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Abstract

Bootstrap percolation is a process defined on a graph which begins with an initial set
of infected vertices. In each subsequent round, an uninfected vertex becomes infected if it
is adjacent to at least r previously infected vertices. If an initially infected set of vertices,
Ay, begins a process in which every vertex of the graph eventually becomes infected, then
we say that Ay percolates. In this paper we investigate bootstrap percolation as it relates to
graph distance and connectivity. We find a sufficient condition for the existence of cardi-
nality 2 percolating sets in diameter 2 graphs when r = 2. We also investigate connections
between connectivity and bootstrap percolation and lower and upper bounds on the number
of rounds to percolation in terms of invariants related to graph distance.
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1 Introduction

Bootstrap percolation is a process defined on a graph, G. The process begins with an initial
set of infected vertices Ag C V(G). In each subsequent round, an uninfected vertex, v,
becomes infected if v is adjacent to at least r previously infected vertices. Once infected,
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vertices remain infected. We use A; to denote the set of all infected vertices as of round ¢.
Symbolically,
A=A 1 U{weV(G): INw)NAi_1| >}

The parameter r is called the percolation threshold. If G is a finite graph, then after
a finite number of rounds, either all vertices of G become infected or the infection stops
at some proper subset of V(G). The set of infected vertices after the percolation process
finishes is called the closure of Ag, denoted (Ag). If (4g) = V(G), then we say that Ay is
contagious or A percolates.

Bootstrap percolation was introduced by Chalupa et. al. [10]. One model that has re-
ceived much attention is when the vertices of A( are selected randomly; each vertex is
selected independently and every vertex of G has probability p of being initially selected.
After the initial step, the infection proceeds deterministically. This model has been studied
extensively, for example in [1, 2, 4, 5, 6, 18].

Another area of study is extremal problems. The minimum size of a percolating set in
a graph G with percolation threshold r is denoted m(G,r). Observe that if |V (G)] is at
least r, then m(G,r) > r. Freund et. al. [15] showed that for a graph G of order n, if
§(G) > “Lnthen m(G,r) = r. Let 03(G) be the minimum sum of degrees over all pairs
of non-adjacent vertices of G. Freund et. al. [15] proved that if G satisfies Ore’s condition,
i.e., 02(G) > n, then m(G,2) = 2. Furthermore, they proved that both of these bounds
are sharp.

Gunderson [ 6] extended the first result by showing that if the order of G is sufficiently
large, then the bound on the minimum degree can be weakened. Wesolek [25] extended
Gunderson’s result by proving a lower bound on the minimum degree sufficient to guaran-
tee a percolating set of size ¢ > r. Dairyko et. al. [ 12] extended Freund et. al.’s [ 15] theorem
on Ore’s condition by characterizing the graphs for which 02(G) > nand 03(G) > n—11s
required to guarantee m(G, 2) = 2. For all other graphs, 02(G) > n — 2 is sufficient. De-
gree conditions on bootstrap percolation have also been studied in [24]. Bushaw et. al. [8]
investigated other conditions for which m(G, 2) = 2.

Another problem is investigating m (G, r) for particular classes of graphs. One class
which has received significant attention is the d-dimensional lattice on n® vertices, denoted
[n]?. This has been studied in [3, 5, 17, 21, 23].

In this paper, we investigate bootstrap percolation with a particular focus on diameter
and connectivity. We begin with a partial solution of a conjecture from [8]. Suppose G
is a connected graph of order at least 3 with at most 2 blocks. If G is diameter 2 and
contains no induced Cs, then m(G,2) = 2. In Section 3, we explore the consequences
of percolating sets of size r on the connectivity of a graph. In Section 4, we examine the
minimum number of rounds to percolation given the size of the percolating set in relation
to the diameter and radius of a graph. In Section 5, we investigate the maximum number
of rounds to percolation in terms of graph distance. The problem of the number of rounds
to percolation has also been investigated in [7, 22]. We close with some open problems.

2 A sufficient condition for 2-bootstrap percolation

Before introducing the conjecture, we provide some background and definitions. If a graph
G contains at least one pair vertices which percolate when r = 2, then we say that G is
2-bootstrap good or 2-BG. A block of G is a maximal connected subgraph of G with no
cut vertex. If B is a block of G, then we use G[B] to denote the subgraph of G induced
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by B. It is shown in Bushaw et. al. [8] that a graph with more than two blocks cannot be
2-BG. Since disconnected graphs of order more than two also cannot be 2-BG, we only
concern ourselves with connected graphs. Furthermore, since graphs of order less than two
are trivially 2-BG, we only examine graphs of order three or more. Hence, we define the
set G as the collection of all connected graphs of order 3 or more with at most two blocks.

The eccentricity of a vertex v € G, denoted e(v), is the greatest distance from v to
another vertex of G. The radius of a graph G, denoted rad(G), is the smallest eccentricity
among all vertices of G. The diameter of a graph G is the largest eccentricity among all
vertices of G. A proper coloring of a graph G is an assignment of natural numbers to the
vertices of G such that no pair of adjacent vertices receives the same color. The minimum
number of colors in a proper coloring of G is called the chromatic number of G and denoted
X(G). The clique number of a graph, denoted w(G) is the largest complete subgraph of
G. For any graph G, w(G) < x(G). A perfect graph is a graph for which x(H) = w(H)
holds for every induced subgraph H.

A graph G has a dominating vertex if G contains a vertex v adjacent to all other vertices
of G. A graph G is locally connected if the open neighborhood of every vertex forms a
connected graph. We present the following lemma:

Lemma 2.1. If a graph G is 2-connected and has a dominating vertex, then G is locally
connected.

Proof. Let v be a dominating vertex of G and let u be some other vertex of G. Since v is
in the open neighborhood of w, any two vertices in N (u) are joined by v. Hence, N (u) is
connected. As G is 2-connected, v cannot be a cut vertex. Hence, (V(G) \ {v}) = N(v)
is also connected. O

The following are Theorem 2.16 and Conjecture 4.1 respectively in [8].

Lemma 2.2. Ifa graph G € G is locally connected, then it is 2-BG. Furthermore, if G has
no leaf, then any pair of adjacent vertices will percolate in G.

Conjecture 2.3. If a graph in G is perfect and its diameter is no more than 2 then the graph
is 2-bootstrap good.

We present the following theorem, weakening the assumption that G is perfect.

Theorem 2.4. If a graph G € G has diameter 2 and contains no induced cycle with 5
vertices, then G is 2-bootstrap good.

Proof. We divide the proof into two cases.

Case 1: (G has 2 blocks.

In this case, we do not need the assumption that G contains no induced C5. Let v be
a cut vertex of GG, and let B; and B, be the blocks of G. Since G has diameter 2, v is
dominating in G. Hence, G[Bj] and G[Bs] are locally connected by Lemma 2.1. Pick
w € By and x € By with {w, 2z} as the initial infected set, which then infect v. Then,
{w, v} percolates in By and {v, x} percolates in Bz by Lemma 2.2. So G is 2-BG, where
any pair of vertices, with one vertex of the pair in By — v and the other in Bs — v, percolates
inG.
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Case 2: (G is 2-connected.

Assume that G is 2-connected, has diameter 2, and contains no induced C5. Suppose
toward a contradiction that GG is not 2-BG. Let H be a maximal 2-connected, 2-BG sub-
graph of GG. In other words, any subgraph of G containing H (other than H itself) fails to
be 2-connected or fails to be 2-BG. Observe that any vertex in V(G) — V/(H) has at most
one neighbor in H. Since G is connected and H is a proper subgraph of G, there is a vertex
v € V(G) — V(H) with exactly one neighbor, w, in H.

Claim 1: w is adjacent to every vertex in H.

Proof of Claim 1. Suppose towards a contradiction that w is not adjacent to some vertex
z € V(H). Since G has diameter 2, there is some vertex y € V(G) such that y is adjacent
to both w and z. Since y is adjacent to w and z, i.e., y has 2 neighbors in H, it must be that
y € V(H). Since v is only adjacent to a single vertex in H and G is diameter 2, there must
be some vertex, v’ outside of H such that v’ is adjacent to both v and z (see Figure 1).

UI

Figure 1: Claim 1.

Recall that a vertex outside H can only be adjacent to a single vertex within H. Hence,
v’ cannot be adjacent to any vertex in H other than 2. The five vertices v, v’, w,y, z form
an induced C'5, contradicting our assumption that G has no induced 5-cycles. This proves
our claim that w is adjacent to every vertex in H.

If w was the only vertex in H adjacent to vertices outside of H, then w would be a cut
vertex, contradicting the assumption that G is 2-connected. So there must be a vertex w’
in H with a neighbor v’ outside of H. Note that v # v’, as v and v’ each have a unique
neighbor in . We now have two cases.

Case 2a: v is adjacent to v’. If so, then let {v,w’} be an initial set of infected vertices.
These in turn infect v’ along with w. In Claim 1. we showed that w is a dominating vertex
of H and H is 2-connected by assumption, so by Lemma 2.1, H is locally connected. By
Lemma 2.2, {w,w'} infects all of H. But this means that H U {v,v’} is a 2-connected,
2-BG subgraph of GG containing H, in contradiction to our earlier assumptions.

Case 2b: v is not adjacent to v’. Since G has diameter 2, there must be a vertex v/ which
joins v and v’. This vertex cannot be in H because each of v, v’ is only adjacent to a single
vertex in H.

We now have two possibilities: v” is adjacent exactly one of w or w’; or v is adjacent
to neither w nor w’. If v is adjacent to neither, then v,v”,v", w’, w form an induced 5-
cycle. If v” is adjacent to w, then we can infect v”, w’, which in turn infect v/, w and
H' = HU{v',v"} forms a 2-BG, 2-connected subgraph containing H. If v"’ is adjacent to
w’, then the situation is similar except that H' = H U {v, v”}. This is shown in Figure 2.
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Figure 2: Case 2a on the left and Case 2b on the right.

Cases 2a and 2b both lead to contradictions, so we conclude that there can be no such
H and G must be 2-BG. O

3 Connectivity and bootstrap percolation

Let r € Z™T. Similar to the definition of 2-BG, if a graph G contains at least one set of
vertices which percolate, then G is r-bootstrap good or 7-BG. A graph G is k-connected if
it has at least k£ + 1 vertices and does not contain a cut set of size k — 1 or less. Recall that
a block is a maximal induced 2-connected subgraph of G. A graph is 1-BG if and only if it
is connected. In [8], the following result is Lemma 2.1:

Lemma 3.1. [fa graph is 2-BG, then it has at most two blocks.

In this section, we seek to expand on the result in Lemma 3.1 by investigating the effect
of percolating sets of size r, where r > 3, on the connectivity of graphs. This topic was
investigated independently by Flippen et. al. [9], who showed that 3-BG graphs have at
most three leaf blocks (a block that is a leaf in a block-cut graph). A natural first question
is, “what is the maximum number of blocks of an r-BG graph?” Before answering this
question, we present the following lemma:

Lemma 3.2. Let G be an r-BG graph with at least r + 1 vertices and Ag be a cardinality
r percolating set of G. If X is a cut set of G with | X| < r and K is the set of components
of G — X which are not contained in Ay, then |V (C) N Ag| > r — |X| for each C € K.
Moreover, |[K| < |r/(r — |X|)] and if | K| > 2, thenr/2 < | X| <r—1.

Proof. First note that |K| < |r/(r — |X|)] implies r/2 < |X| < r — 1 when | K| > 2
since | X'| < r/2 implies r — | X| > r/2 and thus | K| < r/(r — | X|) < 2.

Suppose C'is a component of G— X and C € K. Since C € K, there is some vertex, v,
in C which is not initially infected. Without loss of generality, we may let v be the earliest
infected vertex of C' which is not initially infected (it is possible that there are multiple
choices for v). Since v is the earliest infected vertex, v cannot be infected by other vertices
of C and in fact can only be infected by vertices of Ag or X, i.e., |[N(v) N (X U Ag)| > r.
Leti = r—|X]|. Since N(v) C V(C)UX and | X| = r—i we must have [AoNV (C)| > i.
No two components of G — X have any vertices in common, so |K| - i < |Ag| = r, which
implies that | K| < r/i. O

Throughout this section, we will use the notation from the above lemma: G is a graph,
Ay is a percolating set of GG, and X is a cut set of G. For simplicity, we will use the term
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component to refer to a subgraph of G induced by a component of G — X. Observe that
a cut set X, when |X| < r, separates any percolating set of size r. If all vertices of Ay
are in the same component of G — X, then no other component of G — X can become
infected. Likewise, no component can have zero vertices of A, otherwise no vertices of
the component would be able to become infected. Since each component must have at least
one vertex of Ay, we can have at most  components of G — X. By Lemma 3.2, this can
only occur when | X| = r — 1. In fact, this bound is sharp. Here is one family of graphs
which attains the bound: let G be a graph with r disjoint nonempty complete subgraphs
Hy,H,,...,H, and let X be a set of » — 1 vertices each adjacent to every vertex in every
H;. Then, select one vertex from each H; to be initially infected. These r vertices infect
X. Then each H; is infected by X together with its single infected vertex. See Figure 3 for
an example when r = 3.

Figure 3: A 3-BG graph with 3 components and a cut set of size 2. The gray vertices are a
percolating set.

We require one more lemma before determining the maximum number of blocks in an
r-BG graph.

Lemma 3.3. Let G be an r-BG graph with at least r + 1 vertices and Ag be a cardinality
r percolating set of G. If X is a cut set of G with | X | < r, then at least one vertex of X is
adjacent to every vertex of Ag.

Proof. Since |G| > r we have V(G) € Ay. We further claim that X ¢ Ag. Since X is a
cut set, G — X contains at least two components. In the proof of Lemma 3.2 it is shown
that each component C' of G — X that is not completely contained in Ay contains at least
r — | X| vertices of Ag. So X C Aj would imply that X together with such a C' would
contain all of Ay (a C' must exist since |G| > r). But since each other component must
have at least one vertex of Ay, this is a contradiction. So X ¢ Ajy. We consider two cases.

Case 1: Every component of G — X is contained in Ag. In this case, the only vertices
which remain to be infected are the vertices of X which are not contained in Ay. Since Ag
is a percolating set, these vertices become infected at some point. Hence, at least one such
vertex is infected in the second round, i.e., is adjacent to all vertices of Aj.

Case 2: Some component of G — X is not contained in Ay. In this case uninfected vertices
occur in X as well as in any component C', where C Z Ay. No component contains every
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vertex of Ag and X is not a subset of Ay, so after the initial round, the number of infected
vertices in C' U X is less than r, for any such C. Vertices of C' — Ay can only become
infected from vertices in C' or X, so before any such vertex can become infected, at least
one vertex of X must be infected. Hence, at least one vertex of X is infected in the second
round, i.e., is adjacent to all vertices of Ay. O

From these two lemmas, we have the following result that generalizes Lemma 3.1:

Theorem 3.4. Letr > 2. If G is an r-BG graph with at least r+1 vertices, then G contains
at most r blocks. Moreover, r blocks is only achieved by G = K1 , when r > 3.

Proof. Note that blocks are separated by a cut vertex. Let X = {v} be a cut vertex of G.
By Lemma 3.3, v is adjacent to every vertex of Ay. We claim that there cannot be more
than a single cut vertex in an r-BG graph. Suppose for contradiction we have a second cut
vertex u. Each component of G — {u} must contain at least one vertex of Ay. But then,
u cannot be a cut vertex because these components are still connected by v. Thus v is the
only cut vertex in G and the number of blocks is exactly the number of components of
G — X. By Lemma 3.2, the largest number of components of G — X in general is r.

If r > 3 Lemma 3.2 implies at most one component of G — X is not contained in Ag
since | X| < r/2. So the largest number of blocks only occurs when G = K, and every
leaf is contained in Aj. O

Lemma 3.2 also allows us to analyze the structure of -BG graphs with cut sets of size
less than 7. As an example, we will examine 3-BG graphs. We know that 1 < | X| < 2 and
components of G — X can either be contained in Ay or not. We also know from Lemma 3.2
that components not contained in Ay must contain at least 3 — | X | vertices of Ay.

Suppose | X | = 1. If every component is contained in A, then we can have either 2 or
3 components. These possibilities are shown by the leftmost and middle graphs in Figure 4
(the gray vertices are the vertices of Ag). It is also possible that one component of G — X is
not contained in Ay. Since such a component must contain at least 3 — | X'| = 2 vertices of
Ay, we can only have one such component and the other must be entirely contained within
Ay, i.e. a leaf. One example is shown by the rightmost graph in Figure 4.

o] -

Figure 4: Some cases when G is 3-BG and G has a cut set of size 1. Vertices in the cut set
are white, and vertices in Ag are gray.

Suppose | X| = 2. When every component is contained within A, then we have the
same possibilities as before except vertices of Ay now must be adjacent to both vertices
of X. The leftmost and middle graphs of Figure 5 provide examples (it also possible that
the vertices of X are adjacent). If some components of G — X are not contained in A,
then because |X| = 2, each such component needs to contain at least one vertex of Ajg.
Hence we may form such a graph by replacing any of the single vertex components with
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a connected graph of order 2 or more. The rightmost graph of Figure 5 provides such an
example, where every vertex of the K3 component is joined to X. Figure 3 provides an
example where all three components are not subsets of Ay.

a8

AN

Figure 5: Some cases when G is 3-BG and G has a cut set of size 2. Vertices in the cut set
are white, and vertices in A are gray.

In addition to the structure of the components, we have the following result concerning
the structure of cut sets in an r-BG graph with a cut set of size less than r.

Theorem 3.5. Let G be an r-BG graph with at least r + 1 vertices and Aq be a cardinality

r percolating set of G. If X is a cut set of G with | X | < r, then there is no cut set Y where
Y| <randY NX =0

Proof. By Lemma 3.3, there is some vertex v € X such that v is adjacent to every vertex
of Ag. Since X N'Y = (), it must be that X is contained within the components of G — Y,
thus v is in a component of G — Y. Each component of G — Y must contain at least one
vertex from Ay since |Y| < r. Since v is adjacent to all of Ay we have G — Y is connected,
a contradiction. O

Another way to extend Lemma 3.1 is by generalizing the notion of a block: Matula [20]
and Karpov [19] have extended the concept of a block in different ways. Matula defines a
k-block as a maximal k-connected subgraph of G and a k-ultrablock as a k-block which
contains no k + 1-blocks. With this notion, a 2-block is just an ordinary block. Karpov’s
approach is to let G be a set whose elements are cut sets of G. A part of & is a maximal
subset of V(G) which is not disconnected by &. This forms a partition of G into vertices
in some cut set of & or connected components of G — &. In this section, we make use of
Matula’s notion of a k-block and a k-ultrablock.

We ask, what is the greatest number of r-ultrablocks contained in an 7-BG graph with
a cut set of size less than »? When r = 2, this is answered by Lemma 3.1. For higher r,
we were able to construct, for each > 3, an r-BG graph with a cut set of size less than r
which contains r(r — 1) r-ultrablocks. We were unable to rule out the possibility that there
is a graph with more than r(r — 1) r-ultrablocks among all »-BG graphs with a cut set of
size less than r. Thus, our construction provides a lower bound on the maximum number
of r-ultrablocks which such a graph can contain:

Theorem 3.6. Let G be an r-BG graph with at least r + 1 vertices which contains a cut
set X with | X| < r. Let T be the set of all such graphs. Then, the maximum number of
r-ultrablocks among graphs contained in T is at least r(r — 1).
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Proof. For each r, we present a graph G, where G, € T'. Furthermore, for every com-
ponent C; of G, — X, C; U X contains  — 1 r-ultrablocks. Recall that for any graph
G € T, with cut set X as described above, Lemma 3.2 implies that the maximum number
of components of G — X is r, which occurs when |X| = r — 1. Thus, when constructing
G, we let X be a cut set of GG, containing r — 1 vertices in order to maximize the total
number of components and hence r-ultrablocks in G,.. Furthermore, let the cut set X form
an independent set of G,.. Construct each of the » components of G, — X as follows: each
component contains a copy of K,._;. Call this an axis. Join the axis to every vertex of X
and also join an independent set of 7 — 1 vertices, .S, to every vertex of the axis. Join each
of the » — 1 vertices in S to a distinct vertex of X. The axis together with each vertex of S
and its adjacent vertex of X forms a copy of K, 1.

We now show that G- is 7-BG and that each copy of K, is indeed an r-ultrablock.
Take a distinct vertex from the axis of each component and from these vertices form Ag.
Since we have r components, this set of vertices then infects X . The vertices of X together
with Ay then infect the other  — 2 vertices of each axis. Lastly, X and the axes of each
component infect the remaining vertices.

Recall that an r-ultrablock is a maximal r-connected subgraph of G, which does not
contain an r 4 1-block of G,.. Each copy of K. is indeed r-connected. Since each K11
only contains 7 + 1 vertices, it cannot contain an r 4 1-block. Furthermore, if we extend
any copy of K, to a larger set of vertices of GG, the resulting subgraph is no longer
r-connected. A K, together with an additional vertex of X is disconnected by removing
the r — 1 vertices of the axis, since X is an independent set and each vertex of .S is adjacent
only to a single vertex of X. If we expand by including a second vertex of S, this is also
disconnected by removing the axis. Lastly, if we include multiple components of G, — X,
these are disconneced by removing the r — 1 vertices of X. For each component C; of
G, — X, C; U X contains r — 1 r-ultrablocks, so the total number of r-ultrablocks in G,
isr(r—1). O

Figure 6 contains an example of this construction when » = 3. The white vertices are
the vertices of X, the gray vertices are the vertices of the axes and the black vertices are
the remaining vertices of G.

Figure 6: Six 3-ultrablocks in a 3-BG graph.
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4 Minimum number of rounds to percolation

Theorem 4.1. Let G be a connected graph with diameter d. Suppose G contains a set of
vertices, Ay, which percolates with threshold r in k rounds and |Ag| < 2r — 1. Further-
more, assume that every vertex in Ay infects some vertex in round 2, i.e., every vertex in Ay
is adjacent to at least one vertex in round 2. Then k > [d/2] + 1 and this bound is sharp.

Proof. When numbering the rounds, we refer to the initial round as round 1. Partition V(G)
into sets S1, So, ..., Sk, where S; = Ag and for each 4, .S; is the collection of vertices newly
infected in round 4. Let p be a vertex infected in round ¢, where ¢ # 1. Observe that p
is adjacent to no more than » — 1 vertices in S through S,_s (otherwise, p would have
become infected in some round from 2 to ¢ — 1). Since p is adjacent to at least r vertices
in S; through S;_1, then we know that p is adjacent to at least one vertex in S,_;. By
iterating this reasoning, we can find a path from a vertex in any round to some other vertex
in any previous round.

Let u, v be two vertices in G where v € S; and v € Sj, where 1,5 # 1. If j > 4,
then by the above observation, we can form a path v, v;_1, ..., v;, where the index on each
vertex is the round in which it was newly infected. If v; = w, then we have a u — v path.
If not, then we can continue our path starting with v and begin a new path starting with
u as follows: v,v;_1,...,v4,Vi—1,...,v2 and u, u;—1, ..., up. If in some round ¢ we have
vp = uy, then we have a u — v path.

On the other hand, if it is never the case that v, = uy, £ > 2, we extend the path to
the initial round. Every vertex in So must be adjacent to at least  vertices in S7, which
implies that in particular, vo and us are each adjacent to at least r vertices in S;. Since
|Ao| = |S1| < 2r — 1, by the pigeonhole principle, these two sets of r vertices cannot be
disjoint. Hence, we can choose some v; = u; and we form a u — v path. A diagram of this
process is shown in Figure 7.

Now, suppose that both u and v are in S;. Since we assumed that every vertex in .Sy
infects at least one vertex in Sy, both v and v are adjacent to a vertex in S3. If both are
adjacent to the same vertex, the we have a u — v path of length 2. If v and v are not
adjacent to the same vertex, then we have two paths u, us and v, ve. Since vo and ug are
each adjacent to r vertices in S, by the pigeonhole principle, v, uo are mutually adjacent
to some w € S7 and so we have v, vo, w, ug, u, a u — v path of length 4. If only u is in S,
then by similar reasoning, we either have a u — v path of length j — 1 or a u — v path of
length j + 1.

Since we can use this method to construct a path between any two vertices in G, the
diameter of G cannot be any longer than the longest possible such path. This occurs when
both u and v are infected in the final round. Since it takes k — 1 steps to go from the k'"
round to the 1%¢ round, we can write d < 2k — 2. Solving for k yields d/2 + 1 < k and
since the number of rounds must be an integer, we have [d/2] + 1 < k.

Without the additional assumption that every vertex in Sy infects some vertex in Sa, it
is possible that at most » — 1 vertices in S7 are adjacent to no vertices in .S5. In which case,
a path from a vertex in Sy, to a vertex in S7 can have length at most k£ + r — 2 and then our
lower bound depends on both 7 and d rather than d alone. [

This bound is sharp. Consider the following class of graphs. Begin with P,, and replace
every vertex by a set of r independent vertices. Label these sets By, ..., B,, where B;
corresponds with vertex ¢ of P,, and vertices labelled from left to right. Join every vertex
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S3

Figure 7: Finding a u — v path.

in B to every vertex of B, and in general, every vertex in B; to every vertex in adjacent
sets. We denote a member of this family of graphs by P, ,.. Figure 8 shows this construction
for Ps o and P ».

The diameter of graphs in this family is n — 1. If we initially infect the middle set of
vertices (for a graph where n is odd), then the entire graph is infected when B; and B,
become infected, which occurs after "7_1 + 1 rounds. If n is even, then if we initially infect
either of the two centermost sets, the infection percolates when either B, or B,, becomes
infected (whichever is furthest from our starting set). This requires 5 + 1 = [%1 +1
rounds. In either case, we can see that the lower bound of [d/2] 4 1 rounds is attained.

Figure 8: Ps5 2 and Fs o.

Theorem 4.2. Let G be a connected graph with a set of vertices Ao, which percolates in k
rounds with percolation threshold r. If |Ag| = r, then k > rad(G) + 1 and this bound is
sharp.

Proof. Let x be a vertex in S and y be a vertex in 5;, 1 < ¢ < k. Using the same method
as in Theorem 4.1, we can form a path y, y;_1, ..., y2, where y; € S;. Since Ay contains
exactly r vertices, every vertex in S must be adjacent to every vertex in Ag. Hence, ys is
adjacent to x and y, y;_1, ..., Y2, x is an x — y path of length ¢ — 1. If y € S1, then we can
construct y, yo, x, an x — y path of length 2.

The greatest length of such a path is k¥ — 1. Since we can form a path from every
vertex in G to z € Sy, we know that the eccentricity of x, e(z), is at most k — 1. We
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then have the following inequality: rad(G) < e(z) < k — 1. Hence, k > rad(G) + 1.
This inequality is sharp because each P, , contains a set of vertices which percolates in
rad(G) + 1 rounds. O

S Maximum number of rounds to percolation

In this section, we construct a family of graphs which show that given percolation threshold
r and diameter d, the number of rounds before the infection percolates is not bounded
above. We first construct a family of graphs with diameter 2 and with threshold » = 2 and
then generalize the construction for arbitrary diameter and percolation threshold.

We begin constructing G by selecting an independent set of vertices. Call this set Ag.
This set must contain at least r vertices, but other than this there is no restriction on the
cardinality of this set. Next, join every vertex of A, to a vertex x;. After this, construct a
path of length s and denote the vertices y1, yo, ..., ys from left to right. Join every vertex of
the path to x; and join y; to exactly one vertex in Ag. An example of this construction for
r = 2,s = 5 is shown in Figure 9.

If we select Ag as our initial set of infected vertices, then the infection percolates in s+2
rounds. This is because each vertex of the path cannot become infected until the previous
vertex of the path is infected and y; cannot become infected until after x; is infected. Since
21 is a dominating vertex, our graph is diameter 2.

A()

n Y2 Y3 Ya Ys

Figure 9: A diameter 2 graph which percolates in 7 rounds with percolation threshold 2.

We generalize the construction as follows. First, we construct P4_1) . We then join
every vertex of the the d — 15 set (the last one on the right) to x1, 2o, ..., z,_1. Lastly,
we form a path on s vertices yi1,¥s, ..., ys and join every vertex of the path to each of
T1,T2,...,Tr—1. Next, we join 71 to a single vertex in the d — 1%t set. The set of vertices
{x1,...,x.—1} ensures that every vertex of the path y1, ..., ys is within distance d of our
other vertices. An example of this construction with diameter 4 and percolation threshold
3 is shown in Figure 10.

If we select the leftmost set of 7 vertices of FP4_1), as our initial set, such a graph
percolates in d + s rounds. First the infection percolates through the d — 1 sets. After
this, x1, ..., x,—1 become infected. Next, y; becomes infected and then each y; becomes
infected in turn.

Although diameter is insufficient for an upper bound on the number of rounds, an upper
bound using a different graph invariant is possible. The detour distance between two ver-
tices u, v, denoted D(u,v) is the length of the longest path between w and v. The detour
eccentricity, of a vertex, v, denoted ep(v), is the longest detour distance from v to any
other vertex. The defour diameter of a graph, GG, denoted diamp (G) is the largest detour
eccentricity among vertices in GG. Observe that the detour diameter is the length of the
longest path in G. These definitions and other facts about the detour distance are stated in
Chartrand et. al. [11].
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Ys

Y4

Y3

Y2

n

Figure 10: A diameter 4 graph which percolates in 9 rounds with percolation threshold 3.

In his dissertation, Dreyer proved the following result (as Lemma 3.10) [13]. It is also
presented in a later paper by Dreyer and Roberts [14].

Theorem 5.1. For a connected graph G = (V, E) of order n, the transient length of an
irreversible k-threshold process is at most dn(G) (dn(G) = 1, if k > 1).

We recast this result in the terminology of bootstrap percolation and detour diameter
and also using our convention of referring to the initial round of infection as round 1, rather
than round O.

Theorem 5.2. If G is a connected graph containing a percolating set which r-percolates
in k rounds, then k < diamp(G) 4+ 1. Moreover, if r > 2, then k < diamp(G).

We present Dreyer’s proof, which is straightforward and uses similar ideas to our proofs
of a lower bound on the number of rounds:

Proof. Using the same process as in in the proof of Theorem 4.1, we form a path from a
vertex in the k*" round to a vertex in the initial round, where each vertex of the path is in a
different round. Such a path has length & — 1. Since diam p (G) is the length of the longest
path in G, we know that k¥ — 1 < diamp(G). Hence, k < diamp(G) + 1.

Suppose r > 2. As in Theorem 4.1, let Sy, Sa, ..., Sy partition V' (G) so that v € S,
becomes infected in round a. Let P be a path as described in the above paragraph, where
P = v1,v9,...,vx_1, v and where the index of each vertex is the round at which it becomes
infected. We will prove that when » > 2, we can always extend such a path to a path on
k + 1 vertices. If vy, is adjacent to a vertex off of P, then we are finished. So, assume that
the only neighbors of v, are vertices of P.

We will show by induction that if v;_jv; is an edge of P, then v;_1v; is contained in a
path on ¢+ 1 vertices, where each vertex in the path is in some S, 7 < 7. When ¢ = 2, since
r > 2, vy is adjacent to at least one other vertex besides v in S7. If we call this vertex w,
then v1, vo, u is a path on 3 vertices, where each vertex is in S; or Se. For our induction
hypothesis, assume true up to ¢ that all edges v;_1v; lie on a path on ¢ 4 1 vertices, where
every vertex of the path is in Sy through ;.

Now, consider the edge v;v; 1. If v;y1 is adjacent to some vertex, u € S;,7 < i+ 1,
where u ¢ P, then we are done. Assume that v;41 is only adjacent to vertices in P. Since
7 > 2, v;41 has some neighbor other than v; in P. Call this neighbor v;. By our induction
hypothesis, vpvp11 is contained in some path P’, where P’ contains b + 2 vertices and
each vertex of P' isin S;,j < b+ 1. P’ can be written P;, vy, V41, P5, where Pj are the
vertices of P’ that precede vy, in P’ and P are the vertices of P’ that follow vp; in P’.
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We now form a new path Q = Py, Vp, Viy1, Vi, Vi1, -y Upt1, Py. Since the newly
added vertices are from Sy 2, Spa 3, .., Sit1, they are distinct from the vertices of P’, so Q
is indeed a path. @) contains every vertex of P and one extra, so () contains ¢ + 2 vertices.
We have shown that for all ¢, P can be extended to a path on ¢ + 1 vertices, so when i = k
particular, P can be extended to a path on k£ + 1 vertices. Hence the detour diameter must
exceed k — 1 by at least one, and so we have k < diamp(G). O

Dreyer notes that this upper bound is sharp: when » = 1, it is attained by a path,
while for every r > 2 and every value of diamp(G), it is possible to find a graph which
percolates in diam p (G) rounds with threshold 7. This family of graphs are all caterpillars.
A caterpillar is a tree which consists of a central path, each vertex of which has some
number of leaves (possibly 0). We construct these graphs as follows. Form a caterpillar
with a central path of length diamp(G) — 2 and where all vertices of the path except the
leftmost endpoint have r — 1 leaves. The leftmost endpoint has r leaves. The longest path
in such a graph is formed by moving from a leaf of the leftmost endpoint along the central
path to a leaf of the rightmost endpoint. If we begin the percolation process by infecting
the leaves of the path, then such a graph percolates in diamp (G) rounds. Figure 11 shows
an example of such a graph for » = 3 and detour diameter 7.

A A A A

Figure 11: A graph which 3-percolates in diamp(G) rounds when A is the set of gray
vertices.

6 Open questions

1. The two lower bounds on the number of rounds to percolation given in this paper are
based on radius and diameter. It would be interesting to see lower bounds based on other
graph invariants, or bounds for specific graph classes.

2. Likewise the upper bound given in this paper is unconditional, but it is likely that the
actual largest number of rounds for most graphs is substantially smaller than the length
of the longest path. Given other assumptions, what is the maximum number of rounds
to percolation?

3. What is the largest number of r-ultrablocks contained in an 7-BG graph with a cut set
of size less than r? Other results on the structure of cut sets of an 7-BG graph would
also be interesting.
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