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Abstract: Double-electrode gas metal arc welding (DE-GMAW) modifies GMAW by adding a 

second electrode to bypass a portion of the current flowing from the wire. This reduces the 

current to, and the heat input on, the workpiece. Successful bypassing depends on the relative 

position of the bypass electrode to the continuously varying wire tip. To ensure proper operation, 

we propose robotizing the system using a follower robot to carry and adaptively adjust the 

bypass electrode. The primary information for monitoring this process is the arc image, which 

directly shows desired and undesired modes. However, developing a robust algorithm for 

processing the complex arc image is time-consuming and challenging. Employing a deep 

learning approach requires labeling numerous arc images for the corresponding DE-GMAW 

modes, which is not practically feasible. To introduce alternative labels, we analyze arc 

phenomena in various DE-GMAW modes and correlate them with distinct arc systems having 

varying voltages. These voltages serve as automatically derived labels to train the deep-learning 

network. The results demonstrated reliable process monitoring.  

1. Introduction 

Welding processes can be classified into penetrative processes and filling processes based on 

their primary purposes [1]. Gas tungsten arc welding (GTAW) and gas metal arc welding 

(GMAW) serve as the respective benchmark processes [1]. GMAW is widely used in welding 

applications [1] and has been the initial process employed for wire arc additive manufacturing 

(WAAM) [2, 3], also known as welding-based rapid prototyping [2]. In a filling process, the 

first desirable property is the controllability of the heat proportion applied to both the wire and 

the workpiece [1]. Unfortunately, achieving such desired controllability is not feasible with the 

benchmark GMAW process due to its underlying principle. The principle, which involuntarily 

applies only half of the power at the anode to melt the wire compared to the power at the 

cathode/workpiece [1], is the cause of this limitation.  

The welding community has been continuously striving to improve existing processes and 

pioneer innovative methods to achieve greater desirability. Examples of these efforts include 

laser welding, A-TIG [4, 5], K-TIG [6, 7], double-sided arc welding [8, 9] for penetrative 

processes, as well as controlled short-circuiting GMAW [10] and AC GMAW [11] for filling 

processes. In a typical GMAW application, the wire functions as the anode, facilitating the 

transfer of the molten wire to the workpiece through electromagnetic forces [12]. However, in 

this polarity, the voltage on the workpiece is approximately twice that of the anode voltage [13]. 

By alternating the polarity of the wire, AC GMAW can reduce the heat applied to the workpiece 
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while increasing the heat on the wire, effectively detaching droplets of the molten wire [11]. 

For short-circuiting GMAW, which utilizes resistance heat during the short-circuiting period to 

heat the wire only, precise control of metal transfer without spattering is essential. A specific 

technique that retracts the wire during the short-circuiting period has resulted in a precisely 

managed metal transfer process, leading to the successful commercialization of cold metal 

transfer (CMT) [14]. CMT has found extensive application in WAAM [15, 16]. Furthermore, 

the polarity of CMT has been alternated to combine the benefits of AC GMAW and CMT [17]. 

Fundamentally understanding GMAW as the benchmark filling process is challenging without 

a concept like “effective heat”, i.e., the heat imposed on the wire. Decoupled control of mass 

and heat stands as the ultimate goal of all process innovations aiming for an ideal filling process. 

The extent of this decoupling can be quantified by comparing the effective heat to the heat 

applied to the workpiece. In an open arc situation (without short circuiting), the ratio is 

𝑟 ≈ 𝐼𝑉𝑤𝑖𝑟𝑒/(𝐼𝑉𝑤𝑖𝑟𝑒 + 𝐼𝑉𝑤𝑜𝑟𝑘) = 𝑉𝑤𝑖𝑟𝑒/(𝑉𝑤𝑖𝑟𝑒 + 𝑉𝑤𝑜𝑟𝑘), with the resistance heat and the heat 

in the arc column omitted. When the wire functions as the anode, as is typical in many 

applications, 𝑟 ≈ 1/3, and the ratio remains constant. Conversely, if the wire functions as the 

cathode, 𝑟 ≈ 2/3 , which serves as the stringent upper limit for AC GMAW, although the 

achievable ratio is likely much lower, ensuring a minimally necessary electrode-positive period 

for successful metal transfer. In the context of short-circuiting transfer processes, the ratio 

during the open arc period also equals 1/3, meaning that effective heat is only predominantly 

increased during the short-circuiting phase. In all scenarios, the upper limit of the achievable 

ratio is confined by the fundamental structure of the welding system, where the arc forms 

between the wire and workpiece, resulting in the passage of the same current through both 

elements.  

The DE-GMAW process, invented by the corresponding author at the University of Kentucky, 

involves the addition of a second or bypass electrode to establish a secondary arc between the 

wire and the bypass electrode [18]. Consequently, the current bifurcates into two branches after 

passing through the wire, resulting in 𝐼 = 𝐼𝑤𝑖𝑟𝑒 = 𝐼𝑏𝑦𝑝𝑎𝑠𝑠  𝐼𝑤𝑜𝑟𝑘 , and a ratio of 𝑟 ≈

𝐼𝑤𝑖𝑟𝑒𝑉𝑤𝑖𝑟𝑒/(𝐼𝑤𝑖𝑟𝑒𝑉𝑤𝑖𝑟𝑒 + 𝐼𝑤𝑜𝑟𝑘𝑉𝑤𝑜𝑟𝑘). Given that 𝐼𝑤𝑜𝑟𝑘 can be reduced to zero, DE-GMAW 

can reach an 𝑟  value approximating 1, surpassing the fixed 1/3 ratio. The process has been 

effectively controlled and expanded, transitioning from a non-consumable to a consumable 

bypass electrode [19]. Furthermore, the introduction of the second current branch has enhanced 

metal transfer [20].  

One challenge associated with DE-GMAW is the requirement for placement of the bypass 

electrode in close proximity to the wire tip to maintain the bypass arc. Additionally, the 

electrode must be positioned outside the central region of the arc column to minimize its impact 

on arc behavior. In a controlled laboratory setting, these conditions can be achieved by 

appropriately securing the bypass electrode in advance. However, if the position of the wire tip 

varies, it becomes necessary to either readjust the placement of the bypass electrode or, at the 

very least, monitor the process to ensure that DE-GMAW operates as intended. 

As a result, the operation of the bypass electrode must be automated using a follower robot 

capable of dynamically adjusting the bypass electrode’s position in real-time. To achieve this 
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objective, our initial investigation focuses on the arcing phenomenon, which we categorize into 

three distinct modes: parallel arc, serial arc, and single arc. The preferred mode is the parallel 

arc, characterized by the immediate branching of current into two paths after following from 

the wire. Subsequent analysis has revealed that the transition from the parallel to serial arc mode 

might not be sharply defined, leading to mixed mode. Consequently, we further refine the 

classification to incorporate a mixed arc/transition mode. This comprehensive classification 

framework enables us to closely monitor the DE-GMAW process, ensuring its consistent 

operation within the desired mode, which is targeted by our first step to robotize DE-GMAW.  

2. Process Background    

In a typical GMAW process, an arc is created through the flow of current across the ionized 

gaseous gap from the wire to the workpiece. The heat generated by the arc melts the wire, which 

subsequently deposits into the workpiece. The productivity is determined by the achieved wire 

melting speed.   

As in the reference [21], if the metal transfer is in spray mode (melting current great than 250A 

for steel wire of 1.2 mm diameter), the melting speed 𝑚̇  of the mass, arc current 𝐼 , wire 

extension 𝐿, and cross-section area of the wire 𝑆 can be formulated as: 

𝑚̇ = 5.1 ∗
10−13𝐼2𝐿

𝑆
+ 2.2 ∗ 10−6𝐼 (1) 

where the first term corresponds to the resistance heat and the second is due to the arc. In a first 

order approximation, 𝑚̇ ∝ 𝐼. Both (1) and its approximation mean that increasing the melting 

speed of the mass is realized by increasing the arc current. However, the current going through 

the wire equals to the current going through the workpiece: 

𝐼 = 𝐼𝑤𝑜𝑟𝑘. (2) 

The heat imposed by the arc on the workpiece (𝐼𝑤𝑜𝑟𝑘𝑉𝑤𝑜𝑟𝑘∆𝑡) during the arc application time 

(∆𝑡) thus increases involuntarily and proportionally if the current is increased to increase 𝑚̇. 

Increasing the current to increase 𝑚̇  hence enlarges the weld pool, resulting in workpiece 

distortion and the accumulation of residual stress. 

To address this challenge, the double-electrode GMAW process has been proposed as a solution 

to reduce the heat input towards the workpiece during the welding process [22], as shown in 

Figure 1, by adding a bypass electrode along the side of the GMAW torch. This double-

electrode process breaks the melting current (𝐼 ) going through the wire into the workpiece 

current (𝐼𝑤𝑜𝑟𝑘 or base metal current 𝐼𝑏𝑚) and bypass current (𝐼𝑏𝑦𝑝𝑎𝑠𝑠 or 𝐼𝑏𝑝): 

𝐼 = 𝐼𝑏𝑚 + 𝐼𝑏𝑝 (3) 

As a result, in this bypass current setup, the melting current will not be equal to the base metal 

current. The current passing through the workpiece can be controlled by adjusting the bypass 

current, while the total current flowing through the wire will remain unaffected. This allows for 

the maintenance of the wire melting speed while controlling the heat generated on the 

workpiece to a desired level. 



4 

 

 

 

(a) DE-GMAW system principle [23]. 

 

(b) Arc images obtained using a high-speed camera [20]. 

Figure 1 DE-GMAW system (a) and arc phenomena in DE-GMAW (b).  

It is obvious that the fundamental characteristic of the DE-GMAW process (Figure 1(a)) is the 

presence of the bypass arc (Figure 1(b)). The stability of this bypass arc is crucial for the proper 

functioning of DE-GMAW. In previous studies, this stability was achieved by pre-

determining/fixing the position of the bypass electrode in relation to the GMAW torch. 

However, when the wire extension, wire feed speed, arc voltage, or other welding parameters 

change, the position of the bypass electrode would need to be adjusted to sustain this stability 

optimally. To address this problem, an automatic robot welding system is needed to manipulate 

the bypass electrode. The control algorithm to command the robot can be learned and 

generalized from those demonstrated by skilled human welders. 

 

3. Proposed Approaches 

The arc image, as shown in Figure 1(b), is apparently the most direct raw information to derive 

the arc mode. However, processing the arc image to identify the wire, bypass electrode, and arc 

paths appears to be challenging. Further studies are also needed to derive the mode from the 

identified wire, bypass electrode, and arc paths wire. As the arc image contains sufficient raw 

information, which is crucial for deep learning [24], to determine the mode, an ideal solution is 

to train a deep-learning model with the image as the input and the mode as the output. 

𝑉1(+) 

𝑉1(−) 

𝑉2(+) 

𝑉2(−) 

𝑉1,2(+) 

𝑉1(−) 

𝑉2(−) 
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Unfortunately, although humans can decide the mode through careful observation, labeling the 

needed large number of images is not practical. This is particularly the case when involving the 

mixed arc mode. To find automatically obtained alternative labels, we propose to study the 

physical process which leads us to identify the voltage across the bypass arc gap as such an 

automatically obtainable label. The needed large quality of labels can thus become available.  

One may wonder if the bypass voltage may replace the arc image to monitor the mode of the 

DE-GMAW process. We note that the arc volage is fluctuating and is not as direct as the arc 

image. The arc voltage may also change with other factors/parameters such as the material of 

the wire, the material of the bypass electrode, the shield gas, the used power source etc., while 

the arc image only changes with the arc mode. As such, in this study, all these factors/parameters 

are kept the same but the learned model to process the image is transformative and generalizable 

beyond the experimental conditions used in this study.  

With the automatically obtained bypass voltage, thresholds are still needed to classify into 

different modes. We propose to first study the experimental data to determine thresholds. 

However, after mixed mode is added, the thresholds become fuzzy. As such, we will then 

propose using the k-means method to automatically decide how many modes/classes make the 

best sense and determine the thresholds.  

We note that the DE-GMAW process has not been robotized and this work is the first effort 

toward its robotization. As such, we do not have a freely controllable robotized process and do 

not know how to control it yet. We propose to learn from human welders to address this 

challenge. Hence, we have established an experimental system where a tractor moves the 

GMAW torch, and a human welder observes the arc to adjust the bypass electrode. As the 

human welder has never operated such a process, his/her control of the bypass electrode cannot 

be ideal. This creates various possible scenarios we can learn from for how and why human 

welders succeeded and failed for us to develop the control algorithm, to adaptively adjust the 

bypass electrode by the follower robot, through learning from human welders. Hence, these 

scenarios, that simulate manufacturing scenarios in laboratory conditions, can allow more 

reasonably study how the modes may change during manufacturing.  

4. Experiments 

The experimental system is shown in Figure 2. The electrical system to operate the process is 

still to be same as given by Figure 1. During experiments, a human welder operates a GTAW 

torch that holds the bypass electrode while collaborating with the moving tractor that carries a 

GMAW torch. The tractor moves at a fixed speed, and the human welder adjusts the bypass 

electrode based on the observation, including the arc and relative position of the wire tip and 

bypass electrode.  The movement of GTAW torch that holds the bypass electrode is tracked by 

an IMU (inertial measurement unit) sensor attached to it. A Point Grey camera FL3-FW-03S1C 

is attached to the tractor to image/record what the welder observes. Examples of the recorded 

images are shown in Figure 3. The GMAW power source used (Power Source 1 or Main Power 

Source in Figure 1, not shown in the figure) is Miller Auto-Continuum 350a operating at 

constant voltage (CV) mode, and the bypass power source (Power Source 2 or Bypass Power 

Source in Figure 1, not shown in the figure) is Miller Maxstar 210 operating at the constant 
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current (CC) mode. The current for Power Source 2 (𝐼2) was set at 100𝐴, while voltage for 

Power Source 1 (𝑉1) was set at 33𝑉 and wire feed speed was 270𝐼𝑃𝑀(6.9𝑚/min). During the 

process, the arc image, voltage, and current are sensed synchronously.  

 

Figure 2 Experimental setup. The power sources are not shown.  

 

Figure 3 Examples of observed arc phenomena.  

In particular, we will measure the voltage across the wire and bypass electrode which are 

connected to the positive and negative terminal of Power Source 2, denoted as 𝑉2. We will also 

use the current supplied by Power Source 2 which has been denoted as 𝐼2. The current supplied 

by Power Source 1 has been denoted as 𝐼1. The voltage across the wire and workpiece is 𝑉1. 
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The definitions of these voltages and currents can be seen in Figure 1. As will be analyzed, 𝐼1 =

𝐼𝑏𝑚 and 𝐼2 = 𝐼𝑏𝑝 are true only when the process operates in the desired mode of the DE-GMAW. 

Also, 𝑉2 = 𝑉𝑏𝑦𝑝𝑎𝑠𝑠_𝑎𝑟𝑐  is true only when the process operates in the desired mode.  

5. Experimental Results and Analysis toward Automatic Labeling  

Observation of recorded videos shows that skilled human welders distinguished among 

different modes to decide their subsequent control actions in adjusting the bypass electrode, 

without the knowledge of the voltage associated. Consequently, to generalize the expertise from 

human welders, raw image representing their observation should be an ideal input information 

source and be used as the input of their model. However, while manually labeling the image for 

their observed mode as output to train the model is feasible, such labeling will be very time 

consuming and is not practically feasible. Therefore, an automatically generated label, which 

can also reflect the arc mode, should be discovered. To this end, we analyze the underlying 

process.  

Examining the images uncovered that there are three distinct modes as shown in Figure 4: open 

arc (Figure 4(a)), parallel arc (Figure 4(b)), and serial arc (Figure 4(c)).  

a. Open/Single arc mode: In Figure 4(a), there is no bypass arc established between the 

wire and the bypass electrode. Therefore, no current passes through to the bypass 

electrode. That is, 𝐼𝑏𝑝 = 0. In this case, 𝑉2 is the open-circuit voltage 𝑉𝑜𝑐  which is the 

highest voltage provided by the power source used to power the bypass loop. This mode 

is featured by [𝐼2, 𝑉2] = [0, 𝑉𝑜𝑐]  as shown in Figure 5(a). This mode can be further 

illustrated in Fig. 6(a). 

b. Parallel arc mode: In Figure 4(b), in addition to the main arc (MA or Arc1) between the 

wire and workpiece, there is also an arc (BA or Arc2) as evidenced by the bright passage 

between the wire and bypass electrode. In this case, 𝑉2 is the voltage of the bypass arc 

established between the wire and bypass electrode, i.e., 𝑉𝑏𝑝, and 𝐼2 = 𝐼2
∗ where 𝐼2

∗ is the 

current setting for Power Source 2 (100A in this study although it can be freely 

adjusted). As such, 𝑉𝑏𝑝 will be determined by the bypass arc governed by well-known 

arc physics. This mode is featured by [𝐼2, 𝑉2] = [𝐼1
∗, 𝑉𝑏𝑝] as shown in Figure 5(b) and 

this mode can be further illustrated in Figure 6(b). As can be seen from Figure 5(b), 

𝑉𝑏𝑝 has been reduced from 𝑉𝑜𝑐 to the range [20𝑉, 40𝑉]. 

c. Serial arc mode: In Figure 4(c), there is also another arc (Arc2) in addition to the main 

arc. However, this Arc2 is established between the bypass electrode and workpiece, 

rather than the wire. This Arc2 is thus not the bypass arc we desire from the process. In 

this case, the bypass loop changes from “power source-wire-electrode-power source” 

to “power source-wire-workpiece-electrode-power source”. We observed an increase 

in 𝑉2  while 𝐼1 = 𝐼𝑏𝑝
∗   still holds. We now have [𝐼2, 𝑉2] = [𝐼1

∗, 𝑉1 + 𝑉𝑤𝑏]  where 𝑉𝑤𝑏  is 

the voltage between the workpiece and bypass electrode. 𝑉2 is thus higher exceeding 

the range associated with the parallel arc mode. This mode results in Figure 5(c) and 

can be further demonstrated in Figure 6(c).     
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Figure 4 DE-GMAW modes. (a) Open arc; (b) parallel arc; (c) serial arc.  WT: wire tip, BE: 

bypass electrode, MA: main arc, WP: workpiece, BWA: arc between bypass-electrode and 

workpiece. Bypass voltage 𝑉𝑏𝑝  is measured between the wire and bypass electrode for the 

voltage between WT and BE.  

 

Figure 5 Measured 𝐼2 and 𝑉2 in different modes. (a) Open arc mode; (b) Parallel arc mode; (c) 

Serial arc mode.   

 

Figure 6 Electrical principles of different operation modes. 

We now analyze these three modes and the observed phenomena. We are particularly interested 

in why 𝑉2 differs and how 𝐼𝑏𝑚 changes in different modes: 

a. Open arc mode: As shown in Figure 6(a), there is no passage between 𝑉2(+) (wire) 

and 𝑉2(−) (bypass electrode). As such, it is well understood that [𝐼2, 𝑉2] = [0, 𝑉𝑜𝑐]. In 

this case, the current to melt the wire is completely provided by Power Source 1, i.e., 

𝐼1 = 𝐼(𝑚̇)  which is considered a fixed amperage for the given 𝑚̇  (approximately 
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proportional to the wire feed speed). In this case, 𝐼𝑏𝑚 = 𝐼1 = 𝐼(𝑚̇) . This is the 

benchmark GMAW process.    

b. Parallel arc mode: As shown in Figure 6(b), there is a direct passage between 𝑉2(+) 

(wire) and 𝑉2(−)  (bypass electrode). As such, it is well understood that [𝐼2, 𝑉2] =

[𝐼2
∗, 𝑉𝑏𝑝] where 𝑉𝑏𝑝 is the voltage of the bypass arc: 

𝑉𝑏𝑝 = 𝑉𝑎𝑛𝑜𝑑𝑒 + 𝑉𝑐𝑜𝑙𝑢𝑚𝑛 + 𝑉𝑐𝑎𝑡𝑜𝑑𝑒 (4) 

where 𝑉𝑎𝑛𝑜𝑑𝑒, 𝑉𝑐𝑜𝑙𝑢𝑚𝑛, and 𝑉𝑐𝑎𝑡𝑜𝑑𝑒 are the voltage fall on the arc anode (wire), voltage 

of the arc column (bright passage observed), and the voltage fall on the arc cathode 

(bypass electrode). Per the arc physics, 𝑉𝑎𝑛𝑜𝑑𝑒 and 𝑉𝑐𝑎𝑡𝑜𝑑𝑒 are approximately constants 

determined by the materials of the electrodes (wire and bypass electrode for the bypass 

arc), while 𝑉𝑐𝑜𝑙𝑢𝑚𝑛 increases with the arc length (distance between the wire tip and the 

bypass electrode). In summary, 𝑉𝑏𝑝 is from one arc!  

In this mode, 𝐼(𝑚̇) is provided by 𝐼1 and 𝐼2. As 𝐼2 directly flows from the wire to the 

bypass electrode, 𝐼𝑏𝑚 = 𝐼1 = 𝐼(𝑚̇) − 𝐼2 < 𝐼(𝑚̇) . The current imposed on the 

workpiece is thus reduced from 𝐼(𝑚̇) and the reduction increases as 𝐼2 increases.       

c. Serial arc mode: As shown in Figure 6(c), there is no direct passage from the wire to 

the bypass electrode. As such, 𝐼2  also flows from the wire to the workpiece so that 

𝐼𝑏𝑚 = 𝐼1 + 𝐼2= 𝐼(𝑚̇). That is, 𝐼(𝑚̇) is fully imposed on the workpiece. This makes the 

arc power on the workpiece to become the same as in the benchmark GMAW. However, 

𝐼2 returns from the workpiece to the bypass electrode (𝑉2(−)). Additional arc power 

𝐼2𝑉𝑎𝑛𝑜𝑑𝑒 is thus imposed on the workpiece. The heat input in the workpiece is actually 

increased from that in the benchmark GMAW. This is the worst case among the three 

modes. Hence, DE-GMAW must be operated in the desired Parallel Arc mode and 

supervised or controlled.   

This mode is featured by 

𝑉2 = (𝑉1(+) − 𝑉1(−)) + (𝑉1(−)— 𝑉2(−)) =

(𝑉𝑎𝑛𝑜𝑑𝑒1 + 𝑉𝑐𝑜𝑙𝑢𝑚𝑛1 + 𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒1 ) + (𝑉𝑎𝑛𝑜𝑑𝑒2 + 𝑉𝑐𝑜𝑙𝑢𝑚𝑛2 + 𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒2 ) (5)
 

where the first parenthesis is the voltage from the wire to the workpiece and the second 

is that from the workpiece to the bypass electrode. Although 𝑉𝑎𝑛𝑜𝑑𝑒1 ≠ 𝑉𝑎𝑛𝑜𝑑𝑒2, 

𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒1 ≠ 𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒2   and 𝑉𝑐𝑜𝑙𝑢𝑚𝑛1 ≠ 𝑉𝑐𝑜𝑙𝑢𝑚𝑛2 , we can still see 𝑉2 ≈ 2(𝑉𝑎𝑛𝑜𝑑𝑒 +

𝑉𝑐𝑜𝑙𝑢𝑚𝑛 + 𝑉𝑐𝑎𝑡ℎ𝑜𝑑𝑒 ). As such, 𝑉2 in this mode should be higher than 𝑉2 in the Parallel 

Mode. Voltage 𝑉2 thus has the physics foundation to be used to classify the operation 

modes.   

As illustrated in Figure 7, the voltage during a DE-GMAW process can be segmented 

corresponding to (0) State 0 for the desired Parallel Arc mode; (1) State 1 for the undesired 

Serial Arc mode, and (2) State 2 for the undesired benchmark GMAW mode. This segmentation 

helps distinguish the different arc states. 
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Figure 7 Voltage based segmentation.  

With the assistance of a skilled human welder, 20 weld trials were conducted, and a total of 

10,062 data pairs [𝐼𝑘, 𝑆𝑘]  have been collected, where 𝑘 ∈ [1, 10062] , where 𝐼𝑘  is the k
th arc 

image and 𝑆𝑘 is the corresponding segmentation (label) from 𝑉2. 

6. Network and training 

The employed convolutional neural network (CNN) architecture, depicted in Figure 8, predicts 

a label 𝑆 from input image 𝐼. The input image, sized 256 ∗ 256, is passed through the CNN via 

typical convolution layers followed by pooling layers. This process is repeated five times with 

the convolution layer parameters as (1, 16, 5, 1, 2), (16, 32, 5, 1, 2), (32, 64, 3, 2, 1), (64, 128, 

3, 2, 1), (128, 256, 3, 2, 1), and pooling layers of (2, 2). ReLU activation and batch 

normalization are applied between each convolution and pooling process. After processing the 

input image into a 256 ∗ 1 feature vector, it is passed through two continuous fully connected 

layers, reducing its dimension from 256 to 128 and finally to 3. Softmax process is then 

performed on the resulting 3 ∗ 1 feature vector to obtain the real class of the input image.  

 

Figure 8 CNN for classification.  

The training and validation process has been conducted on an NVIDIA GTX 2080 graphic card. 

With the dataset collected containing 10062 data pairs, a total of 9,592 data pairs were used for 

the training process, while the remaining 470 data pairs were utilized for the validation process. 

The model was trained iteratively 200 times with SGD optimizer and cross-entropy loss under 

Python environment with Pytorch library. During the training and validation process, the dataset 

has been shuffled to ensure that the data has been drawn randomly.  



11 

 

The loss results during the training and validation processes are displayed in Figure 9. The 

validation loss stabilizes after epoch 33, while the training loss continues to decrease until the 

end. The model with the minimum validation loss at epoch 67 is selected, and the test results 

are presented in Figure 10. 

 

Figure 9 Training and validation curve 

 

Figure 10 Validation result 

For a more intuitive view of the results, Figure 11 displays the voltage, two reference lines, and 

the errors obtained from the 𝐿𝑎𝑏𝑒𝑙 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 result. Figure 12 displays the confusion matrix 

of the result. Clearly, in the first segment of the data, where the voltage exceeds 70𝑉 (indicating 

only GMAW arc with open-loop voltage), the model's accuracy is high with no errors observed. 

Similarly, during the second segment, where the voltage fluctuates around 30𝑉, representing a 

successful DE-GMAW process, the model also performs accurately. However, in the third 

segment, which marks the transition between the successful bypass arc and the undesired serial 

arc, the model makes several mistakes. Using voltage to calculate mean square loss for the 

wrong predictions gives 0.039. 
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Figure 11 Analysis of the prediction error: where errors occur. 

 

Figure 12 Confusion matrix of the result. 

7. K-means Classification  

K-means clustering [25] is a method to group data points into clusters. It minimizes the sum of 

squared distances between points and their cluster centroids. The process involves iteratively 

assigning points to the nearest centroid and updating centroids. The goal is to find centroids 

that minimize the total distance within each cluster. For each data point 𝑥𝑖, find the nearest 

centroid 𝑐𝑗 and assign 𝑥𝑖 to cluster 𝑗: 

𝑚𝑖𝑛𝑗‖𝑥𝑖 − 𝑐𝑗‖
2

(6) 
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For each cluster 𝑗, update its centroid 𝑐𝑗 to the mean of all data points assigned to it: 

𝑐𝑗 =
1

|𝑠𝑗|
𝛴𝑥𝑖∈𝑠𝑗

𝑥𝑖 (7) 

In this process, 𝑠𝑗 represents the set of data points assigned to cluster 𝑗. By iterating between 

these two steps, a state of convergence is achieved as the assignments and centroids reach 

stability. The algorithm effectively partitions the data into 𝐾  clusters for the predetermined 

value of 𝐾. The value of 𝐾 is a hyperparameter pre-defined and will significantly influence the 

quality of clustering. To determine the appropriate number for 𝐾, the gap statistic method [26] 

is employed by: 

𝐺𝑎𝑝(𝐾) = 𝐴𝑣𝑔[log(𝐽𝑛𝑢𝑙𝑙)] − log(𝐽𝑎𝑐𝑡𝑢𝑎𝑙) (8) 

where 𝐽𝑛𝑢𝑙𝑙 is the sum of squared distances for the randomly generated data, 𝐽𝑎𝑐𝑡𝑢𝑎𝑙 is the sum 

of squared distances for the actual data clusters. 𝐴𝑣𝑔[log(𝐽𝑛𝑢𝑙𝑙)] represents the average of the 

logarithms of the sum of squared distances for the null data clusters. The Gap Statistic compares 

the difference between the average logarithm of the sum of squared distances for the null data 

clusters and the logarithm of the sum of squared distances for the actual data clusters. 

Determining the optimal number of 𝐾  that provides a good balance between capturing 

meaningful patterns in the data and avoiding overfitting or underfitting. With the voltage data 

collected during the experiment. The result was shown in Figure 13. Clearly 3 clusters should 

be optimal number in the dataset. This verifies our classification clusters proposed based on 

physical analysis of the process. However, K-means algorithm avoids manually assigning the 

thresholds.  

 

Figure 13 Gap statistics result for an optimal 𝐾. 

We performed the K-means algorithm on the dataset with 𝐾 = 3. The result is illustrated in 

Figure 14.  
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Figure 14 K-means clustering result. 

Using K-means clustering, the 3 Cluster Centroids were determined as 4.5, 7.5, and 2.9. Notably, 

2.9 corresponds to our desired cluster dataset. To further investigate, the identical model 

structure was trained using the same dataset, with the labels substituted from the K-means 

clustering results. The training curve is illustrated in Figure 15. 

 

Fig. 15 Training and validation curve. 

The validation error plot, following the format of Figure 11, is presented in Figure 16. 
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Figure 16 Analysis of the prediction error in classification using K-means clustering based 

thresholds: where errors occur. 

Similar with the model training with the manually assigned threshold label, K-means based 

labeling performs well with the first two segments of the data and the error only occurs when 

the voltage was fluctuating significantly. This demonstrates that regardless of equipment 

variations, an accurate classification model can be trained without the necessity of prior 

knowledge about the welding power source, i.e., obtaining a reasonable label group does not 

require knowing the voltage/current of the welding system. 

8. Fine Classification of Desired Mode 

Figure 17 is the histogram of 𝑉2 which has been used to label the mode. As can be seen, while 

the Open Arc mode is completely separable, there is not a clear boundary to separate between 

the desired Parallel Arc and undesired Serial Arc. Analysis of arc images suggests that there is 

a mixed mode where a portion of 𝐼2 directly flows from the wire to the bypass electrode while 

another portion flows to the workpiece and then from the workpiece to the bypass electrode as 

shown in Fig. 18.   
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Figure 17 Histogram of 𝑉2 measured across the wire and bypass electrode. 

 

Figure 18 Examples of the mixed mode in DE-GMAW. 

As the Serial Arc mode is the worst, it is beneficial to prevent a mixed mode from being 

accepted during supervisory monitoring. To this end, for the image that has been classified to 

and accepted as the Parallel Arc mode, we propose to pass the image also into a fine 

classification network. We note there are cases where we have the perfect Parallel Arc mode 

but the bypass electrode appears to be too close to the wire to cause a possible collision. As 

such, we propose to further classify the Parallel Arc mode, based 𝑉2, into three sub-clusters: 

Too Close, Most Desired, and Low Confidence.        

Within the 𝑉2 interval [𝑚𝑖𝑛𝑉2
∗, 𝑚𝑎𝑥𝑉2

∗] for the Parallel Arc, there are no clear boundaries for 

further separation. This is understandable as they are indeed in the same mode of operation. 



17 

 

Our proposed fine classification is to provide an additional safeguard. As such, we propose to 

divide this voltage interval into three subintervals of equal length, ∆𝑉2 = (𝑚𝑎𝑥𝑉2
∗ –  𝑚𝑖𝑛𝑉2

∗)/3. 

A new but smaller dataset was formed, for the data with 𝑉2 ∈ [𝑚𝑖𝑛𝑉2
∗, 𝑚𝑎𝑥𝑉2

∗], and is classified 

using two thresholds 𝑚𝑖𝑛𝑉2
∗ + ∆𝑉2 and 𝑚𝑖𝑛𝑉2

∗ + 2∆𝑉2. We trained the same model with the 

new dataset. The result is shown in Figure 19. The prediction accuracy is approximately 80%.   

Although the accuracy is lower than the previous model, it is important to recognize that this 

fine classification represents an advanced attempt to distinguish the arc state within a very 

narrow segment. The input images were highly similar, and the voltage exhibited only small 

differences while the voltage also fluctuated. This fine classification is to determine whether 

the state could be considered the most optimal, with the other two states also being acceptable. 

This suggests that the deep learning model is capable of identifying arc states even with very 

small differences. With an increase in data, the model's performance for the fine classification 

should also be expected to improve. 

 

Figure 19 Analysis of the prediction error in fine classification within desired mode: where 

errors occur. 

9. Conclusion and future work 

The DE-GMAW provides an effective approach to separately control mass and heat input. To 

ensure that DE-GMAW delivers the intended benefits, we have developed a deep learning 

model capable of processing captured images to classify the operational states/modes of the 

process. This forms the foundation for robotizing the DE-GMAW process, even in the face of 

potential variations that might deviate it from the desired mode. 

The solution presented in this work is the culmination of a series of novel concepts and 

innovations. Given the complexity of the process, which has not been previously automated, 

we propose learning from human welders. To facilitate this, an experimental system has been 

established, allowing for demonstrations by human welders. Overcoming the challenge of 

acquiring a substantial number of labels required for deep learning, we analyze the process and 
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suggest utilizing the voltage across the wire and bypass electrode. Furthermore, we advocate 

for automatic classification using the K-means approach, supplemented by fine classification 

within the accepted mode range to ensure optimal operation.  

This work marks the pioneering step towards automating DE-GMAW, with a specific focus on 

supervisory monitoring. Subsequent efforts will prioritize learning from human welders for 

real-time adjustments, leading to a fully adaptive, automated DE-GMAW system capable of 

functioning amidst continuous variations in manufacturing conditions. 
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