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Curvature in the balance: the Weyl functional and
scalar curvature of 4-manifolds

CLAUDE LEBRUN*

Abstract: The infimum of the Weyl functional is shown to be sur-
prisingly small on many compact 4-manifolds that admit positive-
scalar-curvature metrics. Results are also proved that systemati-
cally compare the scalar and self-dual Weyl curvatures of certain
almost-Kéhler 4-manifolds.
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1. Introduction

The curvature tensor of an oriented Riemannian 4-manifold (M*%, g) may be
invariantly decomposed into exactly four independent pieces

R=s®FrOW,OW_,

where s is the scalar curvature, where r is the trace-free Ricci curvature, and
where W, are respectively the self-dual and anti-self-dual Weyl curvatures.
This happens because the curvature tensor R at a point may naturally be
thought of as an element of ®?*A% N (A*)*, and decomposing this vector space
into irreducible SO(n)-modules splits it into exactly four factors when n = 4.
Four dimensions is completely anomalous in this respect; by contrast, the
curvature consists of just three invariant pieces when n > 4, of just two
pieces when n = 3, and of only a single piece when n = 2.

Assuming henceforth that M* is compact and without boundary, we now
obtain four basic quadratic curvature functionals on the space of Rieman-
nian metrics on M by taking the L?-norm-squared of each of our curvature
pieces
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and any other quadratic curvature functional is then a linear combination of
these four. Each of these functionals is invariant under constant rescalings
g v~ cg, for c € RT, and the last two functionals are actually conformally in-
variant, in the sense that they are unaltered by arbitrary conformal rescalings
g v ug, where u : M — R is a smooth positive function.

On the other hand, these four functionals are not genuinely independent,
because the 4-dimensional Gauss-Bonnet formula

0 00 = gz [ (5 + w1 g
M =g ), \aa T Py )
and Thom-Hirzebruch signature formula
1 2 2
2 ") = gz | (W = W-P) diy

express two important homotopy invariants of the compact oriented 4-mani-
fold M as linear combinations of these basic curvature functionals. For metrics
on a fixed oriented 4-manifold M, the two functionals

52
(3) g Mf silhe 9 Mf (W, Pdpg,
M M

therefore completely determine every other quadratic curvature functional.

The main theme of this article concerns a question of balance: how do the
two functionals (3) compare in size, for specific types of metrics on interesting
classes 4-manifolds?

One source of motivation for this question stems from the Kéahler case.
Suppose that g is a Kahler metric on (M, J), and that M is given the ori-
entation determined by the complex-structure tensor J. We then have the
point-wise identity )

5 S
W] = Bk
and our two basic functionals (3) therefore coincide on Kéhler metrics.
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Einstein metrics provide a particularly compelling context for this issue.
Recall [3] that a Riemannian metric g is said to be Einstein if its Ricci tensor
satisfies 7 = Ag for some constant A. In any dimension n > 2, this is equiv-
alent to requiring the trace-free Ricci tensor 7 = r — 2g to vanish, and the
scalar curvature s of such a metric then coincides with n times the Einstein
constant A. When n = 4, our balance question turns out to be highly relevant
to the study of Einstein metrics, but the direction in which the balance tips
critically depends on the sign of the Einstein constant. For example, when
the scalar curvature is positive, the self-dual Weyl curvature almost always
outweighs the scalar curvature [13, 14]:

Theorem (Gursky). Let (M*,g) be a compact oriented Einstein 4-manifold
with s > 0 that is not an irreducible symmetric space. Then

2

S
WolPdu, = | =—du,,
fM| +[7dpg JMZZL Hg

with equality iff g is locally Kdhler-Einstein.

By contrast, in the negative-scalar-curvature setting, there are large
classes of 4-manifolds where the balance tips in the opposite direction [20, 21]:

Theorem (L). Let M be a smooth compact 4-manifold that admits a sym-
plectic form, but does not admit an Einstein metric with s > 0. Then, with
respect to the symplectic orientation, any Einstein metric g on M satisfies

2
s

j ﬂd:ug >J (W Pdpg,

M M

with equality iff g is a Kdhler-Einstein metric.

(Here the assumption that the symplectic manifold M admits an Einstein
metric, but does not admit an Einstein metric of positive scalar curvature,
guarantees that the symplectic form w satisfies ¢;-[w] < 0 and ¢ > 0. A result
of Taubes [35] thus implies that, for the spin® structure determined by the
symplectic form, the unperturbed Seiberg-Witten equations admit a solution
for every metric, and the desired inequality then follows from the Weitzenbck
formula for the Seiberg-Witten equations. By contrast, the assumption in
Gursky’s theorem that (M, g) is not an irreducible symmetric space implies,
by a result of Hitchin [3, Theorem 13.30], that W s 0; using the fact that
the second Bianchi identity implies that §WW, = 0 on any Einstein 4-manifold,
the theorem is then deduced from the corresponding Weitzenbock formula for
W, via a clever conformal-rescaling argument.)
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Given these results about the Einstein case, it might now seem tempting
to inquire about the balance between our two basic functionals (3) for general
Riemannian metrics on a smooth compact oriented 4-manifold. However, this
naive form of the question is simply silly, because {|W.|?du is conformally
invariant, while Ss2du varies wildly in any conformal class!

Example. Let (M, g) be a compact oriented Riemannian 4-manifold, and
consider arbitrary conformal rescalings § = u’g, where u : M — Rt is
a smooth positive function. The Yamabe functional of such a conformally
rescaled metric is then given by

_ SM Sgdpty SM [6‘VU‘2 + SUQ] dpg

A/ Sar g . A/ Sar Wi

and, since there are functions u that are C° close to 1, but which are wildly
oscillatory on a microscopic scale, one immediately sees that there are se-
quences of metrics g; in the given conformal class [g] := {u?g} that remain
C? close to g, but have &(g;) — 4. But since {s?duy; > [£(9)]* by the
Cauchy-Schwarz inequality, this means that SSQdM — +00 among metrics in
our arbitrary conformal class [¢g]. In particular, this shows that there exist
metrics on any 4-manifold M for which

&(9)

52 9
—dp > | |Wyl|°d
oq UM f +7dp
and, indeed, that there exist such metrics in any conformal class. %

Example. Let g be a J-compatible Kahler metric of non-constant scalar
curvature on a compact complex surface (M*,J); a generic Kéhler metric in
any Kéhler class will have this property [6]. By the solution of the Yamabe
problem [24, 31], there exists a constant-scalar-curvature metric § = u?g
conformal to ¢ that minimizes the Yamabe functional & in the conformal
class [g]; and, because M has real dimension 4, such a Yamabe metric § also
minimizes SSQd,u in its conformal class [4, Proposition 2.1]. Thus ¢ must
satisfy

52 2
ok < | W[ du

because equality is already achieved by the higher-energy metric g. Thus,
any compact 4-manifold that admits a complex structure of Kéhler type will
admit metrics for which self-dual Weyl outweighs the scalar curvature. &
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Thus, our question of balance only becomes reasonable if we somehow
turn it into a conformally invariant question, or else narrow the scope of
the question in a way that effectively precludes conformal rescaling. One
particularly nice such modification, which coincides with the original question
in the Einstein case, is to ask whether

(4) J W, [2d ;J s 1Y,
v + n = o 24 92 H,

since the Gauss-Bonnet formula (1) implies that the right-hand side is also
conformally invariant. By combining Gauss-Bonnet with the Thom-Hirze-
bruch signature formula (2), it is now easy to see that this modified question
is exactly equivalent to asking when

1

2 (2x + 37)(M).

W =

?
(5) (W, Pdu =
M
Asking whether such an inequality holds for all metrics on a given M is then
a question about the infimum of the Weyl functional

#(lg]) = jM (W4 2+ (W [2) day,

which measures the deviation of a conformal class [g] from local conformal
flatness. Since equation (2) implies that

W(lg)) = —120%7(M) + 2 fM W, P,

knowing the infimum of #  is equivalent to understanding the differential-
topological invariant inf, §,, |W |2djuy, and for our purposes this will be the
more convenient formulation of the problem.

The infimum of the Weyl functional seems to have been first discussed by
Atiyah, Hitchin, and Singer [1], who discovered that the infimum is achieved
on CPy by the Fubini-Study metric; indeed, they more generally observed
that (2) implies that any metric on a compact oriented 4-manifold M satisfies

1
472

(6) (W [2dp, > 37(M),
M
with equality iff W_ = 0. This seems to have then inspired Osamu Kobayashi

[16] to examine the key example of M = S? x S? where inequality (6) just
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becomes the trivial statement that §, [W,|*du = 0, but where this lower
bound is impossible to achieve, since a theorem of Kuiper [18] guarantees
that S% is the only simply-connected 4-manifold that admits a metric with
W, = W_ = 0. Kobayashi conjectured that the infimum on S? x S? is
achieved by the Kahler-Einstein metric arising as the Riemannian product
of two round 2-spheres of the same radius. Kobayashi’s evidence for this
conjecture was modest, but interesting; by calculating the second variation of
W, he proved that this standard Einstein metric is a local minimum of the
Weyl functional, and he also checked that it is the unique global minimizer
of the restriction of # to the Kahler metrics on CP; x CIP;.

While Kobayashi’s evidence was admittedly fragmentary, Matthew Gursky
later discovered a beautiful general result [12] that puts the question on an
entirely different footing:

Theorem (Gursky). Let M be a compact oriented 4-manifold such that
by (M) # 0, and let [g] be any conformal class with Y[s > 0. Then

1 1
@ 1 | WP, = e+ 00,

with equality iff [g] is the conformal class of a Kdhler-Einstein metric.

Here we recall that the Yamabe constant Y|, of a conformal class [g] is by
definition the infimum of the Yamabe functional &(§) over § € [g], and that
Y[g) is positive iff [g] contains a metric of positive scalar curvature. If M is
any compact oriented 4-manifold, also recall that b (M) is defined to be the
dimension of any maximal subspace of H?(M,R) on which the intersection
pairing H?(M,R) x H*(M,R) — R is positive definite; and since, for any
Riemannian metric g on M, the self-dual/anti-self-dual decomposition

A2 =AT@A™

of the bundle of 2-forms induces an intersection-form-adapted decomposition
_ ot -
Hg=H, ®H,

of the harmonic 2-forms H, =~ H?(M,R) into eigenspaces of the Hodge star
operator * : Hg — Hg, it easily follows that by (M) is exactly the dimension
of the space ”H; of harmonic self-dual 2-forms on (M, g). Gursky’s argument
uses the Weitzenbock formula for self-dual harmonic 2-forms, together with a
conformal rescaling argument, to show that every conformal class on any M*
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with by # 0 contains a metric with 24/6|/W | > s everywhere. Integrating
and applying Cauchy-Schwarz, one then concludes that

) | wipau= 5 (vi)?

M
whenever Y5 > 0. The result then follows, because the right-hand side of (4)
at a Yamabe metric is certainly less than (or equal to) the right-hand side
of (8) for any conformal class.

While Gursky’s theorem certainly seems like a huge step in the direction
of answering Kobayashi’s question, Gursky’s method unfortunately cannot
provide any information at all about conformal classes with Y[, < 0; and, for
better or worse, “most” conformal classes on any 4-manifold inevitably have
negative Yamabe constant. Fortunately, an entirely different method does
allow us to plunge into this Yamabe-negative realm; but this method only
works on those rare 4-manifolds with 2x + 37 > 0 that admit both symplectic
structures and Riemannian metrics with s > 0. These are exactly [7, 21]
the previously-mentioned manifolds that carry both a symplectic structure
and a A > 0 Einstein metric. Equivalently, they are the smooth 4-manifolds
underlying the del Pezzo surfaces, meaning the compact complex surfaces that
have ample anti-canonical line bundle K~!. Up to oriented diffeomorphism,
there are exactly ten of these manifolds, namely S? x S? and the connected
sums CPy#kCPy, k = 0, 1,...,8. Most of these actually carry Kéihler-Einstein
metrics, and one could hope, in the spirit of Kobayashi’s conjecture, that their
conformal classes might exactly minimize the Weyl functional.

Because each del Pezzo 4-manifold M has by (M) = 1, there is, up to a
multiplicative constant, a unique self-dual harmonic 2-form w on M for each
Riemannian metric g, and this w moreover only depends on the conformal
class [g] of the given metric. When this w is everywhere non-zero, it is auto-
matically a symplectic form, and one therefore says that [¢] is a conformal
class of symplectic type. Like Gursky’s condition Y[ > 0, this new condition
is open in the C? topology; however, it is also genuinely different, because
one can construct sequences of conformal classes [g;] of symplectic type with
Yig,] — —o0. Nonetheless, inequality (7) can still be shown [23] to hold for
such conformal classes, even in these Yamabe-negative depths:

Theorem (L). Let M* be the underlying smooth compact oriented manifold
of a del Pezzo surface. Then any conformal class [g] of symplectic type on

M satisfies
1

472

with equality iff [g] contains a Kdhler-FEinstein metric g with s > 0.

1
| wepan, = v snn,
M
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Here the method of proof focuses on choosing a representative g for the
conformal class [g] for which the harmonic 2-form w has pointwise norm |w| =
v/2; this makes (M, g,w) into an almost-Kihler manifold with ¢ - [w] > 0,
and this then gives rise to sharp lower bounds for the Weyl functional. It is
also worth mentioning that there are two del Pezzo manifolds, CP#CP; and
CPy,#2CP5, on which the associated Einstein metrics are only conformally
Kéhler, but nevertheless still appear to minimize the Weyl functional [23].

The upshot is that Kobayashi’s conjecture seems increasingly plausible
for 5% x S? and its del Pezzo cousins. But could the lower bound (7) also hold
in the Yamabe-negative realm on many other manifolds? One might first
worry about Taubes’ theorem [34], asserting that, for any compact oriented
4-manifold M, the connected sum M#kCP, will admit metrics with W, =0
for astronomically large k » 0; however, 2y +37 « 0 for these examples, so (7)
becomes a tautology in this context. More pertinently, compact hyperbolic 4-
manifolds have W, = 0 and 2x+37 > 0, and so certainly violate (7); but these
examples never admit positive-scalar-curvature metrics [11], and thus do not
carry any metrics to which Gursky’s result applies. It is thus more relevant
to ask whether there are 4-manifolds that do carry positive-scalar-curvature
metrics, but which also carry some Yamabe-negative conformal classes for
which (7) fails. In the simply connected case, our first main result shows that
this always eventually happens after one first “stabilizes” the manifold by
taking its connected sum with sufficiently many copies of S? x S

Theorem A. For any sufficiently large integer m, the smooth compact simply-
connected zero-signature spin manifold

M =m(S? x §%) := SSQ X SZ)H - #(S? x 522

m

admits Riemannian conformal classes [h] that satisfy

1
472

1
© | wipam, < g snon.
M 3
Stmilarly, for any sufficiently large integer m, together with any second integer
n such that - is sufficiently close to 1, the smooth compact simply-connected

non-spin manifold

M = mCPy#nCP, := @Pg# -« #ClIPy #@2# -+ #CPy

m n

admits conformal classes [h] that satisfy inequality (9).



Curvature in the balance 2745

The proof of this result can be found in §2 below.

On the other hand, given the role of almost-Kéahler geometry in the above
discussion, it also seems natural to explore our question of balance in the
almost-Kéahler context. Here, the scales can tip either way. Indeed, if we choose
to impose one of the two key conditions that played a role in our previous
discussion, systematic but opposing patterns emerge:

Theorem B. If (M, g,w) is a compact almost-Kihler 4-manifold for which
oW, =0, where  denotes the divergence operator, then

52
fM 510He = JM (W Pdug,

with equality iff (M,g,w) is Kdhler. By contrast, if (M,g,w) is instead a
compact almost-Kdihler 4-manifold with scalar curvature s = 0, then

2
S
WolPdu, = | =—d
fM| +| :ug fM24 /Lg7

again with equality iff (M, g,w) is Kdahler. In particular, any compact almost-
Kdhler 4-manifold (M, g,w) with W4 =0 and s = 0 is necessarily Kahler.

For the proof, see §3 below.
2. Curvature and connected sums

The constructions in this section will depend on the existence of simply-
connected minimal complex surfaces (X?,.J) of general type with 7(X) > 0,
where the signature 7(X) = b4 (X) — b_(X) is understood to be computed
with respect to the complex orientation of X*. Recall [2] that a complex
surface (X, J) is said to be minimal if it contains no holomorphically embed-
ded CP; of homological self-intersection —1, and that (X*,.J) is said to be
of general type if h°(X, O(K®7)) grows quadratically in j for j » 0, where
K= A%go denotes the canonical line bundle of X. Minimal, simply-connected
complex surfaces of general type exist in abundance; indeed, every smooth
complete-intersection surface in CP,, of degree = 9 is an example. However,
constructing such complex surfaces with 7(X) > 0 is surprisingly difficult and
subtle, and no examples were known prior to the trailblazing work of Miyaoka
[26] and Moishezon-Teicher [27]. A plethora of non-spin examples were then
constructed by Chen [8], after which Persson, Peters, and Xiao [28] proceeded
to show that spin examples exist in similar profusion. Much more recently,
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Roulleau and Urzia [30] settled a celebrated problem in complex-surface geog-
raphy by showing that there exist sequences of such X with ¢3(X)/co(X) — 3;
moreover, one can either do this while insisting that these 4-manifolds X be
spin, or while instead insisting that that they be non-spin. In terms of the
signature 7 = (c? — 2¢3)/3 and topological Euler characteristic Y = c, Roul-
leau and Urzta’s construction yields sequences of simply-connected complex
surfaces with 7(X)/x(X) — /.

These complex surfaces X will eventually become essential building blocks
in our construction. To make good use of them, however, we will first need to
introduce some basic differential-geometric tricks.

Lemma 2.1. Let € > 0 be given. Then, for any smooth compact oriented
Riemannian 4-manifold (Y, go), there is a Riemannian metric g. on Y which
is flat on some tiny ball, but which also satisfies

1 1
1 — W, |?d — 2 .
(10) oz | Wy, < o || I P+

Similarly, if (Y*, go) is a compact Riemannian orbifold with only isolated
singularities, there exists an orbifold metric g on'Y which is flat in a small
neighborhood of each orbifold singularity, but also satisfies (10).

Proof. In geodesic normal coordinates about some point p € Y,
g0 =9 +0(c%),

where & is the flat Euclidean metric associated with the coordinate system,
and p is the Euclidean radius. Let ¢ : R — R be a non-decreasing smooth
function which is identically 0 on (—co, %) and identically 1 on (1,00), and,
for each sufficiently small ¢ > 0, set

he =8+ 6({)lo0 — 4],

so that h; coincides with gg for ¢ > ¢, but is flat for o < /2. We now extend
this to a metric on all of Y by setting h; = gy outside our coordinate chart.
In the transition region p € (¢/2,t), for any small £, one then has

|he — 8] <Ct?,  |Dhef <Ct,  [D*h] <C,

where D is the Euclidean derivative operator associated with the given coordi-
nate system, and where the constant C' is independent of ¢. In this transition
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annulus, the norm-square |R|? of the curvature tensor of h; is therefore ev-
erywhere less than a constant C’ independent of ¢, and the same is therefore
true of |W,|> < |R|?. Since the volume of this transition annulus is less than
a constant times ¢4, the effect of this modification on |W, |2, is less than a
constant times t*. We can therefore achieve our goal by setting g. = h; for
some sufficiently small .

In the orbifold case, the proof is the same, except that, instead of altering
the given metric on a single ball, we instead change it in the above manner
on a finite number of neighborhoods modeled on B*/T'; for appropriate finite
subgroups I'; © SO(4). O

Lemma 2.2. Let (Y1,g91) and (Ya, g2) be two compact oriented 4-manifolds,
where each one is conformally flat on some small open set. Then the connected
sum Y1#Ys admits a conformal class of metrics [g] such that

(1) [ ey = [ WP+ [ 19 Pl
Yl#yé Yl Y2

Similarly, if (Y1,01) and (Ya,g2) are oriented orbifolds which contain flat
neighborhoods modeled on B*/T' and B*/T, respectively, where the bar is used
to indicate reversal of orientation, then the generalized connected sum Y1#r1Yo
admits a conformal class of orbifold metrics [g] for which |W, |3, is ezactly
additive, in the sense that a perfect analog of (11) holds.

Proof. We may delete a tiny round ball from the conformally flat region of
each manifold, and then form the connected sum by identifying conformally-
flat annular regions near the boundary spheres by an orientation-preserving
conformal inversion. Since these gluing maps have been chosen to preserve the
conformal structure, there is then a well-defined conformal structure induced
on the connected sum. Since |W, |2, is conformally invariant, the conformally
flat balls we have deleted have no impact whatsoever on the curvature integral,
and integrals therefore coincide with the sum of the integrals in the ball-
complements. This moreover works equally well in the orbifold case, with
only cosmetic changes. ]

With these lemmata in hand, we can now prove the following:

Proposition 2.3. Let (X, J) be a minimal complex surface of general type,
and let € > 0 be given. Then the smooth compact oriented 4-manifold X
admits a conformal class [ge] of Riemannian metrics such that

1 1
(12) 17 | WP, < gt e
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Proof. Let 2 be the pluricanonical model of (X, J), which is obtained by
collapsing all (—2)-curves in X. Since 2" has only rational double-point sin-
gularities, we may choose to view it as a complex orbifold that has only A-D-E
singularities. This orbifold then has ¢; < 0, and the usual Aubin-Yau proof
[38] therefore implies [36] that it carries an orbifold Kéahler-Einstein metric g.
This Kéhler-Einstein metric then satisfies

1

472 472 3

2 1 s 1, 1,
Weldig = o [ 5 = 562 = 500)

v Z

where the last equality reflects the fact that X — 2" is a crepant resolution.
If Z = X, we are already done. Otherwise, for each singular point p; with
orbifold group I'; « SU(2), let (Y}, [g;]) be the one-point conformal compact-
ification of one of Kronheimer’s gravitational instanton metrics [17] on the
minimal resolution of C?/T';; this is a smooth compact orbifold with W, = 0
that has a single, isolated singularity modeled on B4/I';. Flattening these orb-
ifolds slightly at their singular points, in accordance with Lemma 2.1, and then
performing generalized connected sums, in accordance with Lemma 2.2, we
then obtain a conformal metric on X = 2 #rp,Yi#r, - #r, Vi with |[Wi[2,
as close as we like to its value for the orbifold (27, [§]). O

This now puts us in a position to prove one of our key results:

Theorem 2.4. For any sufficiently large integer m, the smooth compact
simply-connected spin 4-manifold M = m(S? x S?) admits conformal classes
[h] that satisfy inequality (9).

Proof. There are [28, 30] infinitely many simply-connected compact complex
surfaces X of general type with signature 7(X) > 0 that are spin (and so,
in particular, minimal). Choose such a complex surface X, and, for a small
e we will specify later, equip X, per Lemma 2.1 and Proposition 2.3, with
a metric g. that satisfies (12) and is flat on four tiny balls. We also equip
the orientation-reversed version X of X with mirror-image versions of this
ge, and finally equip S? x S? with a modification g, of its standard product
Kéhler-Einstein metric that is flat on a tiny ball and has

1

2 8
— W lPdu, < —+(CP; x CP =—+e
7 | WPy, < SCPy X CP) e = 5+

By removing round, conformally flat balls and gluing as in Lemma 2.2, we
thus obtain a conformal class [h¢] on

My = (k+ O[X#X]#(2k + 0)[S? x S?]
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that satisfies

1
WJ (Wi [Pdp,
k+€ 2k + ¢
=S [P+ [P |+ [ v
2% G2
+€ 2k + ¢

2 [P, = o0 |+ 250 v P
8
<(k+70) [ (2x +37)(X) = 37(X) + 26] + 5(2/4: +0)+ (2k + 0)e
4 16
< (k+70) [gx(X) —7(X) + 3 +4€:| :
By contrast,

L +37) (M) = Sx(Mig) = 2 [24 ba(My )]

2(k + O)[ba(X) + bo(X)] + %(zk + /)

w

%(k + Oba(X) + g(zk +0)

(k+ 0)[b2(X) + 1]

— (k+0) [;‘ (X)—g].

wl%wlrpwlp&w\w

—~

Taking € € (0, 15), we thus deduce that

1
13 —(2 3T)(Mye) — —
13) @) = g5 ]

W Pdun, > Ok +0) [7(X) = 7].

But since X is a spin manifold, Rokhlin’s Theorem [19, 29] tells us that
16]7(X), so our 7(X) > 0 hypothesis therefore implies that 7(X) > 16. Thus,
the right-hand-side of (13) is automatically positive, and we have therefore
produced conformal classes [h] on M, that satisfy (9).

Now notice that, since X# X is a simply connected spin manifold of signa-
ture zero, Wall’s stable classification [37] via h-cobordism implies that there
exists some large integer p such that X#X#(k + £)(S? x S?) is diffeomor-
phic to a connected sum ¢(S? x S?) for any (k + ¢) > p. By induction on
the number of X#X summands, and then adding k additional (S? x S?)
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#(2k + 0)(S? x S?)

summands, we thus see that My, = (k + 0)(X#X)#
> p, where we have set

is diffeomorphic to m(S? x S?) whenever (k + £)
m = k[ba(X) + 2] + ([b2(X) + 1].

On the other hand, any integer m > by(X)[b2(X) + 1] can be expressed
as k[ba(X) + 2] 4+ £[b2(X) + 1] for some integers k, ¢ = 0; this elementary fact
is actually a special case of Sylvester’s solution [33] of the Frobenius two-coin
problem. But since this expression for m implies that (k+¢)[b2(X)+2] = m
we also have (k + ¢) > p whenever m > x(X)p. Thus, whenever m exceeds
(X)) max(p(X), x(X)), the connected sum m(S? x S2) can also be expressed
as My ¢ for some k and ¢, and consequently admits a conformal class [h] that
satisfies (9). O]

Of course, by the Gromov-Lawson surgery theorem [10, Theorem A], the
smooth 4-manifolds m(S? x S?) all admit metrics of positive scalar curvature.
and Gursky’s inequality (7) then gives an interesting lower bound on the
Weyl functional on these Yamabe-positive conformal classes. The point of
Theorem 2.4, however, is that the infimum of the Weyl functional is usually
considerably lower than one might guess without taking a plunge into the
Yamabe-negative depths.

Essentially the same phenomenon also occurs on non-spin 4-manifolds:

Theorem 2.5. Choose any ¢ € (0, 5) Then, for every sufficiently large in-
teger m, and for any integer n satisfying (5 +e)m < n < (2—¢)m, the
smooth compact simply-connected non-spin 4-manifold M = mCPy#nCPs
admits conformal classes [h] that satisfy inequality (9).

Proof. By imitating the proof of Theorem 2.4, we first handle the case where
n = m. Thus, we begin by considering

My = (k + O[X#X|#(2k + 0)[S* x S7],

but now take X to be a simply connected non-spin minimal complex surface
of general type with signature 7(X) > 8. In this setting, Wall’s stable clas-
sification [37] implies that there is some p such that the simply-connected
zero-signature non-spin 4-manifold Mj,, is diffeomorphic to mCPy#mCP
whenever (k + ¢) = p, where m := kx(X) + ¢[x(X) — 1]. Since any integer
m = [x(X)]? can be expressed as kx(X) + £[x(X) — 1] for integers k, ¢ > 0,
and since these integers will then satisfy (k + ¢) = m/x(X), it in particular
follows that (k + ¢) > p whenever m > y(X)p. Hence mCPy#mCPy is dif-
feomorphic to some My, whenever m > x(X)max(p, x(X)). On the other
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hand, our previous gluing construction now yields conformal metrics [h] on
M, o which satisfy

1 1 T(X)—=7

—(2x + 37) (M) — — W Pduy, > (k+0)[1(X) = 7] = m——rac—

L2+ 87) (Mes) — 7 JM WPy > (k) [7(X) = 7] > m T

Thus, whenever m is large, mCPy#mCPy ~ Mj,, admits a conformal class

that not only satisfies (9), but for which we actually have a lower bound for

the gap in terms of m and the homeotype of our chosen building-block X.
We next consider the manifolds

M; ko = My #jCPs,

and notice that mCPy#(m + j)@g is then diffeomorphic to some such ]\/Jj,k,ﬁ
whenever m is sufficiently large. But since the mirror-image Fubini-Study
metric on CPy has W, = 0, Lemma 2.1 guarantees that this reverse-oriented
version of CPy carries conformal classes with 55 §|W,|?dp < € that are
conformally flat on some tiny ball. Since the constructed conformal classes
[h] on My, also contain tiny conformally-flat regions, gluing per Lemma 2.2

thus produces conformal classes on M; ;. , with

1

2 —~
A M ke

1 .
(W Pdp < ﬁf (W [Pdp + je
0 My ¢

for € as small as we like. On the other hand,

1 — 1 |
§(2X +37)(Mj ) = §(2X + 37) (Mie) — %
so that
1 ~ 1 T(X)-7 Jj .
—(2x +37)(Mjke) — —5 W, |%d —_— -
s 0300 — g [ WP Tt -

and, by taking e sufficiently small, our construction therefore produces con-
formal classes [h] on M, satisfying (9) whenever

T(X)—=7

0<j<3m—»a "
X(X)

Setting n = m + j, our construction therefore yields conformal classes on
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mCPy#nCP, that satisfy (9), provided that m > y(X) max(p, x(X)) and

(14) 7n<n<<1+£%%6l>m.

We can similarly construct controlled conformal classes on

~

My = jCP# My 4

by instead conformally gluing in our mild modifications of the Fubini-Study
metric in a way that is compatible with the standard orientation of CIPs.
While each copy of CPy now contributes a substantial additional amount
additional self-dual Weyl curvature, we still have

1

1 L
.k, L

2
47T Mk,e

This is mitigated by the fact that each added CP5 also increases 2x + 37:

~

1 1 5 .
§(2>< + 37)(Mj i e) = §(2X + 37)(My0) + gj.

After the slight change of notation of now setting n = kx(X) + ¢[x(X) — 1],
we thus have

1 — 1 -
§(2X +37)(Mj i) — 12 fv W Pdp > n——r——
T JMj ke

LS

so that, for sufficiently small €, our constructed conformal classes satisfy (9)
whenever

: 37(X) -7
0<j<n-——F——.
4 x(X)

Setting m = n + j, we have thus constructed conformal classes on ]\\Zj,;ﬂ that
satisfy (9) whenever

m

PN
L+ 150

(15) <n<m.

However, since X is of general type, it satisfies [2, 25, 38] the Miyaoka-Yau
inequality x(X) > 37, and (15) therefore implies that n > 2m. Whenever

inequality (15) holds and m > 2x(X) max(p, x(X)), our previous arguments
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therefore imply that mCPy#nCP; is diffeomorphic to some J\\Zm,g on which
our construction yields conformal metrics that satisfy (9).

Up until this point, our discussion has in principle worked for essentially
any non-spin simply connected minimal complex surface X of positive signa-
ture. To optimize our conclusion, however, we now invoke the beautiful and
surprising theorem of Roulleau and Urzta [30], which asserts that there exist
sequences of such X such that ¢(X)/ca(X) — 3. Now notice that the Euler
characteristic x(X) = c2(X) must tend to infinity for any such sequence, since
the Miyaoka-Yau inequality ¢? < 3¢, is only saturated [38] by ball quotients,
which are of course never simply-connected. Consequently,

() 1[@(){) 5 21]_}1

CQ(X) CQ(X)

3

for any such sequence. Given any ¢ € (0, 5) we can therefore choose such an
X such that
T(X)—-7 1-¢
>
X(X) 3
and this choice will then satisfy both
X)—T7 1 4
(X) >2—¢ and — < -+

X §T(X)*7
X(X) 1+ 35% O

1+3

Thus, if m > 3x(X)max(p(X), x(X)) and (2 + e)m < n < (2 —&)m, ei-
ther (14) or (15) must hold for m and n with thls choice of X, and mCPy#nCP,
is consequently diffeomorphic to one of the manifolds X, .0 OF X, j.k,e on which
have constructed a conformal class satisfying inequality (9) O

Together, Theorems 2.4 and 2.5 now imply Theorem A.

Of course, the Gromov-Lawson surgery theorem [10, Theorem A] again
implies that the connected sums mCPy#nCP;y all admit metrics of positive
scalar curvature, and Gursky’s inequality (7) then gives us an interesting
lower bound for the Weyl functional of all such metrics. On the other hand,
Theorem 2.5 produces metrics which violate this inequality, thus showing
that the infimum of the Weyl functional is actually unexpectedly small. This
is only possible because the constructed conformal classes [h] all have very
negative Yamabe constants Y[;,); specifically, these conformal classes [h] must
necessarily satisfy

(16) Ying < =2V6 W] L2 p.
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Indeed, let h be a Yamabe metric in [h], and notice that (9) can be re-

expressed as

3
472

1 52 |72
W, |2d 2x 4+ 37)(M) = — 1 2W P = ) dpu.
WP < x4 3n0n) = o [ (5w = B )

It therefore follows that

82
- d W, |%d
JM24 /Lh>JM| +|%dpn,

and since h has been chosen to be a Yamabe metric, this means that
2
(17) Dl = (sn Vol *) " > 24 (W2,

But since the constructed conformal classes live on 4-manifolds with b, # 0,
Gursky’s theorem [12, Theorem 1] assures us that (9) can only happen for a
conformal class [h] with Y};) < 0. Thus, in the present context, (17) auto-
matically forces inequality (16) to hold.

3. Goldberg variations

We now wrap up our exploration of the balance between scalar curvature and
self-dual Weyl curvature by examining those almost-Kahler 4-manifolds that
have harmonic self-dual Weyl curvature, in the sense that

Since any 4-dimensional Einstein manifold satisfies (18) by the second Bianchi
identity, this question offers a possible source of insight into the so-called
Goldberg conjecture [9], which claims that any compact almost-Kéahler Ein-
stein manifold should be Kéhler-Einstein.

We begin by observing that any 4-dimensional almost-Kéhler manifold
(M, g,w) satisfies

AMTRC=Cwd KoK,

where K = A%’O is the canonical line bundle of the almost-complex structure
Jo% = Waeg? on M. Locally choosing a unit section ¢ of K, we thus have

Vw=0Q@¢+0Q¢p
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for a unique 1-form 6 € A}]’O, since w L Vw, and V A w =0. If
®: AT x AT - @2AT
denotes the symmetric trace-free product, we therefore have
(Vo) ® (V') = 2006 @15 = —5 VP @

and we thus deduce that
Wi, V*V(w®w)) =2W, (w, V*Vw) — 2W, (V.w, Vw)

= 2W, (w, V*Vw) + %|Vw|2W+(w,w)

= W, (w, 2Ws (w) — %w) + [W+(w,w) - %]W+(w,w)

= —§5W+(w,w)+4|W+(w)\2—l—[W+(w,w)
= [Wy (w,w)]? + 4[Wy (W) — sWy (w,w),

—g]W+(W7w)

where we have used the Weitzenbock formula

(19) 0=V*Vw —2W, (w) + gw

for the harmonic self-dual 2-form w, as well as its consequence

1
(20) SVl = Wy (w,w) - 3.

arising from the fact that |w|? = 2. But if §W, = 0, we also have the Weitzen-
bock formula

0= V*VIV, + §W+ —6W, o W + 2| W, |2,
and for M compact this therefore implies that
0= f <(V*VW+ 3w, 6w, oW, + 2|W+|2I),w®w>du
u 2
= [ [V TV @w) + 5 w0) = W (@ + 2V Pl
M

= | [V = S ) = 2W @ + W
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Hence any compact almost-Kéhler (M*, g, w) with W, = 0 satisfies

@) [ = [ SR = W @) + 20V (o)

This has an amusing application to our question of balance:

Theorem 3.1. If a compact almost-Kdhler 4-manifold (M, g,w) satisfies
oW4 =0, then

52
(22) | Siu= | WP,

with equality iff (M, g,w) is a constant-scalar-curvature Kahler manifold.

Proof. To better understand the meaning of (21), let us express W, at an
arbitrary point in an orthonormal basis {e;}_; for A* in which w = V2e1,
and in which W (w) is orthogonal to es. Then, in this basis,

a vy
Wy=1|~v B
—(a+B)

for suitable real numbers «, 3,7. In terms of these components,

[Wi|? = 2a* + 26% + 2a8 + 292,
W, (w0, w)]? = a2,
and
Wi (W)]? = 202 + 292
‘We therefore have

AW 2 = AW, ()2 4 2[W (w,w)]? = 8% + 832 + 8af3

2
=6a2+8(%+5>

3
= 60[2 = §[W+(OJ,CU)]2

Thus (21) implies that

[ 5wt [+ S0 )i
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or in other words that

3 2s
< f {3 — W+(w,w)] W (w,w) du = JIW+|2du~

Substituting W4 (w,w) = 3|Vw|? + £ from (20), we thus have

3 s 1 s 1
S f [5 - §|w|2] [g + §|le2} dp = f|W+|2du

and algebraic simplification therefore yields

52 3
23 J —dp — — Vw 4du>J W, [2dp.
(23) =g | vl | g

Hence any compact almost-Kihler manifold (M*, g,w) with W, = 0 must
satisfy (22), with equality iff (M, g, w) is Kéhler. The claim therefore follows,
because a Kéhler surface (M*, g, J) satisfies 6W, = 0 if and only if its scalar
curvature s is constant. O

On the other hand, the balance tips in the opposite direction for any
almost-Kéhler manifold of non-negative scalar curvature:

Proposition 3.2. If (M, g,w) is a compact almost-Kahler 4-manifold with
scalar curvature s = 0, then

2
S
WilPdu, = | —d
JM‘ + e sz4 o

with equality iff (M, g,w) is a Kdhler manifold.
Proof. By the Weitzenbock formula (19), we have

2 s 1
2\/;\W+| = Wi(w,w) = 3t §|VW|2

where the inequality results from the fact that W, is trace-free and |w|? = 2.
Consequently, any almost-Kihler (M*?, g, w) satisfies

S
24/6

with equality only at points where Vw = 0. When s > 0, squaring both sides
and integrating thus yields the desired result. O

(Wl =
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Theorem 3.1 and Proposition 3.2 now imply Theorem B, along with:

Corollary 3.3. Any compact almost-Kihler manifold (M*, g,w) with s = 0
and OW, = 0 is actually a constant-scalar-curvature Kihler manifold.

In the special case where g is an Einstein metric, this gives a different proof
of Sekigawa’s partial solution [32] of the 4-dimensional Goldberg conjecture.
For related results, see [22].

By contrast, however, if we drop the assumption that s > 0, there are
explicit examples of compact almost-Kéhler 4-manifolds with W, = 0 that
are manifestly non-Kahler. In particular, one can construct [5, 15] explicit
compact, strictly almost-Kéahler manifolds that are anti-self-dual; and since
these have W, = 0, they obviously satisfy 6W, = 0, too. Because these
anti-self-dual examples have scalar curvature s = —%\Vw\z < 0, with strict
inequality at most points, they inhabit outlands that lie well beyond the
reach of Corollary 3.3. In particular, these examples show that one naive
generalization of the Goldberg conjecture is certainly false.

Finally, we recall that, in the Kéhler case, the first Chern class is repre-
sented by % p, where p = r(J-,-) is the Ricci form. As a consequence,

(24) don=[ LaL-L | (5-1)an

w2r 2w 8w?
for any Kéhler manifold of real dimension 4. However, since

2 1 s? o PP
01(M)=(2X+37')(M)=4—7T2 ; ﬂ+2|W+| — ) dug;

for any Riemannian metric, equation (24) can instead be explained by the fact
that [W,|? = % in the K&hler case. This latter way of understanding (24)
has the advantage of making it clear that generalizations of this formula to
other contexts must hinge on our familiar question of balance. For example,
in the almost-Kahler context, Proposition 3.2 and Theorem 3.1 immediately

imply the following result:
Corollary 3.4. Let (M, g,w) be a compact almost-Kihler 4-manifold.

(i) If g has scalar curvature s = 0, then

1 s e 2
872 )., Z_M dp < ci(M),

with equality iff (M, g,w) is Kdhler.
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(ii) If, instead, g satisfies Wy = 0, then

1 52 .12 9
872 )., Z*|T| dp = ci(M),

again with equality iff (M, g,w) is Kdhler.

This once again illustrates the degree to which the question of balance
consistently plays a natural role in understanding the relationship between
curvature and the topology of smooth compact Riemannian 4-manifolds.

4. Unanswered questions

On simply connected compact 4-manifolds that carry metrics of positive scalar
curvature, we have just seen that the infimum of the Weyl functional is often
substantially smaller than one might have guessed on the basis of Gursky’s
inequality (7). In particular, Theorem 2.4 asserts that there exists an integer
mg such that m(S? x S?) carries a conformal class satisfying (9) whenever
m = mg. But the method of proof used here does not actually display a con-
crete mg with this property; nor does it even hint at what might happen when
m is reasonably small. Thus, while one might hope that this phenomenon al-
ready occurs when, say, m = 2, proving or disproving such a statement would
require an entirely different set of ideas. Moreover, the present method only
gives us a crude upper bound for the infimum of the Weyl functional, and
does not begin to hint at its actual value. For example, while Kuiper’s the-
orem [18] implies that m(S? x S?) cannot admit a metric with W, = 0, it
doesn’t guarantee that inf §|W,|?du of such a manifold could never equal
zero. Proving that this infimum is actually positive would be an interesting
accomplishment in itself!

Our lack of effective estimates for mg becomes even more severe in the
non-spin setting of Theorem 2.5. Given a closed interval I < (%, 2), we have
seen that there is an integer mg so that a metric satisfying (9) can be found
on mCPy#nCP, whenever m > mg and - € I. However, the value of mq
produced by the proof is astronomical in practice, and in any case tends to
infinity when, for example, the lower endpoint of I approaches %. Another
possible objection is that inequality (9) depends on a choice of orientation.
This, however, is not really a serious issue, because the construction produces
metrics that satisfy (9) for both orientations if I < (3, 3).

Finally, the almost-Kéahler version of our question of balance has only
been touched on here in a very preliminary way, and there could be many
interesting things that remain to be discovered in this setting. For example,
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while we have seen that the direction in which the balance tips is different
for two interesting classes of almost-Kéhler manifolds, it is possible that the
patterns we have noticed might hold for larger phyla of almost-Kéhler metrics.
For example, if an almost-Kéhler metric has positive scalar curvature, it then
follows that ¢1 - [w] > 0; and, conversely, this last condition certainly implies
that W, has relatively large L?-norm. Is there a version of the almost-Kéhler
balance story that only depends on the sign of ¢1 - [w]? A clean result along
these lines would certainly shed interesting new light on the subject.
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