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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder affecting
millions of patients. Closed-Loop Deep Brain Stimulation (CL-DBS) is a therapy
that can alleviate the symptoms of PD. The CL-DBS system consists of an
electrode sending electrical stimulation signals to a specific region of the brain
and a battery-powered stimulator implanted in the chest. The electrical stimuli
in CL-DBS systems need to be adjusted in real-time in accordance with the state
of PD symptoms. Therefore, fast and precise monitoring of PD symptoms is a
critical function for CL-DBS systems. However, the current CL-DBS techniques
suffer from high computational demands for real-time PD symptom monitoring,
which are not feasible for implanted and wearable medical devices.

Methods: In this paper, we present an energy-efficient neuromorphic PD symptom
detector using memristive three-dimensional integrated circuits (3D-ICs). The
excessive oscillation at beta frequencies (13-35Hz) at the subthalamic nucleus
(STN) is used as a biomarker of PD symptoms.

Results: Simulation results demonstrate that our neuromorphic PD detector,
implemented with an 8-layer spiking Long Short-Term Memory (S-LSTM), excels in
recognizing PD symptoms, achieving a training accuracy of 99.74% and a validation
accuracy of 99.52% for a 75%—-25% data split. Furthermore, we evaluated the
improvement of our neuromorphic CL-DBS detector using NeuroSIM. The chip area,
latency, energy, and power consumption of our CL-DBS detector were reduced by
474%, 66.63%, 65.6%, and 67.5%, respectively, for monolithic 3D-ICs. Similarly, for
heterogeneous 3D-ICs, employing memristive synapses to replace traditional Static
Random Access Memory (SRAM) resulted in reductions of 44.8%, 64.75%, 65.28%,
and 67.7% in chip area, latency, and power usage.

Discussion: This study introduces a novel approach for PD symptom evaluation
by directly utilizing spiking signals from neural activities in the time domain. This
method significantly reduces the time and energy required for signal conversion
compared to traditional frequency domain approaches. The study pioneers the
use of neuromorphic computing and memristors in designing CL-DBS systems,
surpassing SRAM-based designs in chip design area, latency, and energy efficiency.
Lastly, the proposed neuromorphic PD detector demonstrates high resilience to
timing variations in brain neural signals, as confirmed by robustness analysis.
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memristors, neuromorphic computing, spiking neural networks, deep brain stimulation,
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1 Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative condition
affecting millions of patients worldwide (Ghasemi et al., 2018; Zhou
et al,, 2018). Although various medications are available to alleviate the
symptoms, their effectiveness tends to diminish over time due to drug
resistance. Consequently, later stages of PD patients require higher
medication dosages, which can significantly impact cognitive abilities
and mental health (Dostrovsky and Lozano, 2002; Arlotti et al., 2016). To
address this challenge, deep brain stimulation (DBS) has emerged as a
novel therapy for PD patients in advanced stages. In a DBS system, an
electrode is implanted into a specific target in the brain for delivering
electrical stimulation signals through a battery-powered programmable
stimulator implanted in the chest of PD patients. The current DBS system
continuously sends the stimulation signals to the brain with fixed
parameters and frequency regardless of the clinical state of the patient,
referred to as an open-loop DBS (OL-DBS) system (Ghasemi et al., 2018;
Zhou et al., 2018; Lozano et al., 2019). The rigid fashion of the current
OL-DBS technique poses two critical issues: (1) the high-frequency
stimulation causes serious cognitive and psychiatric side effects, such as
speech deficits and cognitive dysfunction (Dostrovsky and Lozano, 2002;
Deuschl et al., 2006; Massano and Garrett, 2012; Arlotti et al., 2016;
Cyron, 2016); (2) the continuous stimulation quickly drains the battery
of energy-inefficient hardware platforms (Salam et al., 2015; Shukla,
2015; Ghasemi et al., 2018; Jovanov et al., 2018; Shah et al., 2018; Zhou
et al,, 2018). Therefore, a closed-loop DBS (CL-DBS) system (He et al.,
2021) has been proposed to address the limitations of the OL-DBS
system by incorporating a feedback loop. This feedback loop allows the
detection of PD symptoms and the delivery of optimized stimulus
impulses according to different severities of PD symptoms. The CL-DBS
systems are widely identified as the future development direction of the
DBS system (Allen et al., 2010; Rosin et al., 2011; Carron et al., 2013;
Shukla, 2015; Arlotti et al., 2016; Little et al., 2016; Rossi et al., 2016;
Ghasemi et al., 2018; Kuo et al., 2018; Zhou et al., 2018; Lozano et al.,
2019; Velisar et al., 2019). In a CL-DBS system, stimulation parameters
are automatically adjusted based on the clinical symptoms of the PD
patients. The studies demonstrate that closed-loop paradigms with real-
time adaptive stimulation yield fewer unpleasant side effects and greater
clinical benefits compared to fixed paradigms (He et al., 2021; Su et al.,
2021). CL-DBS systems that implement simple on-off control of
stimulations have been developed and tested in human and animal
studies (Marceglia et al., 2007; Little et al., 2013; Priori et al., 2013; Wu
etal, 2015; He et al., 2021).

There are various challenges associated with CL-DBS systems. The
continuous operation of implanted CL-DBS systems round-the-clock,
7 days a week, poses significant demands in terms of intelligence and
energy efficiency. Accurately recognizing symptom-related signals and
generating adaptive stimulation signals usually require computationally
expensive algorithms, e.g., reinforcement learning (Shukla, 2015; Arlotti
etal., 2016; Little et al., 2016; Kuo et al., 2018; Lozano et al., 2019; Velisar
etal, 2019; Gao et al., 2020; Liu et al., 2020). Thus, a novel design of an
intelligent CL-DBS device with low power consumption and high
intelligence is in urgent demand. In this work, we apply a three-
dimensional (3D) memristive neuromorphic system to the energy-
efficient recognition and assessment of symptoms in a CL-DBS system.
Specifically, we utilize the PD computational model (Kumaravelu et al.,
2016), which includes a cortical-basal ganglion-thalamic circuit, to
generate a substantial amount of data from the healthy and Parkinsonian
rat brain. The Parkinson’s symptom is identified with the output of this
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PD computational model at the beta frequency range (13-30Hz). The
heightened power density of neural activities in the beta frequency range
has been positively correlated with the severity of motor impairment
(Perez-Alcazar et al., 2010; Connolly et al., 2015; de Hemptinne et al.,
2015; Escobar et al., 2017). Therefore, the power density levels in the beta
frequency range can serve as biomarkers for evaluating PD symptoms.
The generated data with the PD computational models are used for
training a novel neuromorphic PD detector that is implemented with a
spiking long-short-term memory neural network (S-LSTM) (An et al.,
2018a,b). The neuromorphic PD detector will be trained using the
Whetstone method (Severa et al., 2019). The Whetstone method is a
cutting-edge training algorithm for neuromorphic systems that gradually
transforms conventional nonlinear functions, e.g., sigmoid function, into
threshold functions during the training process. Furthermore, our
neuromorphic PD detector can identify PD symptoms based on neural
activities in time domain without converting them into the frequency
domain, resulting in enhanced computational efficiency. The
incorporation of memristive synapses in our neuromorphic PD detector
significantly improves energy efficiency, a crucial factor for CL-DBS
systems. The energy efficiency of our neuromorphic CL-DBS system is
evaluated using a hardware simulator, named NeuroSIM (Chen et al.,
2018; Peng et al., 2020; Lu et al., 2021; An et al., 2021a,b). Specifically, the
weights and biases of the neuromorphic PD detector are saved and
deployed into the NeuroSIM simulator as memristive synapses. After
that, the hardware performance of our neuromorphic PD detector will
be calculated under both monolithic and heterogeneous 3D
chip architectures.
The contributions of this study are outlined as follows:

1. Utilizing spiking signals from the neural activities directly in
time domain for PD symptom evaluation significantly reduces
the time and energy required for converting signals from the
time domain to the frequency domain.

2. To our best knowledge, we are the first to employ neuromorphic
computing and memristors in the design of CL-DBS systems.

3. The neuromorphic PD detector with memristive synapse
architectures outperforms traditional SRAM-based designs in
CL-DBS systems regarding chip design area, latency, and
energy efficiency.

4. Our study evaluates the enhancements gained by implementing
three-dimensional technology in hardware for CL-DBS,
considering chip design area, latency, and energy efficiency.

5. The robustness analysis of our neuromorphic PD detector
demonstrates its high resilience to timing variations in brain
neural signals.

2 Research background

2.1 Introduction to neuromorphic
computing

The brains can perform remarkably intricate tasks with incredible
energy efficiency. The adult human brain consumes approximately
20W of power consumption (Jorgensen, 2021). In contrast, the
average energy usage of modern digital computers is about 60-175
watts (Markovi¢ et al., 2020; Jorgensen, 2021) for comparable cognitive
tasks. For instance, a typical computer requires approximately 250
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watts of power to recognize just 1,000 unique items (Roy et al., 2019).
Training a sophisticated natural language processing model on a
modern supercomputer consumes 1,000 kWh of energy, equivalent to
the energy needs of a human brain performing all its tasks for 6 years
(Markovi¢ et al., 2020). The remarkable outperformance of the human
brain can be attributed to several fundamental features, including the
extensive high density of connectivity, spike-based information
representation, and a structural and functional hierarchical
organization (Felleman and Van Essen, 1991; Bullmore and Sporns,
2012). The human brain is estimated to have over 100 billion neurons
connecting with trillions of synapses (Changeux, 1997). Synapses
serve as the storage components for memory and learning, while
neurons act as the computational units of the brain, exchanging
information through discrete action potentials or spikes.
Neuromorphic computing is a novel computational paradigm that
seeks to replicate the functionality of biological neurons and synapses
of the brains. The concept of neuromorphic computing was first
envisioned by Mead in the 1980s (Mead and Ismail, 1989; An et al.,
2018a,b).

The primary objective of neuromorphic computing is to create
brain-inspired computations that overcome the challenges from the
traditional von Neumann computer architecture (Davies et al., 2021).
The von Neumann architecture consists of separate memory units and
central processing units (CPU). Consequently, information must
be repeatedly transferred between these units during computations,
leading to speed bottlenecks and limitations in energy efficiency, widely
known as the von Neumann bottleneck (Naylor and Runciman, 2007;
Min and Corinto, 2021). Neuromorphic computing encompasses
various technologies to overcome the von Neumann bottleneck (Mead,
1990). With co-located electronic neurons and synapses, neuromorphic
chips, such as Intel Loihi, provide a much faster and energy-efficient
computational paradigm (Wunderlich et al., 2019).

Additionally, the remarkable energy efficiency of neuromorphic
systems can be attributed to the distinctive information coding
schemes found in biological neural systems (Roy et al., 2019). In
neural systems, the communication information among neurons is
coded in a sequence of spiking signals at low frequency. Unlike the
high-speed modern computer, the main frequency of the spiking
signals in the nervous system is as low as ~kilohertz level (1-10
millisecond duration) with millivolt-level magnitudes (Kandel et al.,
2000). The neuromorphic system is a software and hardware co-design
approach to achieving a comparable power-efficient artificial
intelligence system by taking inspiration from human brains and
implementing low-fire-rate spiking communication, threshold
activation functions, and spiking neural networks (Mead, 1990;
Schemmel et al., 2008; Azevedo et al., 2009; Gerstner and Naud, 2009;
De Garis et al., 2010; Goertzel et al., 2010; Smith, 2010; Versace and
Chandler, 2010; Briiderle et al., 2011; Merolla et al., 2011; Seo et al.,
2011; Joubert et al., 2012; Pfeil et al., 2012; Esser et al., 2013; Furber
et al,, 2013; Hasler and Marr, 2013; Painkras et al., 2013; Rajendran
et al., 2013; Stromatias et al., 2013; Benjamin et al., 2014; Chen et al.,
2014; Merolla et al., 2014; Putnam et al., 2014; Indiveri et al., 2015;
Qiao et al., 2015; Schuman et al., 2015; Walter et al., 2015; Schuman,
2016; Ehsan et al., 2017; Ferreira de Lima et al., 2017; Lastras-Montano
etal.,, 2017; Osswald et al., 2017; Schuman et al., 2017; Bai and Bradley,
2018; Davies et al., 2018; An et al., 2018a,b; Severa et al., 2019). In
contrast to conventional artificial neural networks, e.g., convolution
neural networks (LeCun et al., 1989; Lecun et al., 2015; Bengio et al.,
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2017), recurrent neural networks (Zaremba et al., 2014; Bengio et al.,
2017), etc., the information conveyed between layers in SNNs and
neuromorphic systems is in a format of spiking pulses (Zenke and
Ganguli, 2018; Neftci et al., 2019; Tavanaei et al., 2019; Taherkhani
etal, 2020). Through this way, SNNs have the capability of emulating
the functionalities and learning processes of biological neural
networks (Maass, 1997). In an SNN, neurons interact through spikes
transmitted via adjustable synapses (An et al., 2021a,b). While neurons
in traditional ANNs exhibit fixed continuous-valued activity,
biological neurons employ discrete spikes to compute and transmit
information. The sparsity of low-frequency neuron spikes significantly
increase the energy efficiency of the neuromorphic system (Yi et al.,
2015). SNNs utilize biological neuron models for computation,
bridging the gap between neuroscience and AI (Yamazaki et al., 2022).
Furthermore, the activation functions, which are also referred to as
neurons in deep learning, are threshold activation functions rather
than traditional nonlinear activation functions in SNNs
(Ramachandran et al., 2017; Lau and Lim, 2018; Nwankpa et al.,
2018). Thus, the outputs of the threshold functions are either zero or
one, which decreases the computational complexity of algorithms and
hardware implementations.

The discrete spiking signals require particular training algorithms
and encoding paradigms (Roy et al., 2019; Mead, 2020). In a digital
system, the analog signals will be converted into binary numbers using
analog-to-digital converters (ADCs) for further Boolean calculations
(Indiveri et al., 2015; Liu et al., 2015; An, 2020). But in brains, the
exterior analog signals, such as visual and auditory signals captured
by sensory organs, are converted into a sequence of spikes (Kandel
et al,, 2000; Gerstner et al., 2012). Thus, the communication among
neurons is the spiking signals. Several encoding methods are available,
e.g., temporal encoding (Sakemi et al., 2020), rate encoding (Liu et al.,
2009; Liu and Delbruck, 2010; Plank et al., 2018), and spatial-temporal
encoding (Jin et al., 2018). Several training methods for SNNs have
been proposed, including converting traditional ANNs into an SNN
after the training process (O’Connor et al., 2013; Diehl et al., 2015;
Esser et al., 2015, 2016; Rueckauer et al., 2017; Shrestha and Orchard,
2018; Severa et al., 2019), using biologically plausible algorithms, e.g.,
spike-timing-dependent plasticity (STDP), to directly train SNN from
the beginning (Bohte et al., 2002; Shrestha and Song, 2017), or
utilizing an approximation method for mimicking backpropagation
training methods (Lee et al., 2016; Panda and Roy, 2016; Zenke and
Ganguli, 2018), e.g., SpikeProp (Bohte et al., 2002; McKennoch et al.,
2006; Shrestha and Song, 2017). These training methodologies
particularly designed for SNNs and neuromorphic systems already
have competitive training/inference accuracies (Wade et al., 2008; Lee
et al., 2016; Severa et al.,, 2019) compared to conventional deep
learning (O’Connor et al., 2013; Diehl et al., 2015; Esser et al., 2015,
2016; Guo et al.,, 2017; Rueckauer et al., 2017; Yan et al., 2018).
Numerous neuromorphic chips are launched to further enhance the
capability of neuromorphic computing, such as the Loihi chip (Davies
etal., 2018), TrueNorth (Akopyan et al., 2015), etc. The Loihi chips are
a digital-analog mix specially designed for adaptive self-modifying
event-driven fine-grained parallel computations used to implement
learning and inference with high power efficiency. The Loihi chip
incorporates 128 neuromorphic cores fabricated on Intel’s 14nm
process and features a unique programmable microcode learning
engine for on-chip SNN training. The power consumption of Loihi
chips is significantly lower (109 X) than other state-of-the-art
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computing platforms, such as field-programmable gate array (FPGA),
central processing unit (CPU), and graphics processing units (GPUs)
(Lecun et al., 2015; Goodfellow et al., 2016; Schuman et al., 2017;
Blouw et al., 2019; Roy et al., 2019). The distinctive capabilities and
high energy efficiency of neuromorphic systems and SNNs offer
invaluable advantages to CL-DBS systems and other implantable/
wearable medical devices that demand low latency and

energy efficiency.

2.2 Introduction to deep brain stimulation
for Parkinson'’s disease

The DBS technique is a neurosurgical procedure that implants
special electrodes in specific regions of the brain for sending electrical
stimulations. The DBS system consists of two essential components:
the electrodes implanted in the brain and a stimulation generator
placed in the chest. The patients would be carrying the entire DBS
device all the time. The electrode is typically implanted into a specific
region of the brain through a small hole in the skull. A thin wire
connects the electrode to an implantable pulse generator. The pulse
generator serves as the source of electrical stimulation. The DBS
system is widely used for neurological diseases, such as Parkinson’s
disease, dystonia, and Alzheimer’s Disease (Fang and Tolleson, 2017;
Ghasemi et al., 2018; Zhou et al., 2018; Lozano et al., 2019).

Parkinson’s disease is a multifaceted neurodegenerative disorder
primarily characterized by the degeneration of dopamine-producing
neurons in the brain, resulting in a wide array of motor symptoms. The
symptoms of Parkinson’s disease include tremors, bradykinesia, stiffness,
abnormal walking, etc. While medications are available to manage
certain symptoms, they cannot halt or reverse the underlying
neurodegenerative process. Thus, Parkinsons disease is a complex
condition, and treatment plans may involve a combination of
medications, physical therapy, and lifestyle modifications. Researchers
continue to investigate new therapeutic approaches and potential
interventions to slow the progression of the disease and improve the
quality of life for patients. Levodopa, a precursor to dopamine, is a
frequently prescribed medication that aids in replenishing dopamine
levels in the brain and can alleviate motor symptoms (Fahn et al., 2004).
However, long-term use of levodopa often results in a condition known
as “levodopa-induced dyskinesia,; which is characterized by
uncontrollable and writhing movements (Fang and Tolleson, 2017).
Moreover, as the disease progresses and the number of dopamine-
producing neurons continues to decline, the effectiveness of these
medications diminishes over time. In addition, the current medications
also have side effects, such as cognitive decline, sleep disturbances, and
mood disorders, which significantly impact the patient’s quality of life.
When medications are no longer able to provide an adequate quality of
life, DBS treatment is considered. Clinical trials have provided evidence
for the efficacy of regular electrical stimulation of specific brain regions,
such as the subthalamic nucleus (STN), in mitigating the symptoms of
Parkinson’s disease. The stimulation frequency of a typical DBS system
is commonly classified into two categories: high frequency (typically
above 100 Hz, such as 130 or 150 Hz) and low frequency (typically below
100 Hz, such as 60 or 80 Hz) (Su et al., 2018). The therapeutic outcomes
on motor function in individuals with Parkinson’s disease (PD) can differ
substantially depending on the selected stimulation frequency. Low
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stimulation frequencies have demonstrated no significant impact on
motor symptoms, whereas high stimulation frequencies have shown
therapeutic benefits to the patients. Continuous electrical stimulation of
brain targets such as STN and GPi has been shown to relieve the
symptoms of movement disorders of Parkinson’s disease. This
conventional DBS system is referred to as an open-loop DBS (OL-DBS)
system (Figure 1A). However, high-frequency stimulation may induce
unexpected cognitive and psychiatric side effects such as depression and
speech disorders (Dostrovsky and Lozano, 2002; Hariz et al., 2008;
Hwynn etal., 2011; Arlotti et al., 2016; Alomar et al., 2017). Additionally,
it has the potential to exacerbate axial symptoms and manifestations that
often arise during the long-term progression of the disease and
treatment, including challenges with gait, speech, and swallowing (di
Biase and Fasano, 2016). Another challenge related to OL-DBS system is
the high energy consumption associated with continuous stimulation,
leading to rapid depletion of the power in implanted devices.
Consequently, patients often require additional surgical procedures to
replace the neurostimulator battery. Another challenge of the OL-DBS
system is the diversity and variability of individual patients. This
variability necessitates personalized approaches to OL-DBS system and
requires considering the unique characteristics of stimulation signals of
each patient. To overcome these limitations, a novel closed-loop DBS
(CL-DBS) system is proposed, which incorporates a feedback loop as
illustrated in Figure 1B.

The essential distinction between CL-DBS and OL-DBS systems
lies in their approach to monitoring PD symptoms and adjusting
stimulation parameters accordingly. In an OL-DBS system, the
stimulation parameters, e.g., frequency, pulse width, and magnitude,
remain constant during operation (Deuschl et al., 2006; He et al., 2021).
Thus, the OL-DBS lacks the capability of adjusting stimulations
corresponding to the dynamic symptoms of Parkinsonians. CL-DBS
devices, on the other hand, employ a feedback loop to monitor the
brains clinical condition and adjust stimulation parameters accordingly
(Rosin et al., 2011; Little et al., 2013; Wu et al., 2015; Parastarfeizabadi
and Kouzani, 2017; He et al., 2021). These adaptive stimulation signals
offer multiple significant advantages over OL-DBS system. Firstly,
adaptive stimulation signals extend clinical efficacy while reducing side
effects (Herron et al., 2016). Recent studies demonstrated that CL-DBS
system, with its automatic modification of stimulation parameters, is
more effective in reducing PD symptoms compared to OL-DBS system
(Rosin et al., 2011). Secondly, the adjustment of stimulation parameters
in DBS devices has been found to mitigate or eliminate side effects in
a significant proportion of Parkinsonians. (Hamani et al., 2005).
Secondly, CL-DBS system utilizes non-continuous stimulation signals,
leading to reduced energy requirements of the DBS devices (Herron
etal., 2016). Studies reported a 56% reduction in stimulation time and
decreased energy demand with CL-DBS system compared to OL-DBS
system (Little et al., 2013; Wu et al., 2021). This reduced power
requirement may result in fewer neurostimulator battery replacement
surgeries. Overall, CL-DBS system offers improved efficiency, fewer
surgeries, reduced energy consumption, and extended battery life
compared to OL-DBS system. Despite great advantages, several issues
are still associated with CL-DBS system.

One challenge is the availability of detectable feedback signals
that are stable and robust over time (Hosain et al., 2014). Several
electrophysiological biomarkers linked to the symptoms of patients
have been introduced for closing the feedback loop including local
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Illustration of open-loop (A) and closed-loop (B) DBS systems.

field potential (LFP), action potential, electroencephalogram
potential, and electrocorticogram. The selection of biomarkers for
the CL-DBS system in Parkinson’s disease faces several challenges.
One of the challenges of selection biomarkers is to understand their
evolution over time and their correlation with symptom severity.
Studies are required to assess the stability and consistency of
biomarkers. Localization specificity is another consideration,
requiring biomarkers with good spatial specificity to accurately
target specific brain regions. Precise localization and electrode
placement are essential for optimal therapeutic outcomes. Robust
clinical studies and consensus on selection criteria and assessment
protocols are necessary. Addressing these challenges requires
collaboration between clinicians, neuroscientists, and engineers to
enhance the precision and effectiveness of CL-DBS system,
ultimately improving outcomes for individuals with Parkinson’s
disease (Rossi et al., 2007).

Another challenge of CL-DBS systems is the design of closed-loop
control algorithms for the automatic adjustment of stimulation
parameters (Parastarfeizabadi and Kouzani, 2017). A robust control
mechanism is essential for CL-DBS systems to enable automatic
updates of stimulus settings without the need for manual intervention.
Current existing closed-loop controlling algorithms either control one
pulse parameter such as amplitude or implement a simple on-off
control of stimulations. However, to further optimize the efficiency of
the system, it is ideal to set a threshold and continually monitor the
biomarker and control stimulation on-off when the signal crosses the
threshold. Thus, the development of an optimized controller for
programming stimulation parameters is further needed. In addition,
CL-DBS devices are expected to consume less power compared with
the OL-DBS systems. Nevertheless, CL-DBS devices carry real-time
recording and data processing circuits that cause high power
consumption for the device. Therefore, there is an urgent need to
develop an adaptive CL-DBS system with low power consumption,
high intelligence, and minimal side effects to optimize patient outcomes.

Overall, designing CL-DBS algorithms with energy-efficient
hardware implementation is essential. Due to the diverse variations in
signs and symptoms among Parkinson’s patients, continuous
monitoring of PD indicators and making appropriate adjustments to
stimulus signals are crucial. Therefore, the development of an
intelligent and energy-conscious PD symptom detector and controller
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is necessary to achieve optimal results for patients while minimizing
negative side effects.

2.3 Overview of memristive synapse

A memristor is a non-volatile memory device that encodes
information into its resistances. Therefore, memristors are also known
as resistive random-access memory (ReRAM) or RRAM (Chua, 1971;
Strukov et al., 2008; Williams, 2008; Eshraghian et al., 2012; Wong
etal., 2012; An et al., 2021a,b; Chua et al., 2022; Zins et al., 2023). The
memristor operates by modifying its resistances with a voltage stimuli
(Strukov et al., 2008). This property allows memristive devices to
exhibit their current-voltage (I-V) characteristic curves as shown in
Figure 2A. Memristors have garnered attention as promising
nanodevices for in-memory computing and electronic synapses due
to their potential for high-density integration, fast writing and reading
times, and high power efficiency (Upadhyay et al., 2019). Importantly,
the conductance of a memristor is not solely influenced by the current
control signals (applied voltage or current), but also by their history,
such as the time integral of charge or flux (Chua, 1971; An et al., 2017).
In addition, memristors offer the advantage of being compatible with
CMOS (complementary metal-oxide-semiconductor) fabrication
processes. This compatibility allows for the seamless vertical
integration of memristors with CMOS-based integrated circuits (ICs),
forming three-dimensional integrated circuits (3D-ICs).

The typical structure of a memristor is depicted in Figure 2.
Memristive devices consist of insulating layers sandwiched between
top and bottom nanowire electrodes (Figure 2B). Multiple memristors
are commonly fabricated in a crossbar configuration, as illustrated in
Figure 2B. This straightforward crossbar structure enables the scaling
down of individual memristive devices into approximately 10 nm (Lu
etal., 2011).

The crossbar configuration offers a high integration density and
random-access capacity (Snider and Williams, 2007). As shown in
Figure 2B, with the utilization of the n-rows and n-columns of the
crossbar, all #xn cross points can be accessed. Memristive crossbars
also have the capability for analog arithmetic calculations (Min and
Corinto, 2021). The characteristics of in-memory computer
architecture render it a highly promising approach for advancing
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neuromorphic systems. Vector-matrix multiplications, widely used in
deep learning and in-memory computing, stand to gain significant
benefits from this architecture. Figure 2C depicts a memristive vector-
matrix multiplication (VMM) engine (Cui and Qiu, 2016), capable of
performing analog computations of I=G - V using a conductance
matrix G with dimensions i-by-j.

The VMM engine is composed of two layers of metal wires,
denoted as i for the input voltage vector and j for the output current
vector. Each memristor acts as a connection point between the
overlapping top and bottom wires. By setting the conductance of the
memristor at coordinates i on the bottom and j on the top to values
G, the output current vector I can be generated on the bottom wires
when an input voltage vector V is applied. The crossbar structure of
the memristor allows for sampling the outputs by measuring the
accumulated current on each bit line (BL). This facilitates the analog
computation of VMM, where input tensors are mapped as voltages
loaded in parallel on each word line (WL), and synaptic weights are
represented by the conductance of memristor cells in a subarray as:

1; =ViG; (1)

where V; is the input voltage at i-th wordline (WL) and G;; is the
conductance of the memristor cell stacked between i-th WL and j-th
bitline (BL). The crossbar cannot operate properly unless the bottom
wires are held at ground potential. Another crossbar and subtraction
circuit is required to support negative entries in the conductance
(Pino et al., 2012). Memristor crossbars with a high density are able to
conduct parallel vector-matrix multiplication while consuming an
extremely minimal energy (Zhang et al., 2017). Furthermore, the
parameters of the applied voltage pulses can be modulated in order to
adapt the memristor’s conductance, offering tremendous potential for
the development of adaptive systems with the capacity for online
learning (Li and Ang, 2021). Thus, memristors are considered
nanodevices for electronic

promising synapses in a

neuromorphic chips.

3 Design of neuromorphic CL-DBS
detectors

Neuromorphic systems with memristive synapses are promising
next-generation artificial intelligence platforms known for their
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remarkable energy efficiency. In this paper, we present the
development of a novel neuromorphic PD symptom detector for the
CL-DBS system. The detector utilizes spiking neural networks (SNNs)
to detect and analyze PD symptoms based on spike patterns,
particularly in the region of STN. Unlike previous approaches that
involve converting spiking signals from the time domain to the
frequency domain, our neuromorphic detector directly processes the
spiking signals, eliminating the need for time-frequency conversion.

Specifically, the implementation of our neuromorphic PD detector
involves the utilization of the long short-term memory (LSTM)
architecture. The neural activities used for training are collected using
a PD computational model (Kumaravelu et al., 2016). The dataset
utilized for training encompasses spike timings spanning from 0 to
2,500 milliseconds per data sample.

To comprehensively evaluate the hardware performance of our
detector, a strategic approach is employed. We systematically save the
weights and biases during the training process and subsequently
integrate them into NeuroSIM as memristive synapses. This
integration enables a thorough evaluation, considering both
monolithic and heterogeneous 3D chip designs.

Remarkably, our neuromorphic PD detector exhibits superior
performance compared to the conventional 6T SRAM memory
architecture. This superiority is evident in various aspects, including
chip design area, latency, and power consumption. The intricacies of
the design and assessment methodology are visually depicted in
Figure 3, offering a clear illustration of our neuromorphic PD
detector’s functionality.

Moreover, a distinct validation dataset is employed as a crucial
component of our evaluation process, ensuring a robust assessment of
the detector’s performance. The weights and biases derived from the
8-layer detector are meticulously preserved throughout the training
phase, and these parameters are seamlessly integrated into NeuroSIM
as memristive

synapses for a comprehensive analysis of

hardware performance.

3.1 Acquisition of PD spiking data

The neural activity with typical PD symptoms for training our
neuromorphic PD detector is obtained by a computational model,
which includes the six brain regions as shown in Figure 4A
(Kumaravelu et al., 2016). This model represents the cortical-basal
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Hardware Performance Evaluation Workflow

ganglia-thalamus network, incorporating the brain regions of the
cortex, striatum, subthalamic nucleus, globus pallidus externa, globus
pallidus interna, and thalamus. Each of these regions is modeled using
10 single-compartment neurons. These neurons form a functional
network by being interconnected through synapses. The cortex and
striatum have stochastic connections, while other regions exhibit
structured connections. During simulations, different time steps were
tested, and the results remained stable regardless of the time step value.

The network model incorporates various types of connections
among the neurons in the six regions. Regular cortex neurons receive
excitatory input from thalamic neurons and inhibitory input from
randomly selected inhibitory cortex neurons. Inhibitory cortex
neurons, on the other hand, receive excitatory input from randomly
chosen regular cortex neurons. Direct pathway striatum neurons
receive excitatory input from regular cortex neurons and inhibitory
input from randomly chosen direct pathway striatum neurons.
Indirect pathway striatum neurons receive excitatory input from
regular cortex neurons and inhibitory input from randomly selected
indirect pathway striatum neurons. Subthalamic nucleus neurons
receive inhibitory input from globus pallidus externa (GPe) neurons
and excitatory input from regular cortex neurons. Globus pallidus
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externa neurons receive inhibitory input from any two other globus
pallidus externa (GPe) neurons, as well as from all indirect pathway
striatum neurons. Globus pallidus interna neurons receive inhibitory
input from globus pallidus externa neurons and from all direct
pathway striatum neurons. Additionally, some globus pallidus externa
and globus pallidus interna neurons also receive excitatory input from
subthalamic nucleus neurons. Finally, thalamic neurons receive
inhibitory input from globus pallidus interna neurons.

To train our neuromorphic PD detector, we collected spike data
from the neurons in the subthalamic nucleus (STN) region of the brain
to construct the dataset. According to research on PD, there is an
increased power spectrum in low-frequency oscillations in neurons of
the basal ganglia (BG) in the Parkinsonian state compared to the
healthy state. Hence, the spectral power at low frequencies, specifically
beta oscillations (13-30Hz), can be used as an indicator of PD and
healthy states (McConnell et al., 2012). Figure 4B illustrates the
intensity of spectral power in representative STN neurons for both PD
and healthy states, clearly demonstrating the noticeable difference in
beta oscillation levels between the two states. However, conducting
spectral analysis on PD spike data to generate beta oscillations is a
time-consuming and energy-intensive process. Hence, the utilization
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of spike timing directly offers notable advantages in terms of temporal
and energy efficiency. Considering the difficulties involved in acquiring
PD data from experimental studies, we employed a computational PD
model (Kumaravelu et al., 2016) to generate a significant volume of
spike timing data specifically tailored for PD.

Figure 4C depicts the spike frequencies of representative neurons
in the STN region for PD and healthy states, clearly demonstrating the
asymmetry between the two states, with significantly higher spike
frequencies in the PD state. The PD spike data with no DBS stimuli
consists of 1,000 independent samples, each representing the spiking
signals of 15 neurons within the range of 0 to 2,500 ms. In total, the
dataset contains 1,000 samples, encompassing spike timing
information for a total of 15,000 neurons.

The spike timing intervals cover a range of 0 to 2,500 milliseconds,
providing detailed temporal information of spikes. Similarly, the
healthy spike data with no DBS stimuli comprises 1,000 distinct
dataset samples, with each sample containing spike data of 15 neurons
within the same 0 to 2,500 milliseconds range. The dataset includes
1,000 samples, capturing spike timing information for a total of 15,000
neurons. Figure 4D shows the spike timing data samples of 15 healthy
and PD STN neurons. The spike timing data in the healthy state is
much sparser compared to the PD state.

3.2 Design and training of spiking long
short-term memory for neuromorphic
detector

Our neuromorphic detectors can be successfully trained using
spike data obtained from the PD biophysical computational model.
While SNNs are known for their remarkable energy efficiency,
training them using traditional gradient descent techniques becomes
challenging due to the non-differentiability of threshold neurons. To
address this challenge, a training method called Whetstone (Severa
et al, 2019) are employed. The Whetstone approach simplifies
hardware implementation by generating binary outputs of “1” or “0”
instead of using other complex encoding schemes, such as temporal
coding. In the Whetstone training method, the neural networks are
initially trained using conventional backpropagation techniques and
differentiable activation functions such as the rectified linear unit
(ReLU) function. Subsequently, these differentiable activation
functions are replaced with non-differentiable threshold functions
during training. This transformation of the activation function
during the training process is referred to as the sharpening process.
Initially, the ReLU function is represented using conventional
differentiable functions prior to the training procedure. However,
during training, the ReLU function undergoes a transformation into
a threshold function. Specifically, a bounded ReLU (bRELU) of an
artificial neural network (ANN) gradually evolves into a traditional
step function through the utilization of Eq. (2). This modification of
the activation function occurs as part of the sharpening process,
which enhances the efficiency of data processing and classification.

Lifx; > 8

Xi—«a

ha,p = Jdfa<x; <p 2)

O,if xi<a
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The assumption |f—0.5|=|a—0.5| in Eq. (2) illustrates the
characteristics of the bounded ReLU (bRELU) activation function.
The generic bRELU function, denoted as h,j undergoes a
progressive transformation into a threshold function as «
approaches 0.5 and h approaches 1. Importantly, throughout this
modification, the activation function remains differentiable,
allowing for effective training with gradient descent algorithms. By
employing the sharpening procedure, the activation function h,
(with =0 and h=1) is converted into a threshold function. To
mitigate potential accuracy loss during training, an adaptive
sharpening process can be implemented. This approach periodically
evaluates the training accuracy at the end of each epoch and, if the
change in training loss is consistently smooth, suspends or
terminates the sharpening process. By leveraging threshold
neurons, the Whetstone method overcomes the non-differentiability
challenge and enables the successful training of SNNs for spike PD
symptom detection.

To detect abnormal neural activities associated with PD
symptoms in STN neurons, we have developed three SNN-based
neuromorphic PD detectors. These neuromorphic detectors are an
8-layer S-LSTM neuromorphic PD detector, a 7-layer neuromorphic
S-LSTM PD detector, and a 7-layer neuromorphic SNN PD
detector. The architectures of these detectors are depicted in
Figure 5.

To assess their performance in recognizing PD symptoms, these
detectors underwent training and validation using 30,000 spike data
samples from STN neurons in our computational PD model. The
train-test mechanism of SNN algorithms relies on data splitting,
where a portion of the data is used for training and the remaining
data for evaluation. Therefore, determining the appropriate
percentage for training and validation is crucial. In this study,
we employed the training-validation data-splitting technique. The
data were divided into three groups using different training-
validation splits: 60%-40%, 75%-25%, and 90%-10%. Each of the
three PD detectors was tested on different data splits to evaluate the
performance of the SNN algorithms. All the SNN-based PD
detectors were trained for 100 epochs using the adadelta optimizer
with a learning rate of 0.05. The classifiers were trained using the
Whetstone training method, which incorporates an adaptive
sharpening procedure. This procedure gradually transforms a
bounded ReLU activation function into a threshold function based
on the model’s accuracy and loss performance.

The neuromorphic PD detector was trained and evaluated for 100
epochs using a total of 30,000 spike data samples. The data were
divided into three groups using the training (%)—validation (%) split
technique. For the 60%-40% split, the training dataset consisted of
18,000 spike timing data samples, while the validation dataset
contained 12,000 spike timing data samples. In the case of the
75%-25% split, the training dataset comprised 22,500 spike timing
data samples, and the validation dataset had 7,500 spike timing data
samples. Lastly, for the 90%-10% split, the training dataset included
27,000 spike timing data samples, and the validation dataset consisted
of 3,000 spike timing data samples.

Table 1 presents a comparison of key performance measures for
neuormorphic PD detection among the 8-layer S-LSTM, 7-layer
S-LSTM, and 7-layer SNN detectors. The comparisons were made
using different training-validation data split ratios of 60%-40%,
75%-25%, and 90%-10%.
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FIGURE 5
(A) The 8-layer neuromorphic PD detector with LSTM. (B) A 7-layer neuromorphic PD detector with LSTM. (C) the 7-layer neuromorphic PD detector
with SNNs.

For the 60%-40% data splits, the 8-layer S-LSTM outperforms
the 7-layer SNN and the 7-layer S-LSTM in accuracy (ACC),
misclassification rate (MCR), recall, false negative rate (FNR), F1
score, and Matthews correlation coefficient (MCC). The 7-layer
S-LSTM outperforms the 7-layer SNN and the 8-layer S-LSTM in
the area under the ROC curve (AUC score), precision, specificity,
and false positive rate (FPR). The 7-layer SNN outperforms the
7-and 8-layer S-LSTM in recall and FNR. Therefore, the 8-layer
S-LSTM classifier demonstrates the best performance, while the
7-layer SNN classifier exhibits inferior performance for the
60%-40% splits.

For the 75%-25% data splits, the 8-layer S-LSTM outperforms
the 7-layer SNN and the 7-layer S-LSTM in ACC, MCR, precision,
specificity, FPR, F1 score, and MCC. The 7-layer S-LSTM outperforms
the 7-layer SNN and the 8-layer S-LSTM in recall and FNR. The
7-layer SNN outperforms the 7-and 8-layer S-LSTM in AUC score.
Therefore, the 8-layer S-LSTM classifier demonstrates the best
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performance, while the 7-layer SNN classifier exhibits inferior
performance for the 75%-25% splits.

For the 90%-10% data splits, the 8-layer S-LSTM outperforms the
7-layer SNN and the 7-layer S-LSTM in ACC, MCR, recall, FNR, F1
score, and MCC. The 7-layer S-LSTM outperforms the 7-layer SNN
and the 8-layer S-LSTM in ACC and MCR. The 7-layer SNN
outperforms the 7-and 8-layer S-LSTM in ACC, MCR, AUC score,
precision, specificity, FPR, and MCC. Therefore, the 7-layer SNN
classifier demonstrates the best performance, while the 7-layer
S-LSTM classifier exhibits inferior performance for the 90%-10%
splits. These observations indicate the varying performance of the
classifiers based on different data split ratios.

Figure 6 illustrates six key performance measures for the three
PD classifiers with training-validation data split ratios of
60%-40%, 75%-25%, and 90%-10%, respectively. In all three
figures, the trend lines consistently demonstrate that the 8-layer
S-LSTM classifier outperforms both the 7-layer SNN classifier and
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TABLE 1 Comparison of performance measures of SNN-based PD
classifiers on the validation dataset.

Training Performance 8-layer 7-layer 7-layer
(9%6)— measures S-LSTM  S-LSTM  SNN
validation
(%) split
ratios
ACC 0.9962 0.9960 0.9960
MCR 0.0038 0.0040 0.0040
AUC score 0.9998 0.9999 0.9998
Precision 0.9963 0.9973 0.9960
60%-40% Recall/sensitivity 0.9960 0.9947 0.9960
splits Specificity 0.9963 0.9973 0.9960
FPR 0.0037 0.0027 0.0040
FNR 0.0040 0.0053 0.0040
F1 score 0.9962 0.9959 0.9960
MCC 0.9923 0.9921 0.9920
ACC 0.9952 0.9949 0.9948
MCR 0.0048 0.0051 0.0052
AUC score 0.9998 0.9998 0.9998
Precision 0.9965 0.9957 0.9960
75%-25% Recall/sensitivity 0.9939 0.9941 0.9936
splits Specificity 0.9965 0.9957 0.9960
FPR 0.0035 0.0043 0.0040
FNR 0.0061 0.0059 0.0064
F1 score 0.9952 0.9949 0.9948
MCC 0.9904 0.9899 0.9896
ACC 0.9960 0.9960 0.9960
MCR 0.0040 0.0040 0.0040
AUC score 0.9997 0.9998 0.9998
Precision 0.9953 0.9960 0.9967
90%-10% Recall/sensitivity 0.9967 0.9960 0.9953
splits Specificity 0.9953 0.9960 0.9967
FPR 0.0047 0.0040 0.0033
FNR 0.0033 0.0040 0.0047
F1 score 0.9960 0.9960 0.9959
MCC 0.9920 0.9920 0.9920

the 7-layer S-LSTM classifier. Additionally, the trend lines indicate
that the performance of the 7-layer SNN classifier is the lowest
among the three classifiers, as all trend lines point downward
towards it (see Figure 6).

Figure 7 displays the confusion matrices derived from evaluating
the validation dataset using different training validation data splits.
These matrices offer insights into the classification performance of
the classifiers. For the 7-layer S-LSTM classifier, out of 6,000 healthy
samples, 5,984 were correctly labeled as healthy, while 16 were
mistakenly labeled as PD. Out of 6,000 PD samples, 5,968 were
correctly identified as PD, but 32 were erroneously classified as
healthy. For the 8-layer S-LSTM classifier, out of 6,000 healthy
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samples, 5,978 were accurately classified as healthy, while 22 were
misclassified as PD. Regarding the PD samples, 5,976 were correctly
labeled as PD, but 24 were incorrectly assigned as healthy. In the case
of the 7-layer SNN classifier, out of 6,000 healthy samples, 5,976 were
correctly identified as healthy, while 24 were erroneously labeled as
PD. Similarly, out of 6,000 PD samples, 5,976 were correctly classified
as PD, but 24 were mistakenly categorized as healthy. Based on these
observations, it can be concluded that the 8-layer S-LSTM PD
classifier exhibits superior performance compared to the other two
classifiers, indicating its higher accuracy in classifying PD samples.
However, the performance of the other two classifiers, the 7-layer
S-LSTM and the 7-layer SNN, could be further improved to enhance
their classification accuracy.

Analysis of the confusion matrix reveals that all of the healthy data
points were correctly identified, with only one out of the five PD data
points being erroneously labeled as healthy. Consequently, we can
conclude that our SNN classifier exhibits robustness in accurately
identifying PD from new spike timing test data.

3.3 Noise robustness analysis of the
proposed model

Noise robustness is a critical evolution metric in neuromorphic
systems (Yang et al., 2021, 2022a,b; Yang and Chen, 2023; Yang, et al.
2023a,b). To validate the robustness of our model against timing noise in
neural signaling, Gaussian noise is introduced to the timing of neural
signal firings. Specifically, a series of random numbers drawn from a
Gaussian distribution with a specified mean and standard deviation were
added to the neural activity timings of the original data samples.

For each non-zero spike timing value in the dataset, we generate
arandom noise value using Gaussian distribution. This random noise
value represents the amount of variability or perturbation that we are
adding to the spike timing value. We then combine the original spike
timing value with the Gaussian noise value to create a noisy spike
timing value that replaces the original value in the dataset at the
specified row and column as shown in Egs. (3) and (4):

1 e—()cﬁu)z/Zcr2

PN / v

4

Xi,j =Vijt N,

where Xx; ; is the noisy spike timing value, v; ;is the original spike
timing value, and N represents the Gaussian noise with mean ( )
and variance (62 ). This simulates the effect of random noise on the
spike timing data, making it more realistic and suitable for the
robustness analysis. In specific, the Gaussian noise is added to the
neural spike timing dataset using the Algorithm 1.

To evaluate the robustness of our neuromorphic PD model,
we have tested it with three noise settings. In the first noise setting,
we applied moderate Gaussian noise with a mean of 7 and a standard
deviation of 4. In the second noise setting, we applied moderate to
high Gaussian noise with a mean of 15 and a standard deviation of 12,
and in the third noise setting, we applied very high Gaussian noise
with a mean of 30 and a standard deviation of 25. The spike timing
data before and after adding noise signals are illustrated in Figure 8.
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Algorithm 1: Adding Gaussian Noise to Spike Timing Data

1 Start

2 Initialize: data, u, and o.

3 Create an empty list noise_values.

4 for all elements (samples) in data do

5 Retrieve the spike timing value at the current sample.

6 if value # 0 then

7 Generate Gaussian noise: noise_source with parameter y and o.
8 Append noise_source to noise_values.

9 Add noise_source to value to create noisy value.

10 Update the current element in data with noisy value.

11 end if

12 end for

13 Output the modified data with noisy spike timing values.

14 End

Our neuromorphic PD detector is trained over 100 epochs,
employing a dataset partition of 75% for training and 25% for
validation to assess the detector’s resilience to noisy data. The dataset
comprises a total of 30,000 spike timing samples, with 22,500 samples
allocated for the training set and 7,500 for validation. The tabulated
results presented in the subsequent table demonstrate the model’s
commendable accuracy in detecting Parkinson’s disease from noisy
data. Furthermore, we have thoughtfully depicted the confusion
matrix for all three cases. As illustrated in Figure 9, although the
accuracy of our neuromorphic PD detector decreases with the
addition of more intensive noise, the overall accuracy remains at a
high level, demonstrating excellent noise immunity capability of our
neuromorphic detector.

3.4 Hardware performance evaluation and
comparison

To assess the hardware performance of our neuromorphic PD
detector by using memristive synapses, the weights of the
neuromorphic PD detector were recorded during training and
encoded into the resistance of memristors using a simulator
framework named NeuroSim3D (Chen et al., 2018) hardware
simulator. Memristors are typically fabricated within a crossbar
architecture. As depicted in Figure 10B, nanowires composed of inert
cathodes and oxidizable active anodes are situated at the upper and
lower regions of the crossbar, respectively. The metallic oxide layer is
positioned at the crosspoints where the upper and lower nanowires
intersect. This crossbar configuration closely parallels the architecture
of a conventional memory array, such as SRAM shown in Figure 10B.

The memristors are added to our neuromorphic PD detector as
an electronic synapses (Likharev, 2011; Wang et al., 2012; Bichler et al.,
2013; Kornijcuk et al., 2014; Park et al., 2015) storing the weights of
neural networks. As the emerging electronic synapses, these
memristors replace traditional memory devices, such as SRAM. The
parameters of our memristor models are collected by measurement
our memristor devices shown in Figures 10C,D. The V-I curves of the
memristors are shown in Figure 10E.
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As illustrated in Figure 10B, each memory cell within the
memory array is linked to both a wordline and a bitline. The data
stored in memristors is encoded in their resistances, and the
nanowires serve as the bitline and wordline for accessing the
memristive memory cells. Figure 10 illustrates the writing and
reading phases of a memristive memory cell. In the writing phase,
a voltage pulse, exceeding the set voltage, is applied to the
nanowire within the crossbar structure, thus altering the resistance
value of the memristor. During the reading stage, the applied
voltage is significantly lower than the set voltage to preserve the
resistance of the cell unaltered. The resistance value of the selected
memristor is calculated as the applied voltage divided by the
measured current at the end of the nanowire. The weight matrices
are mapped onto the passive memristor crossbar using memory
cell selection devices.

Figure 10B shows a traditional SRAM. NeuroSIM conducts weight
sum and update operations in a row-by-row fashion (Chen et al.,
2018). Row selection is activated through the WL decoder, and the
BLs are precharged for each cell access. Memory data is captured by
the sense amplifier (S/A). Subsequently, the adder and register are
employed to sum the weight values in a row-by-row manner. By
substituting SRAM core memory with memristors, the architecture
remains largely unaltered shown in Figure 10B. The weighted sum
operation in the memristor-based synaptic core also follows a
row-by-row style, with the incorporation of multiplexers (MUX)
(Chen et al., 2018).

To assess the performance of our neuromorphic PD detector,
encompassing design area, latency, and energy efficiency, we have
established a hardware-software co-simulation using NeuroSIM
(Chen et al., 2018), as depicted in Figure 10A. The model is
constructed through the following steps:

Firstly, our neuromorphic PD detector is built of multiple
layers of S-LSTM for detecting power density at the beta
bandwidth of the STN region. During the training progress, the
weights and neural network configuration of the S-LSTM are
monitored and stored.

Secondly, our experimentally verified memristor model is
incorporated into the micro-architecture simulator NeuroSIM (Chen
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(A) Comparison of performance metrics of SNN classifiers for 60%—-40% split. (B) Comparison of performance metrics of SNN classifiers for 75%—-25%
split. (C) Comparison of performance metrics of SNN classifiers for 90%-10% split.

et al., 2018) incorporating parameters such as on-state resistance,
off-state resistance, and others. The deployment method assesses the
neural network’s performance within an offline training environment,
which necessitates local computation. In contrast to online learning,
offline learning training maintains the trained neural network on the
client side, handling all prediction computations locally (Lane et al.,
2015), due to the constraints imposed by limited power and space
budgets energy.

Finally, the performance improvements of our memristor on
energy efficiency, design area, and execution latency are estimated
through the co-simulation paradigm. The pseudocode of our
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hardware-software co-simulation paradigm is introduced in Figure 10
and in Algorithm 2.

Table 2 shows the values used to set the simulation parameters of
the 3D NeuroSim simulator for both monolithic and heterogeneous
3D memristor and SRAM chip designs.

Figure 11 illustrates our designs offer a significant reduction in the
chip design area, with a 47.5% decrease for monolithic 3D and 44.8%
for heterogeneous 3D, when compared to conventional SRAM-based
designs (see Table 3).

Additionally, the first monolithic and heterogeneous 3D
memristive designs demonstrate a substantial reduction in chip buffer
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Algorithm 2: Performance Estimation

Initialize: The configuration of the artificial neural network
Initialize: Memristive synapse configuration

Initialize: Peripheral circuits configuration

1 For epoch =1, M do

2 While batch in dataset do

3 For number of the layers =1, N do

5 sharpening the activation function (BReLU) through & — 0.5, h — 1 (Eq. 5).
6 End For

7  End While

8 End For

9 Store weights and neural network configuration.

10 Calculate Area of Peripheral circuits based on their configuration.

11 Calculate total area = memristor memory array area + X area of the peripheral circuits.

12 Recall Stored weights
13 For number of the weight index =1, N do

14 Calculate latency of Peripheral circuits with RC as load parameters.
15 Total latency = X (latency) of peripheral circuits in each operation.
16 Total energy = array dynamic/static energy + X (dynamic energy) of peripheral circuits in each operation.

17 End For

read latency, with a decrease of 60.7% and 60.9% respectively,
compared to SRAM architecture. Similarly, the second monolithic and
heterogeneous 3D memristive designs achieve a reduction in chip
buffer read latency of 61.06% and 61.2% respectively, compared to
SRAM architecture. the
heterogeneous 3D memristive designs significantly decrease chip read
latency by 72.2% and 68.3% respectively, compared to SRAM
architecture. Similarly, the second monolithic and heterogeneous 3D

Furthermore, first monolithic and

memristive designs result in a reduction of read latency by 72.5% and
68.5% respectively, compared to SRAM architecture. Furthermore, the
first neuromorphic memristive circuit demonstrates a lower read
dynamic energy consumption, with a reduction of 36.6% for
monolithic 3D architectures and 35.3% for heterogeneous 3D systems
compared to conventional 6T SRAM. The second neuromorphic
memristive circuit achieves an even greater reduction in read dynamic
energy consumption, with decreases of 51.7% for monolithic 3D
architectures and 51.8% for heterogeneous 3D systems compared to
conventional 6 T SRAM.

Moreover, the first monolithic and heterogeneous 3D
neuromorphic-based memristive architectures exhibit a substantial
reduction in leakage energy consumption, with decreases of 86.180%
and 87% respectively, compared to traditional 6 T SRAM. Similarly,
the second monolithic and heterogeneous 3D neuromorphic-based
memristive architectures demonstrate lower leakage energy
consumption, with reductions of 87.1% and 87% respectively,
compared to conventional 6 T SRAM.

Finally, when compared to SRAM-based chip designs, both
monolithic and heterogeneous 3D memristive architectures show a
significant decrease in leakage power consumption, with reductions
of 67.5 and 67.7%, respectively.

Comparing the performance of these 7-layer SNN spike PD
detectors with the beta oscillation detector by Kerman et al. (2022) is
a valuable approach to evaluating the effectiveness of the detector. To
conduct a fair comparison, we created a separate test dataset using
spike timing data from 10 neurons in the STN region of the brain. This
test dataset intentionally had a different spike timing data range,
spanning from 0 to 2,000 milliseconds, compared to the training and
validation datasets.
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Table 4 summarizes the comparison of our work with other state-
of-the-art CL-DBS systems. From Table 4, we can conclude that our
3D neuromorphic PD detector has outperformed in terms of
recognition accuracy, showing an increase of 7.3% and 25%.
Furthermore, it has significantly reduced the chip design area by
99.95% and 90.52%.

4 Future research

This study presents a design of memristor-based neuromorphic
PD detector for CL-DBS system. Nonetheless, the PD detector alone
cannot constitute a comprehensive CL-DBS system. An intelligent
control mechanism within the feedback loop, as illustrated in
Figure 1B, stands as a critical component in a neuromorphic CL-DBS
system. In the future, we intend to design and analyze a neuromorphic
controller for the CL-DBS system. This neuromorphic controller will
also be built upon memristor systems and spiking neural networks.

Another potential research direction involves the utilization of
off-the-shelf neuromorphic chips, such as Intel Loihi chip (Davies
et al,, 2021), for the evaluation and validation of our neuromorphic
PD detector and controller. Neuromorphic chips present an emerging
and energy-efficient hardware for artificial intelligence (Severa et al.,
2019). The Intel Loihi neuromorphic chips employ a digital-analog
mixed design, enabling adaptive self-modifying event-driven fine-
grained parallel computations. Impressively, these chips achieve
exceptional energy efficiency, with less than 81 p]J per neuron update
and less than 24p] per synaptic operation when operating at
0.75V. This translates into a substantial reduction in energy usage,
surpassing traditional GPUs (graphics processing units) by a factor of
109 and outperforming CPUs (central processing units) by a factor of
23 (Schuman et al., 2017; Blouw et al., 2019; Roy et al., 2019). Notably,
one of the latest neuromorphic chips, DYNAPs, has been applied to
processing EMG signals with remarkably low power consumption, as
little as 614puW (Sharifshazileh et al, 2021). In the future, the
neuromorphic PD detector and controller, implemented with
neuromorphic chips, will be incorporated into our PD animal models
for real-time testing.
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Lastly, we intend to design and fabricate our own neuromorphic
chips to further enhance the energy efficiency and intelligence of the
CL-DBS system. This project encompasses the design of electronic
neurons and synapses using application-specific integrated circuits
(ASICs) and memristors. Within this project, we will assess our design
using a computational model of Parkinson’s disease (PD) (Davie, 2008;
Jankovic, 2008; Ghasemi et al., 2018; Zhou et al., 2018; Lozano et al.,
2019; Suetal., 2019). The PD model will provide brain neural activities
as input for our circuit design.

Furthermore, our design is set to move forward to the
tape-out stage. In this phase, we plan to develop a straightforward
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neuromorphic chip using electronic neurons and memristive
synapses, specifically tailored for CL-DBS systems. Memristors
will be integrated into our neuromorphic chip as electronic
synapses to further enhance energy efficiency. If successful, this
project’s outcome will yield more intelligent and energy-efficient
implanted/wearable medical devices for CL-DBS systems. The
resulting techniques will also have a broader impact on the future
development of wearable and implanted medical devices by
significantly reducing their size, weight, energy consumption,

and, most

importantly, them more

and intelligent.

making adaptive
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5 Conclusion

In this paper, we have presented a novel neuromorphic PD
detector for CL-DBS utilizing S-LSTMs and memristive synapses.
To the best of our knowledge, this is the first technique that
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integrates memristors and S-LSTMs into the CL-DBS system for
spike-time-based PD detection. The proposed neuromorphic-
based memristive design chip outperforms conventional SRAM-
based architecture, showing significant improvements in chip
area, latency, energy usage, and power consumption. In the case
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TABLE 2 Settings of simulation parameter values of the NeuroSim3D hardware simulator.

Type of 3D Monolithic 3D Heterogeneous 3D
Device Memristor 1 Memristor 2 Memristor 1 Memristor 2
Clock frequenc
q Y 1 1 1 1 1 1

(GHz)
Chip operation

311 311 311 311 311 311
temperature (K)
Activation neuron ReLU ReLU ReLU ReLU ReLU ReLU
Technology 22 22 22 22 22 22
Feature size/feature

40 40 40 40 40 40
size top (nm)
Device precision 2 2 2 2 2 2
Subarray size 128 x128 128 x128 128 x128 128 x128 128 x128 128 x128
Read voltage (V) 1.1 0.5 0.5 1.1 0.5 0.5
Read pulse width

N/A 10 10 N/A 10 10
(ns)
Wire width 40 40 40 40 40 40
Structure 6T 1TIR 1TIR 6T 1TIR 1T1R
Rox N/A 6e3 12e3 N/A 6e3 12e3
Rorr N/A 6e3 x150 12e3 x150 N/A 6e3 x150 12e3 x150
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FIGURE 11
Performance comparison of monolithic and heterogeneous 3D SRAM and memristor hardware.

of monolithic 3D architecture, the chip achieves a reduction of ~ 64.75% in latency, 65.28% in energy usage, and 67.7% in power
47.4% in chip area, 66.63% in latency, 65.6% in energy usage, and ~ consumption. These advancements in chip design hold
67.5% in power consumption. Similarly, for heterogeneous 3D tremendous promise for the future development of implanted
architecture, the chip exhibits reductions of 44.8% in chip area, = CL-DBS devices.
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TABLE 3 Breakdown of hardware performance of monolithic and heterogeneous 3D SRAM and memristive chips.

Type of 3D Monolithic 3D Heterogeneous 3D

Device Memristor1 =~ Memristor 2 Memristor1 =~ Memristor 2
Chip area 4.71e+07 pm? 2.48e+07 pm? 2.48¢+07 pm? 2.74e+07 pm? 1.51e+07 pm? 1.51e+07 pm?
Chip clock 5.17ns 2.10ns 2.07ns 5.15ns 2.08ns 2.06ns
Chip layer-by-layer read latency 3.39e +06ns 1.32¢+06ns 1.31e+06ns 3.19¢ +06ns 1.24e+06ns 1.23e+06ns
Chip total read dynamic energy 6.64e+07pJ 4.21e+07pJ 3.21e+07pJ 6.14e+07pJ 3.97e+07pJ] 2.96e+07 pJ
Chip total leakage energy 1.69¢+07 pJ 2.19¢+06 p]J 2.17e+06 p] 1.54e+07pJ 2.00e +06 pJ 1.99¢+06 pJ
Chip total leakage power 4017.15pW 1306.87 yW 1306.87 uyW 3896.45 W 1257.73 pyW 1257.73 pW
Chip buffer read latency 2.62e+06ns 1.03e+06ns 1.02e+06ns 2.6le+06ns 1.02e +06 ns 1.0l1e+06ns
Chip buffer read dynamic energy 713,257 pJ 465,134 p]J 465,134 pJ 234,315p] 152,781 pJ 152,781 pJ
Chip read latency 328,921 ns 91332.2ns 90547.7 ns 157,835ns 50134.6ns 49,701 ns
Chip IC read dynamic energy 7.55e+06 pJ 4.53e+06p]J 4.53¢+06p] 3.09¢ +06 pJ 2.48e+06p]J 2.48e+06p]
Energy efficiency TOPS/W 12.122 22.7915 29.483 13.1542 24.2376 31.9473
Throughput TOPS 0.362874 0.9355 0.943605 0.386731 0.990615 0.999258
Throughput FPS 294.58 759.436 766.016 313.947 804.178 811.194
Compute efficiency TOPS/mm? 0.00770103 0.0377346 0.0380615 0.0141229 0.065512 0.0660836
Power density (W/mm?) 0.000635296 0.00165564 0.00129097 0.00107364 0.0027029 0.00206852

TABLE 4 Comparison of spike time PD classifier performance with beta oscillation detector performance.

Evaluation metrics PD detector (Kerman et al.,

2022)

CL-DBS system (Gao et al., = This work

2020)

Time domain

Signal domain

Frequency domain

Frequency domain

Hardware 2D memristive neuromorphic system FPGA 3D memristive neuromorphic system
Chip area 1.69¢ +08 pm? N/A 1.51e+07 pm®

Chip energy 9.13e+7n] N/A 39.27n]

Model/algorithm Spiking MLP Reinforcement learning Spiking LSTM

Training accuracy 0.93 N/A 0.9977

Validation accuracy N/A N/A 0.9948

Inference accuracy 0.715 N/A 0.90
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