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Use and detection of a vitamin B1 degradation product 
yields new views of the marine B1 cycle and plankton metabolite 
exchange
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ABSTRACT Vitamin B1 (thiamin) is a vital nutrient for most cells in nature, including 
marine plankton. Early and recent experiments show that B1 degradation products 
instead of B1 can support the growth of marine bacterioplankton and phytoplankton. 
However, the use and occurrence of some degradation products remains uninvestigated, 
namely N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), which has been 
a focus of plant oxidative stress research. We investigated the relevance of FAMP in 
the ocean. Experiments and global ocean meta-omic data indicate that eukaryotic 
phytoplankton, including picoeukaryotes and harmful algal bloom species, use FAMP 
while bacterioplankton appear more likely to use deformylated FAMP, 4-amino-5-amino­
methyl-2-methylpyrimidine. Measurements of FAMP in seawater and biomass revealed 
that it occurs at picomolar concentrations in the surface ocean, heterotrophic bacterial 
cultures produce FAMP in the dark—indicating non-photodegradation of B1 by cells, and 
B1-requiring (auxotrophic) picoeukaryotic phytoplankton produce intracellular FAMP. 
Our results require an expansion of thinking about vitamin degradation in the sea, but 
also the marine B1 cycle where it is now crucial to consider a new B1-related compound 
pool (FAMP), as well as generation (dark degradation—likely via oxidation), turnover 
(plankton uptake), and exchange of the compound within the networks of plankton.

IMPORTANCE Results of this collaborative study newly show that a vitamin B1 
degradation product, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), can 
be used by diverse marine microbes (bacteria and phytoplankton) to meet their vitamin 
B1 demands instead of B1 and that FAMP occurs in the surface ocean. FAMP has not 
yet been accounted for in the ocean and its use likely enables cells to avoid B1 growth 
deficiency. Additionally, we show FAMP is formed in and out of cells without solar 
irradiance—a commonly considered route of vitamin degradation in the sea and nature. 
Altogether, the results expand thinking about oceanic vitamin degradation, but also 
the marine B1 cycle where it is now crucial to consider a new B1-related compound 
pool (FAMP), as well as its generation (dark degradation—likely via oxidation), turnover 
(plankton uptake), and exchange within networks of plankton.

KEYWORDS marine microbiology, vitamin, thiamin, LC/MS, phytoplankton, bacterio­
plankton, vitamin B1

T he metabolism and activity of marine bacterioplankton and phytoplankton 
significantly influence climate and productivity on Earth (1, 2). Nutrient availability is 

considered a major control on marine plankton growth as well as biomass and extends to 
include availability of organic nutrients such as water-soluble B-vitamins (3–5). It is long 
recognized that diverse marine bacterioplankton and phytoplankton require at least one 
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B-vitamin (3, 6, 7), and the necessity for B-vitamins is tied to their roles as cofactors 
in enzymatically driven reactions, translation regulatory elements that bind to 
riboswitches, or reactive oxygen quenching antioxidants (8–11). B-vitamins are greatly 
understudied in the ocean relative to carbon, nitrogen, phosphorus, and iron; how­
ever, interest in them is reemerging (12, 13). Broadly, marine plankton (and cells 
in general) meet their B-vitamin demands by: (i) making required vitamin de novo 
(prototrophs) and/or (ii) acquiring extracellular vitamin (auxotrophs). The latter lifestyle 
requires co-existence with the prior to some degree and is surprisingly common among 
marine plankton (14–16). The prevalence of the auxotrophic lifestyle is likely due to 
the elemental or energetic cost advantages of bypassing de novo vitamin synthesis and 
raises questions about how plankton meet their vitamin demands and stay alive.

Exogenous vitamers, vitamin-related compounds such as precursors or degradation 
products, are an alternative to intact vitamin that auxotrophs can use to meet their 
vitamin requirements. In the case of vitamin B1 (thiamin; called B1 herein), biosynthesis 
is a multi-step process that generates pyrimidine and thiazole precursor compounds as 
well as phosphorylated B1—the enzyme cofactor form of B1 (17). These compounds, 
along with B1 degradation products, are known to sustain select B1 auxotrophic 
plankton in culture (3, 4, 18–21). Recent work shows more specifically that key bacterio­
plankton and phytoplankton lineages in the ocean use select vitamers—bringing added 
attention to these alternatives to B1 (22–25). As an example, B1 precursor 4-amino-5-
hydroxymethyl-2-methylpyrimidine (HMP) is required instead of B1 itself by lineages 
within the marine SAR11 bacterioplankton clade that dominates the surface ocean (22). 
Evidence of B1 deficiency in marine ecosystems at multiple trophic levels, from bacteria 
and phytoplankton to fish and birds (14, 26–29), has also increased interest in vitamers—
as they may help to sustain populations at the base of the marine food web under B1 
scarcity. Furthermore, vitamers appear to be readily exchanged, especially pyrimidine 
precursors based on recent experiments (24, 30), which indicates flux to and from cells is 
likely commonplace in the ocean.

While appreciation for vitamers is growing, it remains a significant challenge to 
identify the complete B1 vitamer pool used by cells in nature, and this is important to 
resolve because knowing the true vitamin availability, as well as turnover, will ultimately 
allow prediction of plankton biomass and productivity in the ocean. Cell bioassays 
and liquid chromatography mass spectrometry (LC/MS) methods indicate vitamers 
occur in seawater (24, 31–34). Solid phase extraction (SPE) and LC/MS have quantified 
specific vitamer molecules, including phosphorylated B1, pyrimidines, and thiazoles 
for which there are commercial standards (32, 33). However, non-marine experiments 
and theoretical chemistry detail the formation of other B1 vitamers through alkaline 
or oxidative B1 degradation (35–39), and these have not yet been investigated in an 
oceanographic context nor considered key metabolite currency for marine microbes (40).

There is a notable gap in knowledge regarding in situ B1 degradation, cycling, and 
remodeling of degradation products in the ocean. Shedding light on these processes 
could reveal new microbial interdependencies, as well as explanations for the success 
of key populations impacting oceanic productivity and biogeochemistry. Our current 
understanding of oceanic B1 degradation is limited to scant laboratory and mesocosm-
based exposures of dissolved B1 in seawater that highlight solar irradiance as an 
important degradative factor, along with increasing temperature (25, 34, 41).

Intracellular degradation of B1 has been especially overlooked in marine plank­
ton yet could be an important source of vitamers to seawater and a process that 
impacts B1 per cell and trophic transfer (42, 43). Some marine plankton salvage B1 
from pyrimidine degradation products; however, this has been minimally examined 
(18, 19, 25). Primarily exogenous photooxidation of B1 in the dissolved phase of 
seawater has been considered (25, 34), but this may also occur intracellularly as 
described in plants. Plants experiencing high oxidative stress exhibit an increased B1 
biosynthesis response based on transcriptomic, proteomic, and enzymatic datasets 
(36, 44). Oxidation of B1 in plants is proposed to yield diverse vitamers, including 
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N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP) (36, 37). The B1 salvage 
enzyme TenA_E in Arabidopsis exhibits high affinity for FAMP compared with B1 and 
other pyrimidine B1 vitamers in vitro (36). Thus, FAMP production and salvage of B1 
from FAMP are expected within plant cells. In cells that cannot salvage B1 from FAMP, 
e.g., cells lacking TenA_E such as low-light Prochlorococcus or SAR11 clade affiliates (22, 
45), possibly the vitamer is released into the environment as “overflow” (46); however, 
this has not been demonstrated directly. An intermediate in the pathway of salvaging 
B1 from FAMP (Fig. 1), 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP), is useful for 
marine haptophytes (phytoplankton) to meet their B1 demands (25) and is expected 
to be used by diverse marine bacterioplankton, based on genomes and metagenomes 
containing genes coding for TenA_C—the isoform of TenA that converts AmMP to HMP 
(25, 36, 47). Additionally, B1 auxotrophic marine phytoplankton, including cosmopolitan 
chlorophytes Ostreococcus and Micromonas spp., possess TenA and thus may also use 
AmMP or FAMP (24, 48). AmMP has also been detected in seawater (32), suggesting 
B1 salvage and likely degradation occurs in the ocean. No equivalent tests or data are 
available for FAMP; thus, a component of the marine B1 cycle and potentially useful 
vitamer pool may be unaccounted for in the ocean.

Intrigued by the potential importance of FAMP in the ocean, we hypothesized the 
following: (i) exogenous FAMP can be used by marine plankton with TenA_E to salvage 
B1 from FAMP and grow, (ii) FAMP and genes for FAMP use in plankton are present in 
the ocean, and (iii) marine plankton are sources of FAMP. These hypotheses were tested 
in experiments with cultures of marine phytoplankton and bacterioplankton, searches 
for TenA sequences within the TARA Oceans Expedition dataset, and LC/MS-based 
measurements of FAMP in seawater and cell biomass.

MATERIALS AND METHODS

Isolate growth conditions

Axenic cultures of B1-auxotrophic Ostreococcus lucimarinus CCE9901 were used for 
growth experiments as it possesses TenA and grows on B1 vitamers in medium without 
B1 (23, 24, 48). CCE9901 was maintained on L1 medium (49) with oligotrophic coastal 
western North Atlantic seawater as the base. Before use in experiments, CCE9901 

FIG 1 A simplified schematic of B1 salvage from pyrimidine containing vitamers in prokaryotic and eukaryotic cells. Salvage pathway components are shaded 

in gray. *synthesis of B1 by ThiE or Th1 or ThiN forms phosphorylated B1. Both cHET and HMP are also phosphorylated in this process. For simplicity and 

connectivity to degradation and salvage, phosphorylated forms are not shown.
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cultures were verified as axenic by adding 0.5–1 mL to ZoBell medium (marine broth 
2216) (50). CCE9901 cultures were grown at 22°C under moderate (~40 µE m−2 s−1) white 
light for 14 h (dark 10 h) each day. Prior to tests of vitamin or vitamer use, exponentially 
growing CCE9901 was added (1:10) to L1 medium lacking B1 [L1 medium without 
added vitamin mix, supplemented with cobalamin (B12) and biotin (B7) and appropriate 
L1 medium concentrations]. Two to three 1:10 transfers were required to cause B1 
limitation. Growth of CCE9901 was monitored using in vivo chlorophyll, a fluorescence 
using a Turner Trilogy fluorometer.

Roseobacteria Sagittula stellata E-37 and Ruegeria pomeroyi DSS-3 were streaked on 
half-strength Yeast Tryptone and Sea Salts agar plates and inoculated into defined-salt 
Marine Basal Medium (51) at 20 psu, buffered with Tris HCl to pH 7.5, and supplemented 
with 0.5 mM glucose, 0.24 mM K2HPO4, 13.40 mM NH4Cl, and trace metal mix (52). 
A vitamin amendment of biotin, folic acid, pyridoxine-HCl, riboflavin, nicotinic acid, 
panthothenic acid, and p-aminobenzoic acid was added (53), omitting B1 and cyano­
cobalmin. B1 was supplemented to support cell growth and omitted prior to testing 
growth on vitamers. All cultures were grown under aerobic conditions at room tempera­
ture in the dark.

Intracellular/extracellular B1 and vitamer generation was examined in Flavobacterium 
Pibocella sp. as it was recently used for broader metabolite exchange experiments with 
diatoms, and samples were in-hand for analysis (Bertrand et al. per. comm.). Pibocella sp. 
was originally co-isolated with diatom cells isolated from the Labrador Sea [Lat: 50.1990, 
Long: −47.5680) on 4 December 2019 and identified via full 16S rRNA gene sequencing 
[Pacific Biosciences Sequel using 27F (54) and 1492R (55)] to be 99.99% identical to 
Pibocella sp. strains in the NCBI nr/nt database. Cultures of Pibocella sp. were grown 
on low-nutrient heterotrophic medium (LNHM) (56, 57) at room temperature before 
harvesting in stationary phase through filtration on a 0.22-µm polycarbonate filter for 
vitamin/vitamer extraction. Spent media and media blanks samples were collected in 
amber vials and frozen at −20°C until extracted.

Stocks of vitamins and vitamers were obtained from the following vendors and 
at the specified purity: B1 (thiamine hydrochloride)—Fisher (Bioreagent grade, ≥98%), 
5-(2-hydroxyethyl)-4-methyl-1,3-thiazole-2-carboxylic acid (cHET)—Finetech Industry 
Limited (>98%), 4-methyl-5-thiazoleethanol (HET)—Alfa Aesar (98%), AmMP—Enamine 
(95%), FAMP—Toronto Research Chemicals (98%), HMP—TCI (>98%). All stocks were 
examined for the presence of the other vitamins and vitamers, and they were found to be 
undetectable and/or generally <1% (58; data not shown).

BLASTp interrogation of reference genomes and TARA Oceans data

The presence/absence of B1-related proteins in specific isolate genomes, e.g., CCE9901, 
DSS-3, E-37, etc., was determined using online Uniprot BLASTp (59) searches with 
default parameters and restricting searches to a specific strain of interest. Local BLASTp 
searches were conducted to search for B1-related transporters in downloaded reference 
genomes for the same isolate strains. TenA sequences were aligned using MUSCLE 
(60) and the default settings; some sequences included in the alignment were anno­
tated as TenA fragments, although similar in length to full sequences (Uniprot ID’s 
provided): A0A7S4E370 Pelagomonas calceolata, F0YQK2 Aureococcus anophagefferens. 
A phylogenetic tree of TenA amino acid sequences was generated using MEGA11 (61). 
The evolutionary history was inferred by using the Maximum Likelihood method and 
Whelan and Goldman model (62). The percentage of trees in which the associated 
taxa clustered together is shown next to the branches, and 500 replicated trees were 
generated. Initial tree(s) for the heuristic search were obtained automatically by applying 
Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances estimated using 
the Jones–Thornton–Taylor (JTT) model and then selecting the topology with superior 
log likelihood value. A discrete gamma distribution was used to model evolutionary rate 
differences among sites [five categories (+G, parameter = 2.5862)]. The rate variation 
model allowed for some sites to be evolutionarily invariable [(+I), 0.40% sites].
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The Ocean Gene Atlas (OGA) v2.0 online resource (63) was used to search with 
BLASTp for B1-related protein sequences within metagenomic, metatranscriptomic, 
metagenome assembled genome (MAG), and single-cell amplified genome (SAG) TARA 
Oceans data. The prokaryotic databases searched were: OM-RGCv2+G, OM-RGCv2+T, 
and BAC_ARC_MAGs, while the eukaryotic databases searched were MATOUv1+G, 
MATOUv1+T, and EUK_SMAGs. Initially Rubrobacter xylanophilus TenA_C and TenA_E 
reference sequences (36) were used for BLASTp searches. TenA_C and TenA_E sequen­
ces from Thalassospira spp. were evident in the results; thus, Thalassospira reference 
sequences from Uniprot were retrieved and used for BLASTp searches for prokaryotic 
TenA sequences. A more stringent E-value of −17 was used instead of the default −10 
as fewer non-specific hits were returned based on manual inspection using BLASTp 
searches against the NCBI NR database. OGA BLASTp searches for eukaryotic TenA_C 
and TenA_E used Emiliania huxleyi strain PLY M219 sequences retrieved from the Marine 
Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) database. In some 
cases, a sizeable percentage of recovered hits from the OGA BLASTp searches could not 
be taxonomically assigned. Manual inspection of these sequences confirmed relatively 
low percent sequence identity to prokaryotic or eukaryotic TenA sequences within the 
NCBI NR database (27 July 2022).

Seawater sampling

Near surface water seawater samples were collected from different regions of the North 
Atlantic Ocean and adjacent estuarine waters. Seawater samples from the Scotian Shelf 
and Slope (SSS) were obtained from 5 m depth during 9 October 2020 and 14 September 
2021 in collaboration with the Atlantic Zone Monitoring Program, at station HL02 (on 
shelf ) (Lat: 44.2663; Lon: −63.3159) and station HL012 (off shelf ) (Lat: 41.4100; Lon: 
−60.6774). One liter of water was collected from the CTD rosette bottles in amber 
bottles rinsed with sample water, then gently vacuum filtered through 0.2 µm pore-size 
nylon filters. Samples were protected from light during filtration. Dissolved samples were 
frozen at −20°C in acid-washed, MilliQ water-rinsed, and sample-rinsed amber High-den­
sity polyethylene (HDPE) bottles until processing.

Neuse River Estuary (NRE) water was collected from ~0.5 m at stations NRE0 and 
NRE180 in collaboration with the University of North Carolina at Chapel Hill Institute 
of Marine Sciences (UNC-IMS) Neuse River Estuary Modeling and Monitoring Project 
(ModMon) program (64) on 11 November 2021. Prior to water collection, opaque amber 
sampling bottles were cleaned with 0.1N HCl, then rinsed with High performance liquid 
chromatography (HPLC) grade MillliQ water, HPLC grade methanol, and rinsed again 
with MillliQ water. Collected water was stored at room temperature until filtration the 
next day. Filtration units and collection bottles for filtrate were rinsed with methanol 
and MilliQ prior to use. NRE water was serially filtered through 90 µm Nitex mesh, 3 µm 
pore-sized polycarbonate filters (Isopore, Millipore), and 0.2 µm pore-sized nylon filters. 
In total, six bottles of 200 mL 0.2 µm filtrate each were prepared per station and stored at 
−20°C in amber HDPE bottles.

Vitamin/vitamer capture and dissolved phase quantification

B1 and vitamers were captured using C18 solid phase extraction columns similar to 
previously published methods (31, 65) but with modifications as described below. Bottles 
with filtrate were thawed overnight at 4°C and then pH adjusted to 6.5 with molecular 
grade 1M HCl. The pH of SSS samples was not adjusted. Select samples had vitamers 
added for calculation of percent recovery using targeted LC/MS (Table S1) as described 
below (Table S2). Stocks of vitamer were made from the same primary stocks listed above 
for isolate experiments. Dried vitamer extracts were stored at −20°C until analysis when 
they were resuspended with buffer A (see below).

NRE environmental samples were spiked with 75 pM final concentration of 13C-
thiamin (thiamine-(4-methyl-13C-thiazol-5-yl-13C3) hydrochloride (Sigma-Aldrich). SPE 
columns (Waters, WAT043345) were conditioned by soaking overnight in HPLC grade 
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methanol and washed with 25 mL of HPLC plus grade water prior to use for capture 
of dissolved organics in seawater. Seawater (0.2 µm filtered) was passed through SPE 
columns in a dark 4°C room at a flow rate of ~1 mL min−1. After pumping was complete, 
the SPE columns were washed with 100 mL HPLC plus grade water, purged of water, 
and stored sealed at −80°C until further processing. Columns were thawed at room 
temperature for 30 min, placed in a vacuum manifold (Waters), and then washed with 
another 100 mL HPLC grade water before gently purging residual water and eluting 
with 35 mL methanol. All vacuum manifold steps were performed with less than 5 in. 
Hg vacuum applied, resulting in a flow rate or approximately 5 mL min−1. Solvent was 
removed using a roto evaporator (Centrivap, Labconco) for 12 to 24 h.

For SSS environmental samples (20 mL) and Pibocella spent media samples (~14 mL), 
vitamers were extracted using 500 mg and 100 mg HyperSep C18 SPE columns (Thermo 
Scientific, 03-251-258), respectively. Columns were preconditioned by passing two times 
0.85 mL methanol then 0.85 mL MilliQ water before sample was loaded onto the column 
at 1 mL min−1 in a dark room. Columns were then washed with 0.850 mL MilliQ and 
eluted with 1 mL methanol. Solvent was removed using a roto evaporator (Vacufuge, 
Eppendorf, Mississauga, ON, Canada).

Ostreococcus spent media samples were thawed at room temperature for 3 h and 
spiked with 80 pM final concentration of 13C-thiamine hydrochloride (4,5,4-methyl-13C3, 
97%; Cambridge Isotope Laboratories). One gram C18 SPE columns (Waters, WAT043345) 
were conditioned with 5 mL methanol followed by 5 mL HPLC grade water (Optima, 
ThermoFisher). Spent media was then loaded in dim light at a flow rate of ~1 mL min−1. 
Columns were washed with 50 mL HPLC grade water and eluted with 5 mL methanol. 
Solvent was removed using a roto evaporator (Vacufuge, Eppendorf, Mississauga, ON, 
Canada).

All reported concentrations (Table 3 to 5) are corrected for percent recoveries, 
which are described in Table S2. To determine these recoveries in NRE samples, select 
representative samples were spiked with vitamers: FAMP (150 pM), cHET (150 pM), HMP 
(150 pM), and HET (40 pM). Percent recovery of vitamers in SSS samples was determined 
by spiking HMP (400 pM), FAMP (400 pM), and HET (80 pM) into HL2 and HL12 samples, 
calculating the amount recovered after subtracting the concentration of endogenous 
analytes in unspiked sample (Table S2). Percent recovery for FAMP in all environmental 
samples regardless of extraction method was consistent and roughly 50% (see Table S2), 
which is expected based on recoveries of similar compounds using similar methods (65). 
Percent recovery of SSS samples was applied to dissolved Pibocella samples because they 
were subject to the same SPE method. Ostreococcus samples were assumed to have a 
50% recovery rate for FAMP based on the consistency of this recovery rate across SPE 
methods (see Table S2).

Particulate vitamin extractions

Pibocella and Ostreococcus biomass samples were extracted following Heal et al. (15), 
except that solvent was removed by a roto evaporator (Eppendorf, Mississauga, ON, 
Canda) instead of an N2 gas evaporator. The entire procedure was conducted in a dark 
room with red LED lights; samples were kept on ice whenever possible. The Ostreococ­
cus samples were spiked with 2 pmol 13C-thiamine hydrochloride (4,5,4-methyl-13C3, 
97%; Cambridge Isotope Laboratories) prior to extraction. Percent recoveries were not 
assessed for particulate analyses.

Mass-spectrometry analysis

Vitamins/vitamers were analyzed using a Dionex Ultimate-3000 LC system coupled to 
the electrospray ionization source of a TSQ Quantiva triple-stage quadrupole mass 
spectrometer (ThermoFisher) operated in SRM mode, with the following settings: Q1 
and Q3 resolution 0.7 (FWHM), 6 ms dwell time, CID Gas 2.5 mTorr, spray voltage in 3,500 
positive ion mode, sheath gas 6, auxiliary gas 2, ion transfer tube temperature 325°C, 
vaporizer temperature 100°C. Duplicate 5 µL injections were performed onto a 300 µm 
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× 150 mm column (nanoEase, M/Z HSS T3 Column, 1.8 µm, 100 Å) with a 300 µm × 
50 mm guard column in front (nanoEase M/Z HSS T3 Trap Column, 5 µm, 100 Å), held at 
45°C and subject to an HPLC gradient of 4% to 99% B over 8 min (A, 20 mM ammonium 
formate, 0.1% formic acid; B, 0.1% formic acid in acetonitrile) at 8 µL min−1. The total run 
time, including washing and equilibration, was 12 min. The transition list (precursor and 
fragment mass values for compounds targeted) can be found in Table S1.

Samples were resuspended in 100, 200, or 400 µL HPLC buffer A (20 mM ammonium 
formate, 0.1% formic acid) and diluted as required. Samples were grouped by sample 
type (SS, NRE, bacterial culture particulate and bacterial culture media, and Ostreococcus 
culture particulate and media), and Quality Control (QC) pools were created for each 
matrix grouping by combining equal portions of each sample within that sample type. 
Vitamins/vitamers were quantified in each sample using the standard addition method. 
Calibration curves were prepared with authentic metabolite standards for each matrix 
grouping (sample set) using the corresponding QC as a matrix. Duplicate injections were 
performed with 0, 25, 50, and 250 fmol of B1, HMP, cHET, FAMP, and AmMP and 0, 5, 10, 
50 for HET added.

Data analysis methods were adapted from Heal et al. (15) and Boysen et al. (66) Briefly, 
raw files generated with Xcalibur software (ThermoFisher) were uploaded into Skyline 
Daily (University of Washington), and the transitions with the best signal to noise and 
lowest interference were selected for quantification purposes. Summed peak areas were 
exported and processed in Excel or R. Some thiamin (B1) peaks were normalized to 
the heavy internal standard peak, thereby reducing instrument and sample preparation 
variability. Normalization of other compounds to heavy B1 did not reduce variability. 
Vitamins/vitamers were quantified from these peak areas using the standard curves 
generated from their respective QC pools. Limits of detection and quantification were 
determined according to the Guidelines for Data Acquisition and Data Quality Evaluation 
in Environmental Chemistry (67) and are provided in Table S2. Additionally, samples with 
concentrations that fell between Limit of detection (LOD) and limit of quantification 
(LOQ) were further visually inspected and analyzed in a batch per batch method based 
on the following criteria modified from Boysen et al. (66). Concentrations were reported 
in samples that fell below the calculated LOQ if, (i) the peak has the same retention 
time (±0.2 min) as the authentic standard, (ii) two daughter fragments were present with 
co-occurring peaks, (iii) daughter fragments were present in same order of intensity as 
authentic standard, and (iv) the integrated peak area was at least two times greater than 
the average peak found in the blanks in the appropriate retention time window.

Statistical analyses

Testing of significant differences in maximum yield of O. lucimarinus CCE9901 cultures 
provided B1 or vitamers at different concentrations was done using log-transformed 
Chl-a fluorescence data and two-way ANOVA with Tukey–Kramer post hoc testing in 
Prism (GraphPad). Significant differences in the maximum yield of Roseobacteria (DSS-3, 
E-37) cultures provided vitamin/vitamers, versus no add negative controls was assessed 
using paired two-tailed t-tests in Prism. Culture experiments were pragmatically small in 
scale with triplicate cultures per treatment; as a result, data normality was assumed for 
parametric tests.

RESULTS

FAMP use by marine phytoplankton and bacterioplankton isolates

O. lucimarinus CCE9901 possessed both TenA isoforms, with TenA_C and TenA_E 
separately clustering with reference sequences from haptophyte eukaryotic algae as 
well as prokaryotic reference sequences (25, 36) (Fig. 2). TenA_E in CCE9901 (Uniprot ID: 
A4S5E6; Gene ID: OSTLU_26735) was annotated as a “TENA_THI-4 domain-containing 
protein.” Accordingly, CCE9901 should be able to convert FAMP or AmMP to HMP for 
B1 salvage and survive under B1 deplete conditions (Fig. 1). Growth of CCE9901 on 
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FAMP as well as AmMP confirmed this hypothesis (Fig. 3). CEE9901 grew to comparable 
yields on equimolar amounts of B1 and all pyrimidine (HMP, AmMP, or FAMP, plus cHET) 
treatments that were provided at environmentally relevant, low picomolar additions (Fig. 
3). Additionally, CCE9901 grew on cHET only additions compared with negative controls 
(no addition) (Fig. 3).

Isolates representing marine Roseobacteria, R. pomeroyi DSS-3 and S. stellata E-37, 
were used in comparable experiments to test their ability to use FAMP and AmMP. 
These strains were ideal for comparative experiments as they have publicly available 
complete genome sequences, grow on defined medium, and are B1 auxotrophs that 
vary in their possession of TenA_C and TenA_E with DSS-3 possessing only TenA_C and 

FIG 2 A TenA amino acid phylogenetic tree, including eubacterial, archaeal, and eukaryotic reference sequences. Isolates 

used in growth experiments with pyrimidine B1 vitamers are in bold. Asterisks mark instances where more than one TenA 

protein occurred in a single reference strain. Supported clustering shows partitioning of TenA_C and TenA_E sequences.
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E-37 possessing both (Fig. 2; Table 1). Considering their gene repertoires, DSS-3 was 
expected to grow on AmMP but not FAMP while E-37 would grow on both. Growth 
tests partly confirmed our hypotheses, as DSS-3 and E-37 grew on exogenous AmMP 
as expected but unexpectedly neither strain grew on exogenous FAMP (Fig. 4). Notably, 
these Roseobacteria, as well as O. lucimarinus and other marine phytoplankton and 
bacteria do not clearly possess YlmB, the best studied enzyme known to convert FAMP to 
AmMP in Bacillus (38) (Table 1).

TenA_C and TenA_E in the global ocean

Recent studies have noted select marine bacterioplankton and haptophytes possess 
TenA (14, 22, 25); however, newly available expansive in situ genetic datasets can provide 
insight into TenA in marine plankton globally—and accordingly their potential use of 
FAMP and AmMP. We searched TARA Oceans metagenomic, metatranscriptomic, MAG, 
and SAG data for TenA_C and TenA_E sequences (Table S3; see Tables S4–S18 at https://
doi.org/10.5061/dryad.4b8gththk), revealing that diverse prokaryotes [mostly eubacte­
ria, few archaea (<1%)], and eukaryotes possess at least one TenA isoform (Fig. 5). tenA_C 
was approximately eight times more common than tenA_E in prokaryotic metagenomic 
(OM-RGCv2) data (Table 2), pointing to a putatively larger investment in use of AmMP 
than FAMP in B1 salvage. Exogenous use of AmMP over FAMP by marine eubacteria may 
be even larger, given that some possessing TenA_E cannot use exogenous FAMP but can 
use AmMP (Fig. 4). Most TenA_C sequences taxonomically affiliated with Proteobacteria 
(Alphaproteobacteria, Gammaproteobacteria), Firmicutes, and Cyanobacteria 

FIG 3 Growth of O. lucimarinus CCE9901 upon three different pyrimidine B1 vitamers FAMP, AmMP, and HMP when also provided 1 nM of the thiazole B1 vitamer 

cHET. Maximum biomass (shown as Chl-a fluorescence) for no add negative control and 1 nM cHET only cultures marked with a dashed horizontal line. B1 

treatments were used as a positive control and are also shown in blue. Mean and standard deviation values from triplicate cultures are plotted as columns and 

error bars, respectively (n = 3). Unique letters above columns denote significant differences based on Tukey two-way ANOVA testing and using log-transformed 

fluorescence data.
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(Prochlorococcus). Several tenA_C sequences with coarse taxonomic assignment were 
noted (Fig. 5; marked “other bacteria 1 and 2”). Searches of these sequences using 
BLASTp against the NCBI NR database recovered a mixture of matches with highest 
sequence identity (<90%) to largely Chloroflexi, SAR202, and Halomonas sequences, but 
some exhibited low sequence identity match to anything in the NCBI NR database (see 
Tables S4–S18 at https://doi.org/10.5061/dryad.4b8gththk).

Rhodobacteraceae and Candidatus Pelagibacter sp. IMCC9063 tenA_C sequences were 
notably abundant (jointly 52%)—the latter in particular fits with the prior observation 
that Pelagibacter sp. IMCC9063 is the only Pelagibacter isolate genome possessing TenA 
(22). The taxa distribution of sequences retrieved from metatranscriptomes was very 
similar, demonstrating active gene transcription in generally similar taxa proportions as 
in metagenomes (Fig. 6). Furthermore, many prokaryotic MAGs (n = 159) possessed 
tenA_C and represent 40 different eubacterial orders, including several that were not well 
resolved from bulk metagenome searches with the OGA tool, e.g., SAR202, Chloroflexi, 
Cyanobacteria (Trichodesmium) as well as Proteobacteria (Fig. 7). Not all prevalent marine 
eubacteria and archaea possess TenA_C (or any TenA) based on these search results—
e.g., SAR11 affiliates—but this was expected based on prior isolate genome analyses (14, 
22, 45) and overall points to an advantage gained by select populations possessing TenA. 
Furthermore, representatives of biogeochemically impactful lineages with widely 
different lifestyles possess TenA_C (Fig. 5 to 7); for example, photoautotrophic high-light 
Prochlorococcus and Trichodesmium spp. (Cyanobacteria) that occupy the surface ocean 
(the latter being a significant global contributor to nitrogen fixation), as well as hetero­
trophic SAR202 representatives (Chloroflexi) that thrive in aphotic waters of the deep 
ocean and influence global sulfur cycling (68).

Recovered tenA_E sequences from the TARA Oceans data were largely affiliated with 
Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) and Candidatus 

FIG 4 (A) Roseobacteria S. stellata E-37 and (B) R. pomeroyi DSS-3 grow only upon exogenously supplied 

AmMP and HMP, not FAMP. E-37 cultures were supplied with 1 nM HET as they are dual B1 auxotrophs 

that need a thiazole B1 precursor along with a pyrimidine precursor to synthesize B1. Columns and error 

bars represent mean and standard deviation values calculated from the maximum yields (OD at 600 nm) 

for triplicate cultures. Unique letters above columns denote significant differences between treatment 

groups based on two-tailed paired t-tests.
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Tectomicrobia (Fig. 5 to 7)—the latter being currently best represented by uncultivated 
sponge symbionts (69). No tenA_E sequences from Firmicutes, Cyanobacteria, Actinobac­
teria, or Bacterioidetes were detected, exemplifying the distinct TenA_E diversity. More 
Archaeal tenA_E versus tenA_C sequences were recovered and those recovered TenA_E 
sequences were largely affiliated with Halobacteria and Haloferacales, suggesting greater 
salvage of FAMP by these populations (Fig. 5).

Diverse marine eukaryotes also possess TenA (Fig. 5 to 7; Tables S12–S18). Contrasting 
with prokaryotes, roughly equal proportions of tenA_C and tenA_E sequences were 
recovered from each of the TARA Oceans datasets (e.g., ~1.2× more tenA_E sequences 

FIG 5 Taxa-specific percent read abundances for TenA_E and TenA_C retrieved using BLASTp from TARA Oceans metagenomic sequence libraries (OM-RGCv2+G 

and MATOUv1+G). Gene IDs for recovered sequences and their abundance in individual samples are provided in Tables S4, S5, S8, S9, S12, S15, and S16 at 

https://doi.org/10.5061/dryad.4b8gththk.

TABLE 2 Total number of TenA_C and TenA_E sequences recovered using BlastP searches against TARA Oceans metagenomic, metatranscriptomic, and 
MAG/SAG datasetsa

Prokaryote Eukaryote

  Queried 
sequence

  OM-RGC_v2_metaG   OM-RGC_v2_metaT   BacArcMag   MATOU_v1_metaG   MATOU_v1_metaT   SMAGs

  TenA_C   17,161   5,315   9,408 1,513 1,128   2,083
  TenA_E   2,100   603   1,305 2,277 4,142   2,870
aTaxon information for these sequences is available in Tables S4–S18 available here: https://doi.org/10.5061/dryad.4b8gththk.
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were recovered from metagenomes) (Table 2)—suggesting a greater evolutionary 
investment in use of FAMP and AmMP by eukaryotes. Pelagomonas and haptophyte 
(Noelaerhabdaceae, Isochrysidales, and unclassified) tenA_E sequences were notably 
abundant in both metagenomic and transcriptomic libraries (Fig. 5 and 6). Sequences 
from harmful algal bloom (HAB) genera Phaeocystis and Aureococcus (Haptophyte and 
Ochrophyta members) were also recovered, as well as Alveolata, Cryptophyta, Chloro­
phyta, Coccosphaerales, Coccolithales, and Prymnesiales sequences (Fig. 5 to 7). 
Alveolata sequences were more prominent in metatranscriptomic data, potentially due 
to relatively high tenA_E transcription within the subgroups Dinophyceae and Gonyaula­
cales (Fig. 6).

In comparison, tenA_C eukaryotic sequence diversity was dominated by Pelagomonas 
and other haptophyte sequences while Bacillariophyta (Diatom) sequences were absent 
(Fig. 5 and 6). As with tenA_E, Alveolata tenA_C sequences were more abundant in the 
metatranscriptomic data, and the remaining composition was similar to that of metage­
nomic searches. Additional tenA_C sequence diversity was recovered from MAG and SAG 
data (noted as SMAGs database in OGA), including Pedinellaceae, Mamiellales (Ostreo­
coccus), Cryptophyte (“Sister_Cryptophyta” and Geminigeraceae) sequences, as well as 
HAB genera Phaeocystis and Aureococcus (Fig. 6 and 7). Most of the eukaryotic taxa noted 

FIG 6 Taxa-specific percent read abundances for TenA_E and TenA_C retrieved using BLASTp from TARA Oceans metatran­

scriptomic data (OM-RGCv2+T and MATOUv1+T). Gene IDs for recovered sequences and their abundance in individual 

samples are provided in Tables S6, S10, S13, and S17 at https://doi.org/10.5061/dryad.4b8gththk.
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here as possessing TenA were not previously recognized as such, outside of select 
Chlorophytes (e.g., Ostreococcus) and haptophytes (25, 48).

Select eukaryotic and prokaryotic populations possess TenA_C and TenA_E (Fig. 2) 
(25, 36). Furthermore, some populations possess multiple copies of tenA_C or tenA_E 
(e.g., Thalassospira sp.; P. calceolata) (Fig. 2); however, it appears most isolate genomes 
do not possess multiple tenA copies (Fig. 2; Table 1) (14, 22, 25). The advantages of these 
different genotypes (possessing tenA_C and tenA_E, as well as multiple copies of either) 
are unknown. Speculatively, possession of multiple copies of tenA_C or tenA_E may lead 
to more protein copies per cell, an increased rate of B1 salvage from pyrimidine vitamers, 
and a competitive advantage over cells with only a single copy of tenA_C or tenA_E.

Detection of FAMP in seawater and marine plankton cultures

Particle free near-surface water samples from estuarine and marine monitoring stations 
contained FAMP at mean concentrations, adjusted for percent recovery, ranging from 
13.5 to 36.1 pM. FAMP was present at all sampled stations and was comparable in 
concentration with B1 pyrimidine precursor HMP, as well as other measured B1 vitamers 
and B1 (Table 3). Albeit a limited dataset, higher FAMP concentrations occurred in 
waters beyond the continental shelf in the western North Atlantic (HL12) and the marine 
“end-member” station within the Neuse River Estuary (NRE180) (Table 3; Table S2).

FIG 7 Taxa-specific percent read abundances for TenA_E and TenA_C retrieved using BLASTp TARA Oceans MAGs as well as SAGs (BAC_ARC_MAGs and 

EUK_SMAGs). Gene IDs for recovered sequences and their abundance in individual samples are provided in Tables S7, S11, S14, and S18 at https://doi.org/

10.5061/dryad.4b8gththk.
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Following confirmation of dissolved FAMP in seawater, we sought to determine 
whether plankton could be sources of FAMP. Thus far, purely abiotic processes have 
been considered the drivers of B1 degradation in the ocean, e.g., photooxidation of B1 
dissolved in seawater (12, 25, 34). We hypothesized that planktonic cells are sources of 
FAMP, given that TenA_E (also TenA_C) occurs in B1 prototrophic plankton (Fig. 2), and 
FAMP generation is thought to occur in plants due to B1 oxidation (36, 37). To test this 
hypothesis, we examined particulate and dissolved (0.22 µm prefiltered seawater) phases 
of axenic bacterioplankton and phytoplankton cultures.

Flavobacterium Pibocella sp. was used to test this hypothesis as it was co-isolated 
along with diatom cells from coastal North Atlantic water and used previously in broader 
metabolite exchange experiments between bacteria and diatoms (Bertrand et al. per. 
comm.). Spent medium as well as Pibocella biomass collected from cultures grown in 
the dark contained FAMP (Table 4). The mineral growth medium (LNHM, see Materials 
and Methods) alone contained FAMP (~40 nM), likely due to abiotic degradation of B1 
added when initially making the medium (~590 nM B1 final concentration). Autoclaving 
the medium or its storage at room temperature with ambient room light exposure 
may have facilitated degradation. Nonetheless, spent medium contained 18 ± 11 nM 
more FAMP than the starting medium (Table 4). Particulate samples collected on day 
4, during stationary phase, were also rich in FAMP (~15 nM), pointing to intracellular 
production and/or import and accumulation (Table 4). AmMP also was detected in 
particulate samples (~15 nM) but markedly less so in the starting medium and spent 
medium—contrasting with FAMP (Table 4). These results suggest FAMP flux from cells 
and exchange between cells are likely in the ocean—e.g., Pibocella and diatoms or other 
plankton, such as Ostreococcus, capable of using exogenous FAMP (Fig. 3). FAMP (14 ± 4 

TABLE 3 Concentrations of FAMP, B1, and other B1 vitamers in picomolar (pM) present in near-surface waters of the North Atlantic on the Scotian Shelf and 
Slope (HL#) and the Neuse River Estuary (NRE#)a

Sample FAMP HMP HET B1 cHET AmMP

HL02 (coastal) 13.5 21.6 6.1 X X X
HL12 (off-shelf ) 36.1 36.2 12.9 X X X
NRE0 24.4 ± 2 23 ± 1 1.5 ± 0.2 70 ± 20 nq nd
NRE180 35.3 ± 0.4 50.9 ± 1 4.5 ± 1 70 ± 10 nq nq
aThe values presented represent mean ± standard deviation of independent triplicate measurements for NRE samples. Since technical duplicates of a single sample for HL02 
and HL12 were assessed, we do not present standard deviations. All measurements are corrected for percent recovery. X, measurements of the given compound were not 
attempted; nd, compound was present at levels lower than our limit of detection; and nq, where the compound was present at levels below our limit of quantification.

TABLE 4 FAMP and other B1 vitamer concentrations (percent recovery corrected) measured in Pibocella 
cultures and its growth medium alone (LNHM), and the change in vitamer concentrations in the 
dissolved phase between the beginning and the end of the experiment

Sample Compound nM compound

LNHM blank FAMP 39 ± 1.6
AmMP 6.2 ± 0.54
HMP 1.2 ± 0.09
HET 22 ± 0.001

Spent medium FAMP 57 ± 9.8
AmMP 1.2 ± 0.61
HMP 0.60 ± 0.03
HET 1.7 ± 0.32

Change in dissolved phase FAMP 18 ± 11
AmMP -5 ± 1.2
HMP -0.56 ± 0.10
HET -20 ± 0.30

Particulate FAMP 14 ± 4
AmMP 12 ± 2.1
HMP 0.63 ± 0.23
HET 0.027 ± 0.006
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nM) and AmMP (12 ± 2.1 nM) accounted for significantly more of the quantified vitamers 
than HMP (0.63 ± 0.23 nM) and HET (0.027 ± 0.006 nM) in Pibocella sp. biomass (Table 4), 
further highlighting marine bacterial cells as sources of B1 degradation products to their 
environment.

We also investigated whether O. lucimarinus CCE9901, a B1 auxotroph that requires 
exogenous B1 or vitamers to survive, produced FAMP and AmMP when it is grown 
on B1 or other vitamers (HMP and cHET). Both FAMP and AmMP were detected in 
CCE9901 biomass in cultures supplied with only B1 or vitamers (HMP and cHET) (Table 
5). Additionally, though AmMP quantification is difficult (Table S2), based on compar­
isons between the Pibocella and CCE9901 results, there is some evidence that the 
FAMP:AmMP ratios vary between populations and/or growth phases, which deserves 
further investigation (Tables 4 and 5; Table S2).

DISCUSSION

Here we identify an abundant, previously unrecognized, B1 vitamer pool (FAMP) in the 
ocean and new components of the marine B1 cycle (FAMP generation, use) that require 
future consideration with respect to plankton interactivity and ecology. Experimental 
evidence (O. lucimarinus CCE9901) and culture-independent genetic evidence (Fig. 3 
to 7) point to extensive use of FAMP by marine eukaryotic phytoplankton. In contrast, 
more of the prevalent bacterioplankton surveyed have the genetic potential to use 
AmMP than FAMP. This is based on fewer TARA Oceans tenA_E sequences, which code 
for the protein that uses FAMP as its primary substrate (Table 2), as well as the results 
of our Roseobacter growth experiments (Fig. 4). Collectively this points to a newly 
realized interconnectivity between abundant eukaryotic phytoplankton and other cells, 
especially bacterioplankton—like Flavobacteria (Table 4)—that produce and release 
FAMP and AmMP. On the other hand, abundant bacterioplankton capable of salvaging 
B1 from pyrimidines (those possessing TenA) seem to have evolved to more commonly 
use AmMP (Fig. 5; Table 2), a product of FAMP deformylation by co-occurring plankton 
(Fig. 1) or possibly a yet-to-be identified abiotic process.

Why TenA_E is not more common in marine bacterioplankton and why there is mixed 
use of FAMP and AmMP among marine plankton overall (Fig. 2 and 5) is not clear. 
Potentially there are significant costs associated with producing and maintaining TenA_C 
and/or TenA_E, otherwise it would seem advantageous for all cells to possess TenA_E 
and be able to use FAMP and AmMP. Transport costs may also factor in, but this remains 
unclear—e.g., what transporters are crucial for FAMP and/or AmMP uptake (17, 70)? At a 
basic level, the ability to use exogenous FAMP or AmMP offers a competitive advantage 
when B1 or HMP is unavailable, which may occur in regions of the ocean, given that a 
wide diversity of plankton are expected to use exogenous B1 and HMP (5, 12, 14, 22, 
23, 48). Alternatively, use of FAMP or AmMP in addition to use of available B1 and other 
vitamers may simply boost growth rates or metabolism over populations that cannot use 
FAMP or AmMP. Presently, too few measurements of FAMP, AmMP, and B1, along with 
growth rates, are available to address this directly (Table 3) (32).

TABLE 5 Concentrations of FAMP in spent medium (dissolved) and particulate phases of O. lucimarinus 
CCE9901 cultures grown on L1-B1 medium supplemented with either B1 or precursors HMP and cHETb

Sample Dissolved FAMP Particulate FAMP

B1 exp 1.8 ± 0.6 7.5 ± 1a

B1 stat 1.2 ± 0.6 4.7 ± 0.6a

HMP + cHET exp 1.2 ± 0.6 12.5 ± 3a

HMP + cHET stat 2.0 ± 1.3 11.1 ± 1a

Medium blank 2.2 ± 0.1 ndc

aValues below the limit of quantification (see Table S2).
bValues are in picomolar (pM). Abbreviations: ‘Exp’ = exponential growth phase; ‘Stat’ =944 stationary growth 
phase.
cnd = not detected (i.e., below the LOD).
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Some TenA-possessing cells may salvage B1 only from autochthonous B1 degrada­
tion, i.e., these cells regenerate B1 from degradation happening within the cell and do 
not import exogenous FAMP or AmMP. E-37 appears to fit this phenotype, as it possesses 
TenA_E but did not use exogenous FAMP in growth experiments (Table 1; Fig. 4). A 
working hypothesis is that E-37 lacks an FAMP transporter to import and use FAMP. 
To this point, the only B1-related transporter found in E-37 was ThiB (Table 1), which 
is best linked to B1 transport (71). We speculate high-light adapted Prochlorococcus 
spp. are phenotypically similar and do not use exogenous AmMP since they lack any 
known B1 transporter but possess TenA_C for intracellular salvage of degraded B1 (Fig. 
5) (45). Clarifying the genotypes that can or cannot use exogenous FAMP and AmMP, 
as well as those that export high versus low amounts of these vitamers, is important to 
elucidate in the future and likely the identification of FAMP and AmMP transporters will 
be illuminating on this front.

The detection of FAMP in seawater, as well as bacterial and phytoplankton cultures 
(Tables 3 to 5), is strong evidence that B1 degradation is commonplace in the ocean. 
Moreover, plankton must be considered as important sources of B1 degradation (Tables 
3 to 5) in addition to the purely abiotic reactions in seawater that have been deemed 
important thus far (12, 25, 34, 41). Dark generation of FAMP and AmMP by Pibocella 
cells (Table 4) illustrates the importance of aphotic B1 degradation within the marine 
B1 cycle and expands thinking beyond just photodegradation in the surface ocean (12, 
25, 34). In agreement, characteristic taxa of the deep ocean, e.g., SAR202 and Chloroflexi 
representatives, possess TenA proteins for use of FAMP and AmMP (Fig. 5 to 7). Thus, 
B1 degradation and production of FAMP, AmMP is expected—be it within cells or 
extracellularly—in the vast and dark ocean interior. Altogether, B1 degradation in the 
ocean is likely more widespread than previously considered and elevates the need to 
better quantify it and its impact on global ocean productivity and plankton community 
composition.

We hypothesize that reactive oxygen species (ROS) production and subsequent B1 
oxidation widely occur in marine plankton. Both processes and their interplay have 
been best studied in terrestrial plants (36, 37, 44, 72) but not considered in marine 
plankton or the ocean. ROS production is considered widespread and continuous in the 
ocean due to aerobic respiration and metabolisms, photosynthetic activity, as well as 
photooxidation of organics (73–76). As a result, the potential for B1 oxidation by ROS 
is high in the ocean, especially within cells where concentrations of B1 and ROS will be 
locally high. Extracellular B1 degradation by ROS in seawater is also possible; however, 
reaction kinetics should be evaluated as ROS and vitamin concentrations are lower in the 
dissolved phase.

Thinking about Earth’s broad biogeochemical evolution, cyanobacterial oxygenation 
and subsequent promotion of aerobic metabolism likely increased B- vitamin chemical 
complexity and vitamin interdependencies among microbes, including cycling of B1 
oxidation products FAMP and AmMP. Looking to the future, linkages between ROS-form­
ing cell stressors (73, 77), climate change-related factors, e.g., regional to global shifts 
in temperature, irradiance, salinity (78, 79), and rates of FAMP and AmMP production 
(also B1 degradation) should be investigated. These factors would not only alter the 
availability of B1 and vitamers within seawater and plankton networks but also impact 
the amount of B1 per cell (23, 25, 80) and thus trophic transfer of B1 in marine food webs 
(43).

In conclusion, speculation on vitamers in the ocean is long running (3, 4, 12, 18, 19), 
and here we add to a broader effort to identify precursors and their use to plankton 
(16, 22, 23, 25, 48, 58) by demonstrating the use of FAMP by key marine plankton and 
its occurrence in the ocean. Previously, the compound was given little consideration as 
a useful exogenous nutrient or as an exchanged metabolite between marine plankton 
(4, 5, 12, 40). Many details of FAMP formation, use, and exchange are unknown and 
deserve future exploration as they likely will help explain niches of important micro­
bial populations, cell interactions, altered cell quotas of vitamin, and fundamentals of 
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B-vitamin degradation. We anticipate other B-vitamins and organic nutrients undergo 
oxidative degradation similar to B1 (37). Confirming the resulting compounds is a 
significant challenge but important to address in order to fully explain marine plankton 
metabolite exchange (40, 81, 82) and the co-existence of diverse populations (83) and 
identified genotypes (12, 14, 22).
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