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Abstract

We obtain sharp inequalities between the large scale asymptotic of the J functional
with respect to the d; metric on the space of Kihler metrics. Applications regarding
the initial value problem for geodesic rays are presented.
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1 Introduction and main results

Let (X, w) be a Kdhler manifold of dimension n. We consider the space of Kihler
metrics @ that are cohomologous to w:

H := {@ Kihler on X and [@]sr = [@]ar}

By the 33-lemma of Hodge theory, for all @ € H there exists u € C*°(X), unique
up to a constant, such that ® = w,, := w + iddu. Consequently, instead of looking at
‘H directly, it makes sense to work with the space of Kdhler potentials instead:

Hey = {u € C®°(X) s.t. w4+ i09u > 0).
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Clearly H, C PSH(X, w), hence all Kéhler potentials are w-plurisubharmonic (-
psh). For a comprehensive treatment of w-psh functions we refer to the recent book
[25].

For a quick introduction to the basics of pluripotential theory in the context of
Kihler geometry we refer to [13, Appendix A.1], [6, Section 2] or [25, Chapter 8].

A main direction of research is to find Kéhler structures such that H,, admits con-
stant scalar curvature Kihler (csck) metrics. Such metrics are minimizers of Mabuchi’s
K-energy functional I : H,, — R [27], that can be defined by the Chen—Tian formula
[8,34]:

n—1
"

1 ; . -
K@) = V/x log (w—Z)wZ — M;Ricw/\w,ﬂ AT + ST ),

where V = f X " is the total volume, Ric w is the Ricci curvature of the background
metric w, and S = % f X S,w" is the average scalar curvature of w, which is also an
invariant of the class H,, (see [13, eq. (4.40)]). Lastly, I : ‘H, — R is the Monge—
Ampére energy (also called Aubin—Mabuchi or Aubin—Yau energy), one of the most
basic functionals of Kihler geometry:

1 . , iy
I(u) = —— uw’ Aol 7.
(w) <n+1)v,.§)/x f

For a more detailed analysis of I we refer to [6, page 111] and [13, Section 3.7].
Closely related to /, the J functional J : ‘H,, — R is defined as follows:

J(u) = %/Xua)”—l(u).

Using Stokes’ theorem, it can be showed that J (1) > 0, and in many ways J acts as
a norm-like expression on H,,. This aspect will be featured prominently in this work.
By definition, the space of Kihler potentials H,, is a convex open subset of C*°(X),
hence one can think of it as a trivial “Fréchet manifold". As such, one can introduce on
H,, an L' type Finsler metric with relevant underlying geometry [11]. If u € H,, and
& € T,H, =~ C®(X), then the L'-length of & is given by the following expression:

1 71
1§0. = V/XIEIwu- (1

The corresponding L? type metric recovers the Riemannian geometry of Mabuchi
[27] (independently discovered by Semmes [32] and Donaldson [22], studied later by
Chen [7]). For more details we refer to [13, Chapter 3].

To the Finsler metric in (1) one associates a path length pseudo-metric di (-, -). As
proved in [11], d; is actually a metric and (H,,, d1) is a geodesic metric space, whose
abstract completion can be identified with (€ La ), where £ e PSH(X, w) is a space
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of potentials introduced by Guedj—Zeriahi [24], with connections to earlier work of
Cegrell.

Let us assume that momentarily that (X, J) does not admit global holomorphic
vectorfieds. Tian conjectured that existence of csck metrics in H,, is equivalent to
J-properness of the K-energy functional [35,36]:

K@) > C;Ju)+ Dy, ueH,NI 0, (2)

where Cy, D are some positive contants dependent only on (X, w). Necessity of (2)
was pointed out in [5], building on techniques of [18]. Chen and Cheng proved that
existence of csck metrics in H,, is equivalent to

K(u) > Cady(0,u) + Dy, u € Hy, N 171(0), A3)

where Cy, Dy are some positive contants dependent on (X, w) [9]. As pointed out in
[11,18], this last estimate is equivalent to (2), since there exist constants m, M, D > 0
such that

mJ(u) — D < di(0,u) < MJ () + D,u € Hy, N 171 (0). )
By the analysis of [11] one can choose M = 2 and m = 272"~ in the above inequality
(see Proposition 2.2 below). Since the C; and Cy are linked to the uniform version
of K-stability [3], it interesting to know what the optimal conversion rate is between
these two constants. For this the optimal values of m and M need to be found in (4),
and this is what we investigate in this paper, first on toric Kihler manifolds (X, w):

Theorem 1.1 Let (X, ) be a toric Kiihler manifold. Then there exists a constant
D > 0 such that

2 n " B
m(m> Jw)—D <di(0,u) <2J(u)+ D, ueHgﬂI L), 35

and the constants multiplying J (u) are sharp.

By the above result, at least in the toric case, the optimal constant m in (4) has linear
decay with respect to dim X, and not exponential, as previously thought. Surprisingly,
neither of the optimal constants depend on the choice of Kéhler metric w.

Similar flavour results were recently obtained by Sjostrom Dyrefelt, who proved
optimal inequalities between the asymptotics of other “J-type" functionals, when the
so called J-equation has no solution [33, Theorem 1.2]. As pointed out in this latter
work, inequalities like the ones in (5) often give new existence criteria for canonical
metrics, allowing to sharpen the results of [9], something we hope to investigate in the
future.

Using Legendre transforms the inequality in the above result can be transformed
into a pair of sharp integral inequalities involving convex functions defined on a convex
domain, that we now present:
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Theorem 1.2 Let P C R" be a bounded open convex set. Then for any convex ¢ €
L'(P), satisfying / p @ =0, the following sharp inequality holds:

2 n \". 1 )
~ T .<n+1> Hfl,ffﬁf m/PWWMS—ZH}ffﬁ, (6)

where all integrations are in terms of the Lebesque measure.

We prove sharpness of (6) by providing concrete extremizing potentials, and it
would be interesting to characterize all such extremizers. Another interesting question
would be to find the optimal constants in (6) for any fixed P. As these questions have
potential applications in Kéhler geometry, we hope to return to them in the future.

Despite its basic nature, we could not find the above inequality in the written convex
geometry literature, even after consulting with experts [28]. To be clear, the emphasis
here is not on novelty, but rather on the significance of (6) in the context of Kéhler
geometry.

We conjecture that Theorem 1.1 holds in case of general Kédhler manifolds as well.
To provide strong evidence for this, we prove the radial version of this expected result.
For this we recall some terminology from [17] first.

Let {u;} € R be a geodesic ray [0,00) 5 t — u; € Elof (£, dy), emanating
from ugp = 0 € Hy, and normalized by /(u;) = 0, r > 0. Since the J functional
is convex along geodesics, one can define its slope along geodesic rays (informally
called the radial J functional):

J
Jur) = tim. (t”’).

The L' speed of a ray {u,}; is simply the quantity d; (0, u1). We prove the following
sharp inequality between the L' speed and the radial J functional:

Theorem 1.3 Suppose that (X, w) is a compact Kihler manifold and {u;}; € R'.
Then the following sharp inequality holds:

2 n
— <nfli-l) Ty < di 0, 1) < 27 {uy). 0

Since rays are constant speed, notice that the middle term in the above inequality
could have been replaced by the limit lim;_, w .In particular, (7) would instantly
follow from the conjectured inequality (5) for general Kihler manifolds.

Remarkably, the proof of (7) rests on the ideas yielding (6), despite the fact that it
works for general (non-toric) Kéhler manifolds. We refer to Sect. 5 for more details.

Finally, we give an application for Theorem 1.3 regarding the initial value problem
for geodesic rays in ‘H,,. In case w is real analytic, and one is given a real analytic
function v : X — R, by an application of the Cauchy-Kovalevskaya theorem, there
exists a smooth geodesic [0, &,) 2 t — u; € H, such that ug = 0 and tig = v
[30,31]. Of course, t — u; is real analytic too, and it is still not known if such t — u;
can be extended to a geodesic ray (in the metric sense). In some instances, this can be
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done, as pointed out in [1]. However, as we confirm below, there is plenty of analytic
initial data, for which this fails to happen. What is more, we give a general condition
that initial data of L rays {u,}; € R™ (rays from R! with bounded potenials) need
to satisfy:

Corollary 1.4 Suppose that {u;}; € R is a geodesic ray, with bounded potentials.
Then the initial tangent vector v := lim;_, ¢ ”7’ € L (X) satisfies the following sharp
inequalities:

2 (”) </||"<2 ®)
_— _— sup v Viw sup v.
n+1 n+1 Xp - X - Xp

Since real analytic functions are dense among smooth ones [26, Proposition 2.1],
one can find plenty of real analytic v for which either inequality in (8) fails, in particular
such v can not be the initial tangent vector for a geodesic ray.

Interestingly, in the above result we can not pinpoint the time where the geodesic
segment with (real analytic) initial tangent v can not be continued anymore. Related
to this, in [15] the author has provided non-smooth geodesic segments that can not be
continued at a specific point, however the information there could not be linked to the
initial tangent.

2 The L' geometry of the space of Kiihler potentials

In this short section we recall basic facts about the path length metric d; associated
to the Finsler metric (1), with focus on the relationship with the J functional. For a
survey on this topic, we refer to [13, Section 3.7]

Let us recall the following comparison theorem for the d; metric [13, Theorem
3.32]

Theorem 2.1 For any ug, u; € H,, we have

1 1
dy(uo, u1) < —/ Iuo—ullwﬁo-l-—/ o — urlwy, < 220 (ug, ur).  (9)
VJx VJx

We also recall the following concrete formula for the path length metric d; ([13,
Proposition 3.43]):

di(u,v) =1I(u)+ 1(v) —2I1(P(u,v)), u,v e Hy, (10)
where P (u, v) is the following “rooftop” envelope:
P(u,v) = sup{w € PSH(X, w) s.t. w < u and w < v}.

More concretely, P (u, v) is the greatest w-psh function that lies below u and v. For
properties of P (u, v), we refer to [13, Section 2.4].
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As already suggested by (10), there is an intimate relationship between the metric
dy and the I functional. By inspection, I (u + ¢) = I(u) + ¢ for any u € H, and
¢ € R. This allows for the following bijection between metrics and potentials:

H, N I71(0) ~ H.

What is more, the hypersurface H,, N I~!(0) is totally geodesic within H,, (see the
discussion near [13, (3.67)]). Finally, let us recall [13, Proposition 3.44], giving the
best available asymptotic comparison between the J functional and the d; metric from
the literature:

Proposition 2.2 There exists C = C(X, w) > 1 such that
2770 (u) — C < dy(0,u) <2J(u) +C, u € HyN I N0). (1)

Proof Let u € H, N I~'(0). By Theorem 2.1 we have

1 1
Jw) = 7/ wo < 7/ e < 2264, (0, u),
X X

implying the first estimate in (11). For the second estimate, since /(1) = 0, we have
that supy # > 0 and

d1(0,u) = =21(P(0, u)). (12)

Clearly, u — supy u < min(0, u), so u — supyu < P(0,u). Thus, —supyu =
I(u — supyu) < I(P(0,u)). Combined with (12), we obtain that d;(0,u) =
—21(P (0, u)) < 2supy u. Finally, it is well known that supy u < % fX uow" + C' for

some C'(X, w) > 1 [13, Lemma 3.45], finishing the proof. |

3 Analysis on toric Kahler manifolds

In this short section we point out how the inequalities (5) and (6) are related. Much
of the material here is based on [20, Section 6] and [38], and we invite the reader to
consult these works for a more thorough treatment.

We say that (X, w) is a toric Kéhler manifold of complex dimension » if one can
embed (C*)" into X such that the complement of (C*)” inside X is Zariski closed.
Additionally, we ask that the trivial action of T" := (S 7 on (C*)" extends to X, and
the Kdhler form w is T"-invariant.

Using the fact that w is T"-invariant we get that

w=1i39(go L) on (C*", (13)
where Y9 € C*°(R") and L(z1, 22, ..., z2n) = (log|z1], log|zz2l, ..., log|z,|) € R".

Since Y o L is psh on (C*)", it follows that 1 has to be strictly convex on R”" (see
(16) below), and we may choose (0) = 0.
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By HT we will denote the metrics @’ € H that are torus invariant, i.e., (S 1)” acts
by isometries on «’. The corresponding space of toric potentials will be denoted by
HL.

Givenu € Hg, comparing with (13), we can introduce the following potential

Yu :=vYo+uok,

where E(x) = E(x1,x2,...,x,) := (e, e™,...,¢e"), x € R". The point here is
that w, = 90y, o L on (C*)".

The Legendre transform Given w, € Hg, it follows from a result of Atiyah—
Guillemin—(see [10, Chapter 27]) that the “moment map” Vi, : R* — R” is
one-to-one and sends R"” to P := Im Vv, which is a convex bounded polytope,
independent of u, that can be described in the following manner:

P:={lj(s)>0, 1 <j<d}CR"

where [ (s) = (s, v;) — A; are affine functions that determine the sides of P.

Though we will not use it, by a theorem of Delzant, P satisfies anumber of properties
(it is simple, i.e., there are n edges meeting at each vertex; it is rational, i.e., the edges
meeting at the vertex p are rational in the sense that each edge is of the form p + ru;,
0 <t < oo, where u; € Z"; it is smooth, i.e., these uy, ..., u, can be chosen to be
a basis of Z"). In fact, such Delzant polytopes P determine toric Kéhler structures
(X, w) uniquely (see [2] and [10, Chapter 28]).

Since ¥, : R* — R is convex, we can take the Legendre transform of 1, and
obtain another convex function ¢,, with possible values equal to +oo:

bu(s) = Yy (s) := sup ((s,x) — Yu(x)), s €R".

xeR”

Since Im Vv, = P, it follows that ¢, (s) is finite if and only if s € P. Also, by the
involutive property of Legendre transforms, for all x € R" we will have

¢: = 1#;* = Yu,
Gu (Vi (x)) = (x, Vi, (x)) — ¢y (x) and Vi, (x) = s < Ve (s) = x.

Summarizing, the Legendre transform u — ¥ = ¢, gives a one-to-one corre-
spondence between elements of Hg and the class C(P):

C(P):={f:P — Risconvex and f — ¢g € C*°(P)},

where ¢g = w(’)“. In addition, as pointed out in [23, Proposition 4.5], there is a one-
to-one correspondence between (S 1 invariant elements of PSH(X, w) N L™ and
convex functions f : P — R for which f — ¢ is only bounded on P. In particular,
$o € L=(P).
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The L' Finsler geometry of toric metrics We now describe the L' geometry of H,,
restricted to H_ , the space of potentials for T"-invariant Kéhler metrics.

Let[0,1]>¢ — u; € ’HaT) be a smooth curve connecting ug, u; € Hg. Taking the
Legendre transform of the potentials v, we arrive at

Gu, (8) 7= sup {(x,5) = Y, ()} = (x1,8) — Y, (1), s € R, (14)

xeR”

where x; = x;(s) is such that Vi, (x;) = s. Taking derivatives of this identity with
respect to ¢ yields

V2, - % = — Vi,
Taking ¢-derivative of (14) and using this formula we arrive at
Pu, () = Y, (x1). (15)
To continue, we observe that

_ P ol) 1 1 3y,

_ _ L Ty 16
WS ez, 4zz amax, o - oM ) (16)

Thus on (C*)" we have

_ 32 L
w,, = ({99Yy, o L)" = n!det (Wu—’i)> i"(dziy ANdZY) A - - AN (dzy ANdZp) =
07;0Z;
n! 1
= ——— - (MAR(Yy,) o L)(dx1 Ady1) A -+ A (dxy Adyn), (17)
2" Izl

02

where M Agr(Yr,,) = det (; x_‘g;’,) denotes the real Monge-Ampere measure of the
[ aad)

(smooth) convex function v,,. As a result, after using polar coordinates in each C*

component (dx A dy = rdr A dO), we conclude that
/ liiy )], = f Y, © L|(i90%, o L)" = n”n!f Y, 1P M AR ().
X (C*)il R}‘l

By (15), ¥, (x) = —¢u, (Vi (x)). Moreover , MAg (V) = (V) *du(s),
where p is the Lebesgue measure. Therefore, a change of variables s = Vi, (x)
yields

/|az|w3,=n"n!/ |1ﬁu,|MAR(wut)=n"n!/|¢'>u,(s)|du(s>, (18)
X Rn P

Hence the Legendre transform sends the L' geometry of Hg to the flat L' geometry
of convex functions on P. In the particular case when u; := t, we obtain the following
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useful formula about volumes:

/ "=V = n"n!/ du. (19)
X P

Regarding the underlying path length metrics, (18) has the following important
consequence:

Theorem 3.1 Suppose ug, u; € H.. Then

1
o, 0) = /P us () — buy () a(s), (20)

where w(P) is the Lebesgue measure of P.

Proof By definition dj(ug, ©1) is the infimum of the L' Mabuchi length of smooth
curves t — u, connecting uq and u1:

) 1! )
di(uo, uy) = inf —/ / lits |y, -
t—uy 0 Jx

Similarly, the integral f p |Puy — @uy|d e is equal to the infimum of flat L' length
of smooth curves t — ¢, of convex functions on P, connecting ¢, and ¢, :

1
f (uy — Gy dpt = inf / / M
P 1=¢:Jo Jp

Comparing with (18) and (19), the identity (20) follows. O

The I and J functionals of toric metrics In this paragraph we analyze the I and the J
functionals in terms of the Legendre transform.

As it turns out, the Monge—Ampere energy is essentially the Lebesgue integral,
after applying the Legendre transform. Indeed, let [0, 1] > t — v, € Hg be any
smooth curve connecting vp = 0 and v; = u. We then obtain the following formula:

ld 1o 1 )
T(w) = 1(uw) — 1(0) =/0 El(v,)dt:/o V/Xv,a)gtdtzfo V/( o Uy, dt.
1
1. _
= / / — 1y, o L(i00Yr, o L)"dt
O ( *)ﬂ V

1 1 .
=5 fo fR Y M AR, )

1 1 ‘ .
D) w(©)dp)dt = 7o | (Guls) = du(s). 21

where in the second line we used (17), in the third line we used again the change
of variables s = Vi, similar to (18), and in the last line we used (15). Since
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¢o € L°°(P) ([23, Proposition 4.5]), we conclude that there exists C = C(X, w) > 0
such that

_—1/¢udu—C§I(u)§ /(ﬁudu—i—C, ue’l—[g. (22)
w(P) Jp P

—1
n(P)
A closed formula for the J energy is likely not available in terms of the Legen-
dre transform, but we can express its magnitude in relatively simple terms, which is
sufficient for our later analysis:

Proposition 3.2 There exists C := C(X,w) > 0 such that for all u € Hg with
I1(u) = 0 we have

. 1 .
—1r}1)f¢u—C§J(u)=V/;(uw” 5—11}1)f¢u+C.

The argument is adapted from [38, Lemma 2.2].

Proof Notice that —inf p ¢, = 1,(0), hence it is enough to prove existence of C =
C(X, w) > 0 such that:

1
V@ —-C= 5 . uo" < Y, (0) + C.
(C)n

Since ¥, (0) = ¥0(0) +u(E(0)) = u(E(0)) < supy u, by [13, Lemma 3.45], the first
estimate is trivial.

Next we show that there exists C := C(X, w) > Osuch thatforany v € PSH(X, w)
and constant 7 > 0 we have

C
o < =, (23)
{v<supy v—h} h

Indeed, from [13, Lemma 3.45] we have that

V(supv — C(X, w)) 5/ vo” =/ vo" +/ vo”
X X {v<supy v—h} {v=supy v—h}

< (supv — h) a)"+supv/ ",
X {v<supy v—h} X {v=supy v—h}

This implies (23). Next, since Im Vi, = Im V9 = P and Vuo E = Vi, — Vij, it

follows that Vu o E is uniformly bounded on the unit ball B(0, 1) C R”". This implies

that

lu(E(x)) —u(E0)| = C(P), x € B(O,1). (24)
By (23), there exists a constant 1 := h(X, w) such that {uo E > supy u —h} intersects

B(0, 1). This together with (24), gives the desired inequality: ¥, (0) = u(E(0)) >
supXu—CZ%fxua)"—C. |
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4 A sharp inequality for convex functions

In this section we prove the following sharp double inequality about convex functions,
stated in Theorem 1.2:

Theorem 4.1 Let P C R" be a bounded open convex set. Then for f € L'(P) convex
and satisfying | p ¢du = 0, the following sharp inequalities hold:

2 n \"
_n—i-l.(n—}—l) P¢<m/|¢|d,u< 21nf¢ (25)

where the integration is in terms of the Lebesgue measure.

Proof First we argue the second inequality. Let
={xeP:¢<0} and Py :={xeP:¢ >0} (26)

Since [, ¢ = [p ¢+ [p ¢ =0, we have

/|¢|=—/ ¢+ ¢>=—2/ ¢.
P P Py P

Furthermore, f p. @ = u(P-)infp_¢ > u(P)infp ¢, and the second estimate fol-
lows.
We move on to the first estimate. For all a € R, let

={xeP:¢pkx) <a}.

Through scaling of ¢, we can assume without loss of generality that infp ¢ = —1.
We first claim that

/ Pl = ——M(P )inf ¢. 27)

Through translation of ¢ and P, we can momentarily assume that ¢ (0) = —1 + ¢ for
an arbitrarily small ¢ > 0. By convexity of ¢, if —1 4+ ¢ < a < b, we have

Pcb+1—sP d u(Py < b+1—-¢\" (P))
_ an _ .
b a+1_8a M (Lp) = a+1—¢ MLy

But translating ¢ and P does not change the measure of any of the sets involved,
so the above relation holds for all ¢ > 0 regardless of the actual value of ¢ (0). Thus,

1+5b\"
w(Pp) < (%) u(Py) forany — 1 <a < b. (28)
a
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Since [, ¢ = fP+¢> + [p ¢ = 0, we have [, |¢| = 2 [, |l, allowing us to
bound | p |¢| in the following manner, proving the claim:

0 0 2
/ lp| = 2/ lp| = 2/ u(Py)dx > 2/ (I 4+x)"u(P-)ydx = ——u(P-),
P P_ -1 -1 n—+1

where we used that f fdu = f u{f > t}dr for any non-negative j-measurable
f, estimate (28) for —1 < x <O, and the fact that Py = P_.
Let b > 0. Next we estimate fP+ ¢ similarly, applying (28) for —1 < 0 < x:

b b
/ ¢z/ u(P\Px)dxzf W (P) — 1 (Py) dx
Py 0 0

b
> f w(P)— 1 +x)"u(P)dx
0

b+ 1)+! 1
ZbM(P)—% (P)+TM(P)

We then let b = 1 and 1 [, |¢| = Jp, 181 = [p_|¢] = Ap(P-) for some A > 0.
This gives

1 1 n—+1 1
AM(P—)=/ </>Z—/L(P)——~< ) pu(P-) + ——nu(P-),
P, n n n n—+1

implying

2A
lp| =2An(P-) > w(P).
/P nA+(5)" = i
The right-hand side is an increasing function of A and by (27) we know A > ﬁ
This means the right hand side is minimized at this value, so

2 n " p
(n+1)'<n+1> w(P).

L
/|¢|> inu( )=

Finally, we address the tightness of the bounds in the previous theorem.

Proposition 4.2 For all n > 0 there exists an open bounded convex subset P C R"
and convex function ¢ : P — R integrating to zero such that

1 / 2 n o\
wpy L = T <n+1) o
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Proof Fix n. Take P C R” to be the interior of the simplex with vertex set

1 1
{(0,...,0),(’“r ,o,...,o),...,(o,...,o,”Jr )}
n n

and ¢ : P — R to be the function defined by

d(x1, .. xy) =—14+x1+---+ x,.

It is clear that P and ¢ are convex and that inf p ¢ = —1. To evaluate the integrals of
¢ and ||, first let Sy to be the simplex with vertices

{(0,...,0), (x,0,...,0),...,(0,...,0,x)}.

The volume of S, is just fl—',l This is the region where ¢ takes values less than or equal
to x — 1. We can use the same technique from the previous theorem to show

n+l n+l

p /TMP\Sx)dx:f ' i((”“) —x”)dx
Py 1 1 n! n

1L (n41) 1 (n+1 "+‘+ 1
“nonl\ n n+ D'\ n (n+ 1)

1
(n+ 1!

and

e _ffa-om
/11,7_¢_[)M(S(1_X))dx_‘/é ! dx_(n+1)!7

where P, and P_ are again the portions of the domain where ¢ is positive and negative,
respectively. Combined these yield [, ¢ = 0 and [, |¢| =
As (P) is just the volume of S,+1, it follows that

s o= ()
wP) Jp n+1 \n+1)°

_2
(n+D)!"

]

Proposition 4.3 For all n > 0 there exists an open bounded convex set P C R" such
that

[plel
Yy —u(P)infp g
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Proof First, suppose n = 1 and let P = (0, 1). Now, for all integers m, let

2m — 1 —2m%x if x

<
-1 if x >

Om(x) = {

3|3

¢ is convex, and it can be seen that f p $m = 0. It is also the case that

el _n 2
((P)infp ¢y, b m

Letting m — oo shows that the supremum for n = 1 is indeed 2.

Forn > 1,let P, = (0, 1)" and ¢y (x1, ..., Xn) = Pm(x1). Pu.m is still convex
and we still havethatfp ¢n.m = 0and fP |@n., m| = 2—3 Again, we can letm — 00
to show that the supremum is 2 for all n. O

5 Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1 Using Theorem 3.1 and Proposition 3.2 the inequalities of (5) are
equivalent to the inequalities of (6). Theorem 1.1 is now a consequence of Theorem 4.1
O

In proving Theorem 1.3 we heavily rely on the formalism developed in [17] regard-
ing the metric space of geodesic rays.

By &' ¢ PSH(X, 6) we denote the space of finite energy pontentials: u € £ if
/ x 0 = / x @" (where 6] is the non-pluripolar complex Monge—Ampere measure,
defined in [24, Section 1]), moreover f X [u]6)] < oo.

By R' we denote the space of L' Mabuchi geodesic rays [0, 00) 3 1 — u; € !
that are normalized by ugp = 0 and I (u#;) =0, # > 0.

It was shown in [4, Proposition 5.1] that t+ — dj(u;s, vy) is convex for any
{(usds, {v;}; € R'. In[17] this was used to definte the following metric:

‘ . di(uy,
5 (). o)) = tim S0,

We know that (R1 , df) is complete [17, Theorem 1.3 and 1.4], moreover the space of
normalized bounded geodesic rays R is dense in R! [17, Theorem 1.5].

Due to this and the next result it is enough to prove Theorem 1.3 for bounded
geodesic rays:

Lemma 5.1 Suppose that {u{},, (uy € R such that dl"({utj}, {us};) — 0. Then
J{ut]} — J{u;}.

Proof By the lemma below we have that J{u;} = supy u; and J{u,j} = Supy u{.
Since t — d;(u], u;) is convex, we have that dj (uy, u1) < d{({uj};, {uj}) — 0.
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[11, Theorem 5] gives that ||u{ —u1|l;1 — 0. Hartogs’ lemma [25, Proposition 8.4]
now implies that J{u{} = supy u{ — supy uy = J{us}. O

The radial J functional can be expressed in very simple terms:

Lemma5.2 For {u;}; € R! we have that J{u;} = sul)lﬂfor any | > 0. Moreover, in
case {u;};y € R, we also have that J{u,;} = supy o, where i1y := lim;_, ?

Proof We have that J (u;) = + [y u;@" — I(uy) = v [y u;0". By [17, Lemma 2.2]
we obtain that

J (ur)

. su U
= lim —PXH

J{Mt} - t1—1>ngo t—00 1

Since t — supy u; is well known to be linear [3], [19, Lemma 3.2], the first statement
follows.

In case {u;}; € R*>, by [12, Theorem 1, Lemma 3.1] know that supy it;, =
Suptﬂ = supy u1, t > 0, proving the second statement.

By t-convexity we have supy ttg < supy i, = supyuj, t > 0.Letx € X such
that u1(x) = supy u1. By t-convexity we have that

1
supuy = ujp(x) — uo(x) :/ u; (x)dt.
X 0
Since + — 1w, (x) is increasing, and #, < supyuj, we obtain that u,(x) =

tsupy ui, t € [0, 1], giving supy 1o = Supy uj. O

Lemma5.3 For {u;}; € R' we have that di(0, u;) = fX litg|w™ and 0 = [(uy) =
[y o™

Proof Thatd;(0,u;) = f x ltto|" follows from [S, Lemma 3.4]. The argument of [5,
Lemma 3.4] is seen to imply I (u1) = [ tige". O

Given v € PSH(X, 0), we say that v is a model potential if v = P[v], where
P[v] :=usc(sup{h € PSH(X,w), h <0, h <v+C, C € R}).

For more on model potentials we refer to [14], as well as [19, Theorem 3.7], where a
connection with finite energy rays is made, used in the argument of the next lemma.

Lemma5.4 Forany {u;}; € Rlandb <a < supy i we have that

/ " < / " < (supy tto — b)" / "
{itp=a) — Jig=b) = (supy o — )" Jyigza

Proof The argument uses the formalism of Legendre transforms for geodesic rays
going back to [29], further developed in [19].
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The first estimate is trivial. For the second estimate we consider the Legendre
transform of {u;}; € R':

U, :=inf(u; —tt), tve€R.
>0

Itis shown in [19, Theorem 3.7] that i, € PSH(X, w) is a model potential. As a result,
by [21, Theorem 1], [14, Theorem 3.8] we have that [y o} = f{ﬁ,:O} ". Moreover,
due to basic properties of Legendre transforms {iig > t} = {éi; = 0}, in particular,

/ o = / o (29)
x 7 {tto=7)

1
Let now b < a < supy itg. Since T — i, is concave, we know that T — (fX wZ )"
is concave as well ( [16, Theorem B] and [37, Theorem 1.2]). As aresult, we can write
that

1 1 1
(supy 1o — a) / R (a —b) / ! " / o)
(supy o —b) \ Jx * (supy itg — b) \ Jx ‘tswexio ) T\ Jy M)

Comparing with (29), the result follows. O

Finally we arrive at the main result of this section, whose proof will be reminiscent
to that of Theorem 1.2:

Theorem 5.5 Suppose that (X, w) is a compact Kihler manifold and {u;}; € R'.
Then the following sharp inequality holds:

2 n "
. J < d(0, < 2J{u;}. 30
P <n+]> {ury = di(0, ur) < 2J{us} (30)
Proof Due to Lemma 5.1 and [17, Theorem 1.5], it is enough to prove the inequalities
for {u,}, € R satisfying I{u;} = 0. Due to Lemma 5.2, for such rays we have to
argue the following estimates:

2 n n ) <1/|-|n<2 .
. supu — up|w sup ug.
n+1 n+1 Xpo_V X 0 - XPO

Using re-scaling in time, we can further assume that supy 1o = 1, hence it is enough
to argue that

2 n \" 1 -
. < — | l|iolo" <2. (3D
n+1 n+1 V Jx
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We first argue the second estimate which is much more simple. Let X_ := {1 < 0}
and X := {19 > 0}. Since I (u1) = [y tipw”" we have that

L2, .
— luglo"” = — upw" < 2supuo.
\%4 X Vv X4+ X

To address the first estimate, we make the following preliminary calculation:

1
/ litg|w™ = 2/ oo = 2/ / o"dx
X X+ 0 Jig=x}
1
> 2/ (1 —x)"/ o"dx
0 {1to=0}
2 n
= ", (32)
n+1 Jiig=0)

where we used that f fdu = 0+°° u{f > t}dr for any non-negative p-measurable

f and Lemma 5.4 for the parameters 0 < x < supy ttg = 1.
Let b > 0. To estimate f x_ litole", we can use a similar technique to the above:

b b
/ lig| " 2/ / a)"dx:/ (V—/ w")dx
X- 0 JX\{up=x} 0 {io>x}
b
> / (V —(1+x)" w")dx
0 {10>0}

b 1 n+l1 1
=bhV — L/‘ " + / w”’
n+1 Jug=o) n+1 Jig=0)

where in the second line we used Lemma 5.4 again, for the parameters —x < 0 <
supy o = 1.
1 1 . . .
We now let b = ;- and 3 Jx liole” = [y liogle" = — [y iigw" = A [i; -0 @"
for some A > 0. This gives

A/ w">lV—l-<n+l>n/ o / "
lig=0) N n n {119 >0} n+1 Jiig=0)

implying

24
/ lizg|e” :ZA/ " > V.
X (ii0=0) nA+(57) —
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The right-hand side is an increasing function of A and by (32) we know A > ﬁ
This means the right hand side is minimized at this value, so

L

/|M0|w> oy 2 <”>v
(1Y n+1) \ns1

n

This finishes the proof of (31). |

Remark 5.6 The inequalities of the above theorem are sharp due to the examples pro-
duced in the toric case. Indeed, if we take ¢ (xq,...,x,) = —1 +x1 + -+ + x5,
as considered in Proposition 4.2, then t — t¢ will give a toric ray confirming the

n
optimality of the constant _=+ +] . (n”?) in (30).

Similarly, taking ¢, ,, as in the proof of Proposition 4.3, the correspondence ¢ —
t¢,.m gives a toric ray that confirms optimality of the constant 2 in the second ineqality
of (30).

Finally we give an application regarding the initial value problem for geodesic rays,
proving Corollary 1.4 in the process.

As is well known, the initial value problem for smooth geodesics in the space
of Kihler metrics is not well posed [31]. More specifically, in [31, Theorem 1.1]
the authors characterize C> functions v that can arise as the initial tangent vectors
of geodesics existing for time at least 7 > 0, in terms of analytic extension of the
Hamiltonian flow of v. For the the initial value problem of weak geodesic rays we
have below a necessary integral condition instead. To what extent our integral condition
below is sufficient remains to be seen. We hope to return to this problem in the future.

Corollary 5.7 Let {u;}; € R*°. Then the initial tangent vector v = 1y € L (X)
satisfies the following sharp estimates:

2 n \" "
. supv < |[v|w" < 2supuw. 33)
n—+ 1 n-—+ 1 X X X

Proof By Lemmas 5.2 and 5.3 we know that dy(0, u;) = fx luglw™ and J{u;} =
supy to. (33) now follows directly from (30). O

Acknowledgements The bulk of this project was carried out during the summers of 2017 and 2019, in a
project funded by NSF Grant DMS-1610202. The first author is currently partially supported by NSF Grant
DMS-1846942(CAREER). We thank E. Milman and Y.A. Rubinstein for conversations related to the topic
of this paper. We also thank the anonymous referee for numerous comments improving our paper.

References

1. Arezzo, C., Tian, G.: Infinite geodesic rays in the space of Kéhler potentials. Ann. Sc. Norm. Super.
Pisa Cl. Sci. (5) 2(4), 617-630 (2003)

2. Abreu, M.: Kihler geometry of toric manifolds in symplectic coordinates. In: Eliashberg, Y., Khesin,
B., Lalonde, F. (eds.) Symplectic and Contact Topology: Interactions and Perspectives. Fields Institute
Communications, vol. 35, pp. 1-24. American Mathematical Society, Providence (2003)



Optimal asymptotic of the J functional with respect to... Page 190f20 43

10.

1.
. Darvas, T.: Weak geodesic rays in the space of Kihler potentials and the class £(X, w). J. Inst. Math.

13.
14.

15.
. Darvas, T., Di Nezza, E., Lu, C.H.: Log-concavity of volume and complex Monge—Ampere equations

17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

28.
29.

30.
31.

32.
33.

. Berman, R., Boucksom, S., Jonsson, M.: A variational approach to the Yau-Tian—Donaldson conjec-

ture. J. Am. Math. Soc. 34(3), 605-665 (2021)

. Berman, R.J., Darvas, T., Lu, C.H.: Convexity of the extended K-energy and the long time behavior of

the Calabi flow. Geom. Topol. 21(5), 2945-2988 (2017)

. Berman, R.J.,, Darvas, T., Lu, C.H.: Regularity of weak minimizers of the K-energy and applications

to properness and K-stability. Ann. Sci. Ec. Norm. Super. 53(4), 267-289 (2020)

. Blocki, Z.: The complex Monge—Ampére equation in Kéhler geometry, course given at CIME Summer

School in Pluripotential Theory, Cetraro, Italy, July 2011. In: Bracci, F., Fornaess, J.E. (eds.) Lecture
Notes in Mathematics, vol. 2075, pp. 95-142. Springer, Berlin (2013)

. Chen, X.X.: The space of Kihler metrics. J. Differ. Geom. 56, 189-234 (2000)
. Chen, X.X.: On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 12,

607-623 (2000)

. Chen, X.X., Cheng, J.: On the constant scalar curvature Kéhler metrics II. Existence results. J. Am.

Math. Soc. 34, 937-1009 (2021)

da Silva, A.C.: Lectures on Symplectic Geometry, Lecture Notes in Mathematics, vol. 1764. Springer,
Berlin (2008)

Darvas, T.: The Mabuchi geometry of finite energy classes. Adv. Math. 285, 182-219 (2015)

Jussieu 16(4), 837-858 (2017)

Darvas, T.: Geometric pluripotential theory on Kéhler manifolds. Advances in complex geometry.
Contemp. Math., vol. 735, pp. 1-104. American Mathematical Society, Providence, RI (2019)
Darvas, T., Di Nezza, E., Lu, C.H.: Monotonicity of nonpluripolar products and complex Monge-
Ampere equations with prescribed singularity. Anal. PDE 11(8), 2049-2087 (2018)

Darvas, T.: The isometries of the space of Kihler metrics. arXiv:1902.06124

with prescribed singularity. Math. Ann. 379(1-2), 95-132 (2021)

Darvas, T., Lu, C.H.: Geodesic stability, the space of rays, and uniform convexity in Mabuchi geometry.
Geom. Topol. 24(4), 1907-1967 (2020)

Darvas, T., Rubinstein, Y.A.: Tian’s properness conjectures and Finsler geometry of the space of Kihler
metrics. J. Am. Math. Soc. 30(2), 347-387 (2017)

Darvas, T., Xia, M.: The closures of test configurations and algebraic singularity types.
arXiv:2003.04818

Di Nezza, E., Guedj, V.: Geometry and topology of the space of Kéhler metrics on singular varieties.
Compos. Math. 154(8), 1593-1632 (2018)

Di Nezza, E., Trapani, S.: Monge—Ampere measures on contact sets, to appear in Math. Res. Lett.
arXiv:1912.12720

Donaldson, S.K.: Symmetric spaces, Kdhler geometry and Hamiltonian dynamics. American Math-
ematical Society Translations: Series 2, vol. 196, pp. 13-33. American Mathematical Society,
Providence, RI (1999)

Guedj, V.: The metric completion of the Riemannian space of Kdhler metrics. arXiv:1401.7857
Guedj, V., Zeriahi, A.: The weighted Monge—Ampére energy of quasiplurisubharmonic functions. J.
Funct. Anal. 250, 442-482 (2007)

Guedj, V., Zeriahi, A.: Degenerate complex Monge—Ampere equations. EMS Tracts in Mathematics
26 (2016)

Lempert, L.: Isometries in spaces of Kihler potentials. Ann. Polon. Math. 123(1), 423-458 (2019)
Mabuchi, T.: Some symplectic geometry on compact Kéhler manifolds I. Osaka J. Math. 24, 227-252
(1987). Vol. 26, 2016

Milman, E.: Private communication (2020)

Ross, J., Witt Nystrom, D.: Analytic test configurations and geodesic rays. J. Symplectic Geom. 12(1),
125-169 (2014)

Rubinstein, Y.A., Zelditch, S.: The Cauchy problem for the homogeneous Monge—Ampere equation,
1. Toeplitz quantization. J. Differ. Geom. 90, 303-327 (2012)

Rubinstein, Y.A., Zelditch, S.: The Cauchy problem for the homogeneous Monge—Ampére equation,
III. Lifespan. J. Reine Angew. Math. 724, 105-143 (2017)

Semmes, S.: Complex Monge—Ampere and symplectic manifolds. Am. J. Math. 114, 495-550 (1992)
Sjostrom Dyrefelt, Z.: Optimal lower bounds for Donaldson’s J-functional, to appear in Adv. Math.
arXiv:1907.01486


http://arxiv.org/abs/1902.06124
http://arxiv.org/abs/2003.04818
http://arxiv.org/abs/1912.12720
http://arxiv.org/abs/1401.7857
http://arxiv.org/abs/1907.01486

43

Page 20 of 20 T.Darvas et al.

34.
35.
36.
. Witt Nystrom, D.: Monotonicity of non-pluripolar Monge—Ampére masses. Indiana Univ. Math. J.

38.

Tian, G.: The K-energy on hypersurfaces and stability. Commun. Anal. Geom. 2, 239-265 (1994)
Tian, G.: Kdhler—Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1-37 (1997)
Tian, G.: Canonical Metrics in Kéhler Geometry. Birkhéuser, Basel (2000)

68(2), 579-591 (2019)
Zhou, B., Zhu, X.: Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219,
1327-1362 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.



	Optimal asymptotic of the J functional with respect to the d1 metric
	Abstract
	1 Introduction and main results
	2 The L1 geometry of the space of Kähler potentials
	3 Analysis on toric Kähler manifolds
	4 A sharp inequality for convex functions
	5 Proof of Theorems 1.1 and 1.3
	Acknowledgements
	References




