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Abstract

When modeling the population of merging binary black holes, analyses have generally focused on characterizing
the distribution of primary (i.e., more massive) black holes in the binary, while using simplistic prescriptions for
the distribution of secondary masses. However, the secondary mass distribution and its relationship to the primary
mass distribution provide a fundamental observational constraint on the formation history of coalescing binary
black holes. If both black holes experience similar stellar evolutionary processes prior to collapse, as might be
expected in dynamical formation channels, the primary and secondary mass distributions would show similar
features. If they follow distinct evolutionary pathways (for example, due to binary interactions that break symmetry
between the initially more massive and less massive stars), their mass distributions may differ. We present the first
analysis of the binary black hole population that explicitly fits for the secondary mass distribution. We find that the
data is consistent with a ~30 M, peak existing only in the distribution of secondary rather than primary masses.
This would have major implications for our understanding of the formation of these binaries. Alternatively, the
data is consistent with the peak existing in both component mass distributions, a possibility not included in most
prev10us studies. In either case, the peak is observed at 31.4753 M, which is shifted lower than the value obtained
in previous analyses of the marginal primary mass dlstrlbutlon, placing this feature in further tension with
expectations from a pulsational pair-instability supernova pileup.

Unified Astronomy Thesaurus concepts: Gravitational wave sources (677); Gravitational waves (678);
Gravitational wave astronomy (675); Binary stars (154); Globular star clusters (656); Common envelope evolution
(2154); Hierarchical models (1925); Bayesian statistics (1900); A supergiant stars (8); Supernova remnants (1667)
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1. Introduction

Dozens of gravitational-wave (GW) events have been
observed by the LIGO (Aasi et al. 2015), Virgo (Acernese
et al. 2014), and KAGRA (Akutsu et al. 2021) detector network
(Abbott et al. 2023c), and many more detections are anticipated
by the end of the fourth observing run. However, the formation
mechanism of binary black hole (BBH) mergers, which are the
source of the majority of detected GW events, is still largely
uncertain. While it is not possible to know the formation
history of any one BBH with certainty, the population of all
merging BBHs encodes information about which astrophysical
processes give rise to the bulk of these systems (e.g., Stevenson
et al. 2015; Zevin et al. 2017).

The stellar-mass BBHs detectable by LIGO, Virgo, and
KAGRA are likely created from the collapse of massive stars.
These massive stars may be born as a binary system in the
galactic field, which then evolves into a BBH system.
Alternatively, they may be born in a dense stellar environment,
such as a star cluster, in which the black hole (BH) stellar
remnants dynamically assemble into tightly bound binaries.
The population of GW sources contains signatures of the initial
conditions of their progenitor stellar systems, as well as many
of the evolutionary processes that occur between star formation
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and BBH merger. The initial conditions that impact the GW
source population include the initial mass function (IMF) of
either binary or single stars in different environments, the birth
metallicities of the progenitor stars, and other aspects of their
formation environments. Depending on the BBH formation
scenario, the evolutionary processes that are imprinted on the
BBH population include stellar mass loss, transfer of matter
between the two component stars, the supernova process for
massive stars, and dynamical interactions in star clusters or the
disks of active galactic nuclei (see reviews by Mapelli 2020;
Mandel & Farmer 2022, and references therein).

In general, these uncertain formation processes affect the
masses, spins, redshifts, eccentricities, and merger rates of
BBH systems. Here we focus on the mass distribution, since
BH masses are well measured from the GW signal.

The BBH mass distribution is typically parameterized by the
primary mass m;, the larger of the two component masses in the
binary, and either the secondary mass m,, or the mass ratio
q=my/m;. Within these parameterizations, it is typically
assumed either that the primary and secondary masses follow
the same underlying distribution (Doctor et al. 2020; Fishbach &
Holz 2020; Farah et al. 2022; Abbott et al. 2023a; Edelman et al.
2023; Sadiq et al. 2023), or that the primary mass distribution has
distinct features from those of the secondary mass distribution.
The latter assumption implies that primary and secondary mass
are physically meaningful labels, and is typically achieved by
modeling the secondary mass distribution as a single power law
between some minimum mass and m; (Fishbach & Holz 2017,
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Kovetz et al. 2017; Talbot & Thrane 2018; Abbott et al.
2021a, 2023a; Baxter et al. 2021; Tiwari 2021; Edelman et al.
2022a; Callister & Farr 2023; Godfrey et al. 2023). The former
assumption—that m; and m, follow the same underlying
distribution—implies that the two-dimensional mass distribution
is symmetric in primary and secondary mass, meaning that m
and m, can be interchanged without changing the mass
distribution. Neither of these assumptions have been explicitly
verified with the available data. In this work, we aim to determine
if both components in merging BBHs follow the same underlying
distribution or if there is a physical distinction between primary
and secondary masses.

Understanding whether the primary and secondary masses in
BBH mergers follow the same distribution will provide insight into
their formation histories. For BBH mergers that are dynamically
assembled in dense environments, we expect that both component
BHs are drawn from the same population of stellar remnants (i.e.,
my and m; are not physically meaningful labels), and that the two-
dimensional BBH mass distribution will therefore be symmetric in
my and m,. For BBH mergers that originate from binary stars that
formed and evolved in relative isolation (“field binaries™), there
may be a physical distinction between primary and secondary BH
masses. To start off, the progenitor stars in the binary are drawn
from the binary IMF, which may not be symmetric between the
two components (e.g., Grudi¢ et al. 2023). Furthermore, the two
stars exchange mass during binary stellar evolution. In each phase
of mass transfer, one component acts as the donor and the other as
the accretor, depending on their initial masses. Mass transfer
affects the donor and accretor stars in different ways, which can
impact the masses of the resulting BHs following stellar collapse
(Laplace et al. 2021). On the other hand, both BH progenitors are
expected to have undergone binary stripping and therefore
experience similar supernova physics, potentially washing out
any significant differences between the mass distributions of first-
and secondborn BHs (van Son et al. 2022b; Schneider et al. 2023).
However, the degree to which these distributions are similar or
different depends on uncertain mass loss and accretion physics
(van Son et al. 2022a).

Supernova kicks may also be different for firstborn versus
secondborn components in merging binaries, because kicks
determine whether or not the binary can merge within the age
of the Universe (Kalogera 1996; Gallegos-Garcia et al. 2022).
Because natal kicks are related to the remnant mass via the
supernova prescription (Fryer et al. 2012; Mandel et al. 2021),
different preferences for the natal kick magnitudes between
firstborn and secondborn BHs may cause the primary and
secondary mass distributions to differ in merging binaries
formed through isolated binary evolution (e.g., Oh et al. 2023).

In short, binary stellar evolution consists of several processes
that can break the symmetry between the population of initially
more massive stars, which generally correspond to the firstborn
and more massive (primary) BHs, and the population of
initially less massive stars, which generally correspond to the
secondborn and less massive (secondary) BHs. However, if
mass inversion occurs in some systems, some initially less
massive stars will end up as the more massive BHs by the time
of merger, and the distribution of primary BH masses will have
contributions from both the secondborn and firstborn
BHs (Olejak & Belczynski 2021; Broekgaarden et al. 2022; Hu
et al. 2022; Zevin & Bavera 2022). If mass inversion happens
in exactly half of merging BBH systems, the primary and
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secondary component mass distributions may be indistinguish-
able even if the first- and secondborn distributions differ.

From a data analysis perspective, knowing that the primary
and secondary mass distributions are the same allows us to
measure a single set of model parameters: those of the shared
distribution. This may allow features of the distribution to be
measured with higher precision since both components in the
binary will contribute to the measurement of each feature,
rather than just the primary mass. Furthermore, disentangling
the role of primary and secondary masses aids the physical
interpretation of such features.

For example, Abbott et al. (2023a) found that the mass
distribution exhibits a peak at primary masses m; ~ 35 M. The
astrophysical origin of this overdensity in the mass distribution is
uncertain, although it may be related to (pulsational) pair-
instability supernovae (e.g., Heger & Woosley 2002; Fishbach &
Holz 2017; Talbot & Thrane 2018; Farmer et al. 2019). A
necessary ingredient toward understanding the origin of the
my ~ 35 M, peak is to first understand whether the peak appears
exclusively among primary BBH masses, or whether secondary
masses also display a peak, indicating that secondary BHs also
experience the astrophysical process that leads to a mass pileup.

This paper is organized as follows. In Section 2 we describe
the different population models considered in this work. In
Section 3 we present the results of fitting each of the models to
the Third Gravitational-wave Transient Catalog (GWTC-3;
Abbott et al. 2023c), finding that while the primary and
secondary masses of merging BBHs are consistent with
following the same underlying distribution, it is also possible
that the secondary mass distribution has a more prominent peak
than does the primary mass distribution. In Section 4 we
discuss possibilities for future observations. In Section 5 we
summarize our conclusions and present possible astrophysical
interpretations of our results. The appendices discuss the
fundamental differences between commonly used parameter-
izations for the two-dimensional mass distribution and include
details about the population models and statistical framework.

2. Population Models

Because our aim is to learn whether the primary and
secondary masses are consistent with being drawn from the
same distribution, we describe the primary and secondary mass
distributions separately, but according to the same functional
form. We model each of the one-dimensional mass distribu-
tions as a mixture model between a smoothed power-law
component and a Gaussian component in order to make direct
comparisons to the POWER LAW + PEAK model used by the
LIGO-Virgo—-KAGRA collaboration (LVK) to describe the
distribution of primary masses (Talbot & Thrane 2018; Abbott
et al. 2021a, 2023a).

There are several ways to construct a two-dimensional mass
model for the binary from this one-dimensional mass model for
the component masses. However, as we discuss in Appendix A,
in order to explicitly compare primary and secondary mass
distributions, it is necessary to use the pairing function
framework first introduced for GW population modeling in
Fishbach & Holz (2020). Explicitly,

p(my, mo|A) = p,(mi|A)p, (ma| A2)f (g5 By), (D

where pi(mi|A;) is the underlying distribution of primary
masses, p,(ms|A,) is the underlying distribution of secondary
masses, f(g) is a pairing function that depends on the mass ratio
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of the system’, A, and A, are hyperparameters® describing the
underlying primary and secondary mass distributions, respec-
tively, and A= {Ay, A,, B,} is the set of all mass model
hyperparameters. In this work, we use a pairing function of the
form f(q; 3,) = ¢"©(q < 1), though other forms may
provide a better fit to the data (e.g., Farah et al. 2022).

As illustrated in Figure 1, different choices for the relation-
ship between A; and A, result in distinct morphologies for the
two-dimensional mass distribution. Below, we list each of the
variations we consider in this work, along with the panels in
Figure 1 to which it corresponds. A table describing these
variations in terms of choices for the hyperprior is given in
Appendix B.3.

1. PAIRING:SYMMETRIC. This model sets A; = A,, making
the distribution symmetric under the transformation
my < my. It corresponds to the first row of Figure 1: any
feature in one of the distributions has to be present in both,
so it always makes two bands that connect on the diagonal.

2. PAIRING:GENERIC. This model allows the hyperpara-
meters describing the ~35 M., peak to differ between
p1(my|Ay) and po(my|A). It can produce any of the panels
in Figure 1, and is the only model that can produce a
scenario such as that illustrated in the middle panels,
where the feature in m; has a different amplitude and
location from those of the feature in m,.

3. PAIRING:NO PEAK IN p,(m,). This model sets all A, = A,
except for the parameter governing the height of the
~35 M., peak, which we set to vanish for the secondary
mass distribution but fit as a free parameter for the
primary mass distribution. This model corresponds to the
bottom row of Figure 1: it is only capable of having a
peak in the primary mass distribution, so can only
produce vertical bands in a two-dimensional mass
distribution. In Appendix A.3, we show that PAIRING:
NO PEAK IN p,(m,) approximately mimics the behavior of
the commonly used POWER LAW + PEAK model from,
e.g., Abbott et al. (2023a), which we refer to as LVK 2023.

The different columns in Figure 1 correspond to different
power-law spectral indices, (3, for the mass-ratio-dependent
pairing function. The leftmost panels show models where
components in the binary are allowed to pair up independently of
the mass ratio, the middle column shows a model where
components have a slight preference to pair up with partners that
are of equal mass, and the rightmost panels show the case where
components are very “picky”: they almost always pair up with
equal-mass partners (Fishbach & Holz 2020). When components
pair up nearly independently of the mass ratio, the asymmetric
models produce noticeably different distributions from those
produced by the symmetric models. However, in the case of very
picky binaries, the two scenarios become difficult to tell apart.
There is therefore a degeneracy between the steepness of the
pairing function and the existence of distinct features in the two
mass distributions (see Tiwari 2023 for a discussion of this
phenomenon in terms of Jacobian transformations).

In all models considered in this work, the redshift distribution
is modeled as a power law with spectral index « (Fishbach et al.

5 In principle, the pairing function can be parameterized in terms of any
observable parameter (e.g., total mass).

® We use the term “hyperparameter” for a model parameter that describes the
population of merging compact binaries, in contrast to parameters describing
each individual GW detection, such as one system’s masses and spins.
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2018). We use the DEFAULT spin model from Abbott et al.
(2021a, 2023a) to describe the spin magnitudes and tilts of each
component. These are the same redshift and spin distributions
used with LVK 2023 in Abbott et al. (2023a). The explicit form of
the full population model is given in Appendix B.

Using these parameterized models, we construct a hierarch-
ical Bayesian inference (described in Appendix C) to determine
the appropriate population-level parameters for the mass
distribution, A, given the observed set of data {D;} for N
observed events (Loredo 2004; Mandel et al. 2019). We model
the data as an inhomogeneous Poisson process with the rate
density (the number of events per unit time per single-event-
parameter hypervolume) given by

dN

=R, S1, 8 my, mo|), 2
dmdm. dsdsade  P@PGst s)pm. moll). - (2)

where R acts as a normalizing constant that sets the overall
magnitude of the rate.

3. Results

We fit each model described in Section 2 to the BBHs in
GWTC-3. The resulting two-dimensional mass distributions for
the PAIRING:SYMMETRIC and PAIRING:GENERIC models are
shown in Figure 2. These plots represent an average over the
hyperposterior for each model; this average is sometimes
referred to as a posterior population distribution (PPD). The
contours differ in morphology from those illustrated in Figure 1
because the actual distribution of BBH component masses
exhibits two peaks, one at ~10 M, and another at ~35 M,
(Abbott et al. 2021a; Tiwari 2021; Edelman et al. 2022a, 2023;
Sadiq et al. 2022; Abbott et al. 2023a; Farah et al. 2023; Ray
et al. 2023), whereas we only place one peak in the models
shown in Figure 1. The peak at ~10 M, creates bands in all
panels that have very little vertical extent because the peak is
proximal to the minimum BH mass. Nonetheless, fits using
both models exhibit vertical and horizontal bands, indicating
peaks in both py(m;) and p,(m,). While the PAIRING:SYM-
METRIC model requires this behavior, the PAIRING:GENERIC
model does not, meaning that the secondary mass distribution
appears to exhibit its own feature at ~35 M. Furthermore, the
fact that PAIRING:GENERIC produces a PPD similar to that of
PAIRING:SYMMETRIC indicates that the data support consistent
primary and secondary mass distributions.

The bands in all panels do not go to the full extent of the
parameter space but rather taper off from the diagonal,
indicating a preference for equal-mass binaries either through
a pairing function or through a mass ratio distribution that
favors my ~ ms,.

3.1. Primary and Secondary Masses Are Consistent with
Having the Same Underlying Distribution

The underlying distributions (i.e., before a pairing function is
applied) of the primary and secondary masses are shown in
Figure 3 for the two pairing function models. There is a region
of overlap between the primary and secondary mass distribu-
tions under the PAIRING:GENERIC model, indicating that the
primary and secondary mass distributions are consistent with
each other. As expected, this region of overlap also coincides
with p(m), the distribution describing both component masses
in the PAIRING:SYMMETRIC model.
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Figure 1. Illustration of some possible two-dimensional mass distributions under the models considered in this work. These distributions are not indicative of specific
astrophysical predictions, but are instead meant to be illustrative of the morphologies accessible by current models. Overdensities/peaks in the mass distribution
appear as darker filled contours in these figures. The different columns correspond to different power-law spectral indices for the mass-ratio-dependent pairing
function, 3,. In the case where components strongly prefer to pair with nearly equal-mass partners, it becomes difficult to determine whether a feature appears only in
one component mass distribution (as in the PAIRING:NO PEAK IN p,(m,) model, bottom row) or in both (PAIRING:SYMMETRIC, top row). The diagonal contours in the
middle and right columns are caused by a preference for equal-mass binaries and follow lines of constant mass ratio. The goal of this paper is to distinguish between

the different scenarios illustrated in this figure.

Models not explicitly parameterized in terms of a pairing
function are unable to produce underlying distributions such as
those shown in Figure 3, so for the sake of comparison to
previous work, we turn to conditional’ m, distributions,
p(mo|my = C), where C can be any number in the domain of the

7 While marginal distributions are typically used for the purpose of comparing

PPDs from several models on a single plot, they are not sensitive to differences
between two-dimensional mass distributions when equal masses are preferred
(see Appendix B.3), so we use conditional distributions instead.

my distribution. Figure 4 shows these conditional distributions
for the PAIRING:SYMMETRIC, PAIRING:GENERIC, and LVK 2023
models, the latter of which does not use a pairing function. The
curves in Figure 4 are averaged over the hyperposterior for
each model.

For all values of C, the inferred distribution under the
PAIRING:GENERIC model behaves similarly to that of the
PAIRING:SYMMETRIC model, indicating consistency between
the primary and secondary mass distributions. In particular,
under the PAIRING:SYMMETRIC and PAIRING:GENERIC models,
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Figure 2. Two-dimensional PPDs for PAIRING:SYMMETRIC (left, orange), PAIRING:GENERIC (middle, purple), and PAIRING:NO PEAK IN p,(m,) (right, pink), all fit to
the BBHs in GWTC-3. Darker colors indicate a higher rate of sources, and each panel is individually normalized to its maximum value. All three models find a higher
rate of events near the m; = m, diagonal, as well as peaks at m; ~ 10 M, and m; ~ 35 M. PAIRING:SYMMETRIC and PAIRING:GENERIC both find peaks in m, as
well, as indicated by the horizontal bands in the two leftmost panels, whereas PAIRING:NO PEAK IN p,(m;) is unable to model features in the m, direction.
Additionally, PAIRING:SYMMETRIC and PAIRING:GENERIC display peaks in similar locations despite the fact that PAIRING:SYMMETRIC requires that both m; and m,
follow the same underlying distribution but PAIRING:GENERIC is able to model each component separately. This suggests that both components may be drawn from

the same underlying distribution, up to a pairing function.
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Figure 3. Underlying distribution of primary and secondary masses for the
PAIRING:SYMMETRIC (orange) and PAIRING:GENERIC (purple) models. Under
the PAIRING:SYMMETRIC model, p(m;) = p(my) = p(m), so only p(m) is
shown. The p(m) under PAIRING:SYMMETRIC is more tightly constrained than
p1(my) (purple filled band) or p,(m,) (dotted—dashed lines) under PAIRING:
GENERIC as it has twice as many observations per free parameter. These
distributions are constructed to describe the population of BHs before the
function that pairs components into merging binaries is applied. All three
underlying distributions are consistent with one another, though p,(m,) appears
to have a large peak at ~35 M, while p;(m,) has some support for no peak in
that region; p(m) does not have support for no peak, but its peak is constrained
to be small, while the peak in p,(m,) is less well constrained and may be larger
in amplitude. This hints at the possibility that the peak identified in the primary
mass distribution by the LVK 2023 formalism may have been driven by a peak
in py(my) rather than a peak in pi(m;), though hyperparameter uncertainties
within PAIRING:GENERIC are too large for us to definitively determine this, and
the data is consistent with p;(m;) = po(m,).

we see a peak in the conditional secondary mass distribution
p(ms|my = C) when C > 35 M, (solid and dotted lines). While
m, generally prefers to be near m;, as indicated by the upward
trend in all models, the two pairing function models have more
support for m, being within the peak than for m, being nearly
equal to m; when m; is large (dotted lines). This behavior is in
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Figure 4. Conditional PPDs for the models considered in this work. We show
the secondary mass distributions conditioned on m; =20 M, (dashed),
my = 35 M, (solid), and m; = 70 M., (dotted) to exemplify when the primary
mass is below, inside, and above the Gaussian peak, respectively. Orange lines
correspond to PAIRING:SYMMETRIC, purple lines to PAIRING:GENERIC, and
green lines to LVK 2023. Lines denote the mean posterior probability,
marginalized over the hyperparameter uncertainty, and credible intervals are
omitted for clarity. When m;, is below the peak, all models agree. When m; is
above or within the peak, PAIRING:SYMMETRIC and PAIRING:GENERIC exhibit
a stronger preference for m, to be in the peak than the LVK 2023 model does
because the latter is constructed to behave like a power law in the range
[Mmin, my]. The fact that PAIRING:GENERIC and PAIRING:SYMMETRIC approxi-
mately agree on the peak location and height indicates that the primary and
secondary masses may follow the same underlying distribution up to a pairing
function.

contrast to that of the LVK 2023 model, which forces the
conditional secondary mass distribution p(m,|m; = C) to mono-
tonically increase for all values of C because it does not allow for
a peak in m,. While the PAIRING:GENERIC model can replicate
this behavior, it instead recovers similar distributions to those of
the PAIRING:SYMMETRIC model. The Bayes factor of PAIRING:
GENERIC relative to PAIRING:SYMMETRIC is B(PAIRING:GEN-
ERIC)/B(PAIRING:SYMMETRIC) = 0.38, indicating an inability
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Figure 5. Marginal posteriors on y, the location of the Gaussian peak, for the
LVK 2023 and PAIRING:SYMMETRIC models. This parameter is more precisely
measured under the PAIRING:SYMMETRIC formalism by ~1/+/2, indicating
that m, and m, independently contribute to this measurement. This parameter 1
is the most correlated parameter with the Hubble constant when using “spectral
sirens” (Ezquiaga & Holz 2022; Abbott et al. 2023b), so using the PAIRING:
SYMMETRIC model will presumably improve cosmological measurements. The
central values of the two distributions differ because the hyperparameter has
slightly different effects on the resulting two-dimensional mass distribution of
each model.

to distinguish between the two models, with perhaps a modest
preference for the PAIRING:SYMMETRIC model.

3.2. Improved Constraints on Peak Location

If the primary and secondary mass distributions are identical,
we can better measure the properties of features in that common
distribution by using measurements of both m, and m,. Figure 5
shows the one-dimensional hyperposterior for the location, y, of
the Gaussian peak in the mass distribution under the PAIRING:
SYMMETRIC and LVK 2023 models. We measure p with a
standard deviation of 1.50 M., under the PAIRING:SYMMETRIC
model compared to 2.08 M. under the LVK 2023 model,
representing a 28% improvement. This increase in precision is
similar to that expected from using twice the number of
independent events (1 — 1/ J2 = 0.29), because now both m;
and m, contribute to the inference, rather than just m,.

Furthermore, the PAIRING:SYMMETRIC model recovers a
lower value of y = 31.4%33 M., (median and 90% credible
interval) compared to the LVK 2023 result of pu = 33.67%%,
because it refers to a feature in the underlying p(m) distribution
rather than one in the marginal m, distribution. Features in p(m)
appear at larger masses in the marginal m; distribution and at
lower masses in the marginal m, distribution due to the
constraint that m; > m,.

If the ~35M,. peak is believed to be a feature of the
supernova remnant mass distribution, it is best to use its
location in the underlying p(m) distribution rather than its
location in the marginal distribution. For example, analyses
wishing to compare this feature with expectations from a pair-
instability supernova pileup (e.g., Stevenson et al. 2019;
Farmer et al. 2020) should use the value presented here
(u = 31.4733 M,). Interestingly, this lower peak location is in
further tension with the latest theoretical predictions for a pair-
instability pileup (Farag et al. 2022).
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When possible, though, it is best to compare theoretical
predictions directly to the two-dimensional mass distribution
(such as those in Figure 2) rather than to the values of specific
hyperparameters, since hyperparameters have different meanings
in different models. Correspondingly, it is important that models
used to fit the data are intentionally constructed to allow for
features in both the primary and secondary mass distribution.
Many of the current parametric (Fishbach & Holz 2017; Talbot
& Thrane 2018; Abbott et al. 2021a, 2023a; Baxter et al. 2021)
and nonparametric (Tiwari 2021; Edelman et al. 2022a; Callister
& Farr 2023; Godfrey et al. 2023) BBH mass distribution
models enforce asymmetry between m; and m,, excluding the
possibility that the primary and secondary mass distributions
share the same features® (with a few exceptions, e.g., Edelman
et al. 2023; Ray et al. 2023; Sadiq et al. 2023). It is possible to
construct a mass distribution that allows for features in both the
primary and secondary mass distribution without using a
pairing function (e.g., Ray et al. 2023), but directly comparing
the primary and secondary mass distributions using these
parameterizations is less straightforward.

Another application of our improved measurement of the
peak location is “spectral siren” cosmology, which uses such
features in the mass distribution to infer the expansion history
of the Universe (Chernoff & Finn 1993; Messenger &
Read 2012; Taylor et al. 2012; Farr et al. 2019; Ezquiaga &
Holz 2021, 2022; Abbott et al. 2023b). Previous analyses have
found the location of this peak to be the parameter most
correlated with the Hubble constant (see Figures 5 and 13 of
Abbott et al. 2023b), so an improved constraint on p should
have a relatively large effect on the constraints of cosmological
parameters if all other mass distribution parameters remain
equally well constrained.

3.3. Evidence for a Peak in the Secondary Mass Distribution

Consistency between the primary and secondary mass
distributions implies a peak in the secondary mass distribution
at my~30M., as this feature has already been robustly
identified in the primary mass distribution (Abbott et al.
2021a, 2023a; Tiwari 2021; Callister & Farr 2023; Edelman
et al. 2023; Farah et al. 2023). However, the data is also
consistent with differing primary and secondary mass distribu-
tions, as shown by the regions in which the filled and dashed
bands do not overlap in Figure 3. In this case, it is worthwhile
to explicitly determine whether there exists a peak in the
secondary mass distribution.

The left panel of Figure 6 shows the posterior distribution for
the parameters governing the height of the peak in m; and m;,
under the PAIRING:GENERIC model, A; and )\,, respectively.
Setting A(12; = 0 means that no binaries in the astrophysical
population are in the Gaussian peak’, while Af1,2) = 1 means
all binaries are in the Gaussian peak. The lower left and upper
right regions of the two-dimensional posterior are excluded,
meaning that A; and )\, cannot both be zero, nor can they both

8 Callister & Farr (2023) and Godfrey et al. (2023) use flexible models to fit p
(g) rather than using power laws, but they do not use a pairing function and
instead fit the m; and ¢ distributions independently, therefore assuming the
product of the marginal distributions equals the two-dimensional distribution.
This is the same fundamental choice as is described in Equation (Al), and
therefore assumes that m; and m, follow different distributions.

° The integrated fraction of events in the region near the peak is higher than
the fraction indicated by A because both the Gaussian peak and the underlying
power law contribute to the rate in that region. Therefore, A(;,; = 0 does not
mean that there are no events with masses ~35 M.
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Figure 6. Hyperposteriors under pairing function models. Left: corner plot of hyperparameters governing the height of the Gaussian peak for the primary (\;) and
secondary ()\,) mass distributions under the PAIRING:GENERIC model. The medians and 90% credible intervals are shown above their respective marginal
distributions. The medians indicate that roughly 17% of BBHs have secondary masses in the Gaussian peak while 4% have primary masses in the peak, though this
preference for a larger peak in p,(m,) may be due to the relatively poor constraint on A, rather than being a true preference in the data. The lower left portion of the
two-dimensional posterior is excluded, indicating that there must be a peak in either p;(m;) or po(m,), and a slight preference exists for the peak to be in p,(m,) (upper
left portion of plot) or in both distributions (central portion of plot), though the peak being in p;(m;) only is not completely ruled out. For reference, the one-
dimensional posterior on A under the LVK 2023 model is shown in green, with A\ = 0.04f8_‘8§ (Abbott et al. 2023a). The dashed gray line indicates where \; = \,.
Right: marginal posteriors on (3,, the hyperparameter controlling the steepness of the pairing function under the PAIRING:SYMMETRIC, PAIRING:GENERIC, and
PAIRING:NO PEAK IN p,(m>) models. When we set A\, =0, §, increases, indicating a preference for equal-mass components. This behavior is likely caused to
accommodate an excess of events with m, ~ 35 M, which can be caused either by a peak in p,(im,) or by a peak in p;(m;) and a strong preference for equal-mass

binaries (see discussion in Appendix A.1).

be large. This indicates that either one of the two distributions
has a large peak while the other has no peak, or that both
distributions have moderate peaks.

In fact, the posterior on ), peaks at a higher value than that
on ;. Under the LVK 2023 model, the one-dimensional
posterior on A peaks between the marginal A; and )\, posteriors
of the PAIRING:GENERIC model. Additionally, in the PAIRING:
GENERIC model, A; has more support at zero relative to A,
while )\, has reduced support at zero. This hints at the
intriguing possibility that the secondary masses may be driving
the nonzero value of A found by Abbott et al. (2021a, 2023a).
In other words, it is possible that the ~30 M, peak exists in the
secondary mass distribution rather than in the primary mass
distribution. However, the data are still consistent with \; = \,:
the dashed gray line in Figure 6 intersects the 1.5¢0 contour of
the hyperposterior.

As shown in Appendix A.3, the LVK 2023 formalism behaves
similarly to PAIRING:NO PEAK IN p,(m5), which is nested
within PAIRING:GENERIC when ), = 0. Therefore, ruling out
A =0 would indicate that the pairing function formalism is
strongly preferred. We find that A\, =0 is disfavored but not
ruled out: there is 4.2 times higher posterior density at
A =0.17 (its median a posteriori value) than at A, =0. It is
therefore difficult to tell with the current number of detections
whether the data prefer for the peak to exist in p,(m;), po(my),
or both.

These three possibilities are somewhat degenerate because of
the preference for equal-mass BBHs. To illustrate this, the right

panel of Figure 6 compares the power-law spectral index, 3, of
the pairing function under PAIRING:GENERIC and PAIRING:NO
PEAK IN p,(m;). When there is no peak in p,(m,), the G,
posterior shifts to higher values, which correspond to a larger
preference for g ~ 1. This is because the PAIRING:NO PEAK IN
po>(my) model has a peak in p;(m,), so it allows for a high
fraction of secondary masses to lie within the peak by making
more binaries equal-mass. For comparison, we also plot the
posterior on (3, under PAIRING:SYMMETRIC to show how a
different set of assumptions about ), changes (3,. The shift in
B, when )\, =0 is larger than when A\, = A, suggesting that it
is driven by an excess of events with m, ~ 35 M, rather than
by other model assumptions or a different realization of the
inference.

In summary, we find modest evidence for a peak in p,(m;),
suggesting that pairing function models may be preferred over
the LVK 2023 formalism, though current observations do not
allow us to definitively rule out that the peak exists only in
pi(m,). The data is consistent with A; = A,, so there is no
strong evidence against the possibility that m; and m, are
drawn from the same underlying distribution, up to a pairing
function.

3.4. BBHs Are Picky

Pairing functions provide an intuitive way to quantify
whether the properties of one BH in a binary influence those
of its companion. Binaries that pair up independently of each
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component’s mass are described by a pairing function with
B;=0, whereas a preference for equal-mass binaries is
described by 3,>0. We find 3,>0 to be >99.99% for
PAIRING:SYMMETRIC and 99.95% for PAIRING:GENERIC. This
is consistent with an earlier study by Fishbach & Holz (2020),
who used the pairing function formalism on GWTC-1 (Abbott
et al. 2019a). However, BBHs are not maximally picky: the
posterior on 3, does not rail against the high end of the prior
bounds.

Our inferred two-dimensional mass distribution is generally
consistent with that shown by Sadiq et al. (2023), who used a
nonparametric approach and assumed that the population is
symmetric under m; <> m,. They showed evidence for peaks
in the mass ratio distribution at g ~ 0.5 when m; ~ 15 M, and
my ~ 70 M, which they interpreted as a lack of preference for
similar-mass pairings. However, we note that these peaks in
the mass ratio distribution translate to peaks in the secondary
mass distribution at ~7 M., and ~35 M, the same locations
at which the primary mass distribution exhibits peaks.
Parameterizations that assume symmetry under m; < m, but
do not use a pairing function are unable to disentangle the
effects of preference for similar-mass pairings from features in
one or both component mass distributions. We therefore
conclude that both our results and those presented in Sadiq
et al. (2023) are consistent with a preference for similar-mass
pairings as well as with structure in the secondary mass
distribution.

In this work, we only examine power-law forms for the
pairing function, but more complex models are under invest-
igation and will be presented in future work. If the pairing
function is a more complex function of mass ratio, or if it
depends on multiple parameters, such as the primary mass or
spin (e.g., Farah et al. 2022), it may become easier to distinguish
between pairing function models and models parameterized
similarly to LVK 2023, as complex pairing functions may find
more support away from the m; = m, diagonal. The same is true
if the marginal mass ratio distribution has multiple modes, or if
mass ratio is allowed to correlate with other parameters (e.g., the
effective spin; Callister et al. 2021).

4. Looking to the Future

The LVK 2023 and pairing function models differ most in
their predictions for the number of events in the region
my € [35, 40] N my € [Muyn, 30], because they disagree on
whether to place m, in the Gaussian peak or somewhat evenly
throughout the available parameter space. We can therefore
determine which model will be preferred in the future by
counting the number of detected events in that region.

It is expected that 260339 BBHs will be detected by the end
of the LVK’s fourth observing run (O4), and 870*}19° BBHs
will be detected by the end of the fifth observing run
(O5; Kiendrebeogo et al. 2023). With 260 (870) total BBH
detections, we expect 23.6 =4.6 (79.0 £ 8.5) BBHs to fall in
the region my € [35, 40] N my € [Mpin, 30] under the LVK
2023 model and 12.6 £3.5 (42.3 £6.3) BBHs under the
PAIRING:SYMMETRIC model. This means that by the end of
04, we will be able to distinguish the LVK 2023 and PAIRING:
SYMMETRIC models to >20, and we will be able to distinguish
them to >40 by the end of O5.

Of course, it will be necessary to perform a full hierarchical
analysis, as measurement uncertainties of detected systems will
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cause events to scatter into and out of this region. Additionally,
in a hierarchical Bayesian context, posterior predictive checks
performed on the event-level parameters (such as the true
masses of individual events) are less sensitive than those
performed on the observed data, such as the strain or the
maximum-likelihood event parameters (Sinharay & Stern 2003;
Gelman 2006; Bayarri & Castellanos 2007; Loredo 2013).
This is why, for example, Fishbach et al. (2020) performed
posterior predictive checks on the maximum-likelihood
values of the observed and predicted events rather than on
the posterior distributions of those events. Therefore, more
sensitive posterior predictive checks may be able to distinguish
between the two frameworks with fewer events than we
project here.

5. Summary and Implications for Astrophysics of
Merging BBHs

We present the first analysis of the secondary mass
distribution of merging BBHs. This allows us to explore
whether the primary and secondary component masses in
merging BBHs are drawn from the same distribution, or
whether the BBH mass distribution is asymmetric in m < m;
as is commonly assumed in BBH population studies. We find
the data to be consistent with two possibilities: either the
primary and secondary mass distributions are similar, or a
larger peak exists in the secondary mass distribution than in the
primary mass distribution. In either scenario, a peak likely
exists in the secondary mass distribution. This possibility is not
considered in many previous analyses of the BBH population,
which fix the secondary mass distribution to being a power law
(e.g., Abbott et al. 2019b, 2021a, 2023a) or assume that m, and
my are interchangeable (e.g., Fishbach & Holz 2020; Sadiq
et al. 2023). The existence of this secondary mass peak has
implications for the formation channels of merging BBHs and
the origin of the ~35 M, peak.

If the mass distribution is indeed symmetric under m; < m,
as in our preferred model PAIRING:SYMMETRIC, this may
imply that a large fraction of merging BBHs are formed
through dynamical assembly, in which the two component BHs
are born through a similar process and then find each other in a
dense stellar environment. In this case, the pairing function and
its dependence on mass ratio and/or total mass may encode
valuable information about dynamical processes like mass
segregation and binary exchanges.

The appearance of a peak in both primary and secondary
mass distributions is consistent with an origin in the
BH remnant mass function. However, the peak location at
31.47233 M, is in tension with predictions for pair-instability
supernovae, so this feature is likely caused by another
astrophysical process. As another application of our work, we
suggest that future spectral siren measurements consider the
PAIRING:SYMMETRIC model when inferring the Hubble
constant, because it provides an improved measurement of
the peak location relative to the LVK 2023 model and the
peak location is strongly correlated with the inferred value
of H().

On the other hand, the data remain consistent with an
asymmetric BBH mass distribution p(m;, m,), in which
pi(my) = po(m5), as in the PAIRING:GENERIC model. This
would imply that a significant fraction of merging BBHs
originate from field binaries, in which “primary” and
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“secondary” are physically meaningful labels if they tend to
correspond to the firstborn and secondborn BHs in a binary.
The component mass distributions p;(m;) and p,(m,) would
then encode the binary IMF and the highly uncertain physics
of binary stellar evolution. Specifically, the location and
prominence of features in each component mass distribution
may provide insight into how mass loss versus mass accretion
affects stellar evolution and collapse, including their effect on
supernovae and the BH remnant mass function. For example,
when mass transfer is unstable, a peak is expected at ~15 M,
in the primary mass distribution, but near the minimum BH
mass in the secondary mass distribution, though the relative
locations of these peaks depend on the common envelope and
supernova kick physics (van Son et al. 2022b).

Notably, if the BBH mass distribution is asymmetric, we find
that it is possible that no peak exists in the primary mass
distribution, and the previously identified peak in primary mass
is actually driven by an overdensity in the secondary mass
distribution. A peak that is more prominent in p,(m,) than in
p1(m;) may imply that pulsational pair-instability supernovae
are more frequent or are shifted to lower masses among
secondborn BHs.

The degree of asymmetry in the BBH mass distribution
provides insight into the frequency of mass inversion in binary
stars, providing a complementary probe to BH spins (Mould
et al. 2022). If mass inversion never occurs, m; will typically be
the remnant of the donor star. However, if mass inversion is the
norm, m; will be the remnant of the accretor star. A perfectly
symmetric BBH distribution under isolated binary evolution
would imply that mass inversion happens exactly 50% of the
time, causing the primary and secondary mass distributions to
be indistinguishable even though the binary physics imparts
different distributions on the firstborn versus the secondborn
BH, but this is statistically unlikely. Determining whether
primary and secondary BH masses follow the same underlying
distribution is therefore a novel and promising probe of
formation channels. However, this test should be interpreted
within a full BBH population inference, as theoretical models
should make consistent predictions for the mass, spin, and
redshift distributions.

We only explore parametric models in this work, and can
therefore only comment on the features in the mass distribution
explicitly parameterized by our model. Future investigations
may find it beneficial to use a nonparametric approach that
separately fits the primary and secondary mass distributions by
employing a pairing function.

We additionally find that BHs in merging binaries have a
strong preference to pair with similar-mass BHs for all forms of
the secondary mass distribution considered in this work. This is
consistent with the results presented in Fishbach & Holz
(2020), though we more confidently exclude the scenario in
which BBHs pair independently of the mass ratio since we now
have many more detected BBHs.

By the end of the LVK’s fifth observing run, we expect to
confidently distinguish between the different scenarios pre-
sented here for the BBH mass distribution. In this work, we
find that secondary masses in merging BBH systems likely
display a peak at ~35 M, whereas previous results identified
this peak exclusively among primary masses. With a few
hundred additional BBH observations, we expect to determine
whether both component mass distributions have a peak at the
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same location and if the peak is more prominent among
secondary masses.

Directly incorporating the distribution of secondary masses
can serve as an important tool to constrain the formation
mechanisms of BBHs.

Acknowledgments

The authors thank Sharan Banagiri, Thomas Dent, Zoheyr
Doctor, Will Farr, Davide Gerosa, Tom Loredo, and Jam Sadiq
for helpful discussions. A.M.F. is supported by the National
Science Foundation Graduate Research Fellowship Program
under grant No. DGE-1746045. D.E.H. is supported by NSF
grants AST-2006645 and PHY-2110507, as well as by the
Kavli Institute for Cosmological Physics through an endow-
ment from the Kavli Foundation and its founder Fred Kavli.
This research has made use of data or software obtained from
the Gravitational Wave Open Science Center (gwosc.org), a
service of the LIGO Scientific Collaboration, the Virgo
Collaboration, and KAGRA. This material is based on work
supported by NSF’s LIGO Laboratory, which is a major facility
fully funded by the National Science Foundation. The authors
are grateful for the computational resources provided by the
LIGO Laboratory and supported by National Science Founda-
tion grants PHY-0757058 and PHY-0823459.

Facilities: LIGO, EGO:Virgo.

Software: gwpopulation (Talbot et al. 2019), bilby
(Ashton et al. 2019), scipy (Virtanen et al. 2020), corner.
py (Foreman-mackey 2016).

Appendix A
Comparison of Common Mass Distribution
Parameterizations

A.l. Differences between Mass Ratio Distributions and Pairing
Functions

Given a form for the primary mass distribution, there are
several ways to construct a two-dimensional mass distribution.
We discuss two possibilities here that are common in the
literature, showing the different effects they have on the
resulting two-dimensional mass distribution.

The main qualitative differences between the two para-
meterizations are illustrated in Figure 7. The top row has three
examples of mass distributions that can be described by a
model of the form

p(ml’ m2|Am’ /B) = P(m1|Am)P(q|m1, Mmins ﬂ) (Al)

for different values of (3. Here, m, is the mass of the heavier
component in the binary, m, is the mass of the lighter
component, and ¢ =m,/m; < 1 is the mass ratio. This can be
equivalently written as

p(my, ma|A,y,, B) = p(my|Ay)p (malmy, B), (A2)

since m, = gm;. The parameterization described in Equation (A1)
is used by all parametric models presented in Abbott et al.
(2021a, 2023a) that were used to model the primary mass

distribution of BBHs, such as BROKEN POWER LAW and
POWER LAW + PEAK, and is also commonly used in other

analyses (e.g., Fishbach & Holz 2017; Kovetz et al. 2017; Talbot
& Thrane 2018; Tiwari 2021; Edelman et al. 2022a; Callister &
Farr 2023; Godfrey et al. 2023). For the remainder of this
appendix, we will refer to models parameterized by Equation (A1)
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Figure 7. Illustration of some possible two-dimensional mass distributions under the commonly used “LVK 2023” formalism described by Equation (A1) (top row) and
the pairing function formalism described by Equation (A3) (bottom row). Overdensities /peaks in the mass distribution appear as darker filled contours in these figures.
The LVK 2023 formalism is only able to produce models with features in the m, distribution, as shown by the vertical bands in the top row, whereas the pairing function
formalism can model features in either m; or m,, or both. The different columns correspond to different power-law spectral indices for the mass ratio distribution (top
row, (3) and the mass-ratio-dependent pairing function (bottom row, 3,). In the case of a steeply rising mass ratio distribution, or if components strongly prefer to pair
with nearly equal-mass partners, the LVK 2023 model and the pairing function model become difficult to tell apart and likely explain the data equally well, as shown by
the two panels in the leftmost column. The diagonal contours in the middle and right columns are caused by a preference for equal-mass binaries and follow lines of

constant mass ratio.

as “CONDITIONED-Q,” since they require the mass ratio
distribution to be explicitly conditioned on the primary mass.

The bottom row of Figure 7 has three examples of mass
distributions that can be described using a “pairing function,” f
(Fishbach & Holz 2020). Models with pairing functions have
the form

p(my, mo|A) = p,(my| Ay p, (ma| A2)f (g5 By)

where f(g) is a pairing function that depends on the mass ratio
of the system'®, and A = {A;, As, B,4} is the set of all model
hyperparameters. In this work, we use a pairing function of the
form f(q; 3,) = ¢%O(q < 1), though other forms may
provide a better fit to the data (e.g., Farah et al. 2022). In the
examples illustrated in Figure 7, the primary and secondary
mass distributions are equivalent, so p;(m) = po(m) = p(m).
Alternatively, A= A,. This describes a situation in which
there is a single underlying mass distribution from which both
components are drawn. The pairing function then describes
how likely the two components are to be combined in a
merging binary based on their mass ratio. A pairing function

(A3)

10 principle, the pairing function can be parameterized in terms of any
observable parameter (e.g., total mass).

10

that prefers equal-mass binaries will cause a marginal mass
ratio distribution that has more support near g =1, but the
inverse is not necessarily true.

The parameterization in Equation (A3) factorizes the
possibility that components in binaries prefer to be of near-
equal mass and the possibility that the primary and secondary
masses have distinct probability distributions. In other words,
pairing functions allow us to model the secondary mass
separately from the primary mass, while also allowing for the
possibility that component BHs prefer to pair with similar-
mass BHs.

In Figure 7, a peak at 35 M, is placed in both models to
show the effects of such features in both cases. One
consequence of LVK 2023 models is that features such as
Gaussian peaks can only appear in the the primary mass
distribution. This is shown by the vertical bands in the top row
of Figure 7 and the lack of horizontal bands, since a band in the
vertical (horizontal) direction is caused by a peak or dip in the
primary (secondary) mass distribution for a range of secondary
(primary) masses. For pairing function models, features can
appear in p(m;), po(m5), or both. We have illustrated the case
in which the same feature appears in both component mass
distributions, and this appears as both vertical and horizontal
bands in the bottom row of Figure 7. If A; and A, are allowed
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to differ, features could appear in only one of these
distributions. This would cause there to be only horizontal
bands if features only existed in p,(m,), and only vertical bands
if features only existed in p,(m;). Features are also able to
appear in different locations in p;(m;) versus p,(m,) under the
pairing function formalism. However, the LVK 2023 formalism
only allows for bands in the vertical direction, meaning that it is
not flexible enough to capture the true underlying distributions
with features in p,(m,). The behavior of the LVK 2023
formalism can in general be approximated by the pairing
function formalism, while the opposite is not true.

The different columns in Figure 7 correspond to different
power-law spectral indices for the mass ratio distribution (top
row, () and the mass-ratio-dependent pairing function (bottom
row, (3,). The top row’s leftmost panel has a uniform mass ratio
distribution, the middle panel has a mass ratio distribution that
mildly favors equal-mass binaries, and the right panel’s mass
ratio distribution strongly favors equal-mass binaries. Analo-
gously, the bottom row’s leftmost panel shows a model where
components in the binary are allowed to pair up independently
of the mass ratio, the middle panel shows a model where
components have a slight preference to pair up with partners
that are of equal mass, and the rightmost panel shows the case
where components are “picky”: they almost always pair up
with equal-mass partners (Fishbach & Holz 2020). When the
mass ratio distribution is broad, or when components pair up
nearly independently of the mass ratio, the LVK 2023 models
produce noticeably different distributions from those produced
by the pairing function models. However, in the case of very
picky binaries or a steeply rising mass ratio distribution, the
LVK 2023 and pairing function models become difficult to tell
apart, and likely explain the data equally well. There is
therefore a degeneracy between the steepness of the pairing
function and the existence of distinct features in the two mass
distributions (see Tiwari 2023 for a discussion of this
phenomenon in terms of Jacobian transformations).

Fortunately, as we show in Section 3.4, we measure G~ 3.5
and ﬂq ~ 1, so the data lie somewhere between the middle and
rightmost columns.'' This means that differentiating between
the two scenarios will be difficult, but possible given
enough data.

Mass distributions of compact objects are often visualized
through a plot of the marginal component mass distributions.
The marginal m, distribution is defined as

pmalA) = [dmip(m, mol), (Ad)

where p(m;, my|A) can be parameterized in the way described
in Equation (A1) or (A3). However, in all but the top left panel
in Figure 7, the marginal secondary mass distribution exhibits a
peak between 30 M, and 40 M., even though the secondary
mass distribution is not able to have any features on its own.
This is because features in the primary mass distribution induce
features in the marginal secondary mass distribution if equal-

mass binaries are preferred: when a binary’s primary mass is
within the peak, its secondary mass is also likely to be in that

1 The value for 3 under LVK 2023 is different from the value found for 6q
under the pairing function models because the two parameters cause different
behaviors in the two-dimensional mass distribution within their respective
models. A low value for 3 does not imply that BBHs are not picky, just that the
marginal mass ratio distribution rises slowly. We discuss this in more detail in
Appendix A.2.
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peak simply because my~m; is preferred. It is therefore
difficult to distinguish between these different scenarios by
looking at the marginal distributions alone. Instead, we analyze
two-dimensional distributions such as the ones illustrated in
Figure 7, as well as secondary mass distributions conditioned at
various values of m;. The latter can be thought of as one-
dimensional slices of the former.

It is our goal to determine whether the data prefer models
described by pairing functions or those described by LVK 2023
functions. We also aim to determine if the primary and
secondary masses are drawn from the same distribution, and
whether we can draw physical insights from features that
appear in the primary mass distribution, the secondary mass
distribution, or both.

A.2. “Pickiness”

Under the LVK 2023 formalism, we cannot determine how
BHs in binaries choose their companions, though we can gain
some insight from their marginal mass ratio distribution. LVK
2023 parameterizes the mass ratio distribution as a power law
with spectral index 3, where 3> 0 corresponds to mass ratio
distributions with more support for similar-mass binaries.
Abbott et al. (2023a) found S = 1.1"1], which similarly
indicates a preference for equal-mass binaries. Note that the
value for [ under LVK 2023 is noticeably different from the
value found for 3, under the pairing function models because
the two parameters cause different behaviors in the two-
dimensional mass distribution within their respective models. A
low value for 3 does not imply that BBHs are not picky, just
that the marginal mass ratio distribution rises slowly. As shown
in Appendix B.3, the pairing function models and LVK 2023
model all produce near-identical marginal mass ratio distribu-
tions, despite different values for 3, and . Low values for 3
are partially due to the fact that the low-q end of the marginal
mass ratio distribution will always be suppressed because of the
existence of a minimum BH mass. This minimum mass makes
it impossible to get extreme mass ratios unless m is very large,
and the m, distribution has very little support for m; g 60 M.,
Therefore, § does not need to be large in order for the marginal
mass ratio distribution to strongly disfavor unequal-mass
binaries. In fact, the existence of a minimum mass plus a
tapering at high m; means that even when 3 < 0, the marginal
mass ratio distribution rises toward g = 1.

A.3. Mimicking LVK 2023 with a Pairing Function Model

We show that the PAIRING:NO PEAK IN p,(m,) model
approximates the morphology of the LVK 2023 model, which
uses the LVK 2023 formalism.

The two rightmost panels of Figure 8 show the two-
dimensional PPDs for the LVK 2023 and PAIRING:NO PEAK IN
p2(m>) models. Both exhibit vertical bands and no horizontal
bands, and have a similar-magnitude drop in merger rate
moving away from the diagonal.

The leftmost panel of Figure 8 shows the conditional m,
distribution for both models. While the slopes of the two
models differ slightly, a peak in m, appears in neither. We
therefore find PAIRING:NO PEAK IN p,(m5;) to be an appropriate
proxy for the behavior of the LVK 2023 model for the purposes
of this work. A future measurement ruling out A, = 0 with high
confidence would therefore serve as evidence for the preference
for pairing function models over LVK 2023—like models.
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Figure 8. Two-dimensional (right) and conditional m, (left) PPDs for the LVK 2023 and PAIRING:NO PEAK IN p,(m,) models.

Appendix B
General Population Model

B.1. Base Model

We model the two-dimensional mass distribution by
constructing separate one-dimensional distributions for the
primary and secondary masses and combining draws from
these two distributions according to a pairing function, as in
Equation (A3). Fishbach & Holz (2020) found the pairing
function is most informative when parameterized by the mass
ratio of the binary, so we adopt a pairing function described by
a power law in mass ratio.

Because our aim is to learn whether the primary and
secondary masses are consistent with being drawn from the
same distribution (up to a pairing function and subject to the
constraint that m; >m,), we describe the primary and
secondary mass distributions separately, but according to the
same functional form. We model each of the one-dimensional
mass distributions as a mixture model between a smoothed
power-law component and a Gaussian component G in order to
make direct comparisons to the POWER LAW + PEAK model
used by the LVK population analysis to describe the
distribution of primary masses (Talbot & Thrane 2018; Abbott
et al. 2023a). Explicitly,

p(my|Ay) o< [(1 = MOy > Mumin 1) O < Mimax,1)

(;

a;+1 —
ul+llmu]+l)ml (}l + )‘IG(mllﬂl, Ul):l
X 8 (my|mumin 1, 61)

p(ma|Ar) o [(1 — M) O(my > Muin2) O (M < Mumax 2)

1 —
N (mmi%tnuw)mz 4+ G (ma|py, Uz)]

min,2
X S (mo|mumin2, 02).
(B1)

Here, G(myi2)|it412), 0(12)) is a normalized Gaussian
distribution with mean i, and width oy ;. The parameter
A{1,2) 18 @ mixing fraction determining the relative prevalence of
mergers in the power-law and Gaussian components, and
S (m1,2)Mmin, (1.2, 612)) is a smoothing function that rises from
0 to 1 over the interval (Mmin,(12}> Mmin,{1,2) + O(1.2))- Ay is then
the set of hyperparameters {mmin 1, Mmax,1, @1, Ai, [y, 01, 01}
and A2 = {mmin,Z’ Mmax,2, 2, A2, o5 02, 62}

12

In all models considered in this work, the redshift
distribution is modeled as a power law with spectral index
(Fishbach et al. 2018) such that

dv, 1 "
b b ?(’ 1? + 9Z .
dz \1+z2

We use the DEFAULT spin model from Abbott et al.
(2021a, 2023a) to describe the spin magnitudes and tilts of
each component. These are the same redshift and spin
distributions used with the POWER LAW + PEAK mass model
in the analysis presented in Abbott et al. (2023a).

A fit to the model described above is provided in
Appendix B.2, though we focus on specific variations nested
within this more general model for the remainder of this work.

P(Z,), o (B2)

B.2. Fit to General Base Model

We present results of a fit to the most general form of the pairing
function model described in Appendix B.1 (Equation (B1)). Here,
we do not fix any parameters to be equal between A; and A,, and
instead infer them separately.

Figure 9 shows the posterior of all mass-related hyperpara-
meters within this model in the form of a corner plot. Because
of the large number of free parameters, several are not well
constrained. Nonetheless, all parameters describing p(m,) are
consistent with those describing p,(m,). Additionally, strong
correlations exist between o, a,, and 3,, making it difficult to
meaningfully constrain all three parameters. We therefore set
1 = @ in the PAIRING:GENERIC model.

Figure 10 shows the underlying distributions, p;(m;) and
p2(m,), inferred by the most general version of the base model.
As expected, the constraints on these distributions weaken
relative to those of the PAIRING:GENERIC model. However it is
still clear that p,(m,) and p,(m,) are consistent with each other
and that it is possibile that p,(m;) has a larger peak than p,(m,)
does. Notably, there now seems to be very little evidence for a
peak in p(m,), whereas a clear peak still exists in p,(m5).

These results are consistent with what has been presented
using the PAIRING:GENERIC model in the main body of
this work.

B.3. Model Comparison

In this section, we compare the various models considered in
this work, including the LVK 2023 model from LVK 2023.
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Figure 9. Corner plot of all mass-related hyperposteriors in the most general form of the base model. Power-law spectral indices governing the slope of the primary
and secondary mass distributions are degenerate with each other and with the pairing function power law, so only two of the three parameters can be meaningfully
constrained at a time. All other parameters that perform the same function in p(m;) and p,(m,) are consistent between the two underlying distributions.

Table 1 lists the hyperprior choices made to construct each
model, along with descriptions of each hyperparameter.
Figure 11 shows the m;, m,, and ¢ PPDs, marginalized over
all other parameters. These show a high level of agreement
between the different models, despite their two-dimensional
PPDs differing in Figure 2. Notably, the marginal secondary
mass distribution exhibits a peak even for the LVK 2023 model.
As discussed in Appendix A.1, this is caused by the preference
for equal masses: if m, is in the ~35 M, peak, a preference for
my &~ m; Will cause m, to also preferentially be in that region,

causing higher probability density for m,~35M, than
elsewhere. Marginal PPDs are therefore not very sensitive to
whether m, prefers its own features independently of the
existence of a preference for equal-mass binaries. Instead, we
examine the underlying component mass distributions expli-
citly modeled by PAIRING:SYMMETRIC and PAIRING:GENERIC,
as well as the values of informative hyperparameters in these
models, to determine whether p,(m,) differs from p,(m;). For
comparisons to LVK 2023, we plot secondary mass distributions
conditioned on various values of m;.
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Figure 10. Underlying distributions (i.e., before a pairing function is applied) of the primary (shaded band) and secondary (dotted—dashed lines) masses under the
most general form of the base model. Despite fitting all parameters separately between the two distributions, we find that they appear consistent with each other.
However, both are relatively poorly constrained. Interestingly, the support for a peak in p;(m;) lessens in this more generalized model, while the support for a peak in
po(my) remains the same as in PAIRING:GENERIC.

Hyperparameters of Our Mass Model and HypT:rzlr?ois Corresponding to Specific Model Variations

Parameter Description Prior
PAIRING: PAIRING:
Base Model GENERIC SYMMETRIC LVK 2023
By Spectral index for the power law of the pairing function U(—4, 12)
15 Spectral index for the power law of the mass ratio distribution U
(-4, 12)
a Spectral index for the power law of the primary mass distribution U(—4, 12)
an Spectral index for the power law of the secondary mass distribution U(—4, 12) ar = aq
Mmin, 1 Minimum mass of the primary mass distribution U2 M., 10 M)
M min,2 Minimum mass of the secondary mass distribution U2 Mg, 10 My) Muin,2 = Miin, 1
Mimax, 1 Maximum mass of the primary mass distribution U@B0 M., 100 M)
Mmax,2 Maximum mass of the secondary mass distribution U@BoO M., Mmax,2 = Mmax, 1
100 M)
o1 Range of tapering at the low end of the primary mass distribution UM, 10 M)
b Range of tapering at the low end of the secondary mass distribution U0 M., 10M.,) by = 6
A Fraction of systems with primary mass in the Gaussian component U@, 1)
A Fraction of systems with secondary mass in the Gaussian u@, 1) A=\
component

14 Mean of the Gaussian component in the primary mass distribution UQ20M., 50 M)
12 Mean of the Gaussian component in the secondary mass distribution U0 M., 50 M) o = [
o4 Width of the Gaussian component in the primary mass distribution U M., 10 M)
2 Width of the Gaussian component in the secondary mass Ul M, 10 M.,) 0y =04

distribution

Notes. For comparison, we also show the hyperpriors for the LVK 2023 model, which uses the LVK 2023 framework. We denote a uniform distribution between x and y
as U(x, y), list specific values that are fixed in some priors, and denote when hyperparameters are irrelevant to a specific nested model with ellipses.

14
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Figure 11. Marginal PPDs of primary mass (top), secondary mass (middle), and mass ratio (bottom) for LVK 2023 (green), PAIRING:SYMMETRIC (orange),
and PAIRING:GENERIC (purple). Solid lines are the mean value and shaded regions represent the 90% credible interval. These are obtained by integrating the two-
dimensional PPDs shown in Figure 2 along each dimension in turn. Since the LVK 2023 model is parameterized in terms of m; and ¢, we reconstruct its marginal m,
distribution by sampling from the joint distribution and creating a kernel density estimate, causing some artificial “wiggles” in these plots. The same is true for the
marginal ¢ distributions of the pairing function models. Despite the two-dimensional PPDs appearing different between LVK 2023 and the other two models, the
marginal PPDs all appear similar. This is because features in the primary mass distribution induce features in the marginal secondary mass distribution if equal-mass
binaries are preferred. Therefore, marginal PPDs are not sensitive to the features in the two-dimensional mass distribution in which we are interested.

Appendix C
Statistical Framework

In this appendix, we describe the hierarchical Bayesian
analysis used to fit the population models described in
Appendix B and Section 2 to BBHs in GWTC-3 (Abbott
et al. 2023c, 2023d).

15

The posterior on the population hyperparameters, assuming a
prior on the overall rate of mergers p(R) ~ 1/R and
marginalizing, is

p(Dj|A)

N
pANDY =pWM) [ £

J

(CI)



THE ASTROPHYSICAL JOURNAL, 962:69 (17pp), 2024 February 10
where

p(DIA) = [dmydmadsids,dz p()p(s1, $2)p(my, malA)

X p(Djlmy, ma, 1, $2, 2)

(C2)
is the marginal likelihood for the jth event,
EN) = fdmldmzdsldszdz p(@)p(s1, 52)
X p(my, my|A)P(det|my, ma, sy, 52, 2) (C3)

is the fraction of detectable events in the population described
by A, and P(det|my, m,, sy, 53, 7) is the probability that any
individual event with parameters my, m,, s, 5>, and z would be
detected, averaged over the duration of the experiment.

In practice, the high-dimensional integrals in Equations (C2)
and (C3) are approximated via importance sampling (see
Essick & Fishbach 2021; Essick & Farr 2022 for a detailed
explanation of this process). Given a set of N; event-level
samples drawn from the posterior for the jth event that used a
reference prior pif(m;, my, sy, S2, 7), We approximate

N:
pDIN) 1 X pm®, mP, 5P, s, Z0|A)
~ k 0N k) (&
pref(D.i) ]v/ k pref(ml( )’ mz( )9 sl( )s S2( )a Z(k))

(C4

where p.«(D;), the marginal likelihood for D, under the
reference prior, does not depend on A and therefore need not
be included when determining the population fit. Similarly, by
simulating a large set of M signals drawn from an injected
population pg.w, We can approximate Equation (C3) with a
sum over the subset of m detected signals:

fh) ~ 1 i p(m®, ,kn ® s® @ 0 A)'

k  Pdraw (ml( )’ mZ(k)’ Sl(k)’ Sz(k)’ Z(k))
We obtain the detectable set of m signals by injecting
waveforms of these signals into the measured detector strain
and running the search pipelines (Usman et al. 2016; Aubin
et al. 2021; Cannon et al. 2021; Drago et al. 2021) used by the
LVK to detect events to obtain a false-alarm rate (FAR) for
each injected signal. This process was performed by the LVK
for its population analysis (Abbott et al. 2023a) and we use the
resulting publicly released data product in this work (LIGO
Scientific Collaboration et al. 2021). We then consider an event
detected if it has a FAR of less than 1 per year in at least one
pipeline, and apply this threshold both to injected signals and to
the real GW events in GWTC-3.

We sample from the posterior distribution in Equation (C1)
using the approximations in Equations (C4) and (C5) to
determine the shape of the mass distribution using gwpopu-
lation (Talbot et al. 2019) with the nested sampling
algorithm dynesty (Speagle 2020). Furthermore, where
needed, we estimate Bayes factors via Savage—Dickey density
ratios (Dickey & Lientz 1970; Wagenmakers et al. 2010)
using the hyperposteriors and the hyperpriors described in
Appendix B.1.

(C5)
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