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ABSTRACT
Brain-Computer interfaces (BCIs) are typically designed to be light-
weight and responsive in real-time to provide users timely feedback.
Classical feature engineering is computationally e�cient but has
low accuracy, whereas the recent neural networks (DNNs) improve
accuracy but are computationally expensive and incur high latency.
As a promising alternative, the low-dimensional computing (LDC)
classi�er based on vector symbolic architecture (VSA), achieves
small model size yet higher accuracy than classical feature engineer-
ing methods. However, its accuracy still lags behind that of modern
DNNs, making it challenging to process complex brain signals. To
improve the accuracy of a small model, knowledge distillation is a
popular method. However, maintaining a constant level of distilla-
tion between the teacher and student models may not be the best
way for a growing student during its progressive learning stages.
In this work, we propose a simple scheduled knowledge distillation
method based on curriculum data order to enable the student to
gradually build knowledge from the teacher model, controlled by
an U scheduler. Meanwhile, we employ the LDC/VSA as the stu-
dent model to enhance the on-device inference e�ciency for tiny
BCI devices that demand low latency. The empirical results have
demonstrated that our approach achieves better tradeo� between
accuracy and hardware e�ciency compared to other methods.
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1 INTRODUCTION
A brain-computer interface (BCI) allows for direct communica-
tion between the human brain and an external device without
the need for physical movement [17, 18, 50, 58]. The Electroen-
cephalogram (EEG), as a typically non-invasive neuroimaging tech-
nique to measure and record the electrical activity of the brain, has
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been widely used in the BCI applications [34, 59]. The deep neu-
ral networks (DNNs) have shown promising results in extracting
spatial-temporal dynamics from EEG signals, and improved clas-
si�cation accuracy compared to the classical feature engineering
methods [52, 57, 66]. However, the intensive computation required
by DNNs in inference can result in high latency in real-time EEG-
based BCIs, which are intended to be lightweight [42, 60, 67]. The
latency, for example, can pose a challenge for disabled persons
using BCI-controlled prosthetic limbs, making it di�cult to per-
form �ne motor tasks such as picking up small objects or typing
on a keyboard. Moreover, in some implantable BCI devices, power
constraints are even more stringent, with the power needing to
stay under 15-40mW to comply with FDA, FCC, and IEEE guide-
lines [29, 36], which immediately rules out many conventional
DNN-based classi�ers.

Due to the hardware e�ciency with massive processing paral-
lelism, the binary hyperdimensional computing based on the vector
symbolic architecture (HDC/VSA) stands out in the edge inference
paradigm [27, 31, 32, 44]. In the binary HDC/VSA, objects are en-
coded into long, binary vectors in a high dimensional space. By
exploiting the algebraic properties of a small set of operators, the
observed instance vectors belonging to the same class are aggre-
gated, allowing for the creation of a meaningful symbolic class
representation in the end, for inference of new objects [27, 41]. Al-
though lightweight, the binary HDC/VSA su�ers from low accuracy
and large model size as a result of its rudimentary training proce-
dure and high dimensionality of vectors [13, 14, 16]. The recent
proposed low-dimensional computing (LDC) [14] alleviates these
issues by utilizing a partially binary neural network (BNN) [47]
to hash samples into binary codes with dimensionality less than
100. Featuring a systematic training based on backpropagation, the
accuracy of LDC is improved with 100⇥ smaller model size, along
with faster inference speed, compared to the HDC. Nonetheless,
the accuracy gap between LDC and a modern neural network still
remains as a challenge, preventing its adoption in the BCIs, which
involve complex neural signals as the input.

One popular technique to improve the accuracy of a small model
is knowledge distillation (KD), where a larger “teacher” network
supervises a smaller “student” model, where the knowledge is
distilled by the soft probabilities with a (usually static) hyperpa-
rameter U to balance the distillation term and the classi�cation
term [22]. However, the distillation is not always advantageous,
particularly when there is a large capacity gap between big teachers
and small students [11, 68]. Drawing inspiration from curriculum
learning [7], [62, 69], in which the student is gradually trained us-
ing samples ordered in an easy-to-hard manner. The recent CTKD
curriculums the distillation temperature by adversarial training to
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Figure 1: Comparison of accuracy and inference e�ciency
of various methods on the Motor Imagery dataset. The
ScheduledKD-LDC has achieved a good tradeo� between
accuracy and e�ciency, considering the model size and the
number of FPMAC operations.

guide the learning process for the student [35]. Although demon-
strated as e�ective, their training requires meticulous planning and
they have not explored how to e�ciently transfer knowledge to a
much smaller architecture like binary LDC.

In this paper, we propose a simple yet e�ective approach to con-
trol the procedure of knowledge distillation from a complex teacher
network to a lightweight LDC for EEG-based BCIs. We refer to the
proposed approach as ScheduledKD-LDC, which uses an U sched-
uler that decreases exponentially during the distillation process,
with curriculum data order. Intuitively, as the students gradually
build up knowledge by learning from the con�dent predictions on
simpler data points from the teacher, they could rely less on the
teacher over time. Meanwhile, more independent learning at the
later stage enhances the student model to develop its own data
representations to generalize to unseen examples. As shown in
Figure 1, the ScheduledKD-LDC achieves a good balance between
accuracy and e�ciency compared to other methods. Our empirical
results indicate that it consistently outperforms other methods on
the evaluated EEG datasets. As an east-to-use method, we believe
the ScheduledKD-LDC is a favorable option to realize e�cient edge
intelligence for real-time BCIs.

2 PRELIMINARIES
We de�ne the input space as j and the label space as . , where
|. | = ⇠ . Let 5 : j ⇥ ⇥ ! '⇠ be a classi�er, parameterized by
\ 2 ⇥. It outputs a categorical predictive distribution over . , ?̂ (~ =
8 |x) = f8 (5 (x, \ )), where f8 (z) := exp(I8 )/

Õ
9 exp(I 9 ) represents

the softmax function, and I B 5 (x, \ ) is referred to as the logits.
For simplicity, we use 5 C to denote the teacher model and 5 B to
represent the student model. Knowledge distillation [22] uses the
soft output (logits) of one or multiple large models as the teacher
and transfers the knowledge to a small student model, where the
student model minimizes a combination of two loss objectives as
shown in the Eq.(1),

L := UL ⇡ (zB , zC ) + (1 � U)L#!! (zB ,~), (1)

where L ⇡ is the distillation term to encourage the student model
to resemble teacher’s responses for data examples, while L#!!

is the normal cross-entropy loss between the logits zB and the
label ~. These two terms are balanced by the U , which is a static
hyperparameter in most existing works [9, 15, 63, 65].

Inspired by the signi�cance of arranging information in human
learning process, the curriculum training involves regulating the
data order to adjust a model’s learning trajectory [6, 38, 55]. A
scoring function C is used to determine the di�culty of each data
example. If C (xj,~ 9 ) > C (xi,~8 ) for two data samples xi and xj, we
would say G 9 is more di�cult than G8 . In this work, we consider the
real-valued loss of a reference model that is trained on the same set
of data points as our scoring function, t(xi,~8 ) = ✓ (5\ (xi,~8 )). In
essence, presenting the data in an easy-to-hard sequence is known
as curriculum data order, while we use the term anti-curriculum to
describe the ranking of data from di�cult to easy, and explicitly
referring to a random order as random in this work.

3 STUDENT: LOW-DIMENSIONAL VECTOR
SYMBOLIC ARCHITECTURE

In the architecture level, we employ the low-dimensional classi-
�er (LDC) based on the vector symbolic architecture (VSA) as the
student model for the BCI applications which demand low latency.

3.1 Hyperdimensional Computing/Vector
Symbolic Architecture (HDC/VSA)

TheHDC/VSA represents symbolic concepts using high-dimensional
distributed vectors that coexist in a shared space, providing context
for each other [41, 64]. To achieve e�cient hardware implementa-
tion, binary-valued hypervectors composed of {�1, 1}⇡ are used,
where ⇡ is the vector dimension. In addition, the architecture em-
ploys a small prede�ned set of operators on these hypervectors with
high processing parallelism, such as Binding

À 1 and Bundling…2, which can be implemented by simple hardware circuits such
as AND, OR gates and adders, as explained in [25, 30, 49].

In a standard classi�cation task using the HDC/VSA, instances
are hashed into long binary vectors. As an example, an image x8
with features � = [51, 52, . . . , 5# ], and each feature with discrete
values +58 = [E1, E2, . . . , E" ] can be constructed symbolically. For
instance, an image in the MNIST [12] dataset consisting of 784
pixels, where each pixel contains 256 shades of gray, can result
in # = 784 and " = 256. A data example G8 is expressed by
x8 := sgn(

…#
9=1 59

À
+59 ) with a �nal dimensionality of 256. Dur-

ing training, vectors from the same class are combined to create
a symbolic class representation. During inference, a test image
undergoes the same hashing process, and then the Hamming dis-
tance between the encoded vector and each class representation is
calculated to determine the classi�cation result [25, 27, 49].

3.2 Low-dimensional Computing (LDC)
Classi�er

The HDC/VSA blends the bene�ts of connectionist distributed rep-
resentation and structured symbolic representation, where the rep-
resentations can be composed, probed, and transformed by a set of
hardware-e�cent math operations [26, 41]. However, the HDC/VSA

1e.g., (E ⌦ F ) 2 {�1, 1}⇡ and (E ⌦ F )8 = E8F8 .
2e.g., (�<:=1F: )3 =

Õ<
:=1 (F: )3 for all 3 2 {1, 2, ...,⇡ }.
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Figure 2: Overview of the ScheduledKD-LDC. We use an U scheduler and curriculum data order to enable the student model to
gradually distill knowledge from the complex teacher model. The student model, low-dimensional computing classi�er (LDC),
is based on the vector symbolic architecture for e�cient on-device inference.

architecture has two main issues: the large model size brought by
the high dimensionality of vectors, where ⇡ is typically on the
order of 10, 000 ; and the low accuracy due to the simple heuristic
hashing process used to generate hypervectors [13, 16]. To address
these problems, the low-dimensional computing classi�er (LDC)
has been proposed [14, 37].

As shown in the Student Model of Figure 2, the LDC uses a
partially binary neural network in its ValueBox which encodes the
input to low-dimensional vectors through deep hashing to generate
trainable � and +58 for a sample. Additionally, the LDC allows for
the feature vector dimension ⇡ 58 to be a multiple of the value
dimension ⇡+58

, enabling dimensionality reduction. The empirical
results in [14] have shown that the LDC classi�er with ⇡ < 100
can still achieve comparable or even better accuracy than the HDC.

4 SCHEDULING THE KNOWLEDGE
DISTILLATION: SCHEDULEDKD-LDC

It can be challenging for a student model to replicate the predic-
tions zC of a teacher model when there is a signi�cant disparity in
their model capacities [11, 56, 68]. This presents a particular prob-
lem in the context of small brain-computer interface (BCI) devices,
where the employed student model like LDC has limited model size
and computational complexity considering fast inference. To miti-
gate this issue, we propose a simple yet e�ective approach called
the ScheduledKD-LDC. It integrates both an U scheduler, which
schedules the U in Eq. (1) and a data curriculum to jointly regulate
the distillation process. An overview of the ScheduledKD-LDC is
provided in the Figure 2.

Data Level Given the limited computation and data represen-
tation capability of the lightweight LDC, presenting examples in
a curated order can help in building representations step-by-step,
starting from simpler concepts and gradually incorporating more
intricate ones to capture complex dynamics in BCI datasets. We
therefore adopt a curriculum data ordering strategy in our ap-
proach, where we divide the training data into three pools being

{Easy}, {Easy, Medium Hard} and {Easy, Medium Hard, Hardest}.
The higher percentage allocation of training data to the easy pool
(e.g. [60%, 70%] in the experiments), allows the model to establish a
strong initialization by assimilating foundational knowledge from
the teacher. Conversely, the hard examples, which are usually more
challenging or represent edge cases, receive a smaller percentage
allocation (e.g. [10%, 20%]), as the hardest pool.

Learning Procedure However, the curriculum data order alone
is not su�cient to address the problem of the student model strug-
gling to learn from more complex teacher models e�ectively. We
therefore also introduce an U scheduler tomanage the distilling level
from the teacher to the student model. Initially, a higher value of U is
used to emphasize the in�uence of the teacher, as the teacher model
can provide more accurate and reliable predictions on the easier
examples, which allows the student model to build up its knowl-
edge base by learning from the teacher’s con�dent predictions. As
the student model becomes more sophisticated, we decrease the
value of U to let it learn more by itself. The rationale of using an
U scheduler is two-fold: 1) the small student model cannot com-
prehend the entire knowledge of the much more complex teacher
net [11]; 2) some hard examples may challenge even the teacher
model, where the wrong prediction can lead to poor performance if
using the same level of distillation strength. By allowing the more
mature student model to learn from itself, it can develop its own
data representations that may generalize better to unseen examples.

When it comes to the choice of the U scheduler, we consider
several desirable properties. First is the gradual transition. A grad-
ual shift helps prevent sudden disruptions and provides a more
stable learning process for the student model. Secondly, �exibility
is important to cater to di�erent tasks and dataset. For example,
some tasks may require longer guidance from the teacher, while
others may bene�t from faster independence of the student. Thus,
the scheduler should allow customization to accommodate these
varying needs. We therefore propose using the exponential sched-
uler due to its smoother change compared to the linear one, as well



tinyML Research Symposium’24, April 2024, San Francisco, CA Trovato and Tobin, et al.

Algorithm 1 Scheduled Knowledge Distillation

Input: Training data {G8 , ~8 }�8=1; Total training epoch � ; Pretrained
teacher model 5 C with \C ; Student model 5 B with randomly initialized
\B ; Initial balancing weight U ; Di�culty ranking function C ; Decay step
: ; Decay rate W ; Change point % ; Order > 2 {“curriculum", “random",
“anti-curriculum"}.
Output: Trained student model 5 B .
Rank data: (x1, x2, ..., x� )  sort(x1, x2, ..., x� , B,> )
while ⌘ < � do

if ⌘ � % and ⌘ %: = 0 then
Exponentially decrease U : U  U ⇥ W d⌘A e

end if
Update \B based on the curriculum: \⌘B  

train-one-epoch(\⌘�1B , {x1, x2, ..., x� })
end while

as its customization capability compared to a static U . Speci�cally,
after the %th epoch, the value of U is exponentially decreased by
W d

⌘
A e , where W is the decay rate, ⌘ represents the epoch number and

A is the scaling factor. Additionally, our empirical results demon-
strate that using the exponential U scheduler yields higher accuracy
than directly optimizing U by parameterizing it, as the di�erence in
magnitudes between the values of L ⇡ and L#!! heavily biases
the training process towards prioritizing one loss over the other,
leading to worse performance. It is also worth mentioning that for
more challenging data, smaller values of % in general leads to a
slightly higher accuracy through our observation. We outline our
algorithm in Algorithm 1.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets we have considered three EEG datasets in experiments.
The Motor Imagery EEG signals were recorded from participants
who were instructed to perform or imagine performing one of �ve
movements: eyes closed, both feet, both �sts, left �st, and right
�st [54]. The X11 and S4b datasets from the BCI competition IIIb
benchmark [46] involves classifying left- and right- hand move-
ments based on EEG signals. The ERN dataset from [39] includes
26 participants completing a P300 speller task.

Evaluation Metrics In the evaluation, we take into account
both the e�ciency and accuracy. Speci�cally, we assess the bi-
nary multiply-accumulate (BMAC) operations [67], �oating point
multiply-accumulate (FPMAC) operations [4], and model size re-
quired for inference to determine the e�ciency of evaluated meth-
ods. The BMAC operations can be executed using XNORs and pop-
ulation counts (popcnt) in a highly hardware-e�cient manner [67].
Therefore, models dominated by BMACs typically exhibit signi�-
cantly improved inference speed and reduced model size compared
to the ones governed by FPMACs [14, 67].

Baselines The EEGNet is a compact deep neural network spe-
cially designed for EEG-based tasks [34], Our experimental Deep-
ConvNet is composed of �ve convolutional layers, followed by a
fully connected layer. In addition, we have binarized the conv layers
of these two deep networks for a more comprehensive comparison.
These binarized models were respectively named the Binarized-
DeepConvNet and the Binarized-EEGNet. Also, we considered the

Multi-Layer Perceptron (MLP) and the Support Vector Machines
(SVM) in our experiments. The LeHDC is based on the HDC/VSA
architecture but trains it with a systematic learning strategy [13].
Besides the standard knowledge distillation method for the LDC
(KD-LDC), we also have compared with the CTKD [35], where the
curriculum is applied on the distilling temperature by an adversarial
manner to control the information transfer.

Implementation Details During training, we set the learning
rate for the Motor Imagery dataset to 0.005, decaying by a factor
of 0.1 every 50 steps, with a batch size of 1000. For the X11 and
S4b datasets, the learning rate remains at 0.005, with a step size
of 60 and a batch size of 256. For the LeHDC model, we set the
feature dimension ⇡ 58 and value dimension ⇡+58

as 4000 and 4,
respectively, while 128 and 4 for the LDC-based models (i.e. LDC,
KD-LDC and ScheduledKD-LDC). We opt for DeepConvNet for the
Motor Imagery and ERN datasets, and EEGNet for the X11 and S4b
benchmark, as the teacher model, respectively. The change point
% is 100 in Motor Imagery and ERN, while 75 for X11 and S4b. In
curriculum, we set the easiest 65% of data examples as the easy pool,
the easiest 80% as the {easy + medium hard} pool, while the easiest
95% samples as the {easy + medium hard + hardest} pool for the
Motor Imager and ERN datasets. In X11 and S4b, the percentages
are 70%, 90% and 100%.

5.2 Main Results
Table 1 shows the main results of accuracy and e�ciency across dif-
ferent methods among the datasets. From the accuracy perspective,
the DeepConvNet and MLP have achieved the highest accuracy.
However, their accuracy comes at the cost of heavy FPMAC oper-
ations, and requires over 40 times larger model size compared to
the ScheduledKD-LDC. Regarding the model e�ciency, although
the Binarized-DeepConvNet and LeHDC are also dominated by e�-
cient BMACs operations, the ScheduledKD-LDC outperforms them
by a large margin in terms of accuracy. As for the inference model
size, SVM has the smallest number, but its accuracy is ~20% lower
than the ScheduledKD-LDC on the evaluated tasks. In addition, the
ScheduledKD-LDC consistently outperforms the other knowledge
distillation methods like the plain KD LDC and CTKD w/ LDC
across all evaluated EEG datasets. In general, ScheduledKD-LDC
has better balanced accuracy and e�ciency on the EEG datasets
compared to other methods. Note that methods like EEGNet show
BMACs of 0 as they only involve �oating-point computations. Con-
versely, for methods like LDC, which only entail binary operations
in inference, they have 0 FMACs.

5.3 Analysis of the Ucheduler
We show the results of using di�erent U setups without data curricu-
lum in the Figure 3. The experiment results have demonstrated that
utilizing an U scheduler to regulate the distillation level during the
training process is more e�ective than using a static U . It supports
our belief that as the student model gains pro�ciency in tackling
the task, it requires less knowledge distillation from a much more
complex teacher model, in order to independently generate data
representations using its own understanding based on the already
good initialization. Furthermore, as observed from the Figure 3 (a)
and (b), the exponential U scheduler generally performs slightly
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Table 1: The ScheduledKD-LDC provides a better tradeo� between accuracy and inference e�ciency compared to
other methods. Note that models dominated by BMACs are typically more hardware-computation e�cient than those
dominated by FPMACs, as the BAMCs can be implemented in a massively parallel fashion in platforms like FPGA [67].

Dataset Method Accuracy BMACs FPMACs Model Size
(%) (⇥106) (⇥106) (KB)

Motor Imagery

EEGNet [34] 85.33±1.25 0 4.81 72.22
DeepConvNet [34] 92.83±1.21 0 25.33 613.82

Binarized-DeepConvNet 57.68±2.21 24.56 0.76 47.15
SVM (HALO) [29] 58.42±0.45 0 1.02 ⇥ 10�3 4.60

MLP 86.12±1.44 0 32.90 125.88
LeHDC 76.02±0.44 4.06 0 527.81

LDC 77.18±0.89

0.13 0 16.89
KD-LDC 77.89±0.73

CTKD [35] w/ LDC 78.85±0.62
ScheduledKD-LDC 80.17±0.83

X11 and S4b

EEGNet [34] 80.04±1.09 0 5.98 105.38
Binarized-EEGNet 56.14±1.83 5.76 0.21 12.77
DeepConvNet 83.71±2.07 0 28.99 892.01

SVM (HALO) [29] 53.55±0.43 0 1.50 ⇥ 10�3 6.01
LeHDC 68.64±0.22 5.93 0 754.68

LDC 69.16±1.04

0.19 0 24.15
KD-LDC 69.68±0.83

CTKD [35] w/ LDC 70.22±0.64
ScheduledKD-LDC 71.83±0.77

ERN

EEGNet [34] 82.84±1.04 0 4.77 69.78
Binarized-EEGNet 59.63±1.74 4.59 0.18 5.31
DeepConvNet 86.67±1.34 0 27.68 632.56

SVM (HALO) [29] 55.80±0.33 0 1.12 ⇥ 10�3 4.38
LeHDC 72.63±0.45 4.59 0 597.81

LDC 73.34±0.87

0.15 0 19.13
KD-LDC 73.86±0.73

CTKD [35] w/ LDC 74.42±0.60
ScheduledKD-LDC 75.57±0.62

better than the linear U scheduler across various temperatures. In
contrast, using parameterizing U leads to the poorest accuracy. This
is primarily due to the signi�cant di�erence in magnitudes between
the values of L ⇡ and L#!! throughout the training process. Con-
sequently, optimizing the parameter U tends to heavily favor one
loss over the other, leading to suboptimal performance. We attribute
the improvements to the smoother and gradual decay, as well as the
�ne-grained exploration during the early stage of the exponential
change, as opposed to the linear one.

5.4 E�cacy of Curriculum Data Order
In the Table 2, we present results of using di�erent data curriculum
methods. Firstly, our experiments reveal that curriculum data order
helps in the knowledge distillation setting. However, if not under
the knowledge distillation setting, the curriculum training does not
signi�cantly improve accuracy [61], as demonstrated by comparing
the results of LDC and Curri LDC. Second, our experiments show
that anti-curriculum (as adopted in Anti-curri KD-LDC), which
ranks and trains data from di�cult to easy, adversely a�ects ac-
curacy, lowering it by approximately ⇠4% compared to KD-LDC,

Table 2: E�cacy of curriculum training on the Motor Im-
agery.

Static U Linear U Expo U param U

Curri KD-LDC 78.04±0.60 79.57±0.86 80.17±0.83 72.83±0.56
KD-LDC 77.89±0.73 78.59±0.64 78.92±0.57 70.72±0.47

Anti-curri KD-LDC 73.93±0.81 73.84±0.74 74.65±0.70 67.72±0.83

Curri LDC 77.20±0.57
LDC 77.18±0.89

Anti-curri LDC 73.43±1.20

which uses random data ordering, on the Motor Imagery dataset.
Lastly, combining the curriculum data order (as in Curri KD-LDC)
with the exponential U scheduler yields the best performance.

In Table 3 (a), we show the results of using loss-based rankings
from the pretrained teacher model versus the pretrained student
model. We observe that using the teacher’s loss to order data results
in signi�cantly worse accuracy compared to using the student’s loss.
One plausible explanation could be that the teacher and student
models have di�erent perceptions of the di�culty of the same
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Linear Exponential Static Parameterized

(a) (b) (c) (d)

Figure 3: Comparison of di�erent U setups, without employing data curriculum in the KD setting on the Motor Imagery, X11
and S4b datasets. (a), (b): With di�erent temperatures g . (c), (d): With di�erent starting values of U .

Table 3: Data ordering analysis on the Motor Imagery dataset.
(a) Accuracy comparisonwhen data ordered by loss of teacher
model vs. student model; (b) Loss-based ranking intersection
between teacher and student model.

Order by
Teacher Loss

Order by
Student Loss

ScheduledKD LDC 74.14±0.66 80.17±0.83
Curri LDC 70.67±0.58 77.20±0.57
Curri LDC w/ KD 74.34±0.61 78.04±0.60

(a)

Overlapped
Rank (%)

Hardest 30% 30.06
Hardest 50% 50.25
Hardest 70% 70.72

(b)

data examples. In fact, the Table 3 (b) reveals a low overlap in
rankings between teacher and student models, highlighting the
need of scheduled learning to bridge the gap and reduce mismatch.

6 RELATEDWORKS
In BCIs, real-time operation with minimal signal-acquisition-to-
output delay is crucial, making computation complexity and model
e�ciency a focus in research [1, 5, 8, 28, 33, 40, 53]. The [43] has re-
duced the calibration cost of brain signals by leveraging previously
acquired EEG signals and projecting the new signals into a shared
latent space. However, there has been a lack of measurements such
as latency or model size to quantify their e�ciency improvements.
In [60], they have proposed to decode and classify signal without
storing them to enhance the response speed of BCI applications, but
the models in their work are still computationally-expensive large
deep nets. Using classic lightweight feature engineering models
such as SVM in BCIs to meet latency or computation constraints
can be a simple solution, but their accuracy can be unsatisfactory
due to the limited computation capabilities [29, 60, 70].

Motivated by the observation that human brain operates on
high dimensional data, the HDC/VSA has emerged [27]. It o�ers
a promising alternative for handling noisy time-series data such
as brain signals, as it integrates learning capability and memory
functions. Several recent studies have used the HDC/VSA in biosig-
nal tasks for improved inference e�ciency [21, 45, 48]. Despite
a few attempts to enhance its accuracy, the HDC/VSA still lacks
satisfactory performance [13, 16, 23, 24]. The recently proposed
LDC o�ers improved accuracy and e�ciency, with a model size 100
times smaller during inference compared to HDC [14, 37]. However,
directly applying LDC to EEG datasets, known for strong noise, can
yield unsatisfactory accuracy [21].

Knowledge distillation is a common practice to achieve model
size compression and maintain accuracy in small architectures [22].

The standard knowledge distillation has been shown to improve
the performance of student models in various applications [2, 3, 10].
However, severe prediction distribution mismatch between teacher
and student models can occur, especially when there is a large
gap between their model capacities [11, 56]. Existing works have
proposed using intermediate features to transfer learned represen-
tations from the teacher to the student. However, this approach
requires high computational cost and storage sizes [19, 20, 51, 68].
In comparison, our proposed method ScheduledKD-LDC introduces
no additional intermediate between the teacher and student model.
The work closest to us is [35], where their proposed CTKD curricu-
lums the distilling temperature. In contrast, our ScheduledKD-LDC
directly adjusts the weights of soft targets to control the in�uence
of the teacher’s prediction, where the exponentially decreased U
provides the student with more con�dence to generate its own data
representations as it progresses towards maturity. Our empirical
evaluation demonstrates the ScheduledKD-LDC achieves higher
accuracy than the CTKD on the EEG benchmarks.

7 DISCUSSION AND FUTUREWORKS
In this work, we propose the ScheduledKD-LDC to regulate the
distillation level by U and the order of the training data by curricu-
lum, leading to improved knowledge transfer and accuracy on the
evaluated EEG benchmarks. Instead of using classical feature engi-
neering methods or DNNs, we opt for the LDC/VSA classi�er for
high e�ciency with low inference computational cost and smaller
memory footprint for tiny BCI devices demanding low latency.

Limitation and Future Works We focus on the EEG-based
BCI benchmarks, but it would be worthwhile to explore the use of
other brain signals like invasive Electrocorticography (ECoG) and
Functional Magnetic Resonance Imaging (fMRI) in future studies.
While our proposed ScheduledKD-LDC has demonstrated improved
accuracy compared to methods with similar model size (or MACs),
it still falls short compared to modern DNNs in terms of accuracy.
We therefore aim to explore more ways to bridge the accuracy
gap between our method and DNNs. Additionally, we hope to fur-
ther investigate on-chip power consumption measurements during
inference for BCIs on realworld tiny devices.
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