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Laser powder bed fusion (LPBF) based additive manufacturing (AM) holds great promise to efficiently produce
high-performance metallic parts. However, LPBF processes tend to incur stochastic melt pool (MP) spattering,
which would roughen workpiece in-process surface, thus weakening inter-layer bonding and causing issues like
porosity, powder contamination, and recoater intervention. Understanding the consequential effect of MP
spattering on layer surface is important for LPBF process control and part qualification. Yet it remains difficult
due to the lack of process monitoring capability for concurrently tracking MP spatters and characterizing layer
surfaces. In this work, using our lab-designed LPBF-specific fringe projection profilometry (FPP) along with an
off-axis camera, we quantitatively evaluate the correlation between MP spattering and in-process layer surface
roughness for the first time to reveal the potential influence of MP spatters on process anomaly and part defects.
Specifically, a method of automatically and accurately extracting and registering MP spattering metrics is
developed by machine learning of the in-situ off-axis camera imaging data. Each image is analyzed to obtain the
MP's center location and the spatter count and ejection angle. These MP spatter signatures are registered for each
monitored MP across each layer. Then, regression modeling is used to correlate each layer's registered MP spatter
signature and its processing parameters with the layer's surface topography measured by the in-situ FPP. We find
that the attained MP spatter feature profile can help predict the layer's surface roughness more accurately (> 50
% less error), in contrast to the conventional approaches that would only use nominal process setting without any
insight of real process dynamics. This is because the spatter information can reflect key process changes including
the deviations in actual laser scan parameters and their effects. The results also corroborate the importance of
spatter monitoring and the distinct influence of spattering on layer surface roughness. Our work paves a foun-
dation to thoroughly elucidate and effectively control the role of MP spattering in defect formation during LPBF.

1. Introduction

Additive manufacturing (AM) attracts significant interests in recent
decades due to its capability of fabricating parts with complex geometry.
Laser powder bed fusion (LPBF) based AM is one of the most popular
technologies in metal printing and adopted by various industries such as
automobile, biomedical, and aerospace mainly for part prototyping
[1-3]. Although widely used, LPBF based AM (LPBF-AM) faces chal-
lenges to be advanced toward industrial-scale additive production that
demands process repeatability and part qualities. In LPBF
manufacturing processes where laser sinters and fuses powder on the
substrate or previous layers, there is complex physics interplaying
among powder, laser, workpiece, and inert gas flow in chamber,
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inducing process anomalies like spattering and part defects like porosity
and crack. Currently, researchers have developed various in-situ moni-
toring methods with a focus on capturing -melt pool (MP) behavior and
morphology [4,5]. However, most of these approaches are limited
within a small region of interest (ROI) and a small number of layers. To
establish comprehensive models of LPBF process-structure-property re-
lationships for process and part qualification, more research is needed to
monitor all types of phenomena in a continuous or near-continuous
manner as well as quantify the effects of not only melt pools but also
their associated spattering at a large scale across bigger area and
through more layers.
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1.1. Spattering phenomenon in LPBF-AM

Spattering is used to describe the material ejection from melt pools
during LPBF printing process. A spatter can be categorized as a “droplet
spatter” caused by vapor recoil pressure and Marangoni effect [6], or an
un-sintered “powder spatter” caused by vapor-induced entrainment
[7,8]. A more detailed categorization of spatters is based on the for-
mation mechanism, dividing into solid spatter, metallic jet, entrainment
melting spatter (caused by gas flow), and defect induced spatter. In [9],
the effect of scan speed on plume morphology and spatter generation
was evaluated, showing that scan speed has direct impact on spatter
formation. In [10], Schwerz et al. reported that the spatial location of
the build and the gas flow direction in the build chamber are also key
factors for spatter formation. The authors also studied the effect of layer
thickness on the spatter formation, showing that larger (>80 pm) layer
thicknesses had higher spatter count. Furthermore, the authors inferred
that the spatter re-deposition locations would primarily exhibit lack-of-
fusion flaws. Researchers have also demonstrated the detrimental effects
of spattering on LPBF printed parts since it could cause many defect
modalities [11]. For instance, severe defects such as recoater streaking
and lack of fusion flaws could be induced by high-rise spatters and
oxidized spatters [10,12-14]. All the existing research on various for-
mation mechanisms and possible consequences of spattering in LPBF
indicates a critical need for spatter monitoring and data analysis to
understand and control its impacts on part properties during LPBF.

State-of-art monitoring methods, such as high-fidelity simulations
and synchrotron X-ray imaging, have been used to identify spatter-
induced defect formation mechanisms and features [15,16]. However,
these methods are expensive in terms of computation time and equip-
ment cost. Therefore, researchers would rather employ high-speed
cameras to monitor the spatters and estimate their redeposited loca-
tion [8,10,13,17,18]. But with such methods using relatively more
affordable cameras (especially in contrast to high-end cameras and X-
ray based equipment), it is difficult to trace the spatters completely from
their ejection to landing during a LPBF printing process. Besides, these
camera-based monitoring methods usually have limited ROI and cannot
capture the spatter phenomenon fully in part scale. Overall, existing
LPBF monitoring methods do not offer in-situ comprehensive spatter
characterization capability due to the limited equipment accessibility,
small field-of-view, or short monitoring duration.

On the other hand, research has emerged on analyzing available
monitoring data for spatter features and their correlations to process
characteristics and part properties. Repossini et al. [18] studied the ef-
fect of processing parameters on the spatter signatures for maraging
steel prints in LPBF. They found that the spatter count is strongly related
to the processing regime (i.e., conduction, transition, or keyhole). Also,
they pointed out that the spatial location of spatters must be considered
for evaluating their effects on part properties, especially for complex
geometries. Similarly, Zhang et al. [17] found that spatter number, melt
pool plume area, and plume orientation are directly correlated with the
melt pool stability and the process parameters (laser power and scan
speed). Besides, the authors found that the spatter orientation was not a
direct indicator of process parameters. Moreover, spatters have been
known to possibly interfere with the powder recoating for next layer, or
be remelted during the print of subsequent layer(s), or persist across
many layers [11]. Therefore, the behavior and evolution of landed
spatters can play a significant role in determining the final forming of
parts. In [19], authors studied the effect of spatter inclusions, which are
larger than the powder layer thickness and could not be re-melted, using
tensile test samples. These spatter inclusions occur more easily while
printing un-sieved or re-used powder (> 5 cycles of reuse). It was also
found that the spatter particle sizes were at least three times larger than
the feedstock powders. The mechanical testing of these tensile samples
revealed that the samples printed with re-used powders that tended to
generate spatter inclusions had poorer tensile properties compared to
the samples printed with fresh powders.
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Overall, most of the existing research focus on characterizing the
formation mechanism and dynamics of spatters. It remains unclear how
spattering varies across each layer while printing a part and how the
spatters would affect an in-process layer's surface roughness thus the
printed part's properties, especially the internal defects (e.g., pores,
cracks) that can be caused by the weak inter-layer bonding. This is
mainly due to the limitations of current in-situ monitoring methods that
cannot simultaneously provide spatiotemporally resolved spatter met-
rics and surface features. As such, there is a gap in developing capable
multi-monitoring system and data analytics methods to acquire and
analyze localized spatter signatures for detecting and predicting end-
part properties.

1.2. Surface roughness of LPBF prints: in-process layers and as-built parts

To clarify, surface roughness of LPBF prints could refer to the surface
roughness of workpiece in process, i.e., the in-process layer surface
roughness due to the layer-by-layer processing nature of LPBF-AM, as
well as the surface roughness of as-printed parts. Surface roughness of a
printed part is known to be a critical part property related to the final
mechanical performance such as fatigue life, because the exterior sur-
face roughness can induce surface defects that initiate cracking and
fracture. Researchers pay lots of attention and effort to characterize the
as-built part's outside surface roughness. In [20-22], authors discovered
the relationship between the processing parameters and the up-skin
build surface roughness. All of these works reveal that with lower or
higher energy density, the surface of the final part is rougher due to lack
of fusion or material vaporization. Down-skin surface roughness is also
studied in [23-25], and results reflect a weak correlation between pro-
cessing parameters and down-skin surface roughness primarily due to
decreased thermal conductivity of powder underneath melt pools. As the
current surface roughness modeling or characterization work concen-
trates on the static exterior surface quality of a final printed part, there is
a significant lack of studies on the dynamic interior layer surface
roughness of a workpiece in a LPBF process. However, one should note
that external roughness can be greatly reduced by post-processing such
as machining and can no longer affect the end-use heavily, while the in-
process layer surface roughness may induce internal defects that are
hard to access for treatment or removal and can persist in the final parts.
Particularly a rough in-process layer surface will weaken the inter-layer
bonding and cause issues like porosity, powder contamination, and
recoater intervention in LPBF. The in-process layer surface roughness
during LPBF can cause severe, stubborn interior defects such as pores
and cracks. Recently, researchers have used in-situ thermographic in-
spection to infer powder layer thickness based on a 1D thermal diffusion
model and neural networks. Such an indirect thickness measurement
method is prone to error and limited in resolution. Nevertheless, it has
largely demonstrated the importance of knowing powder layer thickness
for capturing possible causes and effects of rough powder surfaces such
as catastrophic recoater crashes or abrasion and thermal distortions
[26]. Therefore, elucidating the consequential effect of MP spattering on
layer surface roughness is important for LPBF process control and part
qualification, but has been overlooked and under-developed so far. It is
desired to quantitatively understand the influence of spattering on layer
surface roughness by correlating the in-situ monitored layer signatures
of spatters and surfaces. Yet it remains difficult due to the lack of process
monitoring capability for concurrently tracking MP spatters and char-
acterizing layer surfaces with sufficient speed and accuracy.

1.3. Overview of this work

In this proof-of-concept work using a regular vision camera with
relatively low sampling rate (compared to the laser scan speed) and
limited resolution that can mainly observe large or high-temperature
spatters which are melted, we aim to collect representative spatters
and study the effect of powder agglomeration spatters and liquid
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spatters in LPBF processes. More tracked spatters and other types of
spatters with smaller size, such as gas entrained spatter and powder
spatter, can be studied in a similar framework as laid out in this work
using a high-profile camera. Then, using our experiment data collected
from a LPBF print of a multi-layer fatigue testing bars under different
process settings, we conduct a correlation analysis between the spatter
signatures and the layer's surface roughness metric acquired from the
cost-effective f Fringe projection profilometry (FPP) system. Further-
more, to elucidate the significant effect of spattering on internal layer's
surface roughness, we develop and compare different regression models
that use an input of different combinations of spatter signature and
processing parameters (laser power, laser scan speed, hatching) to pre-
dict the layer's surface roughness.

The remaining of this paper is divided into the following sections.
The experimental setup and design for spatter monitoring and signatures
registration are elaborated in Section 2.1. Our in-situ two-sensor com-
bined monitoring system - off-axis camera and FPP is employed as
introduced in Section 2.2. Details about the machine learning model for
spatter segmentation and feature extraction are included in Section 2.3.
The methodology section ends with an explanation of the metric to be
used for surface roughness characterization and the regression analysis
to predict surface roughness from the processing parameters and in-situ
monitored spatter signatures in Section 2.4. With a demonstration case
of LPBF processing of 16 fatigue bars, we present the spatter registration
and layer surface roughness measurement results in Sections 3.1 and
3.2. Sections 3.3 and 3.4 investigate the impact of laser scan parameters
including power, scan speed, and hatching angle on spatter generation
and layer surface quality. Section 3.5 evaluates the significance of
spattering effect on layer surface roughness with a thorough correlation
analysis using various combinations of nominal laser scan parameters
and spatter signatures. Finally, Section 4 presents conclusive remarks on
our work and recommendations for future improvement.

2. Methods
2.1. LPBF machine and experimental design

In this work, in-situ spatter monitoring and in-process layer surface
measurement are performed during an experimental LPBF print of 16
standard fatigue test specimens (ASTM E466 standards) using Inconel
718 metal powder (particle size range - 20 to 60 pm) and a commercial
DMLS machine - EOS M290. The schematic setup for this print is shown
in Fig. 1.The nominal layer thickness is 40 ym, and the hatching strategy
adopts a 67° rotation.

One of the objectives of this experiment is to study the spatter phe-
nomenon at different LPBF process regimes - conduction, transition, and
keyhole, which are classified based on the research performed in pro-
cessing parameters effect on MP geometry and morphology [5,27].
Conduction regime represents the processing regime of insufficient laser
melting, which is usually due to lower volumetric energy density and
can form shallow melt pools and lack-of-fusion defects. On the other
hand, keyhole regime is induced by high energy density with severe
vaporization and can form deep melt pools and porous defects. Transi-
tion regime is categorized empirically with optimal processing param-
eters and can form minimal porosity defects compared to the conduction
and keyhole. The other objectives, which include the study of fatigue
life, microstructure, and in-situ process signatures of the printed samples
and their correlation, are reserved for other disseminations.

Corresponding to the three process regimes, the 16 fatigue bars are
printed under various processing parameters, i.e., laser power (P), laser
scan speed (V), hatching space (HS), as shown in Table 1. In order to
consider the overall impact of laser scan parameters (P, V, HS) and
nominal layer thickness (t), two different scaling factors, Surface Energy
Density (SED) and Volumetric Energy Density (VED), are calculated
using Egs. (1) and (2), respectively. Researchers have been attempting to
correlate SED and VED with end-part property such as up-skin surface
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Fig. 1. Schematic of our LPBF machine setup for printing 16 fatigue test bars.
Bars enclosed in red box are used for surface roughness analysis through Fringe
Projection Profilometry. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Our LPBF experimental process setting for printing the 16 fatigue samples.
Sample Power Velocity Hatching SED VED Processing
# W) (m/s) Space J/ o/ Regimes
(um) mm?  mm®)

1 200 1.00 110 1.82 45.45 Conduction
2 250 1.00 110 2.27 56.82 Conduction
3 300 1.50 110 1.82 45.45 Conduction
4 250 0.75 110 3.03 75.75 Transition
5 285 0.96 110 2.70 67.47 Transition
6 300 1.00 110 2.73 68.19 Transition
7 350 1.00 110 3.18 79.55 Keyhole
8 200 0.50 110 3.64 90.91 Keyhole
9 250 0.50 110 4.55 113.6 Keyhole
10 300 0.50 110 5.45 136.4 Keyhole
11 200 1.00 80 2.50 62.50 Conduction
12 200 1.00 120 1.67 41.67 Conduction
13 250 0.50 80 6.25 156.3 Keyhole
14 250 0.50 120 4.17 104.2 Keyhole
15 200 1.50 110 1.21 30.30 Conduction
16 250 1.00 100 2.50 62.50 Conduction

roughness and porosity ratio [25,28]. It is interesting to evaluate the
performance of our method against existing methods. Therefore, in
Section 3.5, we compare our layer surface roughness prediction models
that use spattering signature with the common practice that would use
VED. Contour scan is enabled for this experiment with laser power of 80
W and scan speed of 800 mm/s, and the internal printing time for one
layer is around 120 s.

P

ED = 1

5 VeHS M
P

VED’V.HS.: 2

2.2. In-situ monitoring of LPBF process

Fig. 2 shows our lab-designed in-situ monitoring system, which is
employed in this work to monitor spattering location and signatures as
well as characterize in-process layer surface property.
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Fig. 2. Our in-situ LPBF process monitoring system that integrates an off-axis
camera and an in-house fringe projection profilometer for measuring the
spatters and layer surface, respectively.

2.2.1. Off-axis camera-based spatter monitoring system

The in-situ off-axis camera-based spattering monitoring is imple-
mented to capture powder agglomeration spatters and liquid droplet
spatters across the build plate. A high-speed camera (FASTEC IL5Q) is
placed outside the build chamber of the LPBF printer (EOS M290),
facing the building platform (Fig. 2). This camera tracks the laser scan
on each layer and captures images of laser and MP along with the build
plate at a rate of 1000 frames-per-second (fps). A representative image
resulting from the off-axis camera is shown in Fig. 3. The MP with large
liquid droplet spatters is captured and used to extract information of MP
coordinates on build plate as well as several spatter signatures including
spatter ejection angle and counts. The acquired camera data is then
analyzed using image processing methods. First, a perspective trans-
formation is applied to correct the camera angle induced distortions.
Details of the perspective transformation method are presented in our
previous publication [29]. After perspective transformation, these im-
ages are segmented by a machine learning method as introduced in
Section 2.3.

2.2.2. Fringe projection profilometry (FPP) for in-process layer surface
measurement

FPP is an optical profilometry technology for characterizing the
difference between the fringe pattern reflected from target object and
the reflected fringe pattern from reference plane. It is widely used for
measuring surface topography or part geometry in various fields.

Fig. 3. A representative spattering monitoring image captured by our off-axis
camera with annotations of melt pool and spatter.
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Preliminary work has shown that FPP can measure the in situ surface
topography of a printed part on a layer basis [30,31]. Recently, we have
developed a LPBF-specific FPP system and method to improve the
measurement accuracy by employing 2-dimensional Fast Fourier
Transform (2DFFT) to assist the phase unwrapping process for unfolding
the phase discontinuity [32,33]. Our in-house FPP setup (Fig. 2) is
comprised of the DLP optical projector (LightCrafter 4710 EVM G2,
Texas Instruments, Dallas, TX) with a resolution of 1920 x 1080 pixels, a
12 Mega-Pixel CMOS camera (FL3-U3-120S3C-C, Flea3, Tele-dyne FLIR,
Wilsonville, OR), and a computer unit to control and synchronize the
system.

To quantify surface properties from the distorted fringe patterns, a
FPP image pixel intensity value is encoded and transformed into phase
value through a three-step phase shifting algorithm. The standard
gamma correction is implemented to characterize the nonlinear sensor
response between the camera and the LED projector. Wrapped phase of
each pixel is calculated using Eq. (3), where N is the total number of
fringe patterns projected onto the target object, I; is the acquired image
intensity for phase pattern i, and &; is the shifted phase (0, %n, and %ﬂ) for

)

The wrapped phase is then unwrapped using our new reference
guided phase unwrapping method aided by 2DFFT [32]. A layer surface
topography is derived by converting its unwrapped phase map to a
height map using an experiment-calibrated ratio.

With the above-described FPP method, we can compute the in-
process layer surface topography during LPBF and use it to further
calculate the layer surface roughness Sa. Herein, the surface roughness
Sa across the surface area defined by the image pixels indexed up to M
and N along the profile coordinates x and y is referred to as the arith-
metic mean of the profile height deviation from the mean value. Z(x, y),
as shown in Eq. (4).

1 N M
Z(x,y) |dxdy
siew |, 70

2.3. A machine learning based framework of spatter monitoring data
analysis for extracting and registering spatter features

three-step phase shifting algorithm.

_Z;\/leizulibmred(x7 y)sin(8;)
ZN Igal[bmled (.)C, y)COS((si)

i=1%1

P(x,y) = arctan( 3

S, =

C)

2.3.1. Image segmentation via deep learning based segmentation neural
network

Segmentation neural networks have been used to extract and eval-
uate MP, plume and spatter information [34] but yield limited accuracy.
In contrast, we adopt a state-of-art deep semantic segmentation neural
network (NN), which is trained and tested based on DeepLabV3+ ar-
chitecture with a variation of ResNet NN model [35] as an encoder
backbone. Developed in [36], the DeepLabV3+ is a deep learning based
neural network composed of encoder and decoder for the image seg-
mentation purpose. Comparing to other convolutional NNs, Resnet
prevents the gradient vanishing problem for training deeper NN by
implementing residual connection to couple convolutional layers.
Moreover, the NN structure utilizes a dilated convolution operation to
effectively extract features from input image and upscale the output
from encoder as the segmented output. The details of the dilated
convolution are included in the Appendix (Section A1). The input to the
NN is a spatter image acquired in-situ using the off-axis high-speed
camera (Section 2.2.1) and the output is a segmented image with labels
of background, spatters, and MP & plume. To exclude the noise from the
large portion of background, the acquired off-axis camera images are
first cropped to focus on the ROL Specifically, our deep semantic seg-
mentation NN is trained using 200 manually labeled images. To train the
NN, the dataset is split into 80 % for training and 20 % for testing. The
specific structure used for spatter segmentation is DeepLabV3+ with



H. Zhang et al.

ResNet 18 as detailed in Table 2. The features are extracted through
ResNet 18 convolutional operation. Then, the output from encoder is
concatenated with the 1 x 1 convolution filtered input image and is
further upscaled to the designed segmented output size.

The performance of the trained NN is evaluated by a cross-entropy
loss function as shown in Eq. (5), where M is the number of possible
classes of classified labels, p,. is the predicted probability that obser-
vation o belongs to class ¢, and y,, is the actual probability that obser-
vation o belongs to class c. After each epoch of training, the cross-
entropy loss function is evaluated and used to optimize the model.

Cross Entropy Loss = 5)

M
= > Yoclog(poc)
c=1

2.3.2. Spatter signatures extraction and registration

To register the spatter signatures, each MP's center coordinates are
determined after a perspective transformation using intensity-based
thresholding method (elaborated in our previous publication [29]).
With the ML based segmented images, we obtain spatter signatures
associated with each MP, including the spatter count and spatter's
ejection angle relative to laser scan direction. Then, the spatter signa-
tures are registered by assigning them to the corresponding MP's center
coordinates.

Specifically, after the machine learning based image segmentation,
each pixel of in-situ monitored MP images is assigned with a specific
label — (MP plume, spatter, background). Then, the Density-based spatial
clustering of applications with noise (DBSCAN) algorithm is imple-
mented to segregate pixels with spatter label into different clusters based
on their density and spatial coordinates. The result from DBSCAN is the
total count of spatters captured at this MP frame. The MP's center
registration framework is further improved in this work by filtering the
errors induced by the misclassified pixels. The areas of clustered groups
that are formed by pixels with the label of MP core are compared; and
the MP center coordinates are computed using the clustered group with
the largest area. Using the segmented output from machine learning
output, the spatter ejection angle is also characterized and registered as
the spatter signatures. As shown in Fig. 4, the spatter ejection angle is
defined as the relative angle between the spatters and the laser scan
direction which is set as reference.

Overall, spatter quantity and spatter ejection angle are registered as
two spatter signatures from the off-axis monitoring data using Deep-
labvV3+ image segmentation model and the DBSCAN clustering algo-
rithm. The flow diagram (Fig. 5) presents the spatter registration process
of the work.

2.4. Correlation analysis between spatter and in-process layer surface

Support Vector Machine (SVM)-based regression models are
employed to correlate the in-situ monitored spatter signatures and/or
processing parameters with the in-process layer surface roughness. SVM

Table 2
DeepLabV3+ with ResNet 18 encoder structure for training the spatter seg-
mentation neural network.

Layer name Output size 18 layers
Conv group 1 112x 112 7 x 7, 64, stride 2
Conv group 2 56 x 56 3 x 3 max pool, stride 2
[3 X 3,64] v 3
3x 3,64
Conv group 3 28 x 28 [3 x 3, 128}
3x 3,128
Conv group 4 14 x 14 3 x 3,256
{3 x 3, 256}
Conv group 5 7x7 {3><3 512}
3x 3,512
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180 °

Laser moving
direction

270°

Fig. 4. Illustration of the metric of spatter ejection angle.

is originally a classification method by defining margins [37]. As pro-
posed in [38,39], SVM shows proven accuracy in correlating sparse data
with high dimension features. As a brief introduction, the SVM based
regression model utilizes the sparseness from a SVM classification model
and introduce an ¢ error function to replace the quadratic error function
from a logistic regression model.

y):{ if Iy(x) — 3 (e

— 9| — €, otherwise

As indicated in Eq. (6), the absolute error for a SVM regression model
is calculated with the sensitivity factor ¢ between the regression model
output y(x) and target output y. The sensitivity defines the error tube or
boundary for the model, and any output at or out of the boundary are
called as support vectors.

In this work, to quantitatively evaluate the significance of spattering
among other potential factors - particularly the laser scan parameters,
we develop different SVM models with various combinations of features
and compare their performance. These SVM models use a Gaussian
kernel filter to correlate the surface topography feature with in-situ
monitored signature and/or specified process parameters. The input to
the regression model is a subset of the following features: (1) laser
power, (2) scan velocity, (3) hatching space, (4) laser scan angle derived
from in-situ monitoring data, and (5) the average of in-situ registered
spatter counts for each layer. The output is a corresponding layer's
surface roughness. To obtain ground truth data for training and testing
SVM models of the LPBF process and surface property relationships, we
adopt the method as described in Section 2.2.2 to estimate surface
roughness from the in-situ FPP measured layer topography. Our findings
are reported in Section 3.5. The resulting insights on the influence of
spattering will greatly facilitate the development of LPBF process
monitoring and control technologies in the future.

0)

[y(x) ©

Ec (y(x) -

3. Results and discussion
3.1. Registered spatter signatures

As introduced in Section 2.3, spatter signatures are extracted and
registered using the ML based image segmentation and spatial clustering
methods. Specifically, a DeepLabV3+ plus ResNet-based segmentation
NN is trained with a training dataset of 200 manually labeled images.
The model is trained for 30 epochs to segment images into three
different regions (background, spatter, and MP). The corresponding
training accuracy of the model is shown in Fig. 6, and a maximum ac-
curacy of 99.57 % is attained at the 147th iteration, which shows that
the developed NN is accurate in segmenting images based on the pro-
vided labels. Representative segmented results using the developed ML
aided method is shown in Fig. 7.

The label of each pixel is color coded, as shown in Fig. 7, where the
spatter count is seen to be increasing with the VED value. Labeling errors
could arise from possible human errors in the manual labeling process
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Segmentation
Neural Network
(DeepLabV3+
with ResNet)

Perspective
corrected off-axis
monitoring image

Cropped image
around Melt pool

Density-
Background based Spyatial Spatter count
Spatter —— Clustering of
Applications Spatter ejection
MP&Plume with noise angle

(DBSCAN)

Fig. 5. Flowchart of spatter features extraction and registration using off-axis camera-based in-situ monitoring data.
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Fig. 6. Training accuracy of the DeepLabV3+ plus ResNet-based spatter
monitoring image segmentation method.

and thus cause misclassified pixels. However, the reason that manually
labeled training data is implemented in this work is because the
occurrence of noises presented in raw off-axis monitoring data, and it is
difficult to differentiate the sparse and discrete spatters from other
features (MP and background). As illustrated in Fig. 8(a), the presented
noises are a sequence of perpendicular spots as shown inside the marked
red rectangle and caused by the camera sensor while acquiring data
from outside the building chamber. These imaged vertical patterns could
possibly be flare spot artifacts due to the high-luminance sources (laser
and MP) causing intra-reflections within the camera elements that
emerge at the film plane and form non-image information or flare on the
captured image. In the future, such flare artifacts can be detected and
removed from the spatter monitoring images using the setup reported in

VED: 45.45 J/mm?3(Conduction)

VED: 67.47 J/mm?(Transition)

literature [40,41]. With the appearance of lens flare artifacts, traditional
image thresholding-based segmentation or clustering methods perform
poorly in identifying spatters. Shown in Fig. 8(b) and (c), the K-means
clustering methods with different cluster numbers (K = 3 and K = 4) are
tested on a representative MP image and fail to distinguish MP re-
flections from actual spatters. This failure is because the clustering
methods are based on intensity level, which however does not change
significantly among the spatter, noise, and plume. As compared in Fig. 8,
the segmentation result from the deep learning-based method of Deep-
LabV3+ plus Resnet (Section 2.3.1) along with our manually labeled
training dataset successfully identifies the spatter by excluding the
suspicious features from camera sensor noises.

After extracting the spatters through image processing, the corre-
sponding spatter signatures such as spatter count, MP's center co-
ordinates, and the ejection angle of spatters relative to laser scan
direction are registered from the segmented images using the DBSCAN
algorithm specified in Section 2.3. Fig. 9 shows a representative result of
registering the spatter count of each monitored MP at Layer 75 of all 16
Fatigue Bars (Fig. 1). From the registered spatter signature map, the
difference between contouring scan and hatching scan is reflected
directly by the spatter count signature map with contouring scan ex-
hibits low number of spatters (0-1). The registered spatter signatures
maps build a comprehensive spatter dataset for subsequent quantitative
analysis.

3.2. In-process layer surface topography and roughness

As introduced in Section 2.2.2, an in-situ 3-step phase shifting-based
FPP method is applied to measure the in-process layer surface topog-
raphy during LPBF processes. The surface topography is measured using
the recoated powder bed surface as a zero-reference plane and calcu-
lated by analyzing the FPP images acquired right after the powder
spreading and those acquired after the laser scan for that corresponding
layer. Therefore, as shown in Fig. 10, the measured height profile of a
sample, in-process, layer displays negative height values, which are with
respect to the unmelted powder bed surface and due to the laser fusion of
powders and MP solidification shrinkage. Although our FPP system

VED: 90.91 J/mm?3(Keyhole)
Background

Spatter

MP&Plume

Fig. 7. Representative segmentation results of four off-axis camera monitored images for each of the three distinct LPBF process regimes (conduction, transition,
keyhole). Note: the image color deviates somewhat from the legend color due to overlaying segmentation mask that has legend color on raw image that has

black background.
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Spatter

features a larger field of view than other literature reports, in this
experiment with a limited hardware setup, the camera of FPP system
captures only a portion of build plate, which only includes fatigue test
bars 2, 4, 6, 8, 10, and 12 (as annotated in Fig. 1 and Fig. 9). Never-
theless, these monitored fatigue specimens fairly include two conduc-
tion regime samples (Fatigue Bars 2 & 12), two transition regime
samples (Fatigue Bars 4 & 6), and two keyhole regime samples (Fatigue
Bars 8 & 10). From the height profile (Fig. 10), we see harmonic phase
errors (strips in the background), which are induced by the limited
number of steps (3 steps) used in the FPP method. In this work, the
2DFFT filter is employed to reduce the harmonic phase errors by elim-
inating high frequency components along the x-axis from the Fourier
transformed spectrum [33]. Details of the employed 2DFFT filter can be
found in Appendix Section A3. To completely remove the harmonic
errors, the FPP method will be improved in the future to incorporate
efficient phase shifting algorithm with more steps or color encoded
phase shifting.

Furthermore, to quantitatively compare the surface topography of
different samples, an areal surface roughness is calculated using Eq. (4)
in Section 2.2.2. Fig. 11 shows a plot of our estimated surface roughness
of Layer 66 of the monitored samples versus their processing VED. When
the energy density is lower, lack of fusion occurs, and rough surface is
induced due to un-melted or semi-melted powders on the surfaces. As
the energy density increases, the surface roughness keeps decreasing as a
result of complete melting. However, the surface roughness rises again
as the energy density increases to the keyhole processing regimes where

Journal of Manufacturing Processes 104 (2023) 289-306

Fig. 8. Compare the image segmentation perfor-
mance of traditional clustering (K-means) and new
deep learning-based methods. (a) Raw melt pool
image captured by the off-axis camera with actual
feature labels. (b) K-means image segmentation (K =
3). (c) K-means image segmentation (K = 4). Both (b)
and (c) falsely classify the noises (e.g., flare artifacts)
as spatters. (d) Deep learning (DeepLabV3+ with
Resnet) -based Image segmentation used in this work
extracts the correct feature of spatter.

(b)

(d)
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increased vapor/gas pressure could jet more droplet spatters out of the
keyhole [42]. A similar pattern of how the surface roughness changes
with VED through the three regimes is observed at an adjacent layer, i.e.,
Layer 67, as well, as shown in.

Fig. 12(a). Moreover, this “U-shaped” trend of our measured layer
surface roughness against the VED can be explained by the literature
finding [43] that spattering particle acceleration would linearly in-
crease, decrease, and increase again with increasing line energy in the
conduction, transition, and keyhole mode, respectively.

As shown in Fig. 12(a), our in-situ FPP measurement reveals that
Layer 67 exhibits rougher surface than Layer 66 in each fatigue testing
bar, although the two layers are adjacent within the same sample and
printed under the same process setting. This phenomenon is consistent
for all the monitored samples manufactured at various process regimes.
The plausible reasons for this observed phenomenon will be reported in
Section 3.4.

By further examining the registered spatter signatures acquired for
the two layers (Fig. 12(b)), we find that the spatter quantities are closely
related to the surface quality of the printed layer. Presented by Fig. 13,
the change in the spatter number monitored and the variation in surface
roughness is strongly correlated. The general trend of the increasing
surface roughness with the increasing spatter quantity can be further
observed from Fig. A-4 where the characterized surface roughness is
compared with the average spatter for each specimen monitored.

Our observations indicate a likely deficiency of the common prac-
tices that attempt to predict the surface quality of the printed part with
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Fig. 9. Representative result of spatter signature registration: the registered

spatter count at each monitored melt pool in Layer 75 of all the 16 printed
fatigue bars. The annotated numbers correspond to the processing parameters
in Table 1. All the bars enclosed in the red box are monitored during the
printing process by our in-situ Fringe Projection Profilometry and used for
surface topography analysis and spatter-roughness correlation in subsequent
sections. All the layers' registered spatter counts used for this work are also
shown in Appendix Section A2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Sample in-situ FPP measured surface topography of in-process Layer
66 of Fatigue Bars 2, 4, 6, 8, 10 and 12 as marked in Fig. 1. Note the zero plane
is the powder bed surface.

process parameters or scaling factors such as VED. Spatter monitoring
along with in-situ surface topography measurement can help capture the
deviation or transition of process regimes and dynamic material be-
haviors more comprehensively during LPBF.

Fig. 12 qualitatively reveals a complex relationship between the
layer surface roughness, LPBF process setting (e.g., VED, hatching
change across layers), and spatter count, necessitating a more in-depth
quantitative analysis as presented in the following sections.

3.3. Effect of laser power and scan speed on melt pool spattering

In this section, we quantify the effect of laser power and scan speed
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Fig. 11. Surface roughness of in-process Layer 66 of the fatigue testing bars
measured by the in-situ fringe projection profilometry against the corre-
sponding processing regime's volumetric energy density. The error bar repre-
sents one standard deviation of Z(x,y), which is the difference between the
voxel height at profile coordinates x and y and the mean value as shown in
Eq. (4).

on MP spattering and find a limited capability of using only laser power
and speed for predicting spatter signatures. First, histograms of spatter
count per MP and spatter ejection angle are plotted for a representative
layer (i.e., Layer 66) at each of the three processing regimes, respectively
(Fig. 14). It can be observed that the spatter count distribution varies
significantly with the processing regimes. As the VED increases, by
average the conduction regime has the least number of spatters per MP
(mostly 0-1), the transition regime has ~3 spatters per MP, and the
keyhole regime has the most (~5) spatters per MP. Moreover, the spread
of spatter count per MP in the keyhole regime is flatter (from 1 to 7) and
wider than that in the other regimes, probably due to the stochastic
pressure perturbation in the vicinity of MP. On the other hand, spatter
ejection angle exhibits a consistent trend that most spatters are ejected
from the MP tail (90° — 270° as denotated in Fig. 4). This is because our
off-axis camera mainly observes powder agglomeration spatters and
liquid droplet spatters, which are caused primarily by the vapor jet from
depression zone and the back surge of liquid MP. Since the spatter
ejection angle distribution only differs slightly across the processing
regimes, we decide not to consider it as an important feature in the
subsequent process-spattering-surface correlation analysis, but only use
the spatter count as a descriptive spatter feature.

By further using the registered spatter count data (Appendix
Tables A-1 and A-2) for the sample layer — Layer 66 at different regimes,
we construct regression models of the average spatter count in terms of
laser power and scan speed, respectively, resulting in two linearly fitted
curves as shown in Fig. 15. Both regression models show a high R? value,
indicating that the spatter quantity is highly correlated to the laser
power and speed. The wide spread in Fig. 13 of histograms and high
error bars observed from Fig. 14 do not necessarily indicate a lack of
robustness in our spatter measurement. Because they are not uncommon
especially in open-loop LPBF processes (as implemented in this work),
which are not well controlled and subject to many possible variations
including fluctuating laser absorption, instable melt pools, non-uniform
material properties, and occurrence of porous defects. As such, the ob-
servations of spatter signature variations can rather be interpreted as a
demonstration that our spatter monitoring can capture realistic process
variations well.

The relationship between spatter count and processing parameters is
shown to be linear but only observed within the same layer. When we
examine the average spatter count per MP at different layers of different
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Fig. 13. Variation of the registered spatter count and the variation of the areal
surface roughness (Sa) across the monitored layer for bar2 and bar 12 which are
manufactured under conduction regime. Results for other specimens monitored
(bar 4 (transition), bar 6 (transition), bar 8 (keyhole), and bar 10 (keyhole)) can
be found in Appendix 4.

sample fatigue bars (Fatigue Bars 2, 4, and 14 with varying laser scan
speed but constant laser power, and Fatigue Bars 1, 2, 6, and 7 with
varying laser power but constant laser scan speed) as shown in Fig. 16, it
is found that both the spatter count and its relationship to the power and
speed (i.e., the linear model coefficients) would change across the
layers. This observation indicates that the spatter formation is not only
attributed to processing parameters but also subjected to other factors
such as contour scan, hatching space, layer thickness, and build loca-
tions. Specifically, the outlier layers that have obviously more spatters
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per MP are found from Fig. 16 to be Layer 67 and Layer 75, which are
suspected to be associated with a distinct hatching angle (elaborated in
Section 3.4), since all the other process conditions (power, speed,
hatching space, layer thickness, etc.) nominally remain the same as the
other layers. Therefore, using solely nominal laser power and speed
cannot fully reflect or accurately predict the spattering phenomenon,
especially in a practical scenario of printing multi-layer parts. This ne-
cessitates the in-situ monitoring of spatters whose features are shown in
this work to be capable of capturing real process variations in not only
laser power and speed, but also other potential factors as presented in
the next section.

Meanwhile, it is worth noting that our measured spatter quantity
displays consistent curve fitting models with similar slopes and in-
tercepts (i.e., similar spatter count values) for the layers, e.g., Layer 69
and Layer 72 as shown in Fig. 15, which have nearly identical process
conditions including a similar hatching angle of 95° and 116°, respec-
tively, as detailed in next section. This good agreement between spatter
quantity measurement and identical (nominally) process conditions
demonstrates the reproducibility of our spatter monitoring and mea-
surement methods.

Moreover, we find that the spatter occurrence has a wide range of
distribution under different processing regimes. This emphasizes the
process variation due to the hatching pattern. Also, it should be noted
that spatter is a complex product associated with MP geometry, plume
shape, location of the build, and gas flow condition, which tend to vary
among laser scan vectors. The effect of such variation as observed on
localized property will be investigated in our future work. In this work, a
general part-level average signatures are used, and layer-wise difference
observed during the printing is evaluated and studied.
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Fig. 14. Histograms of registered spatter signatures for one representative layer monitored (L66) during a LPBF process in conduction regime (Fatigue Bar 2),
transition regime (Fatigue Bar 4), and keyhole regime (Fatigue Bar 10). (a) Spatter Count; (b) Spatter ejection angle.

3.4. Impact of hatching angle on melt pool spattering

In this section, the influence of hatching angle on spatter generation
and surface roughness is studied. Herein, the hatching angle at each
layer is defined as the angle between the laser scan vector and the
horizontal axis. As detailed in Section 2.1, a hatching pattern with a
rotation angle of 67° is implemented for the 16-fatigue bar specimen
printing since it could reduce the residual stress and improve the overall
build quality based on the literature report [44]. The laser scan angle at
each layer can be retrieved directly from the LPBF machine during the
hatching strategy setup. However, the laser scan might deviate from the
specification during a real LPBF process due to possible flaws in galva-
nometer scanner control or errors in f-theta lens deflection. To obtain
realistic hatching information, we measure the actual hatching angle by
estimating it from the registered MP signature (temperature or area)
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maps as detailed in our previous works for this same batch of 16 fatigue
bar samples [29]. It should be noted that the scan angle with a difference
of 180° forms identical hatching pattern and strip overlap, which means
a scan angle of 0° defines the same pattern as a scan angle of 180°. For
this reason, the calibrated scan angle of the printing is obtained by
subtracting 180° for scan angle larger than 180° (as shown in the bracket
in Table 3). As shown in Table 3, similar and extremely high surface
roughness values are present at Layer 67 and Layer 75 that have similar
hatching angle of 141° and 137° (or 317°), respectively. These two
layers are exactly the same layers that have significantly more spatters
per MP as observed in the previous section (Fig. 16). One possible reason
for these two layers having the most spatters per MP and the highest
surface roughness is that they undergo similar impacts of gas flow
(Fig. 17) that will induce similar spattering, given their similar laser scan
angle relative to the gas flow direction - 51° at Layer 67 and 47° at Layer
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Fig. 16. Average spatter count per melt pool (MP)
and its relationship with laser power (a) and speed
(b) can vary significantly across layers due to poten-
tial changes in the process conditions like hatching
angle even though the nominal settings of laser
power and speed remain the same. This implies in-
situ monitored spatter features could reveal process
variations in not only laser power and speed but also
other factors (e.g., hatching rotation). The datapoints
are calculated as the average spatter count per MP
using our registered spatter count values of all
monitored MPs at Layers 66-75. Fatigue Bars 1, 2, 6,
and 7 are used for correlation between spatter and
laser power (Bars manufactured with constant laser
speed but varying laser power). Fatigue Bars 2, 4, and
14 are used for correlation between spatter and laser
scan speed (Bars manufactured with constant laser
power but varying scan speed).
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Table 3

Hatching angle for Layers 66, 67, 68, 69, 72, and 75 and the corresponding
spatter count and surface roughness.

Layer # Hatching Angle Avg Spatter number per MP Avg Sa (um)
Layer 66 74° 2.79 7.84

Layer 67 141° 4.45 18.09
Layer 68 208° (28°) 3.01 10.27
Layer 69 275° (95°) 3.06 10.63
Layer 72 116° 2.61 14.77
Layer 75 317°(137°) 4.23 19.60

(Note: the bold layers, i.e., Layer 67 and Layer 75 have similar hatching angle
and both exhibit most significant spatters and roughness.)

Fig. 17. Fringe projection profilometry acquired images for Layer 67 (a) and
Layer 75 (b). The hatch strip overlapping is annotated as red line and blue
arrow is the laser scan pattern. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

75. In this specific 16 fatigue specimen printing scenario, both the
spatter count and surface roughness increase when the laser scan di-
rection is around ~50 ° relative to the gas flow direction. At this
hatching angle, more spatters are ejected, and irregular surfaces will be
formed. Overall, spatter count is found to be partly attributed to the
hatching angle, which essentially indicates the gas flow impact on
spatter generation at the layer.

Journal of Manufacturing Processes 104 (2023) 289-306

To conclude, it is observed that in addition to laser power and speed
(Section 3.3), scan angle or hatching angle also has a significant impact
on spatter generation and in-process layer's surface quality. In other
words, spatter signature could be an extensive barometer of dynamic
changes in laser power, speed, and hatching angle. The advantageous
benefit of using in-situ monitored spattering signatures instead of
nominal LPBF process parameters as a predictor of layer surface quality
is demonstrated in Section 3.5.

3.5. Correlation between spatter and in-process layer surface roughness

In Sections 3.2-3.4, we first find a qualitative correlation between
the spatter count and in-process layer surface roughness; then we see
that laser power, speed, and hatching angle can significantly affect the
spatter count. One may argue that we may directly use prior information
of nominal process setting to predict the spatters and thus the layer
surface roughness without needing any in-situ sensing equipment and
data analysis work specifically for spatter monitoring and correlation to
surface properties. In this section, we quantitatively evaluate the influ-
ence of spattering on layer surface roughness as well as elucidate the
importance of measuring spatter signatures in situ via regression
modeling analysis using different combinations of inputs - average
spatter count per MP and key process parameters including laser power
(P), scan speed (V), HS, or VED, and hatching angle.

Specifically, seven SVM models using different combinations of in-
puts and a gaussian kernel function are trained and compared. The seven
trained SVM models are applied to predict the surface roughness of each
of the six sample layers (i.e., L66, L67, L68, L69, L72, L75) in the six FPP-
monitored fatigue bars (Bars 2, 4, 6, 8, 10, and 12, as detailed in Section
3.1). Relative error is calculated between the predicted surface rough-
ness and the actual surface roughness estimated using the FPP mea-
surement results in Section 3.1. The relative errors of all the 252 model
predictions (7 model prediction/layer x 6 bar x 6 layer/bar) accuracy
are compared in Fig. 18, which shows that across all the layers and bars
the models using spatter count as input generally and significantly
outperform those with input of only process parameters. The best model,
shown using a mark of green downward triangle, adopts VED and spatter
count as the SVM inputs. Among all the predicted results, the surface
roughness predicted for Layer 66 has the highest relative error. The
reason could be attributed to imbalanced dataset as the model is
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Fig. 18. Relative error of the trained models using different combinations of features (process parameters and spatter signature) as predictors to predict the in-
process layer surface roughness of six sample layers in six fatigue bars measured by the in-situ FPP. The division of the layers is annotated as the blue vertical
line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
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SVM regression models' performance metrics for layer surface roughness predictions using different
combinations of inputs. In-situ monitored signatures of Hatching angle and Average spatter count

are boldfaced.

Model Input RMSE (um) MAE (um) MRE (%)
Process parameters (P, V, HS) 5.2 4.0 29.9
Process parameters (P, V, HS)
Hatching angle & & 2
Process parameters (P, V, HS)
Average spatter count e b/ (e
VED 5.1 4.0 29.8
VED
Hatching angle — be 28
Average spatter count 4.2 2.7 18.7
VED
Average spatter count i = e

constructed on sparse data with six layers data. Oversampling and down
sampling from minority class can happen and contribute to the pre-
dictions error.

To further evaluate the performances of models with different inputs,
three explicit metrics - Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Mean Relative Error (MRE) are used. Table 4 shows
the evaluation metrics of all the seven models. Based on the results, it is
evident that using solely nominal processing parameters are not as ac-
curate as using solely spatter count to predict layer surface roughness.
Note that the two models of “(P, V, HS) + Hatching angle” and “VED +
Hatching angle” have the same values due to their little difference (<
0.00002 % relative error). However, comparing other pairs (marked
with a matching color in Table 4) of models that use (P, V, HS) and VED
plus the same input feature(s), we find that the models with VED would
perform slightly better than those with (P, V, HS). Therefore, we
recommend using VED as a LBPF process feature rather than (P, V, HS)
to predict layer surface properties. This recommendation is also because
VED (Eq. (2)) incorporates the variable of layer thickness that can
significantly affect spatter formation [43]. Moreover, models using
hatching angle plus nominal process settings — (P, V, HS) or VED as the
input perform better than those using only the process settings but are
not as accurate as those using spatter count. We also attempt to purely
use spatter count as an input without any process parameters and find
that the model yield less error than those models using process param-
eters or VED with/without hatching angle. Furthermore, the best model
is found to be the one using spatter count along with VED, resulting in
the lowest error in each of the metrics - RMSE, MAE, and MRE. All the
results validate that spatter count is the most informative feature in this
case due to its ability to reflect the influence of laser power, scan speed,
and hatching angle. Our work also corroborates VED as an appropriate
lumped, scaling factor for characterizing LPBF processes and incorpo-
rating the impacts of laser power, scan speed, hatching space, and layer
thickness.

Besides, Wang et al. [45], develops an analytic equation to predict
the upper surface roughness of printed part using processing parameters
and simulated MP depth information. Their model achieves the accuracy
around 17.2 % MRE. Our resulting model using VED along with the
average spatter count per MP derived from in-situ monitoring data
outperforms the literature analytic model with better accuracy (11.0 %
MRE) and computational efficiency (no need for compute-intensive
simulation).

Based on all the quantitative comparisons above, we conclude that
spatter monitoring and signatures registration can greatly help predict
in-process layer surface properties more accurately. It is worth pointing
out that our registered spatter signatures can aid in the prediction of
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both dynamic in-process layer surface roughness and as-built part
properties.

4. Conclusion and recommendations

Spatters in LPBF processes tend to induce rough powder layers and
printed layers, making LPBF printed components prone to porosities,
cracks, and fractures. In this work, we conduct a systematic study from
developing a framework of spatter monitoring and registration methods
to quantify the effect of agglomerated powder and liquid droplet spatters
on in-process layer surface roughness during LPBF. We find that the
attained MP spatter feature profile can help predict the layer's surface
roughness more accurately, in contrast to the traditional approaches
that would only use nominal process setting or simulation without in-
sights of real process dynamics. This is because the spatter information
can reflect key process changes including the deviations in actual laser
scan parameters (e.g., laser power, scan speed, hatching angle) and their
effects. The results also corroborate the importance of spatter moni-
toring and the distinct influence of spattering on layer surface rough-
ness. Our work paves a way for thoroughly elucidating the significant
role of MP spattering in defect formation during LPBF and realizing
online control and qualification of LPBF-AM processes.

Overall, the significant outcomes of this work can be summarized as
follows.

e a deep learning-based image segmentation model using Deep-
LabV3+ plus Resnet is developed for melt pool spatter segmentation
which reduces the misclassification errors caused by camera lens
flare and sensor noise from in-situ off-axis camera monitored images
with good accuracy (99.5 %). Furthermore, an unsupervised clus-
tering method (DBSCAN) is employed to count the continuous
spatters along with the spatter ejection angle.

A machine learning-based spatter features extraction and registra-

tion is developed using the methods as listed above. It can be

extended to register more comprehensive metrics of all types of
spatters given a better camera and improved hardware setup in the
future.

e The registered spatter signatures reveal that the spattering phe-
nomena, especially the spatter count can change remarkably at
different layers despite same nominal processing paramters. Our
results indicate that spatter formation is strongly related to the LPBF
processing parameters including not only laser power and speed but
also hatching angle (essentially gas flow). It is found that the layers
with a scan angle of ~50° relative to gas flow direction incur more
spatters per MP and higher surface roughness. As such, the developed
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spatter monitoring and signatures registration framework can pro-
vide quantitative insights to evaluate and compare different hatching
strategies.

e The most accurate SVM-based regression model to predict in-process
layer surface roughness is found to be the one that uses an input of
both the spatter count derived from in-situ monitoring data analysis
(Sections 2.2, 2.3, and 3.1) and the VED as features. It can efficiently
predict the layer surface roughness with the least error (11.0 % MRE)
compared to the conventional approach of using nominal processing
parameters as an input (29.8 % MRE).

e All our experiment results show that only using nominal process
setting (e.g., laser power, scan speed, or VED) and hatching angle is
not sufficient to predict spatter features, much less layer surface
roughness, necessitating the research on in-situ spatter monitoring
and spatter-surface relationship modeling as demonstrated in this
work.
Incorporating the effects of laser power, scan speed, and scan di-
rection relative to gas flow, the metric of spatter count is shown to be
a potential LPBF performance indicator for predicting in-process
layer surface properties more accurately than using nominal pro-
cess parameters as demonstrated in this work (> 50 % less error
comparing the RMSE value of 2.2 pm vs ~5.0 pm as shown in
Table 4). Provided enhanced monitoring systems (e.g., higher-speed
camera that can capture the spatter redeposition location), more
comprehensive spattering metrics can be obtained to serve as a set of
inclusive, powerful process signatures for effectively predicting the
properties of both in-process layer surface and final parts, including
defects on exterior surfaces and inside the body.

Moving forward, our developed in-situ MP spatter monitoring system
and registration framework can be further developed to provide spatial
profiles of key spatter signatures for all monitored layers in LPBF, and
our spatter-layer-surface-roughness correlation method can be used to
aid process control or in-process defects correction for enhanced part
properties. In the future, one can extend our spatter registration
framework to include more types of spatters with advanced hardware
setup. It is worth pointing out that our monitoring system does not track
the full trajectory of spatter in this work. Besides, our method does not

Appendix A

A.1. Dilated convolution for semantic segmentation neural networks
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count the spatters overlapped with MP since the clustering method can
only characterize disconnected parts. This limitation needs to be
addressed in our future work. Meanwhile, the in-situ FPP system can
also be upgraded to address the phase error induced harmonic fluctua-
tions in height profile. The advancement of our LPBF-specific FPP
technology will provide a more accurate approach to characterize the in-
process layer surface roughness and analyze its correlation with the
spattering phenomenon in LPBF based AM. Furthermore, LPBF process
optimization and control can be conducted by using the dynamic feed-
back of spatter signatures and layer surface roughness to improve the
final printed part properties.
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The primary objective of using the dilated convolution is to expand and extract features from different field of view as the convolutional filter is
dilated with certain stride for the segmentation neural network. Dilated convolution is the convolution filter which is convenient in controlling the
resolution of features extracted and the filter's field of view. This filter is powerful in augmenting features from broader view. Specifically for the image
data, the output feature map y from convolution operation is computed using input feature map x and convolution filter w.

Yi = E XitrekWi
k

A-(1)

In Eq. A-(1), r is the dilated stride or rate, and k is the convolution size. When the dilated stride is 1, the convolution becomes the standard depth-
wise convolution kernel filter. The primary objective of using the dilated convolution is to expand and extract features from different field of views for

the segmentation neural network.
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A.2. Melt pool spatter signature map for Layers 66, 67, 68, 69, 72, and 75

Fig. A-1 shows the registered spatter signatures for the 16 fatigue specimens used for this work including Layers 66, 67,68, 69, 72, and 75.
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A.3. Masked 2 Dimensional Fast Fourier Transform Filtering (2DFFT Filtering) and experiment data of surface topography measurements.

In order to reduce the harmonic phase error which can be observed as the background vertical strips from Fig. A-2 (a), a manual mask is selected as
shown in Fig. A-2 (d) to reduce the background noise/strips. As the harmonic phase error appears to be the period pattern along the x-axis, the mask is
selected to cover or filter the high magnitude frequency component along the x-axis from the Fourier transformed spectrum.
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Fig. A-2. 2D Fast Fourier Transformation Filtering (2D FFT) on the surface topography measurements. (a) surface topography of the in-situ single layer blocks
printing experiment before 2D FFT filtering. (b) Frequency magnitude spectrum before 2D FFT filtering. (c) Surface topography of the in-situ single layer blocks
printing experiment after 2D FFT filtering. (d) Frequency magnitude spectrum after 2D FFT filtering.
Using the same filtering setting, surface topography from layer 66, 67, 68, 69, 72, and 75 are calculated from the raw acquired images with the
project fringe patter. Fig. A-3 shows the complete the surface topography data for all the layers presented in this work.
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Fig. A-3. Surface topography measurements for bar 2, 4, 6, 8, and 10 from Layers 66, 67, 68, 69, 72, and 75.

A.4. Experiment data of average spatters per bar sample and the areal surface roughness characterized per specimen
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Fig. A-4. Areal surface roughness for all the samples monitored across layer 66, 67, 68, 69, 72, and 75 versus the average spatter count per sample.

Shown in Fig. A-4, it can be observed that within each processing regime, the increase in spatter count is related to the increase the areal surface
roughness monitored.
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Fig. A-5. The trend of the areal surface roughness and registered spatter count across the monitored layers for the transition and keyhole samples.

Results from Fig. A-5 are supplemental and help to explain the observations of the correlation between spatter and surface quality from both Fig. 12
and Fig. 13.

A.5. Experiment data of spatter count per melt pool under different settings of laser power and scan speed

Table A-1 and Table A-2 present the average spatter count per MP for Layer 66 at varying laser and scan speed, respectively, while keeping all the
other processing parameters the same. It can be observed that the spatter formation is linearly related to both laser power and scan speed with all the
other conditions remaining the same.

Table A-1
Average Spatter Count at varying laser power at layer 66, 67, 68, 69, 72, and 75. Standard deviation is shown in parentheses.

Laser Power L66 L67 L68 L69 L72 L75
200 W 1.4 (0.8) 2.0(1.7) 1.7 (1.4 1.4 (0.9) 1.3 (0.8) 1.9 (1.6)
250 W 2.3(1.7) 3.6 (2.2) 2.3(1.7) 2.7 (1.9) 2.1(1.8) 3.5(2.1)

(continued on next page)
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Table A-1 (continued)

Journal of Manufacturing Processes 104 (2023) 289-306

Laser Power L66 L67 L68 L69 L72 L75
300 W 3.6 (2.6) 5.0 (2.7) 3.7 (2.3) 4.1 (2.6) 3.4 (2.5) 5.0 (2.8)
350 W 4.1(2,9) 5.2(2.9) 5.0 (2.9) 5.4 (3.1 5.0 (2.9) 5.3(2.8)
Table A-2
Average Spatter Count at varying scan speed at L66, 67, 68, 69, 72, and 75. Standard deviation is shown in parentheses.
Laser Scan Speed L66 L67 L68 L69 L72 L75
0.5 m/s 2721 4.0 (2.9) 3.4 (3.0) 3.6 (2.9) 3.2(3.0) 5.2 (3.6)
0.75 m/s 2.3@1.7) 3.6 (2.2) 2.3(1.8) 2.7 (1.9) 2.1(1.8) 3.5(2.1)
1.0 m/s 1.0 (0.7) 2.5(1.7) 1.3(1.1) 1.2 (0.8) 0.9 (0.6) 2.1(1.6)
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