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Quantum mechanics is a subject rife with student conceptual difficulties. In order to study and devise bet-
ter strategies for helping students overcome them, we need ways of assessing on a broad level how students
are thinking. This is possible with the use of standardized, research-validated assessments like the Quantum
Mechanics Concept Assessment (QMCA). These assessments are useful, but they lack rigorous population in-
dependence, and the question ordering cannot be rearranged without throwing into question the validity of the
results. One way to overcome these two issues is to design the exam to be compatible with Rasch measurement
theory which calibrates individual items and is capable of assessing item difficulty and person ability indepen-
dently. In this paper, we present a Rasch analysis of the QMCA and discuss estimated item difficulties and
person abilities, item and person fit to the Rasch model, and unidimensionality of the instrument. This work
will lay the foundation for more robust and potentially generalizable assessments in the future.



I. INTRODUCTION & BACKGROUND

Quantum mechanics is a notoriously difficult subject to
learn and understand. There has been much characterization
over the past thirty years on student difficulties and miscon-
ceptions in undergraduate [1] and graduate quantum mechan-
ics courses [2]. These include difficulties with reconciling
quantum concepts and classical concepts, properties and rep-
resentations of wave functions, distinguishing between three-
dimensional Euclidean space and Hilbert space, measurement
and expectation values, Dirac notation, and many more [1]. In
addition to the complexity of quantum mechanics, instructors
disagree on which topics to include in, and how to teach, the
subject [3]. For example, instructors disagree on whether to
present quantum mechanics in a spins-first or wavefunctions-
first approach, whether to present an axiomatic or histori-
cal approach, and whether wavefunctions represent a matter
wave, information wave, or something else entirely [3].

Because of the plethora of challenges students face in
learning quantum mechanics and because of the lack of con-
sensus on what and how to teach the subject, it is difficult to
establish clear learning goals that are relevant across institu-
tions. This has posed an issue for evaluating student learning
with research-based assessments. If developers design a test
that contains a certain number of subjects, it is possible that
it won’t be applicable to classes that chose not to cover all
those topics. For example, spins-first courses often have not
finished solving the full Schrodinger equation for the hydro-
gen atom by the end of the first semester, so questions involv-
ing the hydrogen atom on an assessment won’t provide useful
measures of learning for that class. Therefore, it would be ad-
vantageous if a modular assessment was developed that could
accommodate the variety of instruction and learning goals in-
herent in undergraduate quantum physics education.

Currently, there are around ten research-validated assess-
ments for modern physics and quantum mechanics [4-10].
These cover a variety of topics such as measurement, wave
functions, Dirac notation, incompatible operators, scattering,
tunneling, time dependence, and many more. However, there
is still a multitude of topics that aren’t assessed by these in-
struments such as most topics in a second semester of quan-
tum mechanics and some topics that may be covered in either
semester like entanglement, Bell inequalities, and topics re-
lated to quantum information.

In addition, these assessments have all been validated us-
ing classical test theory. Classical test theory (CTT) consists
of a few statistical measures of test scores that look at item
difficulty, discrimination, reliability, and overall consistency
within the test. This is the most commonly used framework
for validating assessments within PER [11]; however, this ap-
proach brings with it some fundamental limitations. These
include the fact that the scores you get are always dependent
upon the sample used for calibration. This means the item dif-
ficulty and discrimination will be different for different sam-
ples, and the ordering of the questions can have significant
effects on student performance. In addition, differences of
students abilities in CTT don’t have a well-defined meaning

whereas in Rasch measurement theory they do [12].

Rasch measurement theory (RMT) and more generally
item response theory (IRT) are probabilistic models of stu-
dent responses to test items that are functions of the person
ability! and item difficulty. In RMT, the base assumption is
that the probability of a person answering an item correctly
is dependent only on the difference between their ability and
the item difficulty. This offers an advantage over CTT be-
cause the item difficulties and person abilities are computed
together and share a common scale where comparison is ac-
tually meaningful [12]. The Rasch model also allows us to
estimate person ability independent of which items are used
and the item difficulties independent of the people used to
calibrate it [13].

This paper will provide a brief overview of Rasch measure-
ment theory, discuss the data used in analyzing the QMCA,
and present our results for item difficulties, person abilities,
and how well the data fit our model of measurement. We hope
to add well-fitting items to a quantum physics test bank that
instructors can use to design their own assessments while still
generating robust comparable measures of student learning.

II. RASCH MEASUREMENT THEORY

The founder of Rasch measurement theory was a Danish
mathematician named Georg Rasch. He postulated that in
order for psychological measurement to truly be a measure-
ment, the process of assessing the property under study must
follow certain criteria. The numbers that we assign to the
property under study must have a common scale and be com-
parable to one another on the interval level [12]. Rasch postu-
lated a frame of reference which was necessary for interpret-
ing the results for an assessment which consists of:

1. the class of items on an assessment that target the con-
struct under study,

2. the class of persons who are relevant to be assessed

3. the conditions of the administration of the assessment.

He further postulated that if the conditions of the frame of
reference are appropriate, an examinee’s performance on a
given item should be dependent on two parameters: the ex-
aminee’s ability 6,, and the item’s difficulty §;. These two
parameters are measured on the same scale and are some-
times referred to generally as the person and item location.
Rasch theorized that in order for an assessment to truly mea-
sure an underlying trait, the comparison between any two per-
sons must be independent of the choice of items used, and the
comparison between any two items must be independent of
the people that interact with the items [12]. This property
is known as the invariance of comparisons, and it directly
leads to the probability distribution that describes students’

! Note, “ability” refers to the latent trait that the statistical models quantify.
Fundamentally, however, it is a measure of performance as opposed to
innate ability. This term is used for consistency with the existing literature.
However, this term is potentially problematic, particularly with respect to
the interpretation of performance gaps between subgroups of students.



outcomes to a dichotomous item. This probability distribu-
tion is written as:
0n—09;

Plns = 1|6, 5:) (1)
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where x,,; is the outcome of person n answering item ¢ cor-
rectly. In general 6,, and §; vary continuously from —oo to
400, but we perform a linear transformation so the mean is
0 and the standard deviation is 1. We see that when 6,, is
larger than §; the probability of answering correctly is more
likely than not, and vice versa when 6,, < ¢;. In addition, the
log-odds ratio which describes this behavior is given by:

P

When we have the same person attempting two different
items with difficulties §; and ds, the difference in the log-
odds is simply the difference in the item difficulties 6; — Js.
This means that the liklihood of answering one item correctly
and the other incorrectly is a function only of the difference
in item difficulties, not the person’s ability, thus demonstrat-
ing the invariance of comparisons [12]. Another fundamental
assumption of RMT is that all of the items on an assessment
are parallel, meaning they independently measure some as-
pect of the construct under study. The primary task of RMT
and IRT is to estimate the person abilities and item difficul-
ties using a fitting procedure. This is most often done with
software packages in statistical programming languages like
the multidimensional item response theory package mirt in
the language R.

III. CONTEXT & METHODS

The Quantum Mechanics Concept Assessment (QMCA) is
a conceptual assessment for evaluating student learning in
upper-level, undergraduate quantum mechanics courses [4].
The QMCA consists of 38 multiple-choice items covering
measurement, the time-independent Schrodinger equation,
time evolution, wave functions, boundary conditions, prob-
abilities, and expectation values. It was adapted from the
free-response format Quantum Mechanics Assessment Tool
(QMAT), and it has undergone many revisions and verifica-
tions of face and content validity including a CTT analysis
[4], an exploratory factor analysis [14], and a modified mod-
ule analysis [15]. However, there has yet to be a Rasch analy-
sis of the QMCA or any quantum assessment for that matter.

The data used in this analysis were gathered from eight sep-
arate institutions ranging in size, research output, location,
and even nationality. Seven of the institutions were located
in the continental United States, but one sample was from a
university in South Africa. The responses to the QMCA were
gathered from the fall semester of 2018 to the spring semester
of 2022, with a majority coming from the 2018-2019 aca-
demic school year. Around 30 students had incomplete at-
tempts, so it was necessary to establish a criterion for whether
or not to include them in the aggregate analysis. We decided

to use a 90% completion cutoff, so if students answered at
least 90% of the items, it could be considered a good-faith
attempt. This corresponds to answering at least 35 of the 38
questions. Note that including them did not affect the results
significantly. After combining all the data, we had a total of
403 responses, which is large enough to reliably estimate pa-
rameters in the Rasch model [16].

IV. RESULTS & DISCUSSION
A. CTT Analysis

We start off by looking at the CTT statistics and compar-
ing them to published results. The definitions of the item dif-
ficulty index P, item discrimination index D, point biserial
index 7pp;, Kuder-Richardson 20 coefficient KR-20, and Fer-
guson’s delta are all discussed in [11]. Table I summarizes
these results and compares them to Sadaghiani and Pollock’s
study [4]. We see that the statistics calculated from our data
are slightly higher above the threshold than that of Sadaghiani
and Pollock’s, which may be a result of being a newer version
of the QMCA.

B. Exploratory Factor Analysis

Before fitting our QMCA data to the Rasch model, we need
to check whether our data are sufficiently unidimensional.
The number of dimensions assessed by an instrument dic-
tates what sort of model we should apply to it. Our initial
naive hypothesis is that the QMCA assesses a single dimen-
sion of quantum mechanics proficiency at the first semester
upper-level undergraduate level, but in order to confirm this
we need to do an exploratory factor analysis (EFA). To do
this, we used the mirt package in R (a multidimensional
item response theory modeling package) [17] and specified
the number of assumed dimensions. This gives us the factor
loadings from which we interpret whether it is an adequate
fit.

The factor loadings for the unidimensional EFA are in Ta-
ble II. The factor loadings represent what percentage of the
variance on that item can be accounted for by the assumed un-
derlying factor. If an item has a factor loading greater than or
equal to approximately 0.3 then it is said to be well described
by the factor [14]. We see from the table that the items that

CTT Stats Target Values Ref [4] Our Data

Num. Stu. 263 403
Num. Items 31 38
Ave. P > 0.3 0.54 0.55
Ave. D > 0.3 0.42 0.45
Ave. Tpy; > 0.2 0.35 0.39
KR-20 > 0.7 0.76 0.84

Ferguson’s § > 0.9 0.97 0.986

TABLE 1. Classical test theory statistics for data on QMCA from
2018-2022.



Item F1 |Item F1 |Item F1 |Item F1
1 0.86| 11 039 21 0.26] 31 0.53
2 091] 12 0.21] 22 0.87| 32 0.40
3 044] 13 040] 23 092| 33 047
4 0.11| 14 041 24 0.53| 34 0.57
5 026 15 0.34] 25 -0.10] 35 0.49
6 0.72| 16 0.39]| 26 0.17| 36 0.67
7 059 17 0.44| 27 0.82| 37 0.15
8 0.65| 18 0.63| 28 0.57| 38 0.05
9 043| 19 0.66| 29 0.63
10 0.43] 20 0.18] 30 0.49

TABLE II. Exploratory factor analysis for 1 factor. The factor load-
ings for each item are under F1. Factor loadings in red indicate that
they are below the 0.3 threshold.

aren’t well described by this single factor/dimension are items
4,5, 12, 20, 21, 25, 26, 37, and 38. This lack of unidimen-
sionality is consistent with previous research on the QMCA
done by Quaal et al. [14].

There is a pattern here. There are five pairs of coupled
questions on the QMCA where the second question asks for
the best explanation for the response to the first. These ques-
tion pairs are 4/5, 13/14, 20/21, 25/26 and 37/38. We see that
four of these five question pairs are the items that don’t prop-
erly load into a single factor. Question pair 13/14 does not
fit into this pattern because question 13 has 5 possible answer
choices while the rest have only 2 or 3. The only other ques-
tion that isn’t adequately described by a single factor is item
12 which asks about how the real and imaginary parts of the
ground state of the infinite square well change in time. We
theorize that this question isn’t adequately described by the
assumed factor because it is primarily assessing understand-
ing of how complex exponentials decompose into real and
imaginary parts which is more mathematical understanding
than quantum mechanical.

When we increase the dimensionality of the EFA to 2, we
find that the second factor loads almost entirely into items 4
and 5 with factor F2 loadings of 0.96 and 0.91 respectively.
This means that the additional factor is describing most of
the coupled variance of questions 4 and 5 and nothing else.
When we increase the dimensionality of the EFA to 3, we
find similar behavior where the new factor describes the the
coupled variance of items 13 and 14. These items have a
factor F3 loadings of 0.93 and 0.99 respectively. It is clear
from this analysis that the question pairs 4/5, 13/14, 20/21,
25/26, and 37/38 as well as item 12 are not well described
by a single factor. In the following Rasch analysis we will
first consider the entire set to see if poor fit statistics confirm
our results from the EFA, and then we will remove items to
see how the remaining set performs under the unidimensional
Rasch model.

C. Rasch analysis

We used the mirt package to do a unidimensional Rasch
analysis of our data, generating item difficulties and person

Item S-X2 df RMSEA p |Item S-X2 df RMSEA p
1 51 22 006 0|20 55 23 006 0.00
250 22 006 000/ 21 29 21 003 0.3
342 22 005 001| 22 44 22 005 0.00
4 34 22 003 005 23 80 22 008 0.00
5 32 22 003 008 24 27 22 002 022
6 26 22 002 02525 118 22 0.0 0.00
7 28 23 002 020]26 54 23 006 0.00
8 24 18 003 01527 48 22 005 0.00
9 18 23 000 074 28 34 22 004 006
10 22 22 000 047]29 24 22 001 037
1125 22 002 032]30 13 23 000 094
1252 22 006 00031 28 23 002 021
13 31 22 003 0.0 32 23 22 001 040
14 32 23 003 01133 17 23 000 081
15 21 23 000 05934 27 22 002 022
16 42 23 005 001]35 27 22 002 022
17 20 23 000 06536 26 21 003 0.19
18 30 23 003 0.14] 37 64 22 007 0.0
19 29 23 003 0.8/ 38 57 22 006 0.00

TABLE III. Item fit statistics for the whole QMCA under the Rasch
model. S-X2 is the signed chi-squared statistic, df is the degrees
of freedom which is variable depending on the binning for S-X2,
RMSEA is the root mean square error of approximation, and p is
the probability of observing those data or more extreme values. The
color red indicates that the RMSEA is at or above the 0.06 threshold.

abilities based on the fit to the Rasch model. The statistics
that we generate for the whole assessment are the M2 statis-
tic which is essentially a modified chi-squared goodness-of-fit
test [18], the root mean square error of approximation (RM-
SEA), and the comparative fit index (CFI) [19]. In general,
we want the M2 divided by the degrees of freedom df to
be approximately equal to 1, and for relatively good model-
data fit, we want an RMSEA < 0.06 and a CFI > 0.9 [19].
When we run the Rasch analysis on the whole test we get
M2/df = 4.5, an RMSEA of 0.093, and a CFI of 0.68. All of
these indicate poor model-data fit and are consistent with our
EFA.

From Table IIT we have the item fit statistics for the Rasch
model. We see from Table III that there are many items that
have poor model-data fit because their RMSEA are greater
than 0.06. These items are colored red in the table.

Figure 1 shows the estimated item difficulties and person
abilities for the whole QMCA under the Rasch model. We
see that the person abilities are approximately normally dis-
tributed around zero ability, and the item difficulty average is
-0.29.

Rather than go through all possible iterations of removing
items, we will just discuss removing the fewest number of
items in order to achieve the overall model fit statistics of
RMSEA < 0.06 and CFI > 0.9. In order to achieve these
metrics it was necessary to remove around 14 items. All of
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FIG. 1. Estimated item difficulties and person abilities for the whole
QMCA under the Rasch model. Note that ability and difficulty are
measured on the same scale and presented as such for ease of com-
parison.

the question pairs 4/5, 13/14, 20/21, 25/26, and 37/38 were
removed, and the questions with very high or very low item
discrimination as determined by CTT were removed. Those
items with high discrimination (ability to distinguish between
high and low performing students) were 1, 12, 23, and 27.
After removing these items we achieved M2/df = 2.3, an
RMSEA of 0.056, and a CFI of 0.902. Table IV shows the
individual item fit statistics when these items are removed.
We see from this table that all of the items have an RMSEA
at or lower than 0.06, which means there is adequate or good
model-data fit. Note that the removed items tended to involve
time evolution, but not all time evolution items were removed.
So we still retained the bulk of content areas in this modified
QMCA.

V. CONCLUSIONS

From this analysis we can conclude that 24 of the 38 items
on the QMCA are sufficiently unidimensional to be described
by a single latent trait under the Rasch model, making them
good candidates for a unidimensional test bank. The justi-
fications for removing the poorly fitting items are that they

either violate the requirement for local independence, they
don’t assess the same dimension as the rest of the questions,
or they have extreme discriminations as measured by CTT fit.
There are still many analyses that can be done on this data
set, including examining whether the subset of people based
on their university affects the results, whether the isomorphic
spin and wave function context items have similar character-
istics, and whether a multidimensional Rasch model would
provide better results.

The remaining questions in the QMCA are good candidates
for adding to a quantum mechanics test bank that instructors
could pull from in order to design their own assessment. Fu-
ture work for this project includes creating surveys containing
all the questions on existing QM assessments so that we can
collect data from multiple institutions and perform a similar
Rasch analysis on them. We want to have as many compatible
questions as possible so that we can create a modular quan-
tum mechanics assessment capable of assessing person ability
in a rigorous population independent manner. We also want
to generate new items pertaining to second semester quan-
tum mechanics that we can add to this item bank. This will
include generating questions, doing student interviews to as-
sess construct validity, and administering to large samples to
determine item difficulties.
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Item S-X2 df RMSEA p [Item S-X2 df RMSEA p
34 15 0.06 0003 19 16 16 0.00 0.46
325 16 004 00622 29 14 0.05 0.01
6 15 16 000 05024 14 15 0.00 051
7 18 16 002 03228 31 16 0.05 0.01
8
9

17 13 003 019|129 15 13 0.02 0.28

9 15 000 08|30 9 15 0.00 0.85
10 19 15 003 022]31 33 16 0.05 0.01
11 18 16 002 032]32 14 15 0.00 0.55
15 27 16 004 004]|33 15 15 0.00 048
16 38 16 006 000|34 9 15 0.00 0.85
17 26 14 005 002|355 22 15 0.03 0.11
18 9 15 000 086|36 12 15 0.00 0.71

TABLE IV. Item fit statistics for the QMCA with items 1, 4, 5, 12,
13, 14, 20, 21, 23, 25, 26, 27, 37, and 38 removed under the Rasch
model. S-X2 is the signed chi-squared statistic, df is the degrees
of freedom which is variable depending on the binning for S-X2,
RMSEA is the root mean square error of approximation, and p is the
probability of those data or more extreme values.
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