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Abstract
In this paper, we show that the low energy spaces in the prescribed singularity case
Eψ(X , θ, φ)have a natural topologywhich is completelymetrizable. This topology is stronger
than convergence in capacity.

Keywords Kähler manifolds · Pluripotential theory · Monge–Ampère measures ·
Finite energy classes · Kähler–Ricci flow

Mathematics Subject Classification Primary 32U05; Secondary 32Q15 · 53E30 · 54E35

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Prescribed singularity setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The operator Pθ (u, v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Metrics from a quasi-metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Quasi-metric on Eψ(X , θ, φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Properties of the new topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Kähler Ricci flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1 Introduction

Let (X , ω) be a compact Kähler manifold. By the ddc-lemma, any Kähler metric cohomol-
ogous to ω is of the form ωu := ω + ddcu. This led to studying the space

H = {u ∈ C∞(X) : ωu := ω + ddcu > 0}
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of smooth functions on X to find a canonical metric in the same cohomology class as ω.

Mabuchi [26], Semmes [28], andDonaldson [17] independently found aRiemannian structure
on H given by

〈φ,ψ〉u := 1

Vol(X)

∫
X

φψωn
u

for u ∈ H andφ,ψ ∈ TuH = C∞(X).Later, Chen [7] showed that this Riemannian structure
makes H a metric space (H, d2).

Darvas [9] showed that the completion (H, d2) can be identified with (E2(X , ω), d2),
where E2(X , ω) is the space of finite energy introduced by Guedj–Zeriahi [21]. Upon intro-
ducing the Finsler type structure onH,Darvas [8] introduced metrics dp onH for p ≥ 1 and
showed that their completions are (E p(X , ω), dp). The metric (H, d1) and its completion
(E1(X , ω), d1) were useful in studying special metrics on Kähler manifolds [3, 5, 6, 18].

This led to further attempts to find natural complete metrics on the various subspaces
of PSH(X , θ) for varying θ. Recall that, for a smooth closed (1, 1)-form θ we say that an
integrable function u : X → R ∪ {−∞} is θ -psh if locally u can be written as a sum of a
smooth function and a plurisubharmonic function and θ +ddcu ≥ 0 in the sense of currents.
The following list of works illustrates the interest in finding natural metrics on these spaces.

(1) Darvas–Di Nezza–Lu [16] found that the space E1(X , θ) has a complete metric for θ

merely big.
(2) Using approximation by Kähler classes Di Nezza–Lu found that the spaces E p(X , β) for

p ≥ 1 have a complete metric for {β} a nef and big class in H1,1(X , R).

(3) In [30], Trusiani showed that the space E1(X , ω, φ) has a completemetric topologywhere
ω is a Kähler form and φ ∈ PSH(X , ω) is a model potential. The space E1(X , ω, φ) con-
sists of potentials more singular than φ and having finite energy relative to φ. See Sect. 2
for relevant definitions and results about model potentials and spaces with prescribed
singularities.

(4) Xia [32] extended this result to show that the spaces E p(X , θ, φ) have complete metric
space structure for θ having big cohomology class and φ ∈ PSH(X , θ) a model potential.

(5) Most recently, Darvas [10] showed that the space Eψ(X , ω) has a natural completemetric,
when ω is Kähler and ψ is a low energy weight as introduced by Guedj–Zeriahi [21]. In
the process, Darvas used the geodesics on H introduced by [17, 26, 28].

Note that only [10] deals with the low energy weights. Working with the low energy space
is desirable because

E(X , ω) =
⋃
ψ

Eψ(X , ω)

where the union is over all low energy weights (see [21, Proposition 2.2]). However, all the
finite energy spaces E p(X , ω) are contained in E1(X , ω) � E(X , ω). Another method of
measuring distance between potentials u, v ∈ E(X , ω) is proposed by Lempert [24] where
he measures the distance ρ(u, v) by a function ρ(u, v) : (0, V ) → R where V = ∫

X ωn is
the volume of (X , ω).

In [10], the author noted that the metric dψ on the space Eψ(X , ω) satisfies

dψ(u, v) ≤
∫
X

ψ(u − v)(ωn
u + ωn

v ) ≤ 22n+5dψ(u, v)

for any u, v ∈ Eψ(X , ω). In [10], the author asked if the central expression in the above
equation can be shown to satisfy a quasi-triangle inequality, without constructing the metric
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dψ using geodesics inH, and thus show that the spaces Eψ(X , θ) have a quasi-metric space
structure. This is the questionwe answer in this paper, in amore general context of low energy
spaces in the prescribed singularity setting. Note that in the big case and in the prescribed
singularity case, there are no C1,1 geodesics, and hence the methods of [10] do not work.

Theorem 1.1 Let θ be a closed smooth (1, 1)-form whose cohomology class is big. Let φ ∈
PSH(X , θ) be a model potential such that

∫
X θnφ > 0. Then for any u, v ∈ Eψ(X , θ, φ),

Iψ(u, v) :=
∫
X

ψ(u − v)(θnu + θnv ) (1)

is a quasi-metric. Moreover, the topology induced on Eψ(X , θ, φ) by Iψ is completely metriz-
able.

Here we say a fewwords about the prescribed singularity setting. Let φ ∈ PSH(X , θ)with∫
X θnφ > 0. We denote by PSH(X , θ, φ) the set of θ -psh functions u that are more singular

than φ,meaning u ≤ φ+C for some constantC . In particular, PSH(X , θ) = PSH(X , θ, Vθ ).

The set of relatively full mass potentials is given by

E(X , θ, φ) =
{
u ∈ PSH(X , θ, φ) :

∫
X

θnu =
∫
X

θnφ

}

and the set of relatively finite energy is given by

Eψ(X , θ, φ) =
{
u ∈ E(X , θ, φ) :

∫
X

ψ(u − φ)θnu < ∞
}

.

See Sect. 2.1 to learn more about potentials in prescribed singularity setting.
After this we study some properties of the new topology on Eψ(X , θ, φ). The usual

topology on Eψ(X , θ, φ) given by L1(ωn) is not satisfactory for the purposes of studying
Monge–Ampère equation primarily because for uk, u ∈ Eψ(X , θ, φ) such that uk → u in
L1(ωn) does not imply that the non-pluripolar Monge–Ampère measures satisfy θnuk → θnu .

Hence the following result shows that the new topology is stronger and more natural.

Theorem 1.2 If uk, u ∈ Eψ(X , θ, φ) such that Iψ(uk, u) → 0 as k → ∞ then uk → u in
capacity and hence θnuk → θnu weakly as measures. In particular,

∫
X |uk − u|ωn → 0 as

k → ∞ as well.

This result is new in the Kähler case when ψ(t) grows slower than |t |. When ψ(t) = |t |
and φ = Vθ the model potential with minimal singularity, in [1] the authors show that a
closely related functional,

Ĩ (u, v) =
∫
X
(u − v)(θnu − θnV )

satisfy the same properties as in Theorem 1.2. Moreover, in [29] the author shows the same
results using Ĩ for ψ(t) = |t |, θ a Kähler class and φ any model prescribed singularity.

At the endwe give an application to theKähler–Ricci flow.Guedj–Zeriahi [15, 22] showed
that given a potential u ∈ PSH(X , ω) such that u has zero Lelong numbers we have smooth
function ut for t > 0 such that

∂ut
∂t

= log

[
(ω + ddcut )n

ωn

]
, ut → u in L1(ωn) as t → 0. (2)
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If ωt := ω + ddcut , then the above equation is equivalent to

∂ωt

∂t
= −Ric(ωt ) + Ric(ω).

Moreover, these functions satisfy ut → u in capacity as t → 0. In case u ∈ Eψ(X , ω) we
show a stronger convergence ut → u as t → 0 in the following theorem.

Theorem 1.3 If u ∈ Eψ(X , ω) and ut satisfy (2) then Iψ(ut , u) → 0 and thus by Theorem 1.2,
we recover that ut → u in capacity and ωn

ut → ωn
u weakly.

Here we point out that Theorem 1.3 shows that any non-pluripolar measure can be approx-
imated by measures with smooth density using Kähler–Ricci flow.

Organization

In Sect. 2, we setup the notation and mention all the relevant results required for the theorems
we prove. In Sect. 3, we show that Iψ is a quasi-metric on Eψ(X , θ, φ). In Sect. 4, we show
that the induced topology on Eψ(X , θ, φ) is completely metrizable thereby completing the
proof of Theorem 1.1. In Sect. 5, we discuss some relevant properties of the new topology
and prove Theorem 1.2. In Sect. 6, we discuss an application to Kähler Ricci flow and prove
Theorem 1.3.

2 Preliminaries

In this section, we fix the notations and give relevant definitions and results.
We work on a fixed Kähler manifold (X , ω). Let θ be a closed smooth (1, 1)-form on

X . An integrable function u : X → R ∪ {−∞} is a θ -psh if locally u can be written
as a sum of a smooth function and a plurisubharmonic function and θ + ddcu ≥ 0 in
the sense of currents. We denote by PSH(X , θ) the set of all θ -psh functions. Let α ∈
H1,1(X , R) be the cohomology class represented by θ. We say α is big if there exists ε > 0
and u ∈ PSH(X , θ − εω). See [4] to learn more about pluripotential theory on compact
Kähler manifolds in big cohomology classes. In particular, op. cit. describes how to define
the non-pluripolar Monge–Ampère measure θnu for any u ∈ PSH(X , θ).

2.1 Prescribed singularity setting

In [11, 13] the authors developed the theory of pluripotential theory in prescribed singularity
setting. For two potentials u, v ∈ PSH(X , θ), we say that u is more singular than v if
u ≤ v + C for some constant C . We denote by [u] = [v] the fact that u and v have the
same singularity type. Given a potential φ ∈ PSH(X , θ), we denote by PSH(X , θ, φ) the set
of all potentials v ∈ PSH(X , θ) such that v is more singular than φ. To solve the Monge–
Ampère equation with prescribed singularity, Darvas–Di Nezza–Lu [11] defined the space
of relatively full mass potentials as

E(X , θ, φ) :=
{
u ∈ PSH(X , θ, φ) :

∫
X

θnu =
∫
X

θnφ ]
}

.

Next, we want to define some subspaces of E(X , θ, φ) which consists of potentials having
relatively finite ‘ψ-energy’ for some weightψ. By a weightψ,wemean a functionψ : R →
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R such that ψ is even, continuous, ψ(0) = 0, ψ(±∞) = ∞, and on (0,∞) ψ is smooth
and increasing. We say ψ is low energy if ψ is concave on (0,∞) and ψ is high energy if
ψ is convex on (0,∞). We denote by W− the set of all low energy weights. For example,
the weight ψ(t) = |t |p is high energy for p ≥ 1 and low energy for 0 < p ≤ 1. For each
weight ψ ∈ W−, we define the space of potentials with finite ψ-energy relative to φ as

Eψ(X , θ, φ) =
{
u ∈ E(X , θ, φ) :

∫
X

ψ(u − φ)θnu < ∞
}

.

As in the Kähler case, in the prescribed singularity case we also have

E(X , θ, φ) =
⋃

ψ∈W−
Eψ(X , θ, φ).

We list a few results about the spaces Eψ(X , θ, φ) that we use frequently in the rest of the
paper.

Lemma 2.1 (Comparison principle) [11, Corollary 3.6] Let φ ∈ PSH(X , θ) and u, v ∈
E(X , θ, φ). Then ∫

{u<v}
θnv ≤

∫
{u<v}

θnu .

Lemma 2.2 (The Fundamental inequality) [31, Proposition 3.3] If u, v ∈ PSH(X , θ, φ) are
such that u ≤ v ≤ φ then∫

X
ψ(v − φ)θnv ≤ 2n+1

∫
X

ψ(u − φ)θnu .

Thus for any u ∈ Eψ(X , θ, φ) and v ∈ PSH(X , θ, φ) such that u ≤ v we have v ∈
Eψ(X , θ, φ).

Proof We give a simplified proof based on the argument of [13, Lemma 2.4].∫
X

ψ(v − φ)θnv =
∫ ∞

0
ψ ′(t)θnv (v < φ − t)dt

= 2
∫ ∞

0
ψ ′(2t)θnv (v < φ − 2t)dt .

Now observe that {v < φ − 2t} ⊂ {u <
v+φ
2 − t} ⊂ {u < φ − t}, thus using Lemma 2.1

and the fact that θnv ≤ 2nθn(v+φ)/2

≤ 2
∫ ∞

0
ψ ′(2t)θnv

(
u <

v + φ

2
− t

)
dt

≤ 2n+1
∫ ∞

0
ψ ′(2t)θn(v+φ)/2

(
u <

v + φ

2
− t

)
dt

≤ 2n+1
∫ ∞

0
ψ ′(2t)θnu (u < φ − t)dt .

Since ψ is concave, we get ψ ′(2t) ≤ ψ ′(t).

≤ 2n+1
∫ ∞

0
ψ ′(t)θnu (u < φ − t)dt

= 2n+1
∫
X

ψ(u − φ)θnu . �
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Lemma 2.3 (Integrability) Given u, v ∈ Eψ(X , θ, φ) we have∫
X

ψ(u − φ)θnv < +∞.

In particular, if u, v ≤ φ, then∫
X

ψ(u − φ)θnv ≤ 2
∫
X

ψ(u − φ)θnu + 2
∫
X

ψ(v − φ)θnv .

Proof The proof again generalizes the proof of [13, Lemma 2.5] and [21, Proposition 2.5].∫
X

ψ(u − φ)θnv =
∫ ∞

0
ψ ′(t)θnv {t < φ − u}dt

= 2
∫
X

ψ ′(2t)θnv {2t < φ − u}dt

≤ 2
∫
X

ψ ′(t)θnv {u < φ − 2t}dt .

Notice that {u < φ − 2t} ⊂ {u < −t + v} ∪ {v < φ − t}. This gives
θnv {u < φ − 2t} ≤ θnv {u < −t + v} + θnv {v < φ − t}

and Lemma 2.1 gives

≤ θnu {u < −t + v} + θnv {v < φ − t}.
Notice that {u < −t +v} = {u−φ < −t +v −φ}. Since v −φ ≤ 0,we get {u < −t +v} ⊂
{u − φ < −t}. This gives us

≤ θnu {u − φ < −t} + θnv {v − φ < −t}.
Using this we get

≤ 2
∫
X

ψ ′(t)(θnu {u − φ < −t} + θnv {v − φ < −t})

= 2
∫
X

ψ(u − φ)θnu + 2
∫
X

ψ(v − φ)θnv .

Now assume u, v ∈ Eψ(X , θ, φ) then for some C, we have u, v ≤ φ +C . Let ũ = u −C
and ṽ = v − C, so ũ, ṽ ≤ φ. Then,∫

X
ψ(u − φ)θnv =

∫
X

ψ(ũ − φ + C)θnṽ

≤
∫
X

ψ(ũ − φ)θnṽ +
∫
X

ψ(C)θnṽ < ∞.

�

Corollary 2.4 The proposed quasi-metric Iψ (see Eq. (1)) on Eψ(X , θ, φ) is always finite.

Proof Let u, v ∈ Eψ(X , θ, φ). Then

Iψ(u, v) =
∫
X

ψ(u − v)(θnu + θnv )

≤
∫
X
(ψ(u − φ) + ψ(v − φ))(θnu + θnv ).
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Here we used [10, Lemma 2.6] which states that for any a, b ∈ R, and any ψ ∈ W−, we
have ψ(a + b) ≤ ψ(a) + ψ(b). By Lemma 2.3 all the terms in the expression above are
finite. �

Lemma 2.5 (Domination principle) [11, Proposition 3.11]. Let φ ∈ PSH(X , θ) such that∫
X θnφ > 0. Then for u, v ∈ E(X , θ, φ), if θnu ({u < v}) = 0, then u ≥ v.

We also need the following slight generalization of [14, Theorem 2.2], removing the
assumption of uniform boundedness of χk .

Lemma 2.6 Let θ j , j ∈ {1, . . . , n} be smooth closed (1, 1)-forms on X whose cohomology
classes are big. Let u j , ukj ∈ PSH(X , θ j ) are such that ukj → u j in capacity as k → ∞. Let
χk, χ ≥ 0 be quasi-continuous functions such that χk → χ in capacity as k → ∞. Then

∫
X

χθ1u1 ∧ θ2u2 ∧ · · · ∧ θnun ≤ lim inf
k→∞

∫
X

χkθ
1
uk1

∧ θ2
uk2

∧ · · · ∧ θnukn
.

Proof Considerχk,C = min(χk,C).Thenχk,C are uniformly bounded and quasi-continuous
and χk,C → χC in capacity. Therefore, using [14, Theorem 2.2]

∫
X

χCθ1u1 ∧ · · · ∧ θnun ≤ lim inf
k→∞

∫
X

χk,Cθ1
uk1

∧ · · · ∧ θn
u j
n
.

Since χk,C ≤ χk, we have∫
X

χCθ1u1 ∧ · · · ∧ θnun ≤ lim inf
k→∞

∫
X

χk,Cθ1
uk1

∧ · · · ∧ θnukn
≤ lim inf

k→∞

∫
X

χkθ
1
uk1

∧ · · · ∧ θnukn
.

As χC ↗ χ as C → ∞ and applying monotone convergence theorem, we get
∫
X

χθ1u1 ∧ · · · ∧ θnun ≤ lim inf
k→∞

∫
X

χkθ
1
uk1

∧ · · · ∧ θnukn
.

�

The following result is mentioned in [31, Corollary 3.4]. We present a proof here for

completeness.

Lemma 2.7 Let φ ∈ PSH(X , θ) such that
∫
X θnφ > 0. Let u j ∈ Eψ(X , θ, φ) such that

sup
j

∫
X

ψ(u j − φ)θnu j
< ∞.

If u j → u in L1(ωn) for some u ∈ PSH(X , θ), then u ∈ Eψ(X , θ, φ).

Proof Since there exists A such that supX u j ≤ A for all j (see [23, Proposition 8.4]), and
the fact that ψ(a + b) ≤ ψ(a) + ψ(b) for any a, b ∈ R we can assume without loss of
generality that u j , u ≤ φ for all j .

First, we assume that u j ↘ u. This implies that u j → u in capacity. Also,ψ(uk −φ) ≥ 0
are quasicontinuous functions which converge in capacity toψ(u−φ).Thus by Theorem 2.6,
we get that

∫
X

ψ(u − φ)θnu ≤ lim inf
k→∞

∫
X

ψ(uk − φ)θnuk < ∞.
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In general, if u j → u in L1(ωn) and if v j := (supk≥ j uk)
∗, then u j ≤ v j ≤ φ. Thus, by

Lemma 2.2 we get

sup
j

∫
X

ψ(v j − φ)θnv j
≤ 2n+1 sup

∫
X

ψ(u j − φ)θnu j
< ∞.

Since v j ↘ u, by the argument above, we get that∫
X

ψ(u − φ)θnu < lim inf
j→∞

∫
X

ψ(v j − φ)θnv j
< ∞.

Although this shows that u has finite energy, we are yet to show that u has full mass. By
[11, Lemma 3.4] we just need to show that

∫
{u≤φ−C} θn

uC
→ 0 as C → ∞. Here uC =

max(u, φ − C). First, notice that vCj ↘ uC in j → ∞.

∫
X

ψ(uC − φ)θnuC ≤ lim inf
j

∫
X

ψ(vCj − φ)θn
vCj

≤ 2n+1 lim inf
j

∫
X

ψ(u j − φ)θnu j
.

Thus ∫
{u≤φ−C}

θnuC ≤ 1

ψ(C)

∫
X

ψ(uC − φ)θnuC ≤ 2n+1

ψ(C)
sup
j

∫
X

ψ(u j − φ)θnu j
→ 0

as C → ∞. This finishes the proof that u ∈ Eψ(X , θ, φ). �


2.2 The operator P�(u, v)

The notion of model potential and model type singularity was introduced by Darvas–Di
Nezza–Lu [11] to solve the Monge–Ampère equation in the prescribed singularity setting.
In particular, in [13], the authors showed that if φ is a model potential and if μ is a non-
pluripolar positivemeasure such thatμ(X) = ∫

X θnφ > 0, then there unique (up to a constant)
u ∈ E(X , θ, φ) such that θnu = μ.

Recall that for an upper semicontinuous function f , we define Pθ ( f ) to be the largest
θ -psh function lying below f . In particular,

Pθ ( f ) := sup{v ∈ PSH(X , θ) : v ≤ f }.
When u, v ∈ PSH(X , θ), we say Pθ (u, v) := Pθ (min(u, v)). For φ ∈ PSH(X , θ), the
envelope of its singularity type is defined as

Pθ [φ] := sup{v ∈ PSH(X , θ, φ) : v ≤ 0}.
A potential φ ∈ PSH(X , θ) is called a model potential if φ = Pθ [φ]. Their importance in

understanding the space E(X , θ, φ) and PSH(X , θ) and solving the Monge–Ampère equa-
tions is described in [11, 13]. In the rest of the section φ is a model potential.

The following part is adapted from [12]. We will use the following lemma repeatedly in
the arguments ahead.

Lemma 2.8 Let μ be a non-pluripolar measure such that 0 < μ(X) < ∞ and λ > 0. Let
u, v ∈ E(X , θ, φ) satisfy

θnu ≥ eλu−wμ, θnv ≤ eλv−wμ

for some Borel measurable function w : X → R ∪ {−∞} that is bounded from above. Then
u ≤ v on X .
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Proof The proof is same as in [12, Lemma 2.5], adapted to the prescribed singularity case.
Using the comparison principle, we have

∫
{v<u}

eλu−wμ ≤
∫

{v<u}
θnu ≤

∫
{v<u}

θnv ≤
∫

{v<u}
eλv−wμ ≤

∫
{v<u}

eλu−wdμ.

Thus all the expressions are equal and we get
∫

{v<u}
(
eλu − eλv

)
e−wμ = 0.

Since w is bounded from above, e−w is never 0. Thus μ{v < u} = 0 and hence θnv ({v <

u}) = 0. Now the domination principle (see Lemma 2.5) implies that u ≤ v. �

Theorem 2.9 Let u, v ∈ Eψ(X , θ, φ). Then

Pθ (u, v) := sup{w ∈ PSH(X , θ) : w ≤ min(u, v)} ∈ Eψ(X , θ, φ).

In particular, if u, v ∈ E(X , θ, φ), then Pθ (u, v) ∈ E(X , θ, φ).

Proof Let u j = max(u, φ − j) and v j = max(v, φ − j). Then u j and v j have the same
singularity type as φ. Thus by Lemma 2.10 below, there is a unique function ϕ j ∈ E(X , θ, φ)

with the same singularity type as φ such that

θnϕ j
= eϕ j−u j θnu j

+ eϕ j−v j θnv j
. (3)

Notice that θnϕ j
≥ eϕ j−u j θnu j

. Defining μ = e−u j θnu j
, we see that Lemma 2.8 implies

that ϕ j ≤ u j , and similarly, ϕ j ≤ v j . Therefore, ϕ j ≤ min(u j , v j ). Consequently, ϕ j ≤
Pθ (u j , v j ). Now we claim that

sup
j

∫
X

ψ(ϕ j − φ)θnϕ j
< ∞. (4)

By Eq. (3), it is enough to show that

sup
j

∫
X

ψ(ϕ j − φ)eϕ j−u j θnu j
< ∞. (5)

Again, using the fact that ψ(a + b) ≤ ψ(a) + ψ(b), we get
∫
X

ψ(ϕ j − φ)eϕ j−u j θnu j
≤

∫
X

ψ(ϕ j − u j )e
ϕ j−u j θnu j

+
∫
X

ψ(u j − φ)eϕ j−u j θnu j
.

Since ψ(t)et ≤ C for some fixed C and for all t ≤ 0, observing ϕ j ≤ u j we get that

≤ C
∫
X

θnφ +
∫
X

ψ(u j − φ)θnu j
.

As u ∈ Eψ(X , θ, φ), we get Eq. (5) and consequently Eq. (4).
Since ϕ j ≤ u j ≤ u1, we get that supX ϕ j is uniformly bounded. By the proof of

Lemma 5.1, we also get that ϕ j �→ −∞ uniformly. Thus up to choosing a subsequence,
we get that there exists ϕ ∈ PSH(X , θ) such that ϕ j → ϕ in L1(ωn). By Lemma 2.7 we get
that ϕ ∈ Eψ(X , θ, φ). Since ϕ j ≤ Pθ (u j , v j ), we get that ϕ ≤ Pθ (u, v). Thus Lemma 2.2
tells us that Pθ (u, v) ∈ Eψ(X , θ, φ). �
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Lemma 2.10 Let u, v ∈ PSH(X , θ, φ) such that u, v have the same singularity type as φ.

Then there exists a unique ϕ ∈ PSH(X , θ, φ) with the same singularity type as φ such that

θnϕ = eϕ−uθnu + eϕ−vθnv .

Proof First we show uniqueness. Let ϕ̃ be another solution. Let μ = euθnv + evθnu and
w = u + v. Then μ(X) < ∞ and w is bounded from above. Notice that θnϕ = eϕ−wμ and

θn
ϕ̃

= eϕ̃−wμ. By Lemma 2.8 we get that ϕ = ϕ̃.

Let u j = max(u,− j). Note that u j is no longer a θ -psh function, but now it is a bounded
function. Consider the measure

μ j = e−u j θnu + e−v j θnv .

Thenμ j is a non-pluripolar positive measure. By [11, Theorem 4.23], we get that there exists
a unique ϕ j ∈ E1(X , θ, φ) such that

θnϕ j
= eϕ j μ j .

Since u and v have the same singularity type, there exists C such that supX |u − v| ≤ 2C .

Consider the function

w = u + v

2
− C − (n + 1) ln 2.

Observing θnu , θnv ≤ 2nθnw, we get

θnw ≥ ewμ j .

Now Lemma 2.8 implies that w ≤ ϕ j . As w has relative minimal singularity type we obtain
ϕ j has relative minimal singularity type as well. Notice that for j ≥ k, we have μ j ≥ μk .

Thus,

θnϕ j
≥ eϕ j μk and θnϕk = eϕkμk .

Lemma2.8 again shows thatϕk ≥ ϕ j .Thusϕ j is decreases as j → ∞.Letϕ = lim j ϕ j .Then
w ≤ ϕ thus ϕ has the relative minimal singularity type and by continuity of non-pluripolar
Monge–Ampère operator under decreasing sequences, we get that

θnϕ = eϕ−uθnu + eϕ−vθnv .

�


2.3 Metrics from a quasi-metric

If we relax the condition of the triangle inequality from the definition of a metric space, we
obtain what we call a quasi-metric space.

Definition 2.11 (Quasi-metric space) Given a set X a function ρ : X × X → [0,∞) is a
quasi-metric if it satisfies

(1) (Non-degeneracy) For any x, y ∈ X , ρ(x, y) = 0 iff x = y.
(2) (Symmetry) For all x, y ∈ X , ρ(x, y) = ρ(y, x).
(3) (Quasi-triangle inequality)There exists C ≥ 1 such that ρ(x, y) ≤ C(ρ(x, z) + ρ(y, z))

for all x, y, z ∈ X .
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In [27] the authors show that given any quasi-metric, we can construct ametric comparable
to the quasi-metric using a p-chain approach. In particular, if we consider dp : X × X →
[0,∞) given by

dp(x, y) = inf

{∑
i=0

ρ(xn, xn+1)
p : x0, . . . , xn+1 ∈ X such that x = x0, y = xn+1

}

then dp is symmetric, satisfies triangle inequality, but in general dp(x, y) = 0 even if x �= y.
But if 0 < p ≤ 1 is chosen such that (2C)p = 2, then dp is non-degenerate and moreover,

dp(x, y) ≤ ρ(x, y)p ≤ 4dp(x, y).

This shows that if for xn, x ∈ X we have ρ(xn, x) → 0 iff dp(xk, x) → 0. Thus ρ and dp
induce the same topology.

3 Quasi-metric on EÃ(X,�,�)

In this section we prove that the expression

Iψ(u, v) =
∫
X

ψ(u − v)(θnu + θnv )

is a quasi-metric on Eψ(X , θ, φ) where φ ∈ PSH(X , θ) is such that
∫
X θnφ > 0.

Theorem 3.1 (Quasi-triangle inequality) Let φ ∈ PSH(X , θ) be such that
∫
X θnφ > 0, then

for any u, v, w ∈ Eψ(X , θ, φ), the functional

Iψ(u, v) =
∫
X

ψ(u − v)(θnu + θnv )

satisfies

Iψ(u, v) ≤ C(Iψ(u, w) + Iψ(v,w))

for C = 8 · 3n+1.

Proof The proof is inspired from the proof in [19, Theorem 1.6]. We start with
∫
X

ψ(u − v)θnu =
∫ ∞

0
θnu ({ψ(u − v) > t})dt . (6)

Changing the variable t = ψ(2s), we get dt = 2ψ ′(2s)ds. Thus

= 2
∫ ∞

0
ψ ′(2s)θnu ({ψ(u − v) > ψ(2s)})ds (7)

= 2
∫ ∞

0
ψ ′(2s)θnu ({|u − v| > 2s})ds. (8)

Observe that {w − s ≤ u < v − 2s} ⊂ {w < u+2v
3 − s

3 } and {u < v − 2s} ⊂ {u <

w − s} ∪ {w < u+2v
3 − s

3 } to obtain

θnu ({u < v − 2s}) ≤ θnu ({u < w − s}) + θnu

({
w <

u + 2v

3
− s

3

})
. (9)
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Since θnu ≤ 3nθnu+2v
3

and E(X , θ, φ) is convex [11, Corollary 3.15], we get

≤ θnu ({u < w − s}) + 3nθnu+2v
3

({
w <

u + 2v

3
− s

3

})
. (10)

Now Lemma 2.1 gives

≤ θnu ({u < w − s}) + 3nθnw

({
w <

u + 2v

3
− s

3

})
. (11)

Again by the comparison principle we have

θnu ({v < u − 2s}) ≤ θnv ({v < u − 2s}).

By a similar computation as in Eq. (11) we get

≤ θnv ({v < w − s}) + 3nθnw

({
w <

v + 2u

3
− s

3

})
. (12)

Combining Eqs. (11) and (12) we get

θnu ({|u − v| > 2s}) ≤ θnu ({u < v − 2s}) + θnu ({v < u − 2s})
≤ θnu ({u < w − s}) + 3nθnw

({
w <

u + 2v

3
− s

3

})

+ θnv ({v < w − s}) + 3nθnw

({
w <

v + 2u

3
− s

3

})

≤ θnu ({|u − w| > s}) + 3nθnw

({∣∣∣∣w − u + 2v

3

∣∣∣∣ >
s

3

})

+ θnv ({|v − w| > s}) + 3nθnw

({∣∣∣∣w − v + 2u

3

∣∣∣∣ >
s

3

})
. (13)

Combining Eqs. (8) and (13), we get

∫
X

ψ(u − v)θnu ≤ 2
∫ ∞

0
ψ ′(2s)θnu ({|u − w| > s})ds

+ 2
∫ ∞

0
ψ ′(2s)θnv ({|v − w| > s})ds

+ 2 · 3n
∫ ∞

0
ψ ′(2s)θnw

({∣∣∣∣w − u + 2v

3

∣∣∣∣ >
s

3

})
ds

+ 2 · 3n
∫ ∞

0
ψ ′(2s)θnw

({∣∣∣∣w − v + 2u

3

∣∣∣∣ >
s

3

})
ds. (14)
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Since ψ is concave, therefore the slope is decreasing. Hence ψ ′(2s) ≤ ψ ′(s) and ψ ′(2s) <

ψ ′(s/3). Using this in Eq. (14) we get

≤ 2
∫ ∞

0
ψ ′(s)θnu ({|u − w| > s})ds

+ 2
∫ ∞

0
ψ ′(s)θnv ({|v − w| > s})ds

+ 2 · 3n
∫ ∞

0
ψ ′(s/3)θnw

({∣∣∣∣w − u + 2v

3

∣∣∣∣ >
s

3

})
ds

+ 2 · 3n
∫ ∞

0
ψ ′(s/3)θnw

({∣∣∣∣w − v + 2u

3

∣∣∣∣ >
s

3

})
ds. (15)

Changing the variable again t = ψ(s) in the first two terms and t = ψ(s/3) in the last two
terms, we get

= 2
∫ ∞

0
θnu ({ψ(u − w) > t})dt

+ 2
∫ ∞

0
θnv ({ψ(v − w) > t})dt

+ 2 · 3n+1
∫ ∞

0
θnw

({
ψ

(
w − u + 2v

3

)
> t

})
dt

+ 2 · 3n+1
∫ ∞

0
θnw

({
ψ

(
w − v + 2u

3

)
> t

})
dt . (16)

∫
X

ψ(u − v)θnu ≤ 2
∫
X

ψ(u − w)θnu + 2
∫
X

ψ(v − w)θnv

+ 2 · 3n+1
∫
X

ψ

(
w − u + 2v

3

)
θnw

+ 2 · 3n+1
∫
X

ψ

(
w − v + 2u

3

)
θnw. (17)

Using the fact that ψ(a+b) ≤ ψ(a)+ψ(b) for any a, b ∈ R, (see [10, Lemma 2.6]) we get

≤ 2
∫
X

ψ(u − w)θnu + 2
∫
X

ψ(v − w)θnv

+ 2 · 3n+1
∫
X

(
ψ

(
w − u

3

)
+ ψ

(
2(w − v)

3

))
θnw

+ 2 · 3n+1
∫
X

(
ψ

(
w − v

3

)
+ ψ

(
2(w − u)

3

))
θnw. (18)

Since ψ is increasing in (0,∞) and symmetric, we get that ψ(x/3) ≤ ψ(x) and ψ(2x/3) ≤
ψ(x) for any x ∈ R, thus

≤ 2
∫
X

ψ(u − w)θnu + 2
∫
X

ψ(v − w)θnv

+ 4 · 3n+1
∫
X

ψ(w − u)θnw + 4 · 3n+1
∫
X

ψ(w − v)θnw (19)

≤ 4 · 3n+1(I (u, w) + I (v,w)). (20)
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A similar computation for
∫
X ψ(u − v)θnv gives

I (u, v) ≤ 8 · 3n+1(I (u, w) + I (v,w)). (21)

This finishes the proof of quasi-triangle inequality. �

Theorem 3.2 (Non-degeneracy) If u, v ∈ Eψ(X , θ, φ), such that Iψ(u, v) = 0, then u = v.

Proof Let Iψ(u, v) = 0. Then∫
X

ψ(u − v)θnu +
∫
X

ψ(u − v)θnv = 0.

Thus we have u = v almost everywhere with respect to θnu and θnv . Using Lemma 2.5, we
get that u = v. �


The symmetry of Iψ(u, v) follows from the fact that the weight function is an even
function. This finishes the proof of the fact that Iψ is a quasi-metric on Eψ(X , θ, φ).

4 Completeness

In this sectionwefinish the proof ofTheorem1.1 by showing that the quasi-metric is complete.
Weneed the following lemma to construct amonotone sequence and show that it converges.

Theorem 4.1 (Pythagorean identity) Let φ ∈ PSH(X , θ) and let u, v ∈ Eψ(X , θ, φ). We
know that max(u, v) ∈ Eψ(X , θ, φ). Moreover, they satisfy

Iψ(u, v) = Iψ(max(u, v), u) + Iψ(max(u, v), v).

Proof

Iψ(max(u, v), u) =
∫
X

ψ(max(u, v) − u)(θnmax(u,v) + θnu )

=
∫

{v>u}
ψ(v − u)(θnmax(u,v) + θnu ).

Since u �→ θnu is plurifine local, we have 1{v>u}θnmax(u,v) = 1{v>u}θnv

=
∫

{v>u}
ψ(v − u)(θnv + θnu ).

Similarly,

Iψ(max(u, v), v) =
∫
X

ψ(max(u, v) − v)(θnmax(u,v) + θnv )

and the same computation as before gives

=
∫

{u>v}
ψ(u − v)(θnu + θnv ).

Adding the two gives

Iψ(max(u, v), u) + Iψ(max(u, v), v) =
∫
X

ψ(u − v)(θnu + θnv )

= Iψ(u, v).

�
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Proposition 4.2 If u j , u ∈ Eψ(X , θ, φ) such that u j ↘ u or u j ↗ u, then
∫
X

ψ(u j − u)θnu j
→ 0.

Consequently, by the monotone convergence theorem Iψ(u j , u) → 0.

Proof Without loss of generality, we can assume that u j , u ≤ φ ≤ 0. First, we assume that
φ − L ≤ u j , u ≤ φ. We also assume that u j ↘ u and the proof for u j ↗ u is similar.
Thus 0 ≤ u j − u ≤ L, which implies 0 ≤ ψ(u j − u) ≤ ψ(L). For some large enough A,

θ ≤ Aω. Thus PSH(X , θ) ⊂ PSH(X , Aω), and we get that u j , u ∈ PSH(X , Aω). Hence
they are quasi-continuous (at least with respect to Capω). So we can find an open set O such
that u j , u are continuous on X\O and Capω(O) < ε. The next part follows the proof in [12,
Corollary 2.12] adapted to our case. We have∫

X
ψ(u j − u)θnu j

=
∫
X\O

ψ(u j − u)θnu j
+

∫
O

ψ(u j − u)θnu j
.

Since X\O is compact and ψ(u j − u) are continuous functions decreasing to 0, by Dini’s
theorem, we get that the convergence is uniform. So for large enough j, ψ(u j − u) ≤ ε on
X\O.

Moreover, ∫
O

ψ(u j − u)θnu j
≤ ψ(L)

∫
O

θnu j

≤ ψ(L)LnCapθ,φ(O)

≤ ψ(L)Ln f (Capω(O))

≤ ψ(L)Ln f (ε).
Here we used [25, Theorem 1.1] with (θ1, ψ1) = (θ, φ) and (θ2, ψ2) = (ω, 0) and thus
Capθ,φ ≤ f (Capω) where f : R

+ → R
+ is continuous and f (0) = 0. Combining these

two results we get that for large enough j,∫
X

ψ(u j − u)θnu j
≤ εvol(θn) + C̃ f (ε).

Therefore, lim j→∞
∫
X ψ(u j − u)θnu j

→ 0.

Now we remove the assumption that φ − L ≤ u j ≤ φ. Let uLj = max{u j , φ − L} and
uL = max{u, φ − L}. We want to show that∣∣∣∣

∫
X

ψ(u j − u)θnu j
−

∫
X

ψ(uLj − uL)θn
uLj

∣∣∣∣ → 0 as L → ∞

uniformly with respect to j . Since u j ↘ u, we have that u j ≥ u. On the set {u > φ − L},
we have uL = u and uLj = u j . Using the fact that Monge–Ampère measures are plurifine,
we get that ∫

{u>φ−L}
ψ(u j − u)θnu j

=
∫

{u>φ−L}
ψ(uLj − uL)θn

uLj
.

Thus we need to show that∣∣∣∣
∫

{u≤φ−L}
ψ(u j − u)θnu j

−
∫

{u≤φ−L}
ψ(uLj − uL)θn

uLj

∣∣∣∣ → 0.

We will show that both the terms go to 0 as L → ∞ independent of j .
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Notice that since u j ≥ u we have u j − u = (φ − u) − (φ − u j ) ≤ φ − u. Since
ψ is increasing in (0,∞) we have ψ(u j − u) ≤ ψ(φ − u) = ψ(u − φ). Now we can
construct a weight ψ̃ such that ψ̃ is still even, ψ̃(0) = 0 and ψ̃|(0,∞) is smooth increasing
and concave such that ψ(t) ≤ ψ̃(t) and ψ(t)/ψ̃(t) ↘ 0 as t → ∞. Moreover, we require
that u ∈ Eψ̃ (X , θ, φ). Since u j ≥ u, we have u j ∈ Eψ̃ (X , θ, φ) as well. Now

∫
{u≤φ−L}

ψ(u j − u)θnu j
≤

∫
{u≤φ−L}

ψ(u − φ)θnu j

≤ ψ(L)

ψ̃(L)

∫
{u≤φ−L}

ψ̃(u − φ)θnu j
.

Since u, u j ∈ Eψ̃ (X , θ, φ), Lemma 2.3 tells us

≤ 2
ψ(L)

ψ̃(L)

(∫
X

ψ̃(u − φ)θnu +
∫
X

ψ̃(u j − φ)θnu j

)
.

Using Lemma 2.2 and noticing that u ≤ u j ≤ φ we get that

≤ 2(2n+1 + 1)
ψ(L)

ψ̃(L)

∫
X

ψ̃(u − φ)θnu .

Since u has finite ψ̃ energy,
∫
X ψ̃(u − φ)θnu is finite and ψ(L)/ψ̃(L) → 0 as L → ∞

independent of j . The same proof shows that
∫
{u≤φ−L} ψ(uLj − uL)θn

uLj
→ 0 independent of

j .
We can also modify the proof to show that it works when u j ↗ u. �


Lemma 4.3 Let uk ∈ Eψ(X , θ, φ) be a decreasing that is Iψ -Cauchy: for any ε > 0, there
exists N such that Iψ(u j , uk) ≤ ε for j, k ≥ N . Then limk→∞ uk =: u ∈ Eψ(X , θ, φ) and
Iψ(uk, u) → 0.

Proof Find a subsequence of {uk} and still denote it by {uk} such that

Iψ(uk, uk+1) ≤ C−2k

whereC is the same constant as inTheorem3.1. Let u = limk uk .Wehave to show uk �≡ −∞.

We have Iψ(uk, φ) is bounded as k → ∞. To see this, repeated application of Theorem 3.1
gives

Iψ(φ, uk) ≤ C(Iψ(φ, u1) + Iψ(u1, uk))

≤ C Iψ(φ, u1) + C2 Iψ(u1, u2) + C2 Iψ(u2, uk).
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Doing this k times we get

≤ C Iψ(φ, u1) +
k∑
j=2

C j Iψ(u j−1, u j )

≤ C Iψ(φ, u1) +
k∑
j=2

C jC−2 j+2

≤ C Iψ(φ, u1) + C2
∞∑
j=2

C− j

= C Iψ(φ, u1) + C

C − 1
= C̃ .

This gives us
∫
X

ψ(uk − φ)θnφ ≤ I (φ, uk) ≤ C̃ .

Without loss of generalitywe can assume that u1 ≤ φ so uk ≤ u1 ≤ φ.Since uk is decreasing,
we have uk −φ is decreasing, thusψ(uk −φ) is increasing. Applying monotone convergence
theorem we get that

∫
X

ψ(u − φ)θnφ ≤ C̃ .

Thus u �≡ −∞. Hence u ∈ PSH(X , θ). Since u j ↘ u and
∫
X

ψ(uk − φ)θnuk ≤ Iψ(uk, φ) ≤ C̃

using Lemma 2.7 we get that u ∈ Eψ(X , θ). Now we need to show that Iψ(uk, u) → 0. This
means ∫

X
ψ(uk − u)θnu +

∫
X

ψ(uk − u)θnuk → 0.

For the first integral, we notice that uk ≥ u, thus uk − u ≥ 0 and uk − u ↘ 0 and thus
ψ(uk − u) ↘ 0. Thus we can apply the monotone convergence theorem to get

∫
X

ψ(uk − u)θnu → 0.

To show that ∫
X

ψ(uk − u)θnuk → 0

we use Proposition 4.2. Thus Iψ(uk, u) → 0. �


Lemma 4.4 Let {uk} ∈ Eψ(X , θ, φ) be such that

Iψ(uk, uk+1) ≤ C−2k .

Then uk are uniformly bounded from above.
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Proof Let

vk = max{u1, . . . , uk}.
Then repeated application of Theorems 3.1 and 4.1 gives

Iψ(φ, vk) ≤ C Iψ(φ, u1) + C Iψ(u1,max{u1, . . . , uk})
≤ C Iψ(φ, u1) + C Iψ(u1,max{u2, . . . , uk})
≤ C Iψ(φ, u1) + C2 Iψ(u1, u2) + C2 Iψ(u2,max{u2, . . . , uk})
≤ C Iψ(φ, u1) + C2 Iψ(u1, u2) + C2 Iψ(u2,max{u3, . . . , uk}).

Doing this k times we get

≤ C Iψ(φ, u1) + C2 Iψ(u1, u2) + · · · + Ck Iψ(uk−1, uk)

≤ C̃ .

Therefore, ∫
X

ψ(vk − φ)θnφ ≤ C̃ .

Let wk = max{φ, vk} ∈ Eψ(X , θ). Then wk − φ ≥ 0 and as vk is pointwise increasing, we
get thatwk −φ is pointwise increasing. Asψ is increasing on [0,∞),we get thatψ(wk −φ)

is pointwise increasing. Let w := limk→∞ wk . Then ψ(w − φ) = limk→∞ ↗ ψ(wk − φ).

The monotone convergence theorem implies
∫
X

ψ(w − φ)θnφ = lim
k→∞

∫
X

ψ(wk − φ)θnφ ≤
∫
X

ψ(vk − φ)θnφ ≤ C̃ .

Thus the set K = {ψ(w − φ) ≤ (C̃ + 1)/
∫
X θnφ } has positive θnφ -measure. Thus K is

not PSH(X , ω)-polar. We can find a constant A such that θ ≤ Aω. Then PSH(X , θ) ⊂
PSH(X , Aω).

Consider the set

FK =
{
ϕ ∈ PSH(X , Aω) : sup

K
ϕ = 0

}
.

Since K is not PSH(X , Aω)-polar, we know that FK is compact in L1(ωn)-topology. This
follows from [20, Theorem4.7]. Letαk = supK vk .Let e be such thatψ(e) = (C̃+1)/

∫
X θnφ .

Then K = {w − φ ≤ e}. Notice that φ ≤ 0 gives

αk = sup
K

vk ≤ sup
K

(vk − φ) ≤ sup
K

(w − φ) ≤ e.

Define ṽk = vk − αk . Then ṽk ∈ PSH(X , θ) ⊂ PSH(X , Aω). Since supK ṽk = 0, we
have ṽk ∈ FK . Since FK is relatively compact, we have {ṽk} is relatively compact in L1(X)

topology and hence uniformly bounded from above. Therefore vk = ṽk + αk are uniformly
bounded from above and hence uk ≤ vk are uniformly bounded from above. �


The following theorem is the last step in proving completeness of the quasi-metric.

Theorem 4.5 Let {u j } ∈ Eψ(X , θ, φ) be an Iψ -Cauchy sequence. Then there exists u ∈
Eψ(X , θ, φ) such that Iψ(u j , u) → 0.
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Proof Extract a subsequence and still denote it by {u j } such that

Iψ(u j , u j+1) ≤ C−2 j

where C is the same constant as in Theorem 3.1. By Lemma 4.4 {u j } are uniformly bounded
from above. Thus

v j := (sup
k≥ j

uk)
∗ ∈ PSH(X , θ).

Since u j ≤ v j we know using Lemma 2.2 that v j ∈ Eψ(X , θ, φ). Define

vlj := max{u j , u j+1, . . . , u j+l}.
Then vlj ∈ Eψ(X , θ, φ) and vlj ↗ v j almost everywhere. Lemma 2.7 implies Iψ(vlj , v j ) →
0 as l → ∞. Using quasi-triangle inequality twice we get that Iψ(v j , v j+1) ≤
C2 liml→∞ Iψ(vl+1

j , vlj+1). Now,

Iψ(vl+1
j , vlj+1) = Iψ(max{u j , v

l
j+1}, vlj+1).

Using Theorem 4.1, we get

≤ Iψ(u j , v
l
j+1).

Using Theorem 3.1, we get

≤ C Iψ(u j , u j+1) + C Iψ(u j+1,max{u j+1, v
l−1
j+2}).

This again by Theorem 4.1 gives us

≤ C Iψ(u j , u j+1) + C Iψ(u j+1, v
l−1
j+2).

Applying this l times we get

≤
l∑

k=1

Ck Iψ(u j+k−1, u j+k)

≤
l∑

k=1

CkC−2 j−2k+2

≤
∞∑
k=1

C−2 j−k+2

≤ C−2 j+2 1

C − 1
= C−2 j C2

C − 1
.

Thus we obtain that

Iψ(v j , v j+1) ≤ C−2 j C4

C − 1
.

This shows that {v j } is a decreasing Iψ -Cauchy sequence. Thus by Lemma 4.3, we get that
there exists v ∈ Eψ(X , θ, φ) such that Iψ(v j , v) → 0.

Now we want to show that {u j } and {v j } are equivalent sequences, i.e., Iψ(u j , v j ) →
0. Then Iψ(u j , v) ≤ C Iψ(u j , v j ) + C Iψ(v j , v). As both the terms go to 0, we get that
Iψ(u j , v) → 0.
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Now,

Iψ(u j , v
l
j ) = Iψ(u j ,max{u j , v

l−1
j+1})

≤ Iψ(u j , v
l−1
j+1)

≤ C Iψ(u j , u j+1) + C Iψ(u j+1, v
l−1
j+1)

≤ C Iψ(u j , u j+1) + C Iψ(u j+1, v
l−2
j+2)

≤ C Iψ(u j , u j+1) + C2 Iψ(u j+1, u j+2) + C2 Iψ(u j+2, v
l−2
j+2).

Doing this l times we get

≤ C Iψ(u j , u j+1) + C2 Iψ(u j+1, u j+2) + . . .Cl Iψ(u j+l−1, u j+l)

≤
l∑

k=1

CkC−2k−2 j+2

≤ C−2 j C2

C − 1
.

Thus

Iψ(u j , v j ) ≤ C Iψ(u j , v
l
j ) + C Iψ(vlj , v j ) ≤ C−2 j C3

C − 1

by taking limit l → ∞. Thus Iψ(u j , v j ) → 0. Hence we have found v ∈ Eψ(X , θ, φ) such
that Iψ(u j , v) → 0. Thus (Eψ(X , θ, φ), Iψ) is a completely metrizable topological space
when topologized with the quasi-metric Iψ. �


This finishes the proof for completeness for of the quasi-metric Iψ on the space
Eψ(X , θ, φ).

5 Properties of the new topology

The following lemma generalizes [19, Lemma 1.5] and Lemma 2.7.

Lemma 5.1 Let u j ∈ Eψ(X , θ, φ) be a decreasing sequence and ϕ ∈ Eψ(X , θ, φ) be such
that

sup
j∈N

∫
X

ψ(u j − ϕ)θnu j
< ∞.

Then u = lim j u j ∈ Eψ(X , θ, φ).

Proof First we show that u j �→ −∞ uniformly. If, on the contrary, u → ∞ uniformly, up
to choosing a subsequence and relabeling, we can assume that u j < − j . Choose an A such
that θnϕ {ϕ > −A} > 0. Now
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∫
X

ψ(u j − ϕ)θnu j
=

∫ ∞

0
θnu j

{ψ(u j − ϕ) > t}dt

=
∫ ∞

0
ψ ′(s)θnu j

{|u j − ϕ| > s}ds

=
∫ ∞

0
ψ ′(s)θnu j

{ϕ < u j − s}ds

+
∫ ∞

0
ψ ′(s)θnu j

{u j < ϕ − s}ds.

Using comparison principle and the fact that ψ ′(s) ≥ 0, we get

≥
∫ ∞

0
ψ ′(s)θϕ{u j < ϕ − s}ds.

Since u j < − j, we get that {− j < ϕ − s} ⊂ {u j < ϕ − s}. Thus,

≥
∫ ∞

0
ψ ′(s)θnϕ {− j < ϕ − s}ds.

Choosing j > A, we can write

≥
∫ j−A

0
ψ ′(s)θnϕ {ϕ > s − j}ds.

Again, we notice that s < j − A implies that {ϕ > −A} ⊂ {ϕ > s − j}, which gives

≥
∫ j−A

0
ψ ′(s)θnϕ {ϕ > −A}ds

= θnϕ {ϕ > −A}ψ( j − A) → ∞
as j → ∞. This is a contradiction to the fact that

∫
X ψ(u j − ϕ)θnu j

is bounded in j .
Moreoverwe observe that Iψ(u j , ϕ) is bounded.Notice that, like in the previous argument,

we have∫
X

ψ(u j − ϕ)θnϕ =
∫ ∞

0
ψ ′(s)θnϕ {u j < ϕ − s}ds +

∫ ∞

0
ψ ′(s)θnϕ {ϕ < u j − s}.

Using comparison principle for the first expression and the fact that u j ≤ u1 in the second
expression, we get that

≤
∫ ∞

0
ψ ′(s)θnu j

{u j < ϕ − s}ds +
∫ ∞

0
ψ ′(s)θnϕ {ϕ < u1 − s}ds

≤
∫
X

ψ(u j − ϕ)θnu j
+

∫
X

ψ(u1 − ϕ)θnϕ .

Thus
∫
X ψ(u j − ϕ)θnϕ is bounded from above independent of j . Now notice that

∫
X

ψ(u j − φ)θnu j
≤ Iψ(φ, u j ).

By Quasi-triangle inequality for Iψ, we get

≤ C(Iψ(φ, ϕ) + Iψ(u j , ϕ))

≤ C

(
Iψ(φ, ϕ) +

∫
X

ψ(u j − ϕ)θnu j
+

∫
X

ψ(u j − ϕ)θnϕ

)
.
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Thus
∫
X ψ(u j − φ)θnu j

is bounded from above independent of j and u = lim j u j ∈
PSH(X , θ), thus by Lemma 2.7 we get that u ∈ Eψ(X , θ, φ). �


The following theorem is the generalization of [2, Proposition 2.6]. Also whenψ(t) = |t |,
the following theorem appears in [29, Proposition 5.7].

Theorem 5.2 Let u j , u ∈ Eψ(X , θ, φ) be such that Iψ(u j , u) → 0. Then there exits a
subsequence still denoted by u j and v j , w j ∈ Eψ(X , θ, φ) such that v j ≤ u j ≤ w j and v j

increase to u a.e. andw j decrease to u. Thus, by Proposition 4.2 and monotone convergence
theorem, Iψ(v j , u) → 0 and Iψ(w j , u) → 0.

Proof We can pass to a subsequence of (u j ) such that Iψ(u j , u) ≤ C−2 j where C is the
same constant as in Theorem 3.1. By quasi-triangle inequality, Iψ(u j , u j+1) ≤ C−2 j+2. By
Lemma 4.4, u j are uniformly bounded from above. Thus

w j := (sup
k≥ j

uk)
∗ ∈ Eψ(X , θ, φ).

Moreover, by the proof of Theorem 4.5 we get that w j is a decreasing sequence in Eψ(X , θ)

and is equivalent to u j . Hence w j ≥ u j and w j ↘ u and thus Iψ(w j , u) → 0.
For j < k, define vkj = Pθ (min(u j , . . . , uk)). By Theorem 2.9, vkj ∈ Eψ(X , θ, φ).

Moreover, by [11, Lemma 3.7],

θn
vkj

≤
k∑

l= j

1{vkj=ul }θ
n
ul .

Therefore

∫
X

ψ(u − vkj )θ
n
vkj

≤
k∑

l= j

∫
X

ψ(u − ul)θ
n
ul ≤

k∑
l= j

Iψ(u, ul) ≤ C−2 j+2.

Also vkj is decreasing as k → ∞, thus v j := limk vkj ∈ Eψ(X , θ, φ) by Lemma 5.1 v j ∈
Eψ(X , θ, φ).

Since vkj decreases to v j , we get that vkj → v j in capacity. Moreover, the functions

ψ(u − vkj ) → ψ(u − v j ) in capacity. Using Lemma 2.6, we get that

∫
X

ψ(u − v j )θ
n
v j

≤ lim inf
k→∞

∫
X

ψ(u − vkj )θ
n
vkj

≤ C−2 j+2.

Since (supk≥ j uk)
∗ = w j , therefore, supk≥ j uk = w j a.e. As w j ↘ u, we get that

lim supk uk = u a.e. For any v j , we have v j ≤ uk for k ≥ j . Taking limsup we get
v j ≤ lim supk≥ j uk = u. Therefore, v = (lim j v j )

∗ ≤ u.

By the same argument as before, we have,
∫
X

ψ(u − v)θnv ≤ lim inf
j→∞

∫
X

ψ(u − v j )θ
n
v j

≤ lim inf
j→∞ C−2 j+2 = 0.

Thus θnv ({u �= v} = 0. Again using the domination principle (see Lemma 2.5), we get that
u ≤ v everywhere. This shows that u = v.

Thus we found an increasing sequence v j ≤ u j increasing to u. �


123



A complete metric topology on relative low energy spaces Page 23 of 27 56

Corollary 5.3 The Iψ -topology on Eψ(X , θ, φ) is stronger than the usual L1(ωn) topology
on Eψ(X , θ, φ). More precisely, if uk, u ∈ Eψ(X , θ, φ) such that Iψ(uk, u) → 0, then∫

X
|uk − u|ωn → 0

as k → ∞.

Proof It is enough to show L1(ωn) convergence for a subsequence. Letu jk be the subsequence
provided by Theorem 5.2 and v jk and w jk be corresponding monotone sequences. Then
v jk ≤ u jk ≤ w jk and v jk ≤ u ≤ w jk . Then∫

X
|u jk − u|ωn ≤

∫
X
(w jk − v jk )ω

n

≤
∫
X
(w jk − u)ωn +

∫
X
(u − v jk )ω

n

→ 0

by the monotone convergence theorem. Thus the new topology is stronger and has more
open, thus closed sets. �

Theorem 5.4 If u j , u ∈ Eψ(X , θ, φ), such that Iψ(u j , u) → 0 as j → ∞, then u j → u in
capacity.

Proof It is enough to show the convergence in capacity for a subsequence. Let u jk be a
subsequence as provided by Theorem 5.2 and v jk and w jk are corresponding monotone
sequences converging to u. We get that v jk → u and w jk → u in capacity. We want to claim
that u jk → u in capacity as well. Fix ε > 0.

{|u jk − u| > ε} ⊂ {w jk − v jk > ε} ⊂ {w jk − u > ε/2} ∪ {u − v jk > ε/2}.
Taking capacity of above sets we get

Capω{|u jk − u| > ε} ≤ Capω{w jk − u > ε/2} + Capω{u − v jk > ε/2}
and taking limit k → ∞ we get limk→∞ Capω{|u jk − u| > ε} = 0.

Since for any subsequence u jk of u j we can find another subsequence u jkl
for which

liml→∞ Capω{|u jkl
− u| > ε} = 0, we get that lim j→∞ Capω{|u j − u| > ε} = 0. Thus Iψ

convergence implies convergence in capacity. �

Corollary 5.5 (Weak convergence ofmeasures) If uk, u ∈ Eψ(X , θ, φ) such that Iψ(uk, u) →
0, then θnuk → θnu weakly as measures.

Proof Since uk → u in Iψ, Theorem 5.4 shows that uk → u in capacity. Since uk, u have
full mass, [11, Theorem 2.3] (see also [34, Theorem 1] and [33, Theorem 1]) implies that
θnuk → θnu weakly. �


6 Kähler Ricci flow

In [22], authors showed that we can start Kähler Ricci flow from any potential ϕ with zero
Lelong numbers. They showed that if ϕ ∈ PSH(X , ω) has zero Lelong numbers then there
exist smooth potentials ϕt for small time such that

∂ϕt

∂t
= log

[
(ω + ddcϕt )

n

ωn

]
, ϕt → ϕ in L1(ωn) as t → 0. (22)
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Di Nezza–Lu [15, Corollary 5.2] further showed that ϕ j → ϕ in capacity.
Without loss of generality, we can assume that ϕ ≤ −1. In [22, Lemma 2.9], the authors

showed that (for β = 1 and α = 1) for a continuous ω-psh function u, satisfying

(ω + ddcu)n = eu−2ϕωn

we have

(1 − 2t)ϕ(x) + tu(x) + n(t ln t − t) ≤ ϕt .

Since ϕ ≤ −1, we have ϕ ≤ (1 − 2t)ϕ for small t and since u is continuous there exists
some constant C such that C ≤ u. Combining these, we get

ϕ(x) + tC + n(t ln t − t) ≤ ϕt

or

ϕ(x) ≤ ϕt − tC − n(t ln t − t).

Notice that −tC − n(t ln t − t) = f (t) satisfies f (t) → 0 as t → 0.
Since ϕt → ϕ in L1(ωn) as t → 0, we also obtain that ϕt + f (t) converge to ϕ in L1(ωn)

as t → 0.

Lemma 6.1 Given ϕ ∈ Eψ(X , ω) and a sequence ϕ j ∈ Eψ(X , ω) such that

ϕ ≤ ϕ j

and ϕ j → ϕ in L1(ωn) as j → ∞, then Iψ(ϕ j , ϕ) → 0 as j → ∞.

Proof Since ϕ j → ϕ in L1(ωn), we get a subsequence ϕ jk such that ϕ jk → ϕ, a.e. Consider
the functions

v j = sup
k≥ j

ϕ jk .

Then v∗
j ∈ PSH(X , ω) and v∗

j = v j except on a pluripolar set. Moreover, since v∗
j ↘ ϕ ωn

almost everywhere, we get that v∗
j ↘ ϕ everywhere.

This shows that v j ↘ ϕ except on a pluripolar set. This means lim j→∞ supk≥ j ϕk j = ϕ

except on a pluripolar set. Therefore

lim sup
k→∞

ϕ jk = ϕ

except on a pluripolar set. Since ϕ jk ≥ ϕ, we automatically have

lim inf
k→∞ ϕ jk ≥ ϕ

everywhere.
Therefore, ϕ jk → ϕ except on a pluripolar set. Using ϕ ≤ ϕ jk ≤ vk and that vk ↘ ϕ as

k → ∞, we get

lim
k→∞

∫
X

ψ(ϕ jk − ϕ)ωn
ϕ ≤ lim

k→∞

∫
X

ψ(vk − ϕ)ωn
ϕ = 0. (23)

Moreover, since ϕ jk ≥ ϕ, we have
∫
X

ψ(ϕ jk − ϕ)ωn
ϕ jk

=
∫ ∞

0
ψ ′(s)ωn

ϕ jk
(ϕ jk > ϕ + s)ds.
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Using comparison theorem, we get

≤
∫ ∞

0
ψ ′(s)ωn

ϕ(ϕ jk > ϕ + s)ds

=
∫
X

ψ(ϕ jk − ϕ)ωn
ϕ.

Taking limit we get

lim
k→∞

∫
X

ψ(ϕ jk − ϕ)ωn
ϕ jk

≤ lim
k→∞

∫
X

ψ(ϕ jk − ϕ)ωn
ϕ = 0.

Combining these two we get

lim
k→∞ Iψ(ϕ jk , ϕ) = lim

k→∞

∫
X

ψ(ϕ jk − ϕ)(ωn
ϕ jk

+ ωn
ϕ) = 0.

Since this holds for any subsequence of ϕ j , we get that

Iψ(ϕ j , ϕ) → 0.

�

The following corollary generalizes the [22, Proposition 5.2]where they show thatϕt → ϕ

in energy if ϕ ∈ E1(X , ω).

Corollary 6.2 Let ϕ ∈ Eψ(X , ω). Let ϕt be the solution to Eq. (22). Then Iψ(ϕt , ϕ) → 0 as
t → 0.

Proof We saw earlier that the assumptions imply that

ϕ ≤ ϕt + f (t)

where f (t) → 0 as t → 0. Since ϕt + f (t) are also θ -psh functions which converge in
L1(ωn) to ϕ as t → 0, using Lemma 6.1, we get that Iψ(ϕt , ϕ) → 0 as t → 0. �


Note that using Theorem 5.4 and Corollary 5.5 we obtain that ϕt → ϕ in capacity and
ωn

ϕt
→ ωn

ϕ as t → 0, thus finishing the proof of Theorem 1.3.
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