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Abstract
We obtain sharp inequalities between the large scale asymptotic of the J functional
with respect to the d1 metric on the space of Kähler metrics. Applications regarding
the initial value problem for geodesic rays are presented.
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1 Introduction andmain results

Let (X , ω) be a Kähler manifold of dimension n. We consider the space of Kähler
metrics ω̃ that are cohomologous to ω:

H := {ω̃ Kähler on X and [ω̃]d R = [ω]d R}
By the ∂∂̄-lemma of Hodge theory, for all ω̃ ∈ H there exists u ∈ C∞(X), unique

up to a constant, such that ω̃ = ωu := ω + i∂∂̄u. Consequently, instead of looking at
H directly, it makes sense to work with the space of Kähler potentials instead:

Hω := {u ∈ C∞(X) s.t. ω + i∂∂̄u > 0}.
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Clearly Hω ⊂ PSH(X , ω), hence all Kähler potentials are ω-plurisubharmonic (ω-
psh). For a comprehensive treatment of ω-psh functions we refer to the recent book
[25].

For a quick introduction to the basics of pluripotential theory in the context of
Kähler geometry we refer to [13, Appendix A.1], [6, Section 2] or [25, Chapter 8].

A main direction of research is to find Kähler structures such thatHω admits con-
stant scalar curvatureKähler (csck)metrics. Suchmetrics areminimizers ofMabuchi’s
K-energy functionalK : Hω → R [27], that can be defined by the Chen–Tian formula
[8,34]:

K(u) := 1

V

∫
X

⎡
⎣log

(ωn
u

ωn

)
ωn

u − u
n−1∑
j=0

Ric ω ∧ ω
j
u ∧ ωn− j−1

⎤
⎦ + S̄ I (u),

where V = ∫
X ωn is the total volume, Ric ω is the Ricci curvature of the background

metric ω, and S̄ = 1
V

∫
X Sωωn is the average scalar curvature of ω, which is also an

invariant of the class Hω (see [13, eq. (4.40)]). Lastly, I : Hω → R is the Monge–
Ampère energy (also called Aubin–Mabuchi or Aubin–Yau energy), one of the most
basic functionals of Kähler geometry:

I (u) := 1

(n + 1)V

n∑
j=0

∫
X

uω j ∧ ω
n− j
u .

For a more detailed analysis of I we refer to [6, page 111] and [13, Section 3.7].
Closely related to I , the J functional J : Hω → R is defined as follows:

J (u) = 1

V

∫
X

uωn − I (u).

Using Stokes’ theorem, it can be showed that J (u) ≥ 0, and in many ways J acts as
a norm-like expression onHω. This aspect will be featured prominently in this work.

By definition, the space of Kähler potentialsHω is a convex open subset ofC∞(X),
hence one can think of it as a trivial “Fréchet manifold". As such, one can introduce on
Hω an L1 type Finsler metric with relevant underlying geometry [11]. If u ∈ Hω and
ξ ∈ TuHω � C∞(X), then the L1-length of ξ is given by the following expression:

‖ξ‖u = 1

V

∫
X

|ξ |ωn
u . (1)

The corresponding L2 type metric recovers the Riemannian geometry of Mabuchi
[27] (independently discovered by Semmes [32] and Donaldson [22], studied later by
Chen [7]). For more details we refer to [13, Chapter 3].

To the Finsler metric in (1) one associates a path length pseudo-metric d1(·, ·). As
proved in [11], d1 is actually a metric and (Hω, d1) is a geodesic metric space, whose
abstract completion can be identified with (E1, d1), where E1 ⊂ PSH(X , ω) is a space
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of potentials introduced by Guedj–Zeriahi [24], with connections to earlier work of
Cegrell.

Let us assume that momentarily that (X , J ) does not admit global holomorphic
vectorfieds. Tian conjectured that existence of csck metrics in Hω is equivalent to
J -properness of the K-energy functional [35,36]:

K(u) ≥ CJ J (u) + DJ , u ∈ Hω ∩ I −1(0), (2)

where CJ , DJ are some positive contants dependent only on (X , ω). Necessity of (2)
was pointed out in [5], building on techniques of [18]. Chen and Cheng proved that
existence of csck metrics inHω is equivalent to

K(u) ≥ Cdd1(0, u) + Dd , u ∈ Hω ∩ I −1(0), (3)

where Cd , Dd are some positive contants dependent on (X , ω) [9]. As pointed out in
[11,18], this last estimate is equivalent to (2), since there exist constants m, M, D > 0
such that

m J (u) − D ≤ d1(0, u) ≤ M J (u) + D, u ∈ Hω ∩ I −1(0). (4)

By the analysis of [11] one can choose M = 2 andm = 2−2n−6 in the above inequality
(see Proposition 2.2 below). Since the CJ and Cd are linked to the uniform version
of K-stability [3], it interesting to know what the optimal conversion rate is between
these two constants. For this the optimal values of m and M need to be found in (4),
and this is what we investigate in this paper, first on toric Kähler manifolds (X , ω):

Theorem 1.1 Let (X , ω) be a toric Kähler manifold. Then there exists a constant
D > 0 such that

2

n + 1
·
(

n

n + 1

)n

J (u) − D ≤ d1(0, u) ≤ 2J (u) + D, u ∈ HT
ω ∩ I −1(0), (5)

and the constants multiplying J (u) are sharp.

By the above result, at least in the toric case, the optimal constant m in (4) has linear
decay with respect to dim X , and not exponential, as previously thought. Surprisingly,
neither of the optimal constants depend on the choice of Kähler metric ω.

Similar flavour results were recently obtained by Sjöström Dyrefelt, who proved
optimal inequalities between the asymptotics of other “J -type" functionals, when the
so called J -equation has no solution [33, Theorem 1.2]. As pointed out in this latter
work, inequalities like the ones in (5) often give new existence criteria for canonical
metrics, allowing to sharpen the results of [9], something we hope to investigate in the
future.

Using Legendre transforms the inequality in the above result can be transformed
into a pair of sharp integral inequalities involving convex functions defined on a convex
domain, that we now present:
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Theorem 1.2 Let P ⊂ R
n be a bounded open convex set. Then for any convex φ ∈

L1(P), satisfying
∫

P φ = 0, the following sharp inequality holds:

− 2

n + 1
·
(

n

n + 1

)n

inf
P

φ ≤ 1

μ(P)

∫
P

|φ|dμ ≤ −2 inf
P

φ, (6)

where all integrations are in terms of the Lebesque measure.

We prove sharpness of (6) by providing concrete extremizing potentials, and it
would be interesting to characterize all such extremizers. Another interesting question
would be to find the optimal constants in (6) for any fixed P . As these questions have
potential applications in Kähler geometry, we hope to return to them in the future.

Despite its basic nature, we could not find the above inequality in the written convex
geometry literature, even after consulting with experts [28]. To be clear, the emphasis
here is not on novelty, but rather on the significance of (6) in the context of Kähler
geometry.

We conjecture that Theorem 1.1 holds in case of general Kähler manifolds as well.
To provide strong evidence for this, we prove the radial version of this expected result.
For this we recall some terminology from [17] first.

Let {ut } ∈ R1 be a geodesic ray [0,∞) � t → ut ∈ E1 of (E1, d1), emanating
from u0 = 0 ∈ Hω, and normalized by I (ut ) = 0, t ≥ 0. Since the J functional
is convex along geodesics, one can define its slope along geodesic rays (informally
called the radial J functional):

J {ut } := lim
t→∞

J (ut )

t
.

The L1 speed of a ray {ut }t is simply the quantity d1(0, u1). We prove the following
sharp inequality between the L1 speed and the radial J functional:

Theorem 1.3 Suppose that (X , ω) is a compact Kähler manifold and {ut }t ∈ R1.
Then the following sharp inequality holds:

2

n + 1
·
(

n

n + 1

)n

J {ut } ≤ d1(0, u1) ≤ 2J {ut }. (7)

Since rays are constant speed, notice that the middle term in the above inequality
could have been replaced by the limit limt→∞ d1(0,ut )

t . In particular, (7)would instantly
follow from the conjectured inequality (5) for general Kähler manifolds.

Remarkably, the proof of (7) rests on the ideas yielding (6), despite the fact that it
works for general (non-toric) Kähler manifolds. We refer to Sect. 5 for more details.

Finally, we give an application for Theorem 1.3 regarding the initial value problem
for geodesic rays in Hω. In case ω is real analytic, and one is given a real analytic
function v : X → R, by an application of the Cauchy-Kovalevskaya theorem, there
exists a smooth geodesic [0, εv) � t → ut ∈ Hω such that u0 = 0 and u̇0 = v

[30,31]. Of course, t → ut is real analytic too, and it is still not known if such t → ut

can be extended to a geodesic ray (in the metric sense). In some instances, this can be
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done, as pointed out in [1]. However, as we confirm below, there is plenty of analytic
initial data, for which this fails to happen. What is more, we give a general condition
that initial data of L∞ rays {ut }t ∈ R∞ (rays from R1 with bounded potenials) need
to satisfy:

Corollary 1.4 Suppose that {ut }t ∈ R∞ is a geodesic ray, with bounded potentials.
Then the initial tangent vector v := limt→0

ut
t ∈ L∞(X) satisfies the following sharp

inequalities:

2

n + 1
·
(

n

n + 1

)n

sup
X

v ≤
∫

X
|v|ωn ≤ 2 sup

X
v. (8)

Since real analytic functions are dense among smooth ones [26, Proposition 2.1],
one can find plenty of real analytic v forwhich either inequality in (8) fails, in particular
such v can not be the initial tangent vector for a geodesic ray.

Interestingly, in the above result we can not pinpoint the time where the geodesic
segment with (real analytic) initial tangent v can not be continued anymore. Related
to this, in [15] the author has provided non-smooth geodesic segments that can not be
continued at a specific point, however the information there could not be linked to the
initial tangent.

2 The L1 geometry of the space of Kähler potentials

In this short section we recall basic facts about the path length metric d1 associated
to the Finsler metric (1), with focus on the relationship with the J functional. For a
survey on this topic, we refer to [13, Section 3.7]

Let us recall the following comparison theorem for the d1 metric [13, Theorem
3.32]:

Theorem 2.1 For any u0, u1 ∈ Hω we have

d1(u0, u1) ≤ 1

V

∫
X

|u0 − u1|ωn
u0 + 1

V

∫
X

|u0 − u1|ωn
u1 ≤ 22n+6d1(u0, u1). (9)

We also recall the following concrete formula for the path length metric d1 ([13,
Proposition 3.43]):

d1(u, v) = I (u) + I (v) − 2I (P(u, v)), u, v ∈ Hω, (10)

where P(u, v) is the following “rooftop” envelope:

P(u, v) = sup{w ∈ PSH(X , ω) s.t. w ≤ u and w ≤ v}.

More concretely, P(u, v) is the greatest ω-psh function that lies below u and v. For
properties of P(u, v), we refer to [13, Section 2.4].
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As already suggested by (10), there is an intimate relationship between the metric
d1 and the I functional. By inspection, I (u + c) = I (u) + c for any u ∈ Hω and
c ∈ R. This allows for the following bijection between metrics and potentials:

Hω ∩ I −1(0) � H.

What is more, the hypersurface Hω ∩ I −1(0) is totally geodesic within Hω (see the
discussion near [13, (3.67)]). Finally, let us recall [13, Proposition 3.44], giving the
best available asymptotic comparison between the J functional and the d1 metric from
the literature:

Proposition 2.2 There exists C = C(X , ω) > 1 such that

2−2n−6 J (u) − C ≤ d1(0, u) ≤ 2J (u) + C, u ∈ Hω ∩ I −1(0). (11)

Proof Let u ∈ Hω ∩ I −1(0). By Theorem 2.1 we have

J (u) = 1

V

∫
X

uωn ≤ 1

V

∫
X

|u|ωn ≤ 22n+6d1(0, u),

implying the first estimate in (11). For the second estimate, since I (u) = 0, we have
that supX u ≥ 0 and

d1(0, u) = −2I (P(0, u)). (12)

Clearly, u − supX u ≤ min(0, u), so u − supX u ≤ P(0, u). Thus, − supX u =
I (u − supX u) ≤ I (P(0, u)). Combined with (12), we obtain that d1(0, u) =
−2I (P(0, u)) ≤ 2 supX u. Finally, it is well known that supX u ≤ 1

V

∫
X uωn + C ′ for

some C ′(X , ω) > 1 [13, Lemma 3.45], finishing the proof. ��

3 Analysis on toric Kähler manifolds

In this short section we point out how the inequalities (5) and (6) are related. Much
of the material here is based on [20, Section 6] and [38], and we invite the reader to
consult these works for a more thorough treatment.

We say that (X , ω) is a toric Kähler manifold of complex dimension n if one can
embed (C∗)n into X such that the complement of (C∗)n inside X is Zariski closed.
Additionally, we ask that the trivial action of Tn := (S1)n on (C∗)n extends to X , and
the Kähler form ω is Tn-invariant.

Using the fact that ω is Tn-invariant we get that

ω = i∂∂̄(ψ0 ◦ L) on (C∗)n, (13)

where ψ0 ∈ C∞(Rn) and L(z1, z2, . . . , zn) = (log |z1|, log |z2|, . . . , log |zn|) ∈ R
n .

Since ψ0 ◦ L is psh on (C∗)n , it follows that ψ0 has to be strictly convex on R
n (see

(16) below), and we may choose ψ0(0) = 0.
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By HT we will denote the metrics ω′ ∈ H that are torus invariant, i.e., (S1)n acts
by isometries on ω′. The corresponding space of toric potentials will be denoted by
HT

ω .
Given u ∈ HT

ω , comparing with (13), we can introduce the following potential

ψu := ψ0 + u ◦ E,

where E(x) = E(x1, x2, . . . , xn) := (ex1 , ex2 , . . . , exn ), x ∈ R
n . The point here is

that ωu = i∂∂̄ψu ◦ L on (C∗)n .

The Legendre transform Given ωu ∈ HT
ω , it follows from a result of Atiyah–

Guillemin—(see [10, Chapter 27]) that the “moment map” ∇ψu : R
n → R

n is
one-to-one and sends R

n to P := Im ∇ψu , which is a convex bounded polytope,
independent of u, that can be described in the following manner:

P := {l j (s) ≥ 0, 1 ≤ j ≤ d} ⊂ R
n,

where l j (s) = 〈s, v j 〉 − λ j are affine functions that determine the sides of P .
Thoughwewill not use it, by a theoremofDelzant, P satisfies a number of properties

(it is simple, i.e., there are n edges meeting at each vertex; it is rational, i.e., the edges
meeting at the vertex p are rational in the sense that each edge is of the form p + tui ,
0 ≤ t < ∞, where ui ∈ Z

n ; it is smooth, i.e., these u1, . . . , un can be chosen to be
a basis of Zn). In fact, such Delzant polytopes P determine toric Kähler structures
(X , ω) uniquely (see [2] and [10, Chapter 28]).

Since ψu : Rn → R is convex, we can take the Legendre transform of ψu and
obtain another convex function φu , with possible values equal to +∞:

φu(s) = ψ∗
u (s) := sup

x∈Rn

(〈s, x〉 − ψu(x)
)
, s ∈ R

n .

Since Im ∇ψu = P , it follows that φu(s) is finite if and only if s ∈ P . Also, by the
involutive property of Legendre transforms, for all x ∈ R

n we will have

φ∗
u = ψ∗∗

u = ψu,

φu(∇ψu(x)) = 〈x,∇ψu(x)〉 − ψu(x) and ∇ψu(x) = s ⇔ ∇φu(s) = x .

Summarizing, the Legendre transform u → ψ∗
u = φu gives a one-to-one corre-

spondence between elements of HT
ω and the class C(P):

C(P) := { f : P → R is convex and f − φ0 ∈ C∞(P)},

where φ0 = ψ∗
0 . In addition, as pointed out in [23, Proposition 4.5], there is a one-

to-one correspondence between (S1)n-invariant elements of PSH(X , ω) ∩ L∞ and
convex functions f : P → R for which f − φ0 is only bounded on P . In particular,
φ0 ∈ L∞(P).
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The L1 Finsler geometry of toric metrics We now describe the L1 geometry of Hω

restricted toHT
u , the space of potentials for T

n-invariant Kähler metrics.
Let [0, 1] � t → ut ∈ HT

ω be a smooth curve connecting u0, u1 ∈ HT
ω . Taking the

Legendre transform of the potentials ψut we arrive at

φut (s) := sup
x∈Rn

{〈x, s〉 − ψut (x)
} = 〈xt , s〉 − ψut (xt ), s ∈ R

n, (14)

where xt = xt (s) is such that ∇ψut (xt ) = s. Taking derivatives of this identity with
respect to t yields

∇2ψut · ẋt = −∇ψ̇ut .

Taking t-derivative of (14) and using this formula we arrive at

φ̇ut (s) = −ψ̇ut (xt ). (15)

To continue, we observe that

ωut = ∂2(ψut ◦ L)

∂zi∂z j
= 1

4

1

zi z j
· ∂2ψut

∂xi∂x j
◦ L on (C∗)n . (16)

Thus on (C∗)n we have

ωn
ut

= (i∂∂̄ψut ◦ L)n = n! det
(

∂2(ψut ◦ L)

∂zi∂z j

)
in(dz1 ∧ dz̄1) ∧ · · · ∧ (dzn ∧ dz̄n) =

= n!
2n

1

	 j |z j |2 · (
M AR(ψut ) ◦ L

)
(dx1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn), (17)

where M AR(ψut ) = det
(

∂2ψut
∂xi ∂x j

)
denotes the real Monge-Ampère measure of the

(smooth) convex function ψut . As a result, after using polar coordinates in each C
∗

component (dx ∧ dy = rdr ∧ dθ ), we conclude that

∫
X

|u̇t |ωn
ut

=
∫

(C∗)n
|ψ̇ut ◦ L|(i∂∂̄ψut ◦ L)n = πnn!

∫
Rn

|ψ̇ut |p M AR(ψut ).

By (15), ψ̇ut (x) = −φ̇ut (∇ψut (x)). Moreover , M AR(ψut ) = (∇ψut )
∗dμ(s),

where μ is the Lebesgue measure. Therefore, a change of variables s = ∇ψut (x)

yields

∫
X

|u̇t |ωn
ut

= πnn!
∫
Rn

|ψ̇ut |M AR(ψut ) = πnn!
∫

P
|φ̇ut (s)|dμ(s), (18)

Hence the Legendre transform sends the L1 geometry of HT
ω to the flat L1 geometry

of convex functions on P . In the particular case when ut := t , we obtain the following
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useful formula about volumes:
∫

X
ωn = V = πnn!

∫
P

dμ. (19)

Regarding the underlying path length metrics, (18) has the following important
consequence:

Theorem 3.1 Suppose u0, u1 ∈ HT
ω . Then

d1(u0, u1) = 1

μ(P)

∫
P

|φu0(s) − φu1(s)|dμ(s), (20)

where μ(P) is the Lebesgue measure of P.

Proof By definition d1(u0, u1) is the infimum of the L1 Mabuchi length of smooth
curves t → ut connecting u0 and u1:

d1(u0, u1) = inf
t→ut

1

V

∫ 1

0

∫
X

|u̇t |ωn
ut

.

Similarly, the integral
∫

P |φu0 − φu1 |dμ is equal to the infimum of flat L1 length
of smooth curves t → φt of convex functions on P , connecting φu0 and φu1 :

∫
P

|φu0 − φu1 |dμ = inf
t→φt

∫ 1

0

∫
P

|φ̇t |dμ.

Comparing with (18) and (19), the identity (20) follows. ��
The I and J functionals of toric metrics In this paragraph we analyze the I and the J
functionals in terms of the Legendre transform.

As it turns out, the Monge–Ampère energy is essentially the Lebesgue integral,
after applying the Legendre transform. Indeed, let [0, 1] � t → vt ∈ HT

ω be any
smooth curve connecting v0 = 0 and v1 = u. We then obtain the following formula:

I (u) = I (u) − I (0) =
∫ 1

0

d

dt
I (vt )dt =

∫ 1

0

1

V

∫
X

v̇tω
n
vt

dt =
∫ 1

0

1

V

∫
(C∗)n

v̇tω
n
vt

dt .

=
∫ 1

0

∫
(C∗)n

1

V
ψ̇vt ◦ L(i∂∂̄ψvt ◦ L)ndt

= 1

μ(P)

∫ 1

0

∫
Rn

ψ̇vt M AR(ψvt )dt

= −1

μ(P)

∫ 1

0

∫
P

φ̇vt (s)dμ(s)dt = −1

μ(P)

∫
P
(φu(s) − φ0(s))dμ(s), (21)

where in the second line we used (17), in the third line we used again the change
of variables s = ∇ψvt , similar to (18), and in the last line we used (15). Since
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φ0 ∈ L∞(P) ( [23, Proposition 4.5]), we conclude that there exists C = C(X , ω) > 0
such that

−1

μ(P)

∫
P

φudμ − C ≤ I (u) ≤ −1

μ(P)

∫
P

φudμ + C, u ∈ HT
ω . (22)

A closed formula for the J energy is likely not available in terms of the Legen-
dre transform, but we can express its magnitude in relatively simple terms, which is
sufficient for our later analysis:

Proposition 3.2 There exists C := C(X , ω) > 0 such that for all u ∈ HT
ω with

I (u) = 0 we have

− inf
P

φu − C ≤ J (u) = 1

V

∫
X

uωn ≤ − inf
P

φu + C .

The argument is adapted from [38, Lemma 2.2].

Proof Notice that − inf P φu = ψu(0), hence it is enough to prove existence of C =
C(X , ω) > 0 such that:

ψu(0) − C ≤ 1

V

∫
(C∗)n

uωn ≤ ψu(0) + C .

Sinceψu(0) = ψ0(0)+u(E(0)) = u(E(0)) ≤ supX u, by [13, Lemma 3.45], the first
estimate is trivial.

Next we show that there existsC := C(X , ω) > 0 such that for any v ∈ PSH(X , ω)

and constant h > 0 we have
∫

{v<supX v−h}
ωn ≤ C

h
. (23)

Indeed, from [13, Lemma 3.45] we have that

V (sup
X

v − C(X , ω)) ≤
∫

X
vωn =

∫
{v<supX v−h}

vωn +
∫

{v≥supX v−h}
vωn

≤ (sup
X

v − h)

∫
{v<supX v−h}

ωn + sup
X

v

∫
{v≥supX v−h}

ωn .

This implies (23). Next, since Im ∇ψu = Im ∇ψ0 = P and∇u ◦ E = ∇ψu −∇ψ0, it
follows that ∇u ◦ E is uniformly bounded on the unit ball B(0, 1) ⊂ R

n . This implies
that

|u(E(x)) − u(E(0))| ≤ C(P), x ∈ B(0, 1). (24)

By (23), there exists a constant h := h(X , ω) such that {u◦ E ≥ supX u−h} intersects
B(0, 1). This together with (24), gives the desired inequality: ψu(0) = u(E(0)) ≥
supX u − C ≥ 1

V

∫
X uωn − C . ��
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4 A sharp inequality for convex functions

In this section we prove the following sharp double inequality about convex functions,
stated in Theorem 1.2:

Theorem 4.1 Let P ⊂ R
n be a bounded open convex set. Then for f ∈ L1(P) convex

and satisfying
∫

P φdμ = 0, the following sharp inequalities hold:

− 2

n + 1
·
(

n

n + 1

)n

inf
P

φ ≤ 1

μ(P)

∫
P

|φ|dμ ≤ −2 inf
P

φ, (25)

where the integration is in terms of the Lebesgue measure.

Proof First we argue the second inequality. Let

P− := {x ∈ P : φ ≤ 0} and P+ := {x ∈ P : φ > 0} (26)

Since
∫

P φ = ∫
P− φ + ∫

P+ φ = 0, we have

∫
P

|φ| = −
∫

P−
φ +

∫
P+

φ = −2
∫

P−
φ.

Furthermore,
∫

P− φ ≥ μ (P−) inf P− φ ≥ μ(P) inf P φ, and the second estimate fol-
lows.

We move on to the first estimate. For all a ∈ R, let

Pa := {x ∈ P : φ(x) ≤ a}.

Through scaling of φ, we can assume without loss of generality that inf P φ = −1.
We first claim that

∫
P

|φ| ≥ − 2

n + 1
μ (P−) inf

P
φ. (27)

Through translation of φ and P , we can momentarily assume that φ(0) = −1+ ε for
an arbitrarily small ε > 0. By convexity of φ, if −1 + ε < a < b, we have

Pb ⊂ b + 1 − ε

a + 1 − ε
Pa and μ (Pb) ≤

(
b + 1 − ε

a + 1 − ε

)n

μ (Pa) .

But translating φ and P does not change the measure of any of the sets involved,
so the above relation holds for all ε > 0 regardless of the actual value of φ(0). Thus,

μ(Pb) ≤
(
1 + b

1 + a

)n

μ (Pa) for any − 1 < a < b. (28)
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Since
∫

P φ = ∫
P+ φ + ∫

P− φ = 0, we have
∫

P |φ| = 2
∫

P− |φ|, allowing us to

bound
∫

P |φ| in the following manner, proving the claim:

∫
P

|φ| = 2
∫

P−
|φ| = 2

∫ 0

−1
μ (Px ) dx ≥ 2

∫ 0

−1
(1 + x)nμ (P−) dx = 2

n + 1
μ(P−),

where we used that
∫

f dμ = ∫ +∞
0 μ{ f ≥ t}dt for any non-negative μ-measurable

f , estimate (28) for −1 < x < 0, and the fact that P0 = P−.
Let b > 0. Next we estimate

∫
P+ φ similarly, applying (28) for −1 < 0 < x :

∫
P+

φ ≥
∫ b

0
μ (P \ Px ) dx =

∫ b

0
μ (P) − μ (Px ) dx

≥
∫ b

0
μ (P) − (1 + x)nμ (P−) dx

= bμ(P) − (b + 1)n+1

n + 1
μ(P−) + 1

n + 1
μ(P−)

We then let b = 1
n and 1

2

∫
P |φ| = ∫

P+ |φ| = ∫
P− |φ| = Aμ(P−) for some A > 0.

This gives

Aμ(P−) =
∫

P+
φ ≥ 1

n
μ(P) − 1

n
·
(

n + 1

n

)n

μ(P−) + 1

n + 1
μ(P−),

implying

∫
P

|φ| = 2Aμ(P−) ≥ 2A

n A + ( n+1
n

)n − n
n+1

μ(P).

The right-hand side is an increasing function of A and by (27) we know A ≥ 1
n+1 .

This means the right hand side is minimized at this value, so

∫
P

|φ| ≥
2

n+1( n+1
n

)n μ(P) = 2

(n + 1)
·
(

n

n + 1

)n

μ(P).

��
Finally, we address the tightness of the bounds in the previous theorem.

Proposition 4.2 For all n > 0 there exists an open bounded convex subset P ⊂ R
n

and convex function φ : P → R integrating to zero such that

1

μ(P)

∫
P

|φ|dμ = − 2

n + 1
·
(

n

n + 1

)n

inf
P

φ.
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Proof Fix n. Take P ⊂ R
n to be the interior of the simplex with vertex set

{
(0, . . . , 0) ,

(
n + 1

n
, 0, . . . , 0

)
, . . . ,

(
0, . . . , 0,

n + 1

n

)}

and φ : P → R to be the function defined by

φ(x1, . . . , xn) = −1 + x1 + · · · + xn .

It is clear that P and φ are convex and that inf P φ = −1. To evaluate the integrals of
φ and |φ|, first let Sx to be the simplex with vertices

{(0, . . . , 0) , (x, 0, . . . , 0) , . . . , (0, . . . , 0, x)} .

The volume of Sx is just xn

n! . This is the region where φ takes values less than or equal
to x − 1. We can use the same technique from the previous theorem to show

∫
P+

φ =
∫ n+1

n

1
μ(P \ Sx )dx =

∫ n+1
n

1

1

n!
((

n + 1

n

)n

− xn
)

dx

= 1

n
· 1

n!
(

n + 1

n

)n

− 1

(n + 1)!
(

n + 1

n

)n+1

+ 1

(n + 1)!
= 1

(n + 1)!
and

∫
P−

−φ =
∫ 1

0
μ(S(1−x))dx =

∫ 1

0

(1 − x)n

n! dx = 1

(n + 1)! ,

where P+ and P− are again the portions of the domainwhereφ is positive and negative,
respectively. Combined these yield

∫
P φ = 0 and

∫
P |φ| = 2

(n+1)! .
As μ(P) is just the volume of S n+1

n
, it follows that

1

μ(P)

∫
P

|φ| = 2

n + 1
·
(

n

n + 1

)n

.

��
Proposition 4.3 For all n > 0 there exists an open bounded convex set P ⊂ R

n such
that

sup
φ

∫
P |φ|

−μ(P) inf P φ
= 2.
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Proof First, suppose n = 1 and let P = (0, 1). Now, for all integers m, let

φm(x) =
{
2m − 1 − 2m2x if x < 1

m

−1 if x ≥ 1
m .

φm is convex, and it can be seen that
∫

P φm = 0. It is also the case that

−
∫

P |φm |
μ(P) inf P φm

= −2
∫

P−
φm = 2 − 2

m
.

Letting m → ∞ shows that the supremum for n = 1 is indeed 2.
For n > 1, let Pn = (0, 1)n and φn,m(x1, . . . , xn) = φm(x1). φn,m is still convex

andwe still have that
∫

Pn
φn,m = 0 and

∫
Pn

|φn,m | = 2− 2
m . Again, we can letm → ∞

to show that the supremum is 2 for all n. ��

5 Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1 UsingTheorem3.1 and Proposition 3.2 the inequalities of (5) are
equivalent to the inequalities of (6). Theorem 1.1 is now a consequence of Theorem 4.1

��
In proving Theorem 1.3 we heavily rely on the formalism developed in [17] regard-

ing the metric space of geodesic rays.
By E1 ⊂ PSH(X , θ) we denote the space of finite energy pontentials: u ∈ E1 if∫

X θn
u = ∫

X ωn (where θn
u is the non-pluripolar complex Monge–Ampère measure,

defined in [24, Section 1]), moreover
∫

X |u|θn
u < ∞.

By R1 we denote the space of L1 Mabuchi geodesic rays [0,∞) � t → ut ∈ E1

that are normalized by u0 = 0 and I (ut ) = 0, t ≥ 0.
It was shown in [4, Proposition 5.1] that t → d1(ut , vt ) is convex for any

{ut }t , {vt }t ∈ R1. In [17] this was used to definte the following metric:

dc
1({ut }t , {vt }t ) = lim

t→∞
d1(ut , vt )

t
.

We know that (R1, dc
1) is complete [17, Theorem 1.3 and 1.4], moreover the space of

normalized bounded geodesic raysR∞ is dense inR1 [17, Theorem 1.5].
Due to this and the next result it is enough to prove Theorem 1.3 for bounded

geodesic rays:

Lemma 5.1 Suppose that {u j
t }t , {ut }t ∈ R1 such that dc

1({u j
t }, {ut }t ) → 0. Then

J {u j
t } → J {ut }.

Proof By the lemma below we have that J {ut } = supX u1 and J {u j
t } = supX u j

1.

Since t → d1(u
j
t , ut ) is convex, we have that d1(u

j
1, u1) ≤ dc

1({u j
t }t , {u j

t }t ) → 0.
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[11, Theorem 5] gives that ‖u j
1 − u1‖L1 → 0. Hartogs’ lemma [25, Proposition 8.4]

now implies that J {u j
t } = supX u j

1 → supX u1 = J {ut }. ��
The radial J functional can be expressed in very simple terms:

Lemma 5.2 For {ut }t ∈ R1 we have that J {ut } = supX ul
l for any l > 0. Moreover, in

case {ut }t ∈ R∞, we also have that J {ut } = supX u̇0, where u̇0 := limt→0
ut
t .

Proof We have that J (ut ) = 1
V

∫
X utω

n − I (ut ) = 1
V

∫
X utω

n . By [17, Lemma 2.2]
we obtain that

J {ut } = lim
t→∞

J (ut )

t
= lim

t→∞
supX ut

t
.

Since t → supX ut is well known to be linear [3], [19, Lemma 3.2], the first statement
follows.

In case {ut }t ∈ R∞, by [12, Theorem 1, Lemma 3.1] know that supX u̇−
t =

supX ut
t = supX u1, t > 0, proving the second statement.
By t-convexity we have supX u̇0 ≤ supX u̇−

t = supX u1, t > 0. Let x ∈ X such
that u1(x) = supX u1. By t-convexity we have that

sup
X

u1 = u1(x) − u0(x) =
∫ 1

0
u̇−

t (x)dt .

Since t → u̇−
t (x) is increasing, and u̇−

t ≤ supX u1, we obtain that ut (x) =
t supX u1, t ∈ [0, 1], giving supX u̇0 = supX u1. ��
Lemma 5.3 For {ut }t ∈ R1 we have that d1(0, u1) = ∫

X |u̇0|ωn and 0 = I (u1) =∫
X u̇0ω

n.

Proof That d1(0, u1) = ∫
X |u̇0|ωn follows from [5, Lemma 3.4]. The argument of [5,

Lemma 3.4] is seen to imply I (u1) = ∫
X u̇0ω

n . ��
Given v ∈ PSH(X , θ), we say that v is a model potential if v = P[v], where

P[v] := usc(sup{h ∈ PSH(X , ω), h ≤ 0, h ≤ v + C, C ∈ R}).

For more on model potentials we refer to [14], as well as [19, Theorem 3.7], where a
connection with finite energy rays is made, used in the argument of the next lemma.

Lemma 5.4 For any {ut }t ∈ R1 and b ≤ a ≤ supX u̇0 we have that

∫
{u̇0≥a}

ωn ≤
∫

{u̇0≥b}
ωn ≤ (supX u̇0 − b)n

(supX u̇0 − a)n

∫
{u̇0≥a}

ωn .

Proof The argument uses the formalism of Legendre transforms for geodesic rays
going back to [29], further developed in [19].
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The first estimate is trivial. For the second estimate we consider the Legendre
transform of {ut }t ∈ R1:

ûτ := inf
t≥0

(ut − tτ), τ ∈ R.

It is shown in [19, Theorem 3.7] that ûτ ∈ PSH(X , ω) is a model potential. As a result,
by [21, Theorem 1], [14, Theorem 3.8] we have that

∫
X ωn

ûτ
= ∫

{ûτ =0} ωn . Moreover,
due to basic properties of Legendre transforms {u̇0 ≥ τ } = {ûτ = 0}, in particular,

∫
X

ωn
ûτ

=
∫

{u̇0≥τ }
ωn . (29)

Let now b ≤ a ≤ supX u̇0. Since τ → ûτ is concave, we know that τ → ( ∫
X ωn

ûτ

) 1
n

is concave as well ( [16, Theorem B] and [37, Theorem 1.2]). As a result, we can write
that

(supX u̇0 − a)

(supX u̇0 − b)

(∫
X

ωn
ûb

) 1
n + (a − b)

(supX u̇0 − b)

( ∫
X

ωn
ûsupX u̇0

) 1
n ≤

( ∫
X

ωn
ûa

) 1
n

.

Comparing with (29), the result follows. ��

Finally we arrive at the main result of this section, whose proof will be reminiscent
to that of Theorem 1.2:

Theorem 5.5 Suppose that (X , ω) is a compact Kähler manifold and {ut }t ∈ R1.
Then the following sharp inequality holds:

2

n + 1
·
(

n

n + 1

)n

J {ut } ≤ d1(0, u1) ≤ 2J {ut }. (30)

Proof Due to Lemma 5.1 and [17, Theorem 1.5], it is enough to prove the inequalities
for {ut }t ∈ R∞ satisfying I {ut } = 0. Due to Lemma 5.2, for such rays we have to
argue the following estimates:

2

n + 1
·
(

n

n + 1

)n

sup
X

u̇0 ≤ 1

V

∫
X

|u̇0|ωn ≤ 2 sup
X

u̇0.

Using re-scaling in time, we can further assume that supX u̇0 = 1, hence it is enough
to argue that

2

n + 1
·
(

n

n + 1

)n

≤ 1

V

∫
X

|u̇0|ωn ≤ 2. (31)
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We first argue the second estimate which is much more simple. Let X− := {u̇0 < 0}
and X+ := {u̇0 ≥ 0}. Since I (u1) = ∫

X u̇0ω
n we have that

1

V

∫
X

|u̇0|ωn = 2

V

∫
X+

u̇0ω
n ≤ 2 sup

X
u̇0.

To address the first estimate, we make the following preliminary calculation:

∫
X

|u̇0|ωn = 2
∫

X+
u̇0ω

n = 2
∫ 1

0

∫
{u̇0≥x}

ωndx

≥ 2
∫ 1

0
(1 − x)n

∫
{u̇0≥0}

ωndx

= 2

n + 1

∫
{u̇0≥0}

ωn, (32)

where we used that
∫

f dμ = ∫ +∞
0 μ{ f ≥ t}dt for any non-negative μ-measurable

f and Lemma 5.4 for the parameters 0 ≤ x ≤ supX u̇0 = 1.
Let b > 0. To estimate

∫
X− |u̇0|ωn , we can use a similar technique to the above:

∫
X−

|u̇0|ωn ≥
∫ b

0

∫
X\{u̇0≥x}

ωndx =
∫ b

0

(
V −

∫
{u̇0≥x}

ωn
)

dx

≥
∫ b

0

(
V − (1 + x)n

∫
{u̇0≥0}

ωn
)

dx

= bV − (b + 1)n+1

n + 1

∫
{u̇0≥0}

ωn + 1

n + 1

∫
{u̇0≥0}

ωn,

where in the second line we used Lemma 5.4 again, for the parameters −x ≤ 0 ≤
supX u̇0 = 1.

We now let b = 1
n and 1

2

∫
X |u̇0|ωn = ∫

X+ |u̇0|ωn = − ∫
X− u̇0ω

n = A
∫
{u̇0≥0} ωn

for some A > 0. This gives

A
∫

{u̇0≥0}
ωn ≥ 1

n
V − 1

n
·
(

n + 1

n

)n ∫
{u̇0≥0}

ωn + 1

n + 1

∫
{u̇0≥0}

ωn,

implying

∫
X

|u̇0|ωn = 2A
∫

{u̇0≥0}
ωn ≥ 2A

n A + ( n+1
n

)n − n
n+1

V .
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The right-hand side is an increasing function of A and by (32) we know A ≥ 1
n+1 .

This means the right hand side is minimized at this value, so

∫
X

|u̇0|ωn ≥
2

n+1( n+1
n

)n V = 2

(n + 1)
·
(

n

n + 1

)n

V .

This finishes the proof of (31). ��
Remark 5.6 The inequalities of the above theorem are sharp due to the examples pro-
duced in the toric case. Indeed, if we take φ(x1, . . . , xn) = −1 + x1 + · · · + xn ,
as considered in Proposition 4.2, then t → tφ will give a toric ray confirming the

optimality of the constant 2
n+1 ·

(
n

n+1

)n
in (30).

Similarly, taking φn,m as in the proof of Proposition 4.3, the correspondence t →
tφn,m gives a toric ray that confirms optimality of the constant 2 in the second ineqality
of (30).

Finally we give an application regarding the initial value problem for geodesic rays,
proving Corollary 1.4 in the process.

As is well known, the initial value problem for smooth geodesics in the space
of Kähler metrics is not well posed [31]. More specifically, in [31, Theorem 1.1]
the authors characterize C3 functions v that can arise as the initial tangent vectors
of geodesics existing for time at least T > 0, in terms of analytic extension of the
Hamiltonian flow of v. For the the initial value problem of weak geodesic rays we
have belowanecessary integral condition instead. Towhat extent our integral condition
below is sufficient remains to be seen. We hope to return to this problem in the future.

Corollary 5.7 Let {ut }t ∈ R∞. Then the initial tangent vector v := u̇0 ∈ L∞(X)

satisfies the following sharp estimates:

2

n + 1
·
(

n

n + 1

)n

sup
X

v ≤
∫

X
|v|ωn ≤ 2 sup

X
v. (33)

Proof By Lemmas 5.2 and 5.3 we know that d1(0, u1) = ∫
X |u̇0|ωn and J {ut } =

supX u̇0. (33) now follows directly from (30). ��
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