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Abstract: Gas metal arc welding (GMAW) is the most robotized arc welding process and most widely
used process for wire arc additive manufacturing (WAAM). Double-electrode GMAW (DE-GMAW) is
its novel modification achieved by adding a second/bypass electrode. It provides the capability to freely
adjust the base metal current (heat input) without changing the wire current (mass input). However, it
must be robotized in order to be adaptive to manufacturing variations and constraints. Due to the
complexity of the process, we propose learning from human welders through their attempts to adjust
the bypass electrode in collaboration with the robotized GMAW. To generalize human success using a
follower robot/ surrogate, the distance between the wire and bypass electrode is proposed as the process
state to quantify human observation and operation. As such, Inertial Measurement Unit (IMU) sensors
are integrated to track the wire and bypass electrode operated by both the lead robot and the human
welder. To interpret human adjustments per arc observation, a Convolutional Neural Network (CNN) is
employed to process arc images and calculate the distance. The automatically obtained distance labels
from IMU signals are used to train the CNN; however, they are noisy and inaccurate. Thus, the CNN is
finely tuned through transfer learning using manually labeled distances. With accurately automatically
calculated distances from the finely tuned CNN for all the data, the demonstrations from human welders
are analyzed. The generalized knowledge is implemented by a robotic surrogate, substituting for the
human welder to fully automate the DE-GMAW. Experiments demonstrated the superior performance
of the fully robotized, and adaptively controlled, DE-GMAW process.

1. Introduction

Gas metal arc welding (GMAW) is a welding process that uses an electric arc formed between a
consumable electrode wire and the workpiece to create a weld joint. The consumable electrode wire is
typically made of the same material as the workpiece or a compatible material [1]. It serves as both the
electrode and filler material. As the wire is fed into the arc, it melts and becomes part of the weld pool.
GMAW is of high productivity as its electrode/wire is continuously fed and effectively melted by the
arc. It is thus economically favorable and has been more robotized compared with other welding
techniques such as gas tungsten arc welding (GTAW) [2, 3]. Due to its high deposition rate, GMAW is

particularly well-suited for efficiently fabricating extensive, large-scale structural metal components. It



has been employed for wire arc additive manufacturing (WAAM) [4-20], also known as welding-based

rapid prototyping [21, 22].

As the electrical current flows through the fed wire toward the base metal, a high-energy electric arc is
created between the consumable wire and the workpiece. This arc generates intense heat to finish the
melting process. This heat is a crucial component of the welding process, as it causes the consumable
wire and the base metal to melt and fuse together, creating the weld joint. However, a consequence of
this heat generation is that not only does the arc generate heat on the consumable wire, but it also imparts
heat to the base metal (workpiece). This phenomenon introduces the potential for excessive heat
accumulation within the workpiece during the welding process. As the heat accumulates, the
temperature of the workpiece can rise, leading to distortion and warping of the material [23, 24], which

is particularly critical for WAAM.

Innovations have been made to reduce/control the heat on the base metal without compromising the
melting of the wire. Proposed methods include but not limited to AC GMAW [25] which alternates the
arc polarity on the wire and base metal, controlled short-circuiting process [26] including the cold metal
transfer (CMT) which retracts the fed wire to re-ignite the arc, and ice welding [27] where a cold wire
is added to the weld pool. An impactful solution to address this issue was proposed/developed at the
University of Kentucky through the utilization of the double-electrode gas metal arc welding (DE-
GMAW) process [28]. A non-consumable GTAW bypass torch was added on the side of the main
GMAW torch to decouple the current from the wire into base current and bypass current. This allows
increasing the wire-related melting current while maintaining desired level of base metal current.
Follow-up efforts also replaced the non-consumable GTAW torch by a consumable GMAW torch [29].
Yang built thin-walled parts with this DE-GMAW process [30]. By analyzing the mean bead width and
deposition height, experiments proved that under a given deposition rate, as the bypass current increased,
the width of the deposited part reduced, while the height exhibited a proportional increase. Xue extended
this process by introducing another GTAW power to transform the DE-GMAW system into a Dual-
GMAW system [31]. By incorporating two bypass torches, positioned on the left and right sides of the
main torch, three current loops were established: left bypass, right bypass, and main current. Such

system reduces the heat input to a minimum level.

All the existing experiments used a pre-fixed relationship between the main torch and the bypass torch.
The placement of the bypass electrodes in relation to the main electrodes is established before the
welding starts. Implying a lack of flexibility or adaptability to adjust this process, pre-fixed relationship
makes it impossible for complex structures that are common in welding manufacturing and WAAM.
Therefore, it has a need to robotize this DE-GMAW process. To this end, the two torches need to be
handled by two separate operators, called as lead torch/main torch and follower torch/bypass torch. The
follower should have the ability to adaptively position the second electrode at the optimal position to
sustain the bypass arc. Since DE-GMAW has never been robotized before, it’s hard to decide how to
perform the welding process with the robot from scratch. Human welders can quickly learn and improve
their welding skill with several attempts. In [32, 33], their responses to weld pool surface in gas tungsten

arc welding (GTAW) have been successfully learned to adjust the welding speed to control the weld
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penetration. The learned human response model has also been used to robotize GTAW process [34].
Thus, this work proposes to learn the control methodology from skilled human welders and then
generalize their expertise to establish an automatic system which contains a robot and a tractor equipped

with multiple sensors to execute the DE-GMAW process.
2. Proposed Approach and Arc Image Inspection
2.1 Proposed Approach

We purposely conducted the DE-GMAW process under various conditions [35]. This earlier study
revealed three operating modes of the DE-GMAW process, as shown in Figure 1: (a) open arc/simple
arc (SA), which is essentially the conventional GMAW process with the presence of the (non-
functioning) bypass electrode; (b) parallel arc, where a secondary arc is established between the bypass
electrode and the wire, alongside the main gas metal arc; and (c) serial arc, in which the second arc
bridges the bypass electrode and the workpiece. The parallel arc mode is the desired state, as it delivers
the targeted benefits. It is critical to assure that the process operates in the desired parallel arc mode as
the simple arc mode does not reduce the heat input as intended from the conventional GMAW and the

serial arc model evens increases.

To facilitate real-time process monitoring, we developed a deep learning model capable of directly
detecting the operating mode from arc images. However, for effective control of the process in the
desired mode through learning from human welders, it's necessary to quantify the operations of human

welders. Moreover, beyond mere classification, it's important to quantify the distinct arc behaviors.

Given that human welders do not typically control the DE-GMAW process under the single arc mode,
we seek for a method to quantify the arc behaviors specifically during the parallel and serial arc modes.
A close examination of pertinent arc images reveals a strong correlation between arc behaviors/arc
modes and the distance separating the bypass electrode and the wire tip. To validate this hypothesis, it
is possible to compute the statistical measures of this distance across various modes and subsequently
compare these statistics among the different modes. Such an analysis would serve to confirm the utility

of this distance as a quantifiable parameter for mode characterization.

(a) Single arc (b) Parallel arc (c) Serial arc

Figure 1 Three distinct modes during DE-GMAW system operation.
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One challenge that impacts our ability to validate the efficacy of the distance lies in the effective
calculation of this distance itself. While conventional machine vision algorithms can be developed for
this purpose, the endeavor of creating and validating an efficient algorithm is time-consuming. It
necessitates an in-depth comprehension and analysis of complex arc images, along with their features
under various conditions. In this context, deep learning emerges as a more effective approach for
calculating this distance. It avoids the need for time-consuming human-dependent understanding and

analysis.

Training a deep learning model to calculate the distance from arc images requires an exceptional number
of arc images labeled with their respective distances. Manually labeling a large quantity of arc images
is impractical, while achieving precise automatic labeling through image processing presents the same
challenge we are trying to address. Consequently, we propose the installation of miniature IMU (inertial
measurement unit) sensors on the tractor that carries the GMAW torch, holding the wire, as well as on
the human held GTAW torch/bypass electrode. Since the IMU sensor and bypass electrode exhibit a
different geometric correlation each time the welder grips the torch, we will introduce a simple yet
effective method to adaptively calibrate it. In this way, we will be able to automatically obtain the
needed large number of distance labels to train a deep learning model to calculate the distance from the
arc image. However, analysis shows that the precision needed to quantify the state using the distance is
high. To further improve the calculation accuracy for the distance, we will use transfer leaning for fine

training the deep learning model using manually labeled arc images of relatively small quantity.

As such, we propose the following research path: (1) Examining the arc images in different states to see
if the distance varies with the state. However, as we are unable to measure the distance yet, such
examination is just to hypothesize the correlation between the state and distance. We will then propose
a formal definition for the distance. (2) Developing an experimental system that allows us to
automatically obtain the distance although such distance may not be as accurate as desired. (3) Training
a deep learning model using the IMU sensors based automatically obtained labels and then refine the
training using manually labeled arc images. We are now able to accurately calculate the distance. (4)
All the arc images can be classified into three different state modes. The arc images in the same mode
can be used to calculate the distances. We will verify the effectiveness of the distance for its capability
in determining the state modes. (5) We will then study the statistics of the distance on different state

mode and find the desired distance for the robotized system to real-time adjust the bypass electrode.
2.2 Analysis of Arc Images

Figure 2(a) depicts various arc images classified under the parallel arc mode. Despite the differences in
details, they share a common characteristic: a bright region bridging between the electrode and the wire.
This region corresponds to the ionized gas forming the arc column between the electrode and wire — the
bypass arc through which a portion of the current flows from the wire to the bypass electrode, which
would otherwise go to the workpiece. Moving to Figure 2(b), we observe images classified under the
serial arc mode. Again, despite differences, they share a common attribute: the absence of a bright region

bridging the bypass electrode and the wire, but instead with the workpiece. Here, all the current flows
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from the wire to the workpiece (as in conventional GMAW) and additionally the portion provided by
the GTAW power source further flows from the workpiece to the bypass electrode, accompanied by a
respective bright region between the workpiece and the bypass electrode. In Figure 2(c), bright regions
exist between the wire and bypass electrode, as well as between the workpiece and bypass electrode in
each arc image. This blend of parallel and serial modes suggests that the classification into three modes
is mostly for convenience and may be considered somewhat artificial. Introducing a more accurate

description for the process state could provide a more nuanced feedback of the process.

(b)

Figure 2 Classified arc images. (a) Classified to parallel arc; (b) Classified to serial arc; (c) Incorrectly

classified arc images.

Observing the arc images in Figure 2 clearly suggests that the distance between the wire and bypass

electrode in (a) is shorter than that in (b). Additionally, the average distance in (c) is shorter than that in

(b), but longer than in (a). Consequently, if distances are utilized, the arc images could be quantitatively

described, capturing both the subtle quantitative differences within a mode and the significant

qualitative differences among different modes. The operation of the human welder can also be
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quantified by using the distance as a single state. As such, we tentatively propose using the distance to

study human welder operation.
3 Human Movement Sensing

Figure 3 shows the experimental system developed to learn from human welder. In this system, the
tractor carries the GMAW torch/wire to move while the human welder carries the GTAW torch/bypass
electrode to follow the wire. The arc images shown in Figure 1 are captured by a camera, Point Grey
camera FL3-FW-03S1C, at 60 frames per second. Both the tractor and the welding torch are installed

with an IMU sensor, Intel RealSense T265, so that their movement can be monitored.

Figure 3 Experimental system designed to learn from human welder.
In typical welding operations, welders closely observe the weld pool to effectively respond to the
welding process. In the case of DE-GMAW, welders focus on monitoring the behavior of the arc in
order to make precise adjustments to the position of the bypass electrode. The arc images depicted in
Figure 1 and Figure 2 serve as the input, while the corresponding operation of the bypass electrode via
the GTAW torch represents the welder's output. While the welder's input is captured and recorded by
the camera, the output is documented by the IMU sensor integrated into the welding torch. The IMU
sensor detects movements within its coordinate system with respect to the world coordinate system. In
our specific application, we require the movement data of two specific endpoints: the wire tip from the
IMU sensor installed on the tractor and the bypass electrode tip from the IMU sensor installed on the

torch.

The challenge in translating the IMU sensor data to the endpoint data position primarily arises from the
bypass electrode. This is due to the fact that the correlation between the IMU sensor's coordinate system
and the endpoint shifts every time the welder replaces the tungsten electrode in the GTAW torch. In

contrast, this issue does not occur with the IMU and wire tip data correlation, as it remains constant.

The correlation between the endpoint's position of the bypass electrode, denoted as P, 4, and the IMU

sensor is given through the equation:

Pong =R*V+T (1)
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where V is the vector responsible for translating from the sensor's coordinate system to the bypass
electrode's endpoint, and (T, R) are obtained from the real-time data output of the sensor. Specifically,
T represents the 3D coordinates, and R symbolizes the rotation matrix derived from quaternions
(Gw> G Gy, 42):

1_2*qy2_2*QZ2 Z*qx*qy_Z*QZ*qw 2*Qx*Qz+2*qy*qw
R=|2%qy*qy+2%q,%q, 1—2%q°—2%q,% 2%q,*q,—2%qx*qy ()
2%y ¥, —2%qy*qy 2% Qy*q+2%qy*q, 1—2%q%—2%q)?

Figure 4 Correlation between sensor coordinate system and endpoint of the bypass electrode.

As V changes each time when the tungsten electrode is changed, an easy, accurate and robust approach
is needed to calibrate V. To this end, we propose to touch the bypass electrode endpoint at a fixed
position P,,, after grasping the torch (after the V is fixed) and then rotate the torch. This results in,
as Pengq is fixed, with (Tj, Rj) being the jth reading from the sensor during the rotation:

Rl*V+T1:R2*V+T2
R3*V+T3=R4*V+T4_

e (3)
Rn—l*V+Tn—1 =Rn*V+Tn
or
(Ri—R)*V=T,—-T
(R3—Ry)*xV=T,—T; (4)
(Rp—1 =R *V =T, — T4
Denote
R; =R, I,-T
X= R3_R4- ,Y— T4_T3 (5)
Rn—1— Ry T —Tha



Then the least square estimate of V is:
V=X *X)"1xX"xY (6)

The least square estimation allows V be accurately calibrated from relatively large number of
automatically obtained sensor readings. As such, P,,;(k) can be subsequently determined from

(Ty, Ry) inreal-time during the operation of the human welder.

Figure 5 illustrates the trajectory of the bypass electrode's endpoint during the operation by a human
welder, who positions the GTAW torch in front of the moving tractor along the X-direction. Since the
tractor moves at a nearly constant speed, the human welder sustains a relatively consistent motion along
the X-axis. However, we can observe gradual shifts along the Y- and Z-axes from Figure 5. These shifts
are understandable, considering that the Y-axis of the IMU sensor may not be perfectly perpendicular
to the tractor's moving direction and that the tractor rack may not be perfectly horizontal. Additionally,
human operation introduces some fluctuations. As the trajectory of the wire endpoint P,;.. can also
be obtained from the IMU sensor installed on the tractor, their respective distance d(k) =
|Pyire (k) — Pona (k)| can be obtained as shown in Figure 6 by assuming that the wire tip maintains a
constant relationship with the IMU sensor installed on the tractor. As we will only use this d(k) as the

first approximation, assuming a constant position of the wire tip in relation to the tractor is reasonable.

Human welder movement
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Figure 5 Trajectory of bypass electrode operated by a human welder.

The obtained distance has a fluctuation around [—0.5mm, 0.5mm]. Given this level of inaccuracy,
relying on this distance measurement alone is insufficient to ensure precise robotic control to replace
human tasks. Therefore, a more effective approach involves direct distance calculation from the
captured images. Conventional methods relying on manually crafted features prove unstable during
welding operations. Thus, this study proposes the utilization of a deep learning model for image
processing to accurately sense the distance between the two electrodes as a human welder. Utilizing the

extensive yet imprecise distance data generated by the IMU sensors, a pre-trained convolutional neural
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network (CNN) will be trained, followed by fine-tuning process with a small set of manually labeled
data to enhance accuracy. Figure 7(a) shows an image captured during the welding process and the
definition of the distance between the electrodes. We note that we have reduced the distance from that
between the two endpoints to the distance in the proceeding direction for simplification. As such, the
distance hereafter is the simplified one as defined in Figure 7(a) which is actually a more reasonable
one by more accurately defining/measuring the length of the bypass arc or the gap between the wire
and the bypass electrode. With a precise manual labeling process, an accurate distance data pair [dy, I ]
can be obtained where d represents the distance between two electrodes and [ represents the
corresponding image. Figure 7(b) plots a part of manual labeled distance data. As such, we now have
the datasets to pre-train and finely-train a deep learning model to calculate the distance from the arc

image.
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Figure 6 Distance between endpoints of the wire and bypass electrode during operation of human

welder.
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Figure 7 Manually labeled data. (a) Definition of the distance. (b) Manually labeled distance.



4 Network and Training
4.1 Pre-training and fine-tuning

In this study, utilizing a 256*256 input image size, the developed model consists of 5 convolutional
layers, 5 max-pooling layers, and 2 fully connected layers. Following each max-pooling layer, batch
normalization and ReLU activation functions were applied. The convolutional layer parameters are (1,
16, 5, 1, 2), (16, 32, 5, 1, 2), (32, 64, 3, 2, 1), (64, 128, 3, 2, 1), and (128, 256, 3, 2, 1). The features
extracted from the final max-pooling layer are flattened and fed into the initial fully connected layer
comprising 256 neurons, with ReLU activation functions employed between the two fully connected
layers. The second fully connected layer, consisting of 128 neurons, directly linked to the output layer

without ReLU activation.

The pre-training process was conducted with an NVIDIA GTX 2080 graphics card. The model
underwent 200 iterations of training with the SGD optimizer and mean square loss (MSE), utilizing the
Python environment along with the PyTorch library. To ensure randomness, the dataset was shuffled
during both training and validation. The training set consisted of 10,504 data pairs, while 480 data pairs
were allocated for validation. The initial learning rate was set at 0.001 and decreased by 20% every 20
iterations. The training curve, depicting the loss across 200 epochs, is displayed in Figure 8(a), while

the validation results are presented in Figure 8(b).
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(a) (b)
Figure 8 Training curve and validation result for pre-training.

Following the pre-training phase, the model with the lowest validation loss at epoch 26 was chosen for
fine-tuning. The training parameters remained consistent with the pre-training process, except for the
reduction of the learning rate to 0.0001. During fine-tuning, only the last two fully connected layers
were trained, while the parameters in the five convolutional layers were frozen. The training dataset
comprised 1,600 data pairs, with 93 data pairs allocated for validation. The results are illustrated in
Figure 9, where (a) displays the training curve and (b) presents the validation results. It is apparent that

the validation results prove that the distance could be accurately sensed with the model.
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(a) (b)
Figure 9 Training curve and validation result for fine-tuning. (a) Training; (b) Validation result.
4.2 Dynamic Analysis

The images constitute the primary input for human welders and their control actions are results in
response to their observed images. The mechanism through which human welders adjust their position
raises the question of whether this adjustment is primarily based on the current image or a sequence of
past images. In order to explore this, we train an additional CNN model that takes the current image [,
as input to predict the distance dj,; in the next image. The validation outcomes are shown in Figure
10.

Validation result
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Figure 10 Validation result for the subsequent distance.

The validation illustrates that the model's outputs function as a filter on the human adjustment of
position. It's apparent that human welders maintain a relatively stable distance rather than drastically
altering the torch's position. However, due to the inherent constraints of human control, achieving
precision and accuracy at this level remains challenging. Their behavior shows variations around the
intended distance. Considering velocity information as a reference, as shown in Figure 11, reveals that
velocity information contains significant fluctuations. Such fluctuations may not be intentionally made
adjustments by human welders. Instead, these variations could occur from overreaction and subsequent

corrective actions were taken by the welder.
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Figure 11 Human welder velocity information.

To deeply investigate the time dependency of human operation, we propose to use a CNN-LSTM (CNN
long-short term memory) model illustrated in Figure 12. The CNN structure is same as the previous
model while the LSTM structure has 3 layers with 256 as input size and 128 as hidden size.
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Figure 12 CNN-LSTM structure.

Utilizing the LSTM structure, the model acquires the capability to forecast the subsequent movement
action based on the historical trends, i.e., deciding the next operation based on the arc state and its
history. We train two models with the window set as 3 and 6, i.e., take the past 3 I;_;'s (j = 1,2,3)
and 6 images I_;'s (j =1,2,...,6) as the input respectively to generate the current output Ly. The
validation result is shown in Figure 13. Compared with the result in Figure 10, the inclusion of
additional input information contributes to the smoothing of input dynamics and, subsequently, the
prediction results. However, the accuracy was reduced. This outcome substantiates the notion that
instant changes in the arc prompt immediate adjustments by human welders. Their decision-making

process is predominantly influenced by the current state of the arc, with limited regard for its historical
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states. In essence, the human welders' memory of past arc states is minimal. When a human welder
takes an operation to move the torch, they already possess an estimation of the torch's final position
before the control action concludes. Based on their experience, subsequent action will promptly perform
to achieve their desired control operation.
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Figure 13 Validation result for using 3 past images (a) and 6 past images (b) as the input, overlapped

plot for better comparison (c).

Considering the pattern in the human control information, a conclusion can be drawn that, under fixed
welding parameters, experienced human welder tends to maintain a stable distance between two tips of
the electrodes to sustain the bypass arc. Consequently, an optimal distance should be deduced through
analyzing the distances from human experiments. Utilizing the advantage of the robot's precision, this
optimal distance can be consistently maintained in the robotized DE-GMAW process, in contrast to

human control.
5 Analysis of Welder Operation Behavior and Learning from Human Welder

All the arc images can be classified into three different modes. The arc images in the same mode can
be used to calculate respective distances. The first mode, known as the open arc, represents the initial
phase of the DE-GMAW process, where the bypass arc has yet to ignite. Under this condition, the
distance between the GTAW and GMAW torches can vary. However, our primary focus lies on the

subsequent two modes: parallel arc and serial arc. In these two modes, the DE-GMAW process is
13



underway, and the distance between the electrodes significantly affects the arc behaviors and the ability
of the process to deliver the intended benefits. As shown in Figure 14, over 4140 distance data points
were used to plot the histogram. When the distance is less than 2 mm, the process maintains a desired
parallel arc. As the distance increases, the arc quality deteriorates rapidly, transitioning to a serial arc

state only when the gap exceeds 3 mm.
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Figure 14 The percentage distribution among the DE-GMAW influenced by the endpoint distance.
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Figure 15 Probability density with the data only from desired arc mode.

Upon analyzing the data collected from the human welder operations, a distinctive pattern of
adjustments emerges, marked by instances of overreactions followed by corrective actions. This pattern
indicates that the quality of human welder operation is affected by human limitation. Their action cannot
be as precise as a robot. The ability to accurately estimate movement is compromised; the best moving
action is reached by several adjustments attempts. Therefore, the optimal welding process is achieved
when the human welder minimizes torch distance adjustment, ensuring a consistently maintained
gap/distance between the torches. To delve deeper into this analysis, a comprehensive exploration of

distance probability is undertaken. By investigating the probability distribution of torch distances within
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the dataset classified under the desired arc state as shown in the Figure 15, welding operations can be

guided by maintaining the torch distance at this determined optimal value of 1.7mm.
6 Real Time Testing of Robotized DE-GMAW Process

Subsequently, the fine-tuned model was employed to process the arc image, enabling the acquisition of
real-time distance feedback. Illustrated in Figure 16, a UR-10e robot was adopted to replace the human
welder, collaborating with the tractor to regulate the bypass electrode. This collaboration aimed to

sustain the distance at the ideal value of 1.7 mm, following the control protocol shown in Figure 17.

Figure 16 Robot welding experimental platform.
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Figure 17 Control protocol.

At the start of the experiment, the distance between two electrodes was set at 1.1mm. After the process
ran stably for 4 seconds, the robot intentionally moved the bypass electrode away from the wire to create
a larger distance. In the meantime, the deep learning model processes the arc images to provide feedback
on the changing distance. The distance from the model was filtered by moving average with window
size of 20. To reduce unnecessary adjustments while still sustaining the desired mode, a 0.1 mm
tolerance threshold has been set. (The resolution of the UR 10e robot is 0.05 mm.) The designed CNN
model processes each image under 0.014 second, ensuring that a 60Hz sampling rate meets the
requirements for fast and accurate control. During the welding process, the system was designed to

sustain a constant distance (1.7 mm) between two electrodes, based on the calculated distance from the
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CNN model’s output. To provide visual assessment on the robotized process, the robot started to
control/adjust the position of the bypass electrode 2 seconds after it was moved away. As the control
algorithm identified that the gap had exceeded the desired threshold, it issued a prompt command to the
robot, instructing it to execute precise movements that would restore the distance to the optimal range.
This process repeats one time again after 2 seconds, with the robot intentionally shifted 0.1 cm farther

than the previous shift.

Figure 18 shows the distance, where (a) is the distance calculated by d(P e — Peng) after the
welding and (b) is the distance sensed by the network during the welding process. It proves that the

model can successfully track the distance with smaller fluctuations than sensor.
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Figure 18 Distance between two electrodes during robotized DE-GMAW.
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7 Conclusion and future work

The DE-GMAW process presents a method to reduce heat impact on workpieces by decoupling mass
and heat input, making it particularly suitable for WAAM. However, existing efforts have utilized fixed
torch relationships which limit the process adaptability. To overcome this constraint, this research
suggests the robotization of this complex welding process, enhancing flexibility. This increased
flexibility holds promise for advancing arc-based Additive Manufacturing techniques, thereby

augmenting their automation and precision potential.

Since DE-GMAW process has not yet been robotized, this work proposes to learn from human welders.
For this purpose, IMU sensors are attached to the torch and tractor, providing position data based on
their respective coordinate systems. This provides data to study how human welders collaborate with
the tractor. However, due to the limitation of sensor accuracies, deep learning is suggested for more

accurate calculation of the distance from arc images. A CNN is pre-trained and fine-tuned for this

purpose.

Examination of welder behavior uncovers overreaction patterns, indicating human limitations. Distance
emerges as a pivotal factor for optimal welding outcomes. Analysis of probability distributions of
electrode distances in desired arc states provides what we need to learn from human welders to robotize
the DE-GMAW process. DE-GMAW has been robotized with instant torch distance feedback to

consistently maintain the two electrodes at the optimum distance to deliver the desirable arc mode.

As such, this study not only sheds light on the DE-GMAW process but also pioneers its robotization.
Future endeavors will contribute to refining control strategies under varying conditions, including
adjustments for different voltage/current levels and adaptive manipulation of torch relationships across

diverse welding scenarios.
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