Deep-Learning Based Supervisory Monitoring of Robotized DE-GMAW
Process Through Learning from Human Welders

Rui Yu', Yue Cao’, Jennifer Martin®, Otto Chiang®, and YuMing Zhang"

1: Department of Electrical and Computer Engineering and Institute for Sustainable
Manufacturing, University of Kentucky, Lexington, KY 40506, USA

2: Toyota Motor North America, USA
* Corresponding author email: yuming.zhang@uky.edu

Abstract: Double-electrode gas metal arc welding (DE-GMAW) modifies GMAW by adding a
second electrode to bypass a portion of the current flowing from the wire. This reduces the
current to, and the heat input on, the workpiece. Successful bypassing depends on the relative
position of the bypass electrode to the continuously varying wire tip. To ensure proper operation,
we propose robotizing the system using a follower robot to carry and adaptively adjust the
bypass electrode. The primary information for monitoring this process is the arc image, which
directly shows desired and undesired modes. However, developing a robust algorithm for
processing the complex arc image is time-consuming and challenging. Employing a deep
learning approach requires labeling numerous arc images for the corresponding DE-GMAW
modes, which is not practically feasible. To introduce alternative labels, we analyze arc
phenomena in various DE-GMAW modes and correlate them with distinct arc systems having
varying voltages. These voltages serve as automatically derived labels to train the deep-learning
network. The results demonstrated reliable process monitoring.

1. Introduction

Welding processes can be classified into penetrative processes and filling processes based on
their primary purposes [1]. Gas tungsten arc welding (GTAW) and gas metal arc welding
(GMAW) serve as the respective benchmark processes [1]. GMAW is widely used in welding
applications [1] and has been the initial process employed for wire arc additive manufacturing
(WAAM) [2, 3], also known as welding-based rapid prototyping [2]. In a filling process, the
first desirable property is the controllability of the heat proportion applied to both the wire and
the workpiece [1]. Unfortunately, achieving such desired controllability is not feasible with the
benchmark GMAW process due to its underlying principle. The principle, which involuntarily
applies only half of the power at the anode to melt the wire compared to the power at the

cathode/workpiece [1], is the cause of this limitation.

The welding community has been continuously striving to improve existing processes and
pioneer innovative methods to achieve greater desirability. Examples of these efforts include
laser welding, A-TIG [4, 5], K-TIG [6, 7], double-sided arc welding [8, 9] for penetrative
processes, as well as controlled short-circuiting GMAW [10] and AC GMAW [11] for filling
processes. In a typical GMAW application, the wire functions as the anode, facilitating the
transfer of the molten wire to the workpiece through electromagnetic forces [12]. However, in
this polarity, the voltage on the workpiece is approximately twice that of the anode voltage [13].
By alternating the polarity of the wire, AC GMAW can reduce the heat applied to the workpiece
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while increasing the heat on the wire, effectively detaching droplets of the molten wire [11].
For short-circuiting GMAW, which utilizes resistance heat during the short-circuiting period to
heat the wire only, precise control of metal transfer without spattering is essential. A specific
technique that retracts the wire during the short-circuiting period has resulted in a precisely
managed metal transfer process, leading to the successful commercialization of cold metal
transfer (CMT) [14]. CMT has found extensive application in WAAM [15, 16]. Furthermore,
the polarity of CMT has been alternated to combine the benefits of AC GMAW and CMT [17].

Fundamentally understanding GMAW as the benchmark filling process is challenging without
a concept like “effective heat”, i.e., the heat imposed on the wire. Decoupled control of mass
and heat stands as the ultimate goal of all process innovations aiming for an ideal filling process.
The extent of this decoupling can be quantified by comparing the effective heat to the heat
applied to the workpiece. In an open arc situation (without short circuiting), the ratio is
T = Wyire/ [Vyire + Wwork) = Vwire/ Vwire + Viwork ), With the resistance heat and the heat
in the arc column omitted. When the wire functions as the anode, as is typical in many
applications, r = 1/3, and the ratio remains constant. Conversely, if the wire functions as the
cathode, r = 2/3, which serves as the stringent upper limit for AC GMAW, although the
achievable ratio is likely much lower, ensuring a minimally necessary electrode-positive period
for successful metal transfer. In the context of short-circuiting transfer processes, the ratio
during the open arc period also equals 1/3, meaning that effective heat is only predominantly
increased during the short-circuiting phase. In all scenarios, the upper limit of the achievable
ratio is confined by the fundamental structure of the welding system, where the arc forms
between the wire and workpiece, resulting in the passage of the same current through both
elements.

The DE-GMAW process, invented by the corresponding author at the University of Kentucky,
involves the addition of a second or bypass electrode to establish a secondary arc between the
wire and the bypass electrode [18]. Consequently, the current bifurcates into two branches after
passing through the wire, resulting in I = lire = Ipypass + Iwork » and a ratio of r =
LyireVwire/ (IwireVwire + IworkVwork)- Given that I, can be reduced to zero, DE-GMAW
can reach an r value approximating 1, surpassing the fixed 1/3 ratio. The process has been
effectively controlled and expanded, transitioning from a non-consumable to a consumable
bypass electrode [19]. Furthermore, the introduction of the second current branch has enhanced
metal transfer [20].

One challenge associated with DE-GMAW is the requirement for placement of the bypass
electrode in close proximity to the wire tip to maintain the bypass arc. Additionally, the
electrode must be positioned outside the central region of the arc column to minimize its impact
on arc behavior. In a controlled laboratory setting, these conditions can be achieved by
appropriately securing the bypass electrode in advance. However, if the position of the wire tip
varies, it becomes necessary to either readjust the placement of the bypass electrode or, at the
very least, monitor the process to ensure that DE-GMAW operates as intended.

As a result, the operation of the bypass electrode must be automated using a follower robot
capable of dynamically adjusting the bypass electrode’s position in real-time. To achieve this
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objective, our initial investigation focuses on the arcing phenomenon, which we categorize into
three distinct modes: parallel arc, serial arc, and single arc. The preferred mode is the parallel
arc, characterized by the immediate branching of current into two paths after following from
the wire. Subsequent analysis has revealed that the transition from the parallel to serial arc mode
might not be sharply defined, leading to mixed mode. Consequently, we further refine the
classification to incorporate a mixed arc/transition mode. This comprehensive classification
framework enables us to closely monitor the DE-GMAW process, ensuring its consistent
operation within the desired mode, which is targeted by our first step to robotize DE-GMAW.

2. Process Background

In a typical GMAW process, an arc is created through the flow of current across the ionized
gaseous gap from the wire to the workpiece. The heat generated by the arc melts the wire, which
subsequently deposits into the workpiece. The productivity is determined by the achieved wire
melting speed.

As in the reference [21], if the metal transfer is in spray mode (melting current great than 250A
for steel wire of 1.2 mm diameter), the melting speed m of the mass, arc current I, wire
extension L, and cross-section area of the wire S can be formulated as:
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where the first term corresponds to the resistance heat and the second is due to the arc. In a first
order approximation, m « [. Both (1) and its approximation mean that increasing the melting
speed of the mass is realized by increasing the arc current. However, the current going through
the wire equals to the current going through the workpiece:

I = Lyork. 2

The heat imposed by the arc on the workpiece (I,0rk VworkAt) during the arc application time
(At) thus increases involuntarily and proportionally if the current is increased to increase m.
Increasing the current to increase 1 hence enlarges the weld pool, resulting in workpiece
distortion and the accumulation of residual stress.

To address this challenge, the double-electrode GMAW process has been proposed as a solution
to reduce the heat input towards the workpiece during the welding process [22], as shown in
Figure 1, by adding a bypass electrode along the side of the GMAW torch. This double-
electrode process breaks the melting current (/) going through the wire into the workpiece
current (I,,ork OF base metal current I;,,) and bypass current (Ipypqss OF Ipp):

1 :Ibm+lbp (3)

As aresult, in this bypass current setup, the melting current will not be equal to the base metal
current. The current passing through the workpiece can be controlled by adjusting the bypass
current, while the total current flowing through the wire will remain unaffected. This allows for
the maintenance of the wire melting speed while controlling the heat generated on the
workpiece to a desired level.
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(a) DE-GMAW system principle [23].

(b) Arc images obtained using a high-speed camera [20].
Figure 1 DE-GMAW system (a) and arc phenomena in DE-GMAW (b).

It is obvious that the fundamental characteristic of the DE-GMAW process (Figure 1(a)) is the
presence of the bypass arc (Figure 1(b)). The stability of this bypass arc is crucial for the proper
functioning of DE-GMAW. In previous studies, this stability was achieved by pre-
determining/fixing the position of the bypass electrode in relation to the GMAW torch.
However, when the wire extension, wire feed speed, arc voltage, or other welding parameters
change, the position of the bypass electrode would need to be adjusted to sustain this stability
optimally. To address this problem, an automatic robot welding system is needed to manipulate
the bypass electrode. The control algorithm to command the robot can be learned and
generalized from those demonstrated by skilled human welders.

3. Proposed Approaches

The arc image, as shown in Figure 1(b), is apparently the most direct raw information to derive
the arc mode. However, processing the arc image to identify the wire, bypass electrode, and arc
paths appears to be challenging. Further studies are also needed to derive the mode from the
identified wire, bypass electrode, and arc paths wire. As the arc image contains sufficient raw
information, which is crucial for deep learning [24], to determine the mode, an ideal solution is

to train a deep-learning model with the image as the input and the mode as the output.
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Unfortunately, although humans can decide the mode through careful observation, labeling the
needed large number of images is not practical. This is particularly the case when involving the
mixed arc mode. To find automatically obtained alternative labels, we propose to study the
physical process which leads us to identify the voltage across the bypass arc gap as such an
automatically obtainable label. The needed large quality of labels can thus become available.

One may wonder if the bypass voltage may replace the arc image to monitor the mode of the
DE-GMAW process. We note that the arc volage is fluctuating and is not as direct as the arc
image. The arc voltage may also change with other factors/parameters such as the material of
the wire, the material of the bypass electrode, the shield gas, the used power source etc., while
the arc image only changes with the arc mode. As such, in this study, all these factors/parameters
are kept the same but the learned model to process the image is transformative and generalizable
beyond the experimental conditions used in this study.

With the automatically obtained bypass voltage, thresholds are still needed to classify into
different modes. We propose to first study the experimental data to determine thresholds.
However, after mixed mode is added, the thresholds become fuzzy. As such, we will then
propose using the k-means method to automatically decide how many modes/classes make the
best sense and determine the thresholds.

We note that the DE-GMAW process has not been robotized and this work is the first effort
toward its robotization. As such, we do not have a freely controllable robotized process and do
not know how to control it yet. We propose to learn from human welders to address this
challenge. Hence, we have established an experimental system where a tractor moves the
GMAW torch, and a human welder observes the arc to adjust the bypass electrode. As the
human welder has never operated such a process, his/her control of the bypass electrode cannot
be ideal. This creates various possible scenarios we can learn from for how and why human
welders succeeded and failed for us to develop the control algorithm, to adaptively adjust the
bypass electrode by the follower robot, through learning from human welders. Hence, these
scenarios, that simulate manufacturing scenarios in laboratory conditions, can allow more
reasonably study how the modes may change during manufacturing.

4. Experiments

The experimental system is shown in Figure 2. The electrical system to operate the process is
still to be same as given by Figure 1. During experiments, a human welder operates a GTAW
torch that holds the bypass electrode while collaborating with the moving tractor that carries a
GMAW torch. The tractor moves at a fixed speed, and the human welder adjusts the bypass
electrode based on the observation, including the arc and relative position of the wire tip and
bypass electrode. The movement of GTAW torch that holds the bypass electrode is tracked by
an IMU (inertial measurement unit) sensor attached to it. A Point Grey camera FL3-FW-03S1C
is attached to the tractor to image/record what the welder observes. Examples of the recorded
images are shown in Figure 3. The GMAW power source used (Power Source 1 or Main Power
Source in Figure 1, not shown in the figure) is Miller Auto-Continuum 350a operating at
constant voltage (CV) mode, and the bypass power source (Power Source 2 or Bypass Power

Source in Figure 1, not shown in the figure) is Miller Maxstar 210 operating at the constant
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current (CC) mode. The current for Power Source 2 (I,) was set at 1004, while voltage for
Power Source 1 (V/;) was set at 33V and wire feed speed was 270/PM (6.9m/min). During the
process, the arc image, voltage, and current are sensed synchronously.

Figure 2 Experimental setup. The power sources are not shown.

Figure 3 Examples of observed arc phenomena.

In particular, we will measure the voltage across the wire and bypass electrode which are
connected to the positive and negative terminal of Power Source 2, denoted as V,,. We will also
use the current supplied by Power Source 2 which has been denoted as I,. The current supplied

by Power Source 1 has been denoted as I;. The voltage across the wire and workpiece is V;.
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The definitions of these voltages and currents can be seen in Figure 1. As will be analyzed, I; =
Ipm and I, = Iy, are true only when the process operates in the desired mode of the DE-GMAW.
Also, V5 = Viypass_arc 18 true only when the process operates in the desired mode.

5. Experimental Results and Analysis toward Automatic Labeling

Observation of recorded videos shows that skilled human welders distinguished among
different modes to decide their subsequent control actions in adjusting the bypass electrode,
without the knowledge of the voltage associated. Consequently, to generalize the expertise from
human welders, raw image representing their observation should be an ideal input information
source and be used as the input of their model. However, while manually labeling the image for
their observed mode as output to train the model is feasible, such labeling will be very time
consuming and is not practically feasible. Therefore, an automatically generated label, which
can also reflect the arc mode, should be discovered. To this end, we analyze the underlying
process.

Examining the images uncovered that there are three distinct modes as shown in Figure 4: open
arc (Figure 4(a)), parallel arc (Figure 4(b)), and serial arc (Figure 4(c)).

a. Open/Single arc mode: In Figure 4(a), there is no bypass arc established between the
wire and the bypass electrode. Therefore, no current passes through to the bypass
electrode. That is, I, = 0. In this case, V; is the open-circuit voltage V,,. which is the
highest voltage provided by the power source used to power the bypass loop. This mode
is featured by [I,,V,] = [0,V,.] as shown in Figure 5(a). This mode can be further
illustrated in Fig. 6(a).

b. Parallel arc mode: In Figure 4(b), in addition to the main arc (MA or Arcl) between the
wire and workpiece, there is also an arc (BA or Arc2) as evidenced by the bright passage
between the wire and bypass electrode. In this case, V;, is the voltage of the bypass arc
established between the wire and bypass electrode, i.e., Vpp,, and I, = I; where I3 is the
current setting for Power Source 2 (100A in this study although it can be freely
adjusted). As such, V,,, will be determined by the bypass arc governed by well-known
arc physics. This mode is featured by [I,,V,] = [Ii*, pr] as shown in Figure 5(b) and
this mode can be further illustrated in Figure 6(b). As can be seen from Figure 5(b),
Vpp has been reduced from V. to the range [20V, 40V].

c. Serial arc mode: In Figure 4(c), there is also another arc (Arc2) in addition to the main
arc. However, this Arc2 is established between the bypass electrode and workpiece,
rather than the wire. This Arc2 is thus not the bypass arc we desire from the process. In
this case, the bypass loop changes from “power source-wire-electrode-power source”
to “power source-wire-workpiece-electrode-power source”. We observed an increase
in V, while I; = Ip,, still holds. We now have [I5,V,] = [I],V; + Vyyp] where V,,,;, is
the voltage between the workpiece and bypass electrode. V/; is thus higher exceeding
the range associated with the parallel arc mode. This mode results in Figure 5(c) and
can be further demonstrated in Figure 6(c).



Figure 4 DE-GMAW modes. (a) Open arc; (b) parallel arc; (c) serial arc. WT: wire tip, BE:
bypass electrode, MA: main arc, WP: workpiece, BWA: arc between bypass-electrode and
workpiece. Bypass voltage Vj,, is measured between the wire and bypass electrode for the
voltage between WT and BE.
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Figure 5 Measured I, and V, in different modes. (a) Open arc mode; (b) Parallel arc mode; (c)
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Figure 6 Electrical principles of different operation modes.

We now analyze these three modes and the observed phenomena. We are particularly interested
in why V, differs and how I, changes in different modes:

a. Open arc mode: As shown in Figure 6(a), there is no passage between V,(+) (wire)
and V,(—) (bypass electrode). As such, it is well understood that [I,,V,] = [0, V,.]. In
this case, the current to melt the wire is completely provided by Power Source 1, i.e.,
I; = I(m) which is considered a fixed amperage for the given m (approximately



proportional to the wire feed speed). In this case, Ip,, = I; = [(1). This is the
benchmark GMAW process.

b. Parallel arc mode: As shown in Figure 6(b), there is a direct passage between V, (+)
(wire) and V,(—) (bypass electrode). As such, it is well understood that [I,,V,] =
[1;, pr] where Vy,, is the voltage of the bypass arc:

pr = Vanode + Vcolumn + Vcatode (4)

where Vodes Veotumns and Vegrode are the voltage fall on the arc anode (wire), voltage
of the arc column (bright passage observed), and the voltage fall on the arc cathode
(bypass electrode). Per the arc physics, V,,04e and Vegrode are approximately constants
determined by the materials of the electrodes (wire and bypass electrode for the bypass
arc), while Vi, ;,,mn increases with the arc length (distance between the wire tip and the
bypass electrode). In summary, V},,, is from one arc!

In this mode, I (1) is provided by I; and I,. As I, directly flows from the wire to the
bypass electrode, Ip,, =1, = 1(th) — I, < I(mh) . The current imposed on the
workpiece is thus reduced from I (711) and the reduction increases as I, increases.

c. Serial arc mode: As shown in Figure 6(c), there is no direct passage from the wire to
the bypass electrode. As such, I, also flows from the wire to the workpiece so that
Iym = I, + I,= (). That is, I (1) is fully imposed on the workpiece. This makes the
arc power on the workpiece to become the same as in the benchmark GMAW. However,
I, returns from the workpiece to the bypass electrode (V,(—)). Additional arc power
I, Vanode 18 thus imposed on the workpiece. The heat input in the workpiece is actually
increased from that in the benchmark GMAW. This is the worst case among the three
modes. Hence, DE-GMAW must be operated in the desired Parallel Arc mode and
supervised or controlled.

This mode is featured by
Vy = (V1(+) - V1(_)) + (V1(_)— Vz(_)) =
(Vanodel + Vcolumnl + Vcathodel) + (Vanodez + Vcolumnz + VcathodeZ) (5)

where the first parenthesis is the voltage from the wire to the workpiece and the second
is that from the workpiece to the bypass electrode. Although V0461 # Vanodez
Veathoder # Veathodez and Veotumn1 # Veotumnz, We can still see V, = Z(Vanode +
Veotumn + Veathode )- As such, V5 in this mode should be higher than V, in the Parallel
Mode. Voltage V, thus has the physics foundation to be used to classify the operation
modes.

As illustrated in Figure 7, the voltage during a DE-GMAW process can be segmented
corresponding to (0) State O for the desired Parallel Arc mode; (1) State 1 for the undesired
Serial Arc mode, and (2) State 2 for the undesired benchmark GMAW mode. This segmentation
helps distinguish the different arc states.
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Figure 7 Voltage based segmentation.

With the assistance of a skilled human welder, 20 weld trials were conducted, and a total of
10,062 data pairs [Ij, Sx] have been collected, where k € [1,10062], where I, is the k™ arc
image and Sy, is the corresponding segmentation (label) from V5.

6. Network and training

The employed convolutional neural network (CNN) architecture, depicted in Figure 8, predicts
a label S from input image I. The input image, sized 256 * 256, is passed through the CNN via
typical convolution layers followed by pooling layers. This process is repeated five times with
the convolution layer parameters as (1, 16, 5, 1, 2), (16, 32, 5, 1, 2), (32, 64, 3, 2, 1), (64, 128,
3,2, 1), (128, 256, 3, 2, 1), and pooling layers of (2, 2). ReLU activation and batch
normalization are applied between each convolution and pooling process. After processing the
input image into a 256 * 1 feature vector, it is passed through two continuous fully connected
layers, reducing its dimension from 256 to 128 and finally to 3. Softmax process is then
performed on the resulting 3 * 1 feature vector to obtain the real class of the input image.

16 32 64 128 256 128 3

Input
Image ’H’D’D’ ‘ | |

T 0 & o % Conv , RelU
0 — < —
Fully connected

2562
1282 ¥

Figure 8 CNN for classification.

The training and validation process has been conducted on an NVIDIA GTX 2080 graphic card.
With the dataset collected containing 10062 data pairs, a total of 9,592 data pairs were used for
the training process, while the remaining 470 data pairs were utilized for the validation process.
The model was trained iteratively 200 times with SGD optimizer and cross-entropy loss under
Python environment with Pytorch library. During the training and validation process, the dataset
has been shuftled to ensure that the data has been drawn randomly.
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The loss results during the training and validation processes are displayed in Figure 9. The
validation loss stabilizes after epoch 33, while the training loss continues to decrease until the
end. The model with the minimum validation loss at epoch 67 is selected, and the test results
are presented in Figure 10.

Training Process
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Figure 9 Training and validation curve
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Figure 10 Validation result

For a more intuitive view of the results, Figure 11 displays the voltage, two reference lines, and
the errors obtained from the Label — Predict result. Figure 12 displays the confusion matrix
of the result. Clearly, in the first segment of the data, where the voltage exceeds 70V (indicating
only GMAW arc with open-loop voltage), the model's accuracy is high with no errors observed.
Similarly, during the second segment, where the voltage fluctuates around 30V, representing a
successful DE-GMAW process, the model also performs accurately. However, in the third
segment, which marks the transition between the successful bypass arc and the undesired serial
arc, the model makes several mistakes. Using voltage to calculate mean square loss for the
wrong predictions gives 0.039.
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Figure 11 Analysis of the prediction error: where errors occur.
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Figure 12 Confusion matrix of the result.
7. K-means Classification

K-means clustering [25] is a method to group data points into clusters. It minimizes the sum of
squared distances between points and their cluster centroids. The process involves iteratively
assigning points to the nearest centroid and updating centroids. The goal is to find centroids
that minimize the total distance within each cluster. For each data point x;, find the nearest
centroid ¢; and assign x; to cluster j:

min; ||x; — cj”2 (6)
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For each cluster j, update its centroid ¢; to the mean of all data points assigned to it:
1
Bl

In this process, s; represents the set of data points assigned to cluster j. By iterating between

Cj = inEiji (7)

these two steps, a state of convergence is achieved as the assignments and centroids reach
stability. The algorithm effectively partitions the data into K clusters for the predetermined
value of K. The value of K is a hyperparameter pre-defined and will significantly influence the
quality of clustering. To determine the appropriate number for K, the gap statistic method [26]
is employed by:

Gap(K) = Avg [log(’null)] - log(]actual) (8)

where J,,,,;; 1s the sum of squared distances for the randomly generated data, J/,¢4; 1S the sum
of squared distances for the actual data clusters. Avg[log(J,.11)] represents the average of the
logarithms of the sum of squared distances for the null data clusters. The Gap Statistic compares
the difference between the average logarithm of the sum of squared distances for the null data
clusters and the logarithm of the sum of squared distances for the actual data clusters.
Determining the optimal number of K that provides a good balance between capturing
meaningful patterns in the data and avoiding overfitting or underfitting. With the voltage data
collected during the experiment. The result was shown in Figure 13. Clearly 3 clusters should
be optimal number in the dataset. This verifies our classification clusters proposed based on
physical analysis of the process. However, K-means algorithm avoids manually assigning the
thresholds.
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Figure 13 Gap statistics result for an optimal K.

We performed the K-means algorithm on the dataset with K = 3. The result is illustrated in
Figure 14.
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Figure 14 K-means clustering result.

Using K-means clustering, the 3 Cluster Centroids were determined as 4.5, 7.5, and 2.9. Notably,
2.9 corresponds to our desired cluster dataset. To further investigate, the identical model
structure was trained using the same dataset, with the labels substituted from the K-means
clustering results. The training curve is illustrated in Figure 15.
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Fig. 15 Training and validation curve.

The validation error plot, following the format of Figure 11, is presented in Figure 16.
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Figure 16 Analysis of the prediction error in classification using K-means clustering based
thresholds: where errors occur.

Similar with the model training with the manually assigned threshold label, K-means based
labeling performs well with the first two segments of the data and the error only occurs when
the voltage was fluctuating significantly. This demonstrates that regardless of equipment
variations, an accurate classification model can be trained without the necessity of prior
knowledge about the welding power source, i.e., obtaining a reasonable label group does not

require knowing the voltage/current of the welding system.
8. Fine Classification of Desired Mode

Figure 17 is the histogram of V,, which has been used to label the mode. As can be seen, while
the Open Arc mode is completely separable, there is not a clear boundary to separate between
the desired Parallel Arc and undesired Serial Arc. Analysis of arc images suggests that there is
a mixed mode where a portion of I, directly flows from the wire to the bypass electrode while
another portion flows to the workpiece and then from the workpiece to the bypass electrode as

shown in Fig. 18.
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Figure 17 Histogram of V, measured across the wire and bypass electrode.

Figure 18 Examples of the mixed mode in DE-GMAW.

As the Serial Arc mode is the worst, it is beneficial to prevent a mixed mode from being
accepted during supervisory monitoring. To this end, for the image that has been classified to
and accepted as the Parallel Arc mode, we propose to pass the image also into a fine
classification network. We note there are cases where we have the perfect Parallel Arc mode
but the bypass electrode appears to be too close to the wire to cause a possible collision. As
such, we propose to further classify the Parallel Arc mode, based V,, into three sub-clusters:

Too Close, Most Desired, and Low Confidence.

Within the V, interval [minV,;, maxV,] for the Parallel Arc, there are no clear boundaries for
further separation. This is understandable as they are indeed in the same mode of operation.
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Our proposed fine classification is to provide an additional safeguard. As such, we propose to
divide this voltage interval into three subintervals of equal length, AV, = (maxV, - minVy)/3.
A new but smaller dataset was formed, for the data with V, € [minV,, maxV;], and is classified
using two thresholds minV; + AV, and minV; + 2AV,. We trained the same model with the
new dataset. The result is shown in Figure 19. The prediction accuracy is approximately 80%.

Although the accuracy is lower than the previous model, it is important to recognize that this
fine classification represents an advanced attempt to distinguish the arc state within a very
narrow segment. The input images were highly similar, and the voltage exhibited only small
differences while the voltage also fluctuated. This fine classification is to determine whether
the state could be considered the most optimal, with the other two states also being acceptable.
This suggests that the deep learning model is capable of identifying arc states even with very
small differences. With an increase in data, the model's performance for the fine classification
should also be expected to improve.
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Figure 19 Analysis of the prediction error in fine classification within desired mode: where
errors occur.

9. Conclusion and future work

The DE-GMAW provides an effective approach to separately control mass and heat input. To
ensure that DE-GMAW delivers the intended benefits, we have developed a deep learning
model capable of processing captured images to classify the operational states/modes of the
process. This forms the foundation for robotizing the DE-GMAW process, even in the face of
potential variations that might deviate it from the desired mode.

The solution presented in this work is the culmination of a series of novel concepts and
innovations. Given the complexity of the process, which has not been previously automated,
we propose learning from human welders. To facilitate this, an experimental system has been
established, allowing for demonstrations by human welders. Overcoming the challenge of
acquiring a substantial number of labels required for deep learning, we analyze the process and
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suggest utilizing the voltage across the wire and bypass electrode. Furthermore, we advocate
for automatic classification using the K-means approach, supplemented by fine classification
within the accepted mode range to ensure optimal operation.

This work marks the pioneering step towards automating DE-GMAW, with a specific focus on
supervisory monitoring. Subsequent efforts will prioritize learning from human welders for
real-time adjustments, leading to a fully adaptive, automated DE-GMAW system capable of
functioning amidst continuous variations in manufacturing conditions.
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