relationships, we 
adopt the method as described in Section 2.2.2 to estimate surface 
roughness from the in-situ FPP measured layer topography. Our findings 
are reported in Section 3.5. The resulting insights on the influence of 
spattering will greatly facilitate the development of LPBF process 
monitoring and control technologies in the future. 

3. Results and discussion 

3.1. Registered spatter signatures 

As introduced in Section 2.3, spatter signatures are extracted and 
registered using the ML based image segmentation and spatial clustering 
methods. Specifically, a DeepLabV3+ plus ResNet-based segmentation 
NN is trained with a training dataset of 200 manually labeled images. 
The model is trained for 30 epochs to segment images into three 
different regions (background, spatter, and MP). The corresponding 
training accuracy of the model is shown in Fig. 6, and a maximum ac
curacy of 99.57 % is attained at the 147th iteration, which shows that 
the developed NN is accurate in segmenting images based on the pro
vided labels. Representative segmented results using the developed ML 
aided method is shown in Fig. 7. 

The label of each pixel is color coded, as shown in Fig. 7, where the 
spatter count is seen to be increasing with the VED value. Labeling errors 
could arise from possible human errors in the manual labeling process 

Table 2 
DeepLabV3+ with ResNet 18 encoder structure for training the spatter seg
mentation neural network.  

Layer name Output size 18 layers 

Conv group 1 112 × 112 7 × 7, 64, stride 2 
Conv group 2 56 × 56 3 × 3 max pool, stride 2 

[
3 × 3, 64
3 × 3, 64

]

× 3 

Conv group 3 28 × 28 
[

3 × 3, 128
3 × 3, 128

]

× 2 

Conv group 4 14 × 14 
[

3 × 3, 256
3 × 3, 256

]

× 2 

Conv group 5 7 × 7 
[

3 × 3, 512
3 × 3, 512

]

× 2  

Fig. 4. Illustration of the metric of spatter ejection angle.  
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and thus cause misclassified pixels. However, the reason that manually 
labeled training data is implemented in this work is because the 
occurrence of noises presented in raw off-axis monitoring data, and it is 
difficult to differentiate the sparse and discrete spatters from other 
features (MP and background). As illustrated in Fig. 8(a), the presented 
noises are a sequence of perpendicular spots as shown inside the marked 
red rectangle and caused by the camera sensor while acquiring data 
from outside the building chamber. These imaged vertical patterns could 
possibly be flare spot artifacts due to the high-luminance sources (laser 
and MP) causing intra-reflections within the camera elements that 
emerge at the film plane and form non-image information or flare on the 
captured image. In the future, such flare artifacts can be detected and 
removed from the spatter monitoring images using the setup reported in 

literature [40,41]. With the appearance of lens flare artifacts, traditional 
image thresholding-based segmentation or clustering methods perform 
poorly in identifying spatters. Shown in Fig. 8(b) and (c), the K-means 
clustering methods with different cluster numbers (K = 3 and K = 4) are 
tested on a representative MP image and fail to distinguish MP re
flections from actual spatters. This failure is because the clustering 
methods are based on intensity level, which however does not change 
significantly among the spatter, noise, and plume. As compared in Fig. 8, 
the segmentation result from the deep learning-based method of Deep
LabV3+ plus Resnet (Section 2.3.1) along with our manually labeled 
training dataset successfully identifies the spatter by excluding the 
suspicious features from camera sensor noises. 

After extracting the spatters through image processing, the corre
sponding spatter signatures such as spatter count, MP's center co
ordinates, and the ejection angle of spatters relative to laser scan 
direction are registered from the segmented images using the DBSCAN 
algorithm specified in Section 2.3. Fig. 9 shows a representative result of 
registering the spatter count of each monitored MP at Layer 75 of all 16 
Fatigue Bars (Fig. 1). From the registered spatter signature map, the 
difference between contouring scan and hatching scan is reflected 
directly by the spatter count signature map with contouring scan ex
hibits low number of spatters (0–1). The registered spatter signatures 
maps build a comprehensive spatter dataset for subsequent quantitative 
analysis. 

3.2. In-process layer surface topography and roughness 

As introduced in Section 2.2.2, an in-situ 3-step phase shifting-based 
FPP method is applied to measure the in-process layer surface topog
raphy during LPBF processes. The surface topography is measured using 
the recoated powder bed surface as a zero-reference plane and calcu
lated by analyzing the FPP images acquired right after the powder 
spreading and those acquired after the laser scan for that corresponding 
layer. Therefore, as shown in Fig. 10, the measured height profile of a 
sample, in-process, layer displays negative height values, which are with 
respect to the unmelted powder bed surface and due to the laser fusion of 
powders and MP solidification shrinkage. Although our FPP system 

Fig. 5. Flowchart of spatter features extraction and registration using off-axis camera-based in-situ monitoring data.  

Fig. 6. Training accuracy of the DeepLabV3+ plus ResNet-based spatter 
monitoring image segmentation method. 

Fig. 7. Representative segmentation results of four off-axis camera monitored images for each of the three distinct LPBF process regimes (conduction, transition, 
keyhole). Note: the image color deviates somewhat from the legend color due to overlaying segmentation mask that has legend color on raw image that has 
black background. 
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features a larger field of view than other literature reports, in this 
experiment with a limited hardware setup, the camera of FPP system 
captures only a portion of build plate, which only includes fatigue test 
bars 2, 4, 6, 8, 10, and 12 (as annotated in Fig. 1 and Fig. 9). Never
theless, these monitored fatigue specimens fairly include two conduc
tion regime samples (Fatigue Bars 2 & 12), two transition regime 
samples (Fatigue Bars 4 & 6), and two keyhole regime samples (Fatigue 
Bars 8 & 10). From the height profile (Fig. 10), we see harmonic phase 
errors (strips in the background), which are induced by the limited 
number of steps (3 steps) used in the FPP method. In this work, the 
2DFFT filter is employed to reduce the harmonic phase errors by elim
inating high frequency components along the x-axis from the Fourier 
transformed spectrum [33]. Details of the employed 2DFFT filter can be 
found in Appendix Section A3. To completely remove the harmonic 
errors, the FPP method will be improved in the future to incorporate 
efficient phase shifting algorithm with more steps or color encoded 
phase shifting. 

Furthermore, to quantitatively compare the surface topography of 
different samples, an areal surface roughness is calculated using Eq. (4) 
in Section 2.2.2. Fig. 11 shows a plot of our estimated surface roughness 
of Layer 66 of the monitored samples versus their processing VED. When 
the energy density is lower, lack of fusion occurs, and rough surface is 
induced due to un-melted or semi-melted powders on the surfaces. As 
the energy density increases, the surface roughness keeps decreasing as a 
result of complete melting. However, the surface roughness rises again 
as the energy density increases to the keyhole processing regimes where 

increased vapor/gas pressure could jet more droplet spatters out of the 
keyhole [42]. A similar pattern of how the surface roughness changes 
with VED through the three regimes is observed at an adjacent layer, i.e., 
Layer 67, as well, as shown in. 

Fig. 12(a). Moreover, this “U-shaped” trend of our measured layer 
surface roughness against the VED can be explained by the literature 
finding [43] that spattering particle acceleration would linearly in
crease, decrease, and increase again with increasing line energy in the 
conduction, transition, and keyhole mode, respectively. 

As shown in Fig. 12(a), our in-situ FPP measurement reveals that 
Layer 67 exhibits rougher surface than Layer 66 in each fatigue testing 
bar, although the two layers are adjacent within the same sample and 
printed under the same process setting. This phenomenon is consistent 
for all the monitored samples manufactured at various process regimes. 
The plausible reasons for this observed phenomenon will be reported in 
Section 3.4. 

By further examining the registered spatter signatures acquired for 
the two layers (Fig. 12(b)), we find that the spatter quantities are closely 
related to the surface quality of the printed layer. Presented by Fig. 13, 
the change in the spatter number monitored and the variation in surface 
roughness is strongly correlated. The general trend of the increasing 
surface roughness with the increasing spatter quantity can be further 
observed from Fig. A-4 where the characterized surface roughness is 
compared with the average spatter for each specimen monitored. 

Our observations indicate a likely deficiency of the common prac
tices that attempt to predict the surface quality of the printed part with 

Fig. 8. Compare the image segmentation perfor
mance of traditional clustering (K-means) and new 
deep learning-based methods. (a) Raw melt pool 
image captured by the off-axis camera with actual 
feature labels. (b) K-means image segmentation (K =
3). (c) K-means image segmentation (K = 4). Both (b) 
and (c) falsely classify the noises (e.g., flare artifacts) 
as spatters. (d) Deep learning (DeepLabV3+ with 
Resnet) -based Image segmentation used in this work 
extracts the correct feature of spatter.   
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process parameters or scaling factors such as VED. Spatter monitoring 
along with in-situ surface topography measurement can help capture the 
deviation or transition of process regimes and dynamic material be
haviors more comprehensively during LPBF. 

Fig. 12 qualitatively reveals a complex relationship between the 
layer surface roughness, LPBF process setting (e.g., VED, hatching 
change across layers), and spatter count, necessitating a more in-depth 
quantitative analysis as presented in the following sections. 

3.3. Effect of laser power and scan speed on melt pool spattering 

In this section, we quantify the effect of laser power and scan speed 

on MP spattering and find a limited capability of using only laser power 
and speed for predicting spatter signatures. First, histograms of spatter 
count per MP and spatter ejection angle are plotted for a representative 
layer (i.e., Layer 66) at each of the three processing regimes, respectively 
(Fig. 14). It can be observed that the spatter count distribution varies 
significantly with the processing regimes. As the VED increases, by 
average the conduction regime has the least number of spatters per MP 
(mostly 0–1), the transition regime has ~3 spatters per MP, and the 
keyhole regime has the most (~5) spatters per MP. Moreover, the spread 
of spatter count per MP in the keyhole regime is flatter (from 1 to 7) and 
wider than that in the other regimes, probably due to the stochastic 
pressure perturbation in the vicinity of MP. On the other hand, spatter 
ejection angle exhibits a consistent trend that most spatters are ejected 
from the MP tail (90o – 270o as denotated in Fig. 4). This is because our 
off-axis camera mainly observes powder agglomeration spatters and 
liquid droplet spatters, which are caused primarily by the vapor jet from 
depression zone and the back surge of liquid MP. Since the spatter 
ejection angle distribution only differs slightly across the processing 
regimes, we decide not to consider it as an important feature in the 
subsequent process-spattering-surface correlation analysis, but only use 
the spatter count as a descriptive spatter feature. 

By further using the registered spatter count data (Appendix 
Tables A-1 and A-2) for the sample layer – Layer 66 at different regimes, 
we construct regression models of the average spatter count in terms of 
laser power and scan speed, respectively, resulting in two linearly fitted 
curves as shown in Fig. 15. Both regression models show a high R2 value, 
indicating that the spatter quantity is highly correlated to the laser 
power and speed. The wide spread in Fig. 13 of histograms and high 
error bars observed from Fig. 14 do not necessarily indicate a lack of 
robustness in our spatter measurement. Because they are not uncommon 
especially in open-loop LPBF processes (as implemented in this work), 
which are not well controlled and subject to many possible variations 
including fluctuating laser absorption, instable melt pools, non-uniform 
material properties, and occurrence of porous defects. As such, the ob
servations of spatter signature variations can rather be interpreted as a 
demonstration that our spatter monitoring can capture realistic process 
variations well. 

The relationship between spatter count and processing parameters is 
shown to be linear but only observed within the same layer. When we 
examine the average spatter count per MP at different layers of different 

Fig. 9. Representative result of spatter signature registration: the registered 
spatter count at each monitored melt pool in Layer 75 of all the 16 printed 
fatigue bars. The annotated numbers correspond to the processing parameters 
in Table 1. All the bars enclosed in the red box are monitored during the 
printing process by our in-situ Fringe Projection Profilometry and used for 
surface topography analysis and spatter-roughness correlation in subsequent 
sections. All the layers' registered spatter counts used for this work are also 
shown in Appendix Section A2. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Sample in-situ FPP measured surface topography of in-process Layer 
66 of Fatigue Bars 2, 4, 6, 8, 10 and 12 as marked in Fig. 1. Note the zero plane 
is the powder bed surface. 

Fig. 11. Surface roughness of in-process Layer 66 of the fatigue testing bars 
measured by the in-situ fringe projection profilometry against the corre
sponding processing regime's volumetric energy density. The error bar repre
sents one standard deviation of Z(x, y), which is the difference between the 
voxel height at profile coordinates x and y and the mean value as shown in 
Eq. (4). 
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sample fatigue bars (Fatigue Bars 2, 4, and 14 with varying laser scan 
speed but constant laser power, and Fatigue Bars 1, 2, 6, and 7 with 
varying laser power but constant laser scan speed) as shown in Fig. 16, it 
is found that both the spatter count and its relationship to the power and 
speed (i.e., the linear model coefficients) would change across the 
layers. This observation indicates that the spatter formation is not only 
attributed to processing parameters but also subjected to other factors 
such as contour scan, hatching space, layer thickness, and build loca
tions. Specifically, the outlier layers that have obviously more spatters 

per MP are found from Fig. 16 to be Layer 67 and Layer 75, which are 
suspected to be associated with a distinct hatching angle (elaborated in 
Section 3.4), since all the other process conditions (power, speed, 
hatching space, layer thickness, etc.) nominally remain the same as the 
other layers. Therefore, using solely nominal laser power and speed 
cannot fully reflect or accurately predict the spattering phenomenon, 
especially in a practical scenario of printing multi-layer parts. This ne
cessitates the in-situ monitoring of spatters whose features are shown in 
this work to be capable of capturing real process variations in not only 
laser power and speed, but also other potential factors as presented in 
the next section. 

Meanwhile, it is worth noting that our measured spatter quantity 
displays consistent curve fitting models with similar slopes and in
tercepts (i.e., similar spatter count values) for the layers, e.g., Layer 69 
and Layer 72 as shown in Fig. 15, which have nearly identical process 
conditions including a similar hatching angle of 95◦ and 116◦, respec
tively, as detailed in next section. This good agreement between spatter 
quantity measurement and identical (nominally) process conditions 
demonstrates the reproducibility of our spatter monitoring and mea
surement methods. 

Moreover, we find that the spatter occurrence has a wide range of 
distribution under different processing regimes. This emphasizes the 
process variation due to the hatching pattern. Also, it should be noted 
that spatter is a complex product associated with MP geometry, plume 
shape, location of the build, and gas flow condition, which tend to vary 
among laser scan vectors. The effect of such variation as observed on 
localized property will be investigated in our future work. In this work, a 
general part-level average signatures are used, and layer-wise difference 
observed during the printing is evaluated and studied. 

Fig. 12. Surface roughness (a) and registered average 
spatter count per melt pool with one standard deviation 
(b) for Layer 66 and Layer 67. The error bar in (a) rep
resents one standard deviation of Z(x, y), which is the 
difference between the voxel height at profile coordinates 
x and y and the mean value as shown in Eq. (4). This 
figure qualitatively reveals a complex relationship be
tween the layer surface roughness, LPBF process setting 
(e.g., VED, hatching change across layers), and spatter 
count, necessitating a more in-depth quantitative analysis 
as presented in the following sections.   

Fig. 13. Variation of the registered spatter count and the variation of the areal 
surface roughness (Sa) across the monitored layer for bar2 and bar 12 which are 
manufactured under conduction regime. Results for other specimens monitored 
(bar 4 (transition), bar 6 (transition), bar 8 (keyhole), and bar 10 (keyhole)) can 
be found in Appendix 4. 
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3.4. Impact of hatching angle on melt pool spattering 

In this section, the influence of hatching angle on spatter generation 
and surface roughness is studied. Herein, the hatching angle at each 
layer is defined as the angle between the laser scan vector and the 
horizontal axis. As detailed in Section 2.1, a hatching pattern with a 
rotation angle of 67◦ is implemented for the 16-fatigue bar specimen 
printing since it could reduce the residual stress and improve the overall 
build quality based on the literature report [44]. The laser scan angle at 
each layer can be retrieved directly from the LPBF machine during the 
hatching strategy setup. However, the laser scan might deviate from the 
specification during a real LPBF process due to possible flaws in galva
nometer scanner control or errors in f-theta lens deflection. To obtain 
realistic hatching information, we measure the actual hatching angle by 
estimating it from the registered MP signature (temperature or area) 

maps as detailed in our previous works for this same batch of 16 fatigue 
bar samples [29]. It should be noted that the scan angle with a difference 
of 180◦ forms identical hatching pattern and strip overlap, which means 
a scan angle of 0◦ defines the same pattern as a scan angle of 180◦. For 
this reason, the calibrated scan angle of the printing is obtained by 
subtracting 180◦ for scan angle larger than 180◦ (as shown in the bracket 
in Table 3). As shown in Table 3, similar and extremely high surface 
roughness values are present at Layer 67 and Layer 75 that have similar 
hatching angle of 141◦ and 137◦ (or 317◦), respectively. These two 
layers are exactly the same layers that have significantly more spatters 
per MP as observed in the previous section (Fig. 16). One possible reason 
for these two layers having the most spatters per MP and the highest 
surface roughness is that they undergo similar impacts of gas flow 
(Fig. 17) that will induce similar spattering, given their similar laser scan 
angle relative to the gas flow direction - 51o at Layer 67 and 47o at Layer 

(a)

(b)

Fig. 14. Histograms of registered spatter signatures for one representative layer monitored (L66) during a LPBF process in conduction regime (Fatigue Bar 2), 
transition regime (Fatigue Bar 4), and keyhole regime (Fatigue Bar 10). (a) Spatter Count; (b) Spatter ejection angle. 
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Fig. 15. Linear curve fitting of the spatter count (quantity) with the laser power (left) and the laser scan speed (right). The blue circles are the mean values for Layer 
66 of the samples printed in the specified parameter and the error bars indicate the standard deviation. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 16. Average spatter count per melt pool (MP) 
and its relationship with laser power (a) and speed 
(b) can vary significantly across layers due to poten
tial changes in the process conditions like hatching 
angle even though the nominal settings of laser 
power and speed remain the same. This implies in- 
situ monitored spatter features could reveal process 
variations in not only laser power and speed but also 
other factors (e.g., hatching rotation). The datapoints 
are calculated as the average spatter count per MP 
using our registered spatter count values of all 
monitored MPs at Layers 66–75. Fatigue Bars 1, 2, 6, 
and 7 are used for correlation between spatter and 
laser power (Bars manufactured with constant laser 
speed but varying laser power). Fatigue Bars 2, 4, and 
14 are used for correlation between spatter and laser 
scan speed (Bars manufactured with constant laser 
power but varying scan speed).   
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75. In this specific 16 fatigue specimen printing scenario, both the 
spatter count and surface roughness increase when the laser scan di
rection is around ~50 o relative to the gas flow direction. At this 
hatching angle, more spatters are ejected, and irregular surfaces will be 
formed. Overall, spatter count is found to be partly attributed to the 
hatching angle, which essentially indicates the gas flow impact on 
spatter generation at the layer. 

To conclude, it is observed that in addition to laser power and speed 
(Section 3.3), scan angle or hatching angle also has a significant impact 
on spatter generation and in-process layer's surface quality. In other 
words, spatter signature could be an extensive barometer of dynamic 
changes in laser power, speed, and hatching angle. The advantageous 
benefit of using in-situ monitored spattering signatures instead of 
nominal LPBF process parameters as a predictor of layer surface quality 
is demonstrated in Section 3.5. 

3.5. Correlation between spatter and in-process layer surface roughness 

In Sections 3.2–3.4, we first find a qualitative correlation between 
the spatter count and in-process layer surface roughness; then we see 
that laser power, speed, and hatching angle can significantly affect the 
spatter count. One may argue that we may directly use prior information 
of nominal process setting to predict the spatters and thus the layer 
surface roughness without needing any in-situ sensing equipment and 
data analysis work specifically for spatter monitoring and correlation to 
surface properties. In this section, we quantitatively evaluate the influ
ence of spattering on layer surface roughness as well as elucidate the 
importance of measuring spatter signatures in situ via regression 
modeling analysis using different combinations of inputs - average 
spatter count per MP and key process parameters including laser power 
(P), scan speed (V), HS, or VED, and hatching angle. 

Specifically, seven SVM models using different combinations of in
puts and a gaussian kernel function are trained and compared. The seven 
trained SVM models are applied to predict the surface roughness of each 
of the six sample layers (i.e., L66, L67, L68, L69, L72, L75) in the six FPP- 
monitored fatigue bars (Bars 2, 4, 6, 8, 10, and 12, as detailed in Section 
3.1). Relative error is calculated between the predicted surface rough
ness and the actual surface roughness estimated using the FPP mea
surement results in Section 3.1. The relative errors of all the 252 model 
predictions (7 model prediction/layer × 6 bar × 6 layer/bar) accuracy 
are compared in Fig. 18, which shows that across all the layers and bars 
the models using spatter count as input generally and significantly 
outperform those with input of only process parameters. The best model, 
shown using a mark of green downward triangle, adopts VED and spatter 
count as the SVM inputs. Among all the predicted results, the surface 
roughness predicted for Layer 66 has the highest relative error. The 
reason could be attributed to imbalanced dataset as the model is 

Table 3 
Hatching angle for Layers 66, 67, 68, 69, 72, and 75 and the corresponding 
spatter count and surface roughness.  

Layer # Hatching Angle Avg Spatter number per MP Avg Sa (μm) 

Layer 66 74◦ 2.79 7.84 
Layer 67 141◦ 4.45 18.09 
Layer 68 208◦ (28◦) 3.01 10.27 
Layer 69 275◦ (95◦) 3.06 10.63 
Layer 72 116◦ 2.61 14.77 
Layer 75 317◦(137◦) 4.23 19.60 

(Note: the bold layers, i.e., Layer 67 and Layer 75 have similar hatching angle 
and both exhibit most significant spatters and roughness.) 

Fig. 17. Fringe projection profilometry acquired images for Layer 67 (a) and 
Layer 75 (b). The hatch strip overlapping is annotated as red line and blue 
arrow is the laser scan pattern. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Relative error of the trained models using different combinations of features (process parameters and spatter signature) as predictors to predict the in- 
process layer surface roughness of six sample layers in six fatigue bars measured by the in-situ FPP. The division of the layers is annotated as the blue vertical 
line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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constructed on sparse data with six layers data. Oversampling and down 
sampling from minority class can happen and contribute to the pre
dictions error. 

To further evaluate the performances of models with different inputs, 
three explicit metrics - Root Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), and Mean Relative Error (MRE) are used. Table 4 shows 
the evaluation metrics of all the seven models. Based on the results, it is 
evident that using solely nominal processing parameters are not as ac
curate as using solely spatter count to predict layer surface roughness. 
Note that the two models of “(P, V, HS) + Hatching angle” and “VED +
Hatching angle” have the same values due to their little difference (<
0.00002 % relative error). However, comparing other pairs (marked 
with a matching color in Table 4) of models that use (P, V, HS) and VED 
plus the same input feature(s), we find that the models with VED would 
perform slightly better than those with (P, V, HS). Therefore, we 
recommend using VED as a LBPF process feature rather than (P, V, HS) 
to predict layer surface properties. This recommendation is also because 
VED (Eq. (2)) incorporates the variable of layer thickness that can 
significantly affect spatter formation [43]. Moreover, models using 
hatching angle plus nominal process settings – (P, V, HS) or VED as the 
input perform better than those using only the process settings but are 
not as accurate as those using spatter count. We also attempt to purely 
use spatter count as an input without any process parameters and find 
that the model yield less error than those models using process param
eters or VED with/without hatching angle. Furthermore, the best model 
is found to be the one using spatter count along with VED, resulting in 
the lowest error in each of the metrics - RMSE, MAE, and MRE. All the 
results validate that spatter count is the most informative feature in this 
case due to its ability to reflect the influence of laser power, scan speed, 
and hatching angle. Our work also corroborates VED as an appropriate 
lumped, scaling factor for characterizing LPBF processes and incorpo
rating the impacts of laser power, scan speed, hatching space, and layer 
thickness. 

Besides, Wang et al. [45], develops an analytic equation to predict 
the upper surface roughness of printed part using processing parameters 
and simulated MP depth information. Their model achieves the accuracy 
around 17.2 % MRE. Our resulting model using VED along with the 
average spatter count per MP derived from in-situ monitoring data 
outperforms the literature analytic model with better accuracy (11.0 % 
MRE) and computational efficiency (no need for compute-intensive 
simulation). 

Based on all the quantitative comparisons above, we conclude that 
spatter monitoring and signatures registration can greatly help predict 
in-process layer surface properties more accurately. It is worth pointing 
out that our registered spatter signatures can aid in the prediction of 

both dynamic in-process layer surface roughness and as-built part 
properties. 

4. Conclusion and recommendations 

Spatters in LPBF processes tend to induce rough powder layers and 
printed layers, making LPBF printed components prone to porosities, 
cracks, and fractures. In this work, we conduct a systematic study from 
developing a framework of spatter monitoring and registration methods 
to quantify the effect of agglomerated powder and liquid droplet spatters 
on in-process layer surface roughness during LPBF. We find that the 
attained MP spatter feature profile can help predict the layer's surface 
roughness more accurately, in contrast to the traditional approaches 
that would only use nominal process setting or simulation without in
sights of real process dynamics. This is because the spatter information 
can reflect key process changes including the deviations in actual laser 
scan parameters (e.g., laser power, scan speed, hatching angle) and their 
effects. The results also corroborate the importance of spatter moni
toring and the distinct influence of spattering on layer surface rough
ness. Our work paves a way for thoroughly elucidating the significant 
role of MP spattering in defect formation during LPBF and realizing 
online control and qualification of LPBF-AM processes. 

Overall, the significant outcomes of this work can be summarized as 
follows. 

• a deep learning-based image segmentation model using Deep
LabV3+ plus Resnet is developed for melt pool spatter segmentation 
which reduces the misclassification errors caused by camera lens 
flare and sensor noise from in-situ off-axis camera monitored images 
with good accuracy (99.5 %). Furthermore, an unsupervised clus
tering method (DBSCAN) is employed to count the continuous 
spatters along with the spatter ejection angle. 

• A machine learning-based spatter features extraction and registra
tion is developed using the methods as listed above. It can be 
extended to register more comprehensive metrics of all types of 
spatters given a better camera and improved hardware setup in the 
future. 

• The registered spatter signatures reveal that the spattering phe
nomena, especially the spatter count can change remarkably at 
different layers despite same nominal processing paramters. Our 
results indicate that spatter formation is strongly related to the LPBF 
processing parameters including not only laser power and speed but 
also hatching angle (essentially gas flow). It is found that the layers 
with a scan angle of ~50o relative to gas flow direction incur more 
spatters per MP and higher surface roughness. As such, the developed 

Table 4 
SVM regression models' performance metrics for layer surface roughness predictions using different 
combinations of inputs. In-situ monitored signatures of Hatching angle and Average spatter count 
are boldfaced. 

Model Input RMSE ( ) MAE ( ) MRE (%)
Process parameters (P, V, HS) 5.2 4.0 29.9
Process parameters (P, V, HS)

Hatching angle 4.8 3.5 23.8

Process parameters (P, V, HS)
Average spatter count 2.7 1.7 13.0

VED 5.1 4.0 29.8
VED

Hatching angle 4.8 3.5 23.8

Average spatter count 4.2 2.7 18.7
VED

Average spatter count 2.32 1.1 9.2
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spatter monitoring and signatures registration framework can pro
vide quantitative insights to evaluate and compare different hatching 
strategies.  

• The most accurate SVM-based regression model to predict in-process 
layer surface roughness is found to be the one that uses an input of 
both the spatter count derived from in-situ monitoring data analysis 
(Sections 2.2, 2.3, and 3.1) and the VED as features. It can efficiently 
predict the layer surface roughness with the least error (11.0 % MRE) 
compared to the conventional approach of using nominal processing 
parameters as an input (29.8 % MRE).  

• All our experiment results show that only using nominal process 
setting (e.g., laser power, scan speed, or VED) and hatching angle is 
not sufficient to predict spatter features, much less layer surface 
roughness, necessitating the research on in-situ spatter monitoring 
and spatter-surface relationship modeling as demonstrated in this 
work. 

• Incorporating the effects of laser power, scan speed, and scan di
rection relative to gas flow, the metric of spatter count is shown to be 
a potential LPBF performance indicator for predicting in-process 
layer surface properties more accurately than using nominal pro
cess parameters as demonstrated in this work (> 50 % less error 
comparing the RMSE value of 2.2 μm vs ~5.0 μm as shown in 
Table 4). Provided enhanced monitoring systems (e.g., higher-speed 
camera that can capture the spatter redeposition location), more 
comprehensive spattering metrics can be obtained to serve as a set of 
inclusive, powerful process signatures for effectively predicting the 
properties of both in-process layer surface and final parts, including 
defects on exterior surfaces and inside the body. 

Moving forward, our developed in-situ MP spatter monitoring system 
and registration framework can be further developed to provide spatial 
profiles of key spatter signatures for all monitored layers in LPBF, and 
our spatter-layer-surface-roughness correlation method can be used to 
aid process control or in-process defects correction for enhanced part 
properties. In the future, one can extend our spatter registration 
framework to include more types of spatters with advanced hardware 
setup. It is worth pointing out that our monitoring system does not track 
the full trajectory of spatter in this work. Besides, our method does not 

count the spatters overlapped with MP since the clustering method can 
only characterize disconnected parts. This limitation needs to be 
addressed in our future work. Meanwhile, the in-situ FPP system can 
also be upgraded to address the phase error induced harmonic fluctua
tions in height profile. The advancement of our LPBF-specific FPP 
technology will provide a more accurate approach to characterize the in- 
process layer surface roughness and analyze its correlation with the 
spattering phenomenon in LPBF based AM. Furthermore, LPBF process 
optimization and control can be conducted by using the dynamic feed
back of spatter signatures and layer surface roughness to improve the 
final printed part properties. 
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Appendix A 

A.1. Dilated convolution for semantic segmentation neural networks 

The primary objective of using the dilated convolution is to expand and extract features from different field of view as the convolutional filter is 
dilated with certain stride for the segmentation neural network. Dilated convolution is the convolution filter which is convenient in controlling the 
resolution of features extracted and the filter's field of view. This filter is powerful in augmenting features from broader view. Specifically for the image 
data, the output feature map y from convolution operation is computed using input feature map x and convolution filter w. 

yi =
∑

k
xi+r•kwk A-(1) 

In Eq. A-(1), r is the dilated stride or rate, and k is the convolution size. When the dilated stride is 1, the convolution becomes the standard depth- 
wise convolution kernel filter. The primary objective of using the dilated convolution is to expand and extract features from different field of views for 
the segmentation neural network. 
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A.2. Melt pool spatter signature map for Layers 66, 67, 68, 69, 72, and 75 

Fig. A-1 shows the registered spatter signatures for the 16 fatigue specimens used for this work including Layers 66, 67,68, 69, 72, and 75.

L66 L67 L68

L69 L72 L75

Fig. A-1. Melt pool (MP) signature maps for spatter count.  
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A.3. Masked 2 Dimensional Fast Fourier Transform Filtering (2DFFT Filtering) and experiment data of surface topography measurements. 

In order to reduce the harmonic phase error which can be observed as the background vertical strips from Fig. A-2 (a), a manual mask is selected as 
shown in Fig. A-2 (d) to reduce the background noise/strips. As the harmonic phase error appears to be the period pattern along the x-axis, the mask is 
selected to cover or filter the high magnitude frequency component along the x-axis from the Fourier transformed spectrum.

(a)

(c)

(b)

(d)
Fig. A-2. 2D Fast Fourier Transformation Filtering (2D FFT) on the surface topography measurements. (a) surface topography of the in-situ single layer blocks 
printing experiment before 2D FFT filtering. (b) Frequency magnitude spectrum before 2D FFT filtering. (c) Surface topography of the in-situ single layer blocks 
printing experiment after 2D FFT filtering. (d) Frequency magnitude spectrum after 2D FFT filtering. 

Using the same filtering setting, surface topography from layer 66, 67, 68, 69, 72, and 75 are calculated from the raw acquired images with the 
project fringe patter. Fig. A-3 shows the complete the surface topography data for all the layers presented in this work.

L66 L67 L68

L69 L72 L75
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Fig. A-3. Surface topography measurements for bar 2, 4, 6, 8, and 10 from Layers 66, 67, 68, 69, 72, and 75.  

A.4. Experiment data of average spatters per bar sample and the areal surface roughness characterized per specimen

Fig. A-4. Areal surface roughness for all the samples monitored across layer 66, 67, 68, 69, 72, and 75 versus the average spatter count per sample.  

Shown in Fig. A-4, it can be observed that within each processing regime, the increase in spatter count is related to the increase the areal surface 
roughness monitored.

Fig. A-5. The trend of the areal surface roughness and registered spatter count across the monitored layers for the transition and keyhole samples.  

Results from Fig. A-5 are supplemental and help to explain the observations of the correlation between spatter and surface quality from both Fig. 12 
and Fig. 13. 

A.5. Experiment data of spatter count per melt pool under different settings of laser power and scan speed 

Table A-1 and Table A-2 present the average spatter count per MP for Layer 66 at varying laser and scan speed, respectively, while keeping all the 
other processing parameters the same. It can be observed that the spatter formation is linearly related to both laser power and scan speed with all the 
other conditions remaining the same.  

Table A-1 
Average Spatter Count at varying laser power at layer 66, 67, 68, 69, 72, and 75. Standard deviation is shown in parentheses.  

Laser Power L66 L67 L68 L69 L72 L75 

200 W 1.4 (0.8) 2.0 (1.7) 1.7 (1.4) 1.4 (0.9) 1.3 (0.8) 1.9 (1.6) 
250 W 2.3 (1.7) 3.6 (2.2) 2.3 (1.7) 2.7 (1.9) 2.1 (1.8) 3.5 (2.1) 

(continued on next page) 
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Table A-1 (continued ) 

Laser Power L66 L67 L68 L69 L72 L75 

300 W 3.6 (2.6) 5.0 (2.7) 3.7 (2.3) 4.1 (2.6) 3.4 (2.5) 5.0 (2.8) 
350 W 4.1 (2,9) 5.2 (2.9) 5.0 (2.9) 5.4 (3.1) 5.0 (2.9) 5.3 (2.8)   

Table A-2 
Average Spatter Count at varying scan speed at L66, 67, 68, 69, 72, and 75. Standard deviation is shown in parentheses.  

Laser Scan Speed L66 L67 L68 L69 L72 L75 

0.5 m/s 2.7 (2.1) 4.0 (2.9) 3.4 (3.0) 3.6 (2.9) 3.2 (3.0) 5.2 (3.6) 
0.75 m/s 2.3 (1.7) 3.6 (2.2) 2.3 (1.8) 2.7 (1.9) 2.1 (1.8) 3.5 (2.1) 
1.0 m/s 1.0 (0.7) 2.5 (1.7) 1.3 (1.1) 1.2 (0.8) 0.9 (0.6) 2.1 (1.6)  
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