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Abstract

In this paper, we show that the low energy spaces in the prescribed singularity case
Ey (X, 0, ) have anatural topology which is completely metrizable. This topology is stronger
than convergence in capacity.
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1 Introduction

Let (X, w) be a compact Kihler manifold. By the dd¢-lemma, any Kédhler metric cohomol-
ogous to w is of the form w, := @ + dd“u. This led to studying the space

H={uecC®X):w, :=w+ddu> 0}
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of smooth functions on X to find a canonical metric in the same cohomology class as w.
Mabuchi [26], Semmes [28], and Donaldson [17] independently found a Riemannian structure
on H given by

1 n
(@, Vhu /XQW%

~ Vol(X)
foru € Hand ¢, v € T,H = C*(X). Later, Chen [7] showed that this Riemannian structure
makes H a metric space (H, d>).

Darvas [9] showed that the completion (H, d2) can be identified with (E2(X, w), d»),
where £2(X, w) is the space of finite energy introduced by Guedj—Zeriahi [21]. Upon intro-
ducing the Finsler type structure on H, Darvas [8] introduced metrics d,, on H for p > 1 and
showed that their completions are (£7 (X, w), d,). The metric (H, d;) and its completion
(& 1 (X, w), d1) were useful in studying special metrics on Kéhler manifolds [3, 5, 6, 18].

This led to further attempts to find natural complete metrics on the various subspaces
of PSH(X, 0) for varying 6. Recall that, for a smooth closed (1, 1)-form 8 we say that an
integrable function # : X — R U {—o00} is #-psh if locally u can be written as a sum of a
smooth function and a plurisubharmonic function and 6 4+ dd“u > 0 in the sense of currents.
The following list of works illustrates the interest in finding natural metrics on these spaces.

(1) Darvas—Di Nezza—Lu [16] found that the space £'(X, ) has a complete metric for 0
merely big.

(2) Using approximation by Kéhler classes Di Nezza—Lu found that the spaces £7 (X, ) for
p > 1 have a complete metric for {8} a nef and big class in H"!' (X, R).

(3) In[30], Trusiani showed that the space £ (X, w, ¢)hasa complete metric topology where
w is a Kihler form and ¢ € PSH(X, w) is a model potential. The space £' (X, w, ¢) con-
sists of potentials more singular than ¢ and having finite energy relative to ¢. See Sect. 2
for relevant definitions and results about model potentials and spaces with prescribed
singularities.

(4) Xia [32] extended this result to show that the spaces £7(X, 6, ¢) have complete metric
space structure for 6 having big cohomology class and ¢ € PSH(X, ) amodel potential.

(5) Mostrecently, Darvas [10] showed that the space £y, (X, w) has a natural complete metric,
when w is Kéhler and v is a low energy weight as introduced by Guedj—Zeriahi [21]. In
the process, Darvas used the geodesics on H introduced by [17, 26, 28].

Note that only [10] deals with the low energy weights. Working with the low energy space
is desirable because

EX o) =& (X, 0)
v

where the union is over all low energy weights (see [21, Proposition 2.2]). However, all the
finite energy spaces £7 (X, w) are contained in £ L(X, w) C &(X, w). Another method of
measuring distance between potentials u, v € £(X, w) is proposed by Lempert [24] where
he measures the distance p(u, v) by a function p(u, v) : (0, V) — R where V = fx " is
the volume of (X, w).

In [10], the author noted that the metric dy, on the space £y (X, w) satisfies

dy (u,v) < / Y —v)(of + o) <27dy (u, v)
X

for any u,v € £y (X, ). In [10], the author asked if the central expression in the above
equation can be shown to satisfy a quasi-triangle inequality, without constructing the metric

@ Springer



A complete metric topology on relative low energy spaces Page3of27 56

dy using geodesics in H, and thus show that the spaces £y (X, ) have a quasi-metric space
structure. This is the question we answer in this paper, in a more general context of low energy
spaces in the prescribed singularity setting. Note that in the big case and in the prescribed
singularity case, there are no C!'! geodesics, and hence the methods of [10] do not work.

Theorem 1.1 Let 6 be a closed smooth (1, 1)-form whose cohomology class is big. Let ¢ €
PSH(X, 0) be a model potential such that fx 0; > 0. Then for any u, v € £y (X, 0, ¢),

Ly (u, v) IZ/XW(M =)@, +6y) ey

is a quasi-metric. Moreover, the topology induced on £y (X, 0, ¢) by Iy, is completely metriz-
able.

Here we say a few words about the prescribed singularity setting. Let ¢ € PSH(X, 6) with
f X Og > 0. We denote by PSH(X, 6, ¢) the set of 0-psh functions u that are more singular
than ¢, meaning u < ¢ -+ C for some constant C. In particular, PSH(X, 8) = PSH(X, 0, Vj).
The set of relatively full mass potentials is given by

E(X,9,¢):{uePSH(X,@,dU:/Q,:‘:/@;}
X X

and the set of relatively finite energy is given by

5¢(X,0,¢):{ue<€(X,9,¢):/ v — )" <oo}.
X

See Sect. 2.1 to learn more about potentials in prescribed singularity setting.

After this we study some properties of the new topology on &y (X, 6, ¢). The usual
topology on £y (X, 6, ¢) given by L'(") is not satisfactory for the purposes of studying
Monge—-Ampere equation primarily because for uy, u € £y (X, 0, ¢) such that uy — u in
L' (™) does not imply that the non-pluripolar Monge—Ampére measures satisfy Oy, = 0,
Hence the following result shows that the new topology is stronger and more natural.

Theorem 1.2 Ifuy,u € Ey (X, 0, @) such that Iy (uy, u) — 0as k — oo then uy — u in
capacity and hence 6, — 0,/ weakly as measures. In particular, f x luk — ulo" — 0 as
k — o0 as well.

This result is new in the Kihler case when 1/ (¢) grows slower than |7|. When ¥ (¢) = |¢|
and ¢ = Vp the model potential with minimal singularity, in [1] the authors show that a
closely related functional,

i(u,v):/(u—v)(OL’f—O(})
X

satisfy the same properties as in Theorem 1.2. Moreover, in [29] the author shows the same
results using [ for Y (t) = |t], 6 a Kahler class and ¢ any model prescribed singularity.

At the end we give an application to the Kédhler—Ricci flow. Guedj—Zeriahi [15, 22] showed
that given a potential # € PSH(X, w) such that u# has zero Lelong numbers we have smooth
function u; for ¢+ > 0 such that

ou; [(a)—l—ddcu,)”
Lo og |

ot

], u; — uin LY (@) ast — 0. 2)
wn
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If w; := @ + dd‘u,, then the above equation is equivalent to

Ba), . .
ar = —Ric(wy) 4+ Ric(w).

Moreover, these functions satisfy u, — u in capacity as t — 0. In case u € £y (X, w) we
show a stronger convergence u; — u as t — 0 in the following theorem.

Theorem 1.3 Ifu € £y (X, w) and u, satisfy (2) then Iy (u;, u) — 0 and thus by Theorem 1.2,
we recover that u; — u in capacity and o, — o}, weakly.

Here we point out that Theorem 1.3 shows that any non-pluripolar measure can be approx-
imated by measures with smooth density using Kidhler—Ricci flow.

Organization

In Sect. 2, we setup the notation and mention all the relevant results required for the theorems
we prove. In Sect. 3, we show that Iy, is a quasi-metric on £y (X, 6, ¢). In Sect. 4, we show
that the induced topology on &£y (X, 6, ¢) is completely metrizable thereby completing the
proof of Theorem 1.1. In Sect. 5, we discuss some relevant properties of the new topology
and prove Theorem 1.2. In Sect. 6, we discuss an application to Kéhler Ricci flow and prove
Theorem 1.3.

2 Preliminaries

In this section, we fix the notations and give relevant definitions and results.

We work on a fixed Kéhler manifold (X, w). Let 6 be a closed smooth (1, 1)-form on
X. An integrable function u : X — R U {—o0} is a O-psh if locally u can be written
as a sum of a smooth function and a plurisubharmonic function and 6 + ddu > 0 in
the sense of currents. We denote by PSH(X, ) the set of all #-psh functions. Let @ €
H"'(X, R) be the cohomology class represented by 8. We say « is big if there exists ¢ > 0
and u € PSH(X, 6 — ew). See [4] to learn more about pluripotential theory on compact
Kihler manifolds in big cohomology classes. In particular, op. cit. describes how to define
the non-pluripolar Monge—Ampére measure ;] for any u € PSH(X, 6).

2.1 Prescribed singularity setting

In [11, 13] the authors developed the theory of pluripotential theory in prescribed singularity
setting. For two potentials u, v € PSH(X, 0), we say that u is more singular than v if
u < v + C for some constant C. We denote by [#] = [v] the fact that u and v have the
same singularity type. Given a potential ¢ € PSH(X, 0), we denote by PSH(X, 0, ¢) the set
of all potentials v € PSH(X, 0) such that v is more singular than ¢. To solve the Monge—
Ampere equation with prescribed singularity, Darvas—Di Nezza—Lu [11] defined the space
of relatively full mass potentials as

E(X,0,¢) = {uePSH(X,9,¢):/6’;’:/«9$]}.
X X

Next, we want to define some subspaces of £(X, 0, ¢) which consists of potentials having
relatively finite ‘i¢y-energy’ for some weight . By a weight ¢/, we mean a function ¢ : R —
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R such that ¥ is even, continuous, ¥ (0) = 0, ¥ (+00) = oo, and on (0, 00) ¥ is smooth
and increasing. We say v is low energy if i is concave on (0, co) and v is high energy if
¥ is convex on (0, 0co0). We denote by W™ the set of all low energy weights. For example,
the weight v () = |t|” is high energy for p > 1 and low energy for 0 < p < 1. For each
weight ¢ € W™, we define the space of potentials with finite 1-energy relative to ¢ as

Ey(X,0,¢9) = {u €&(X,0,9): / Y — )0, < 00}-
X
As in the Kéhler case, in the prescribed singularity case we also have

x.0.¢)= | &(x.0.9).
yew-

We list a few results about the spaces £y (X, 0, ¢) that we use frequently in the rest of the
paper.

Lemma 2.1 (Comparison principle) [11, Corollary 3.6] Let ¢ € PSH(X,0) and u,v €

E(X,0,¢). Then
/ o 5/ o,
{u<v} {u<v}

Lemma 2.2 (The Fundamental inequality) [31, Proposition 3.3] If u, v € PSH(X, 0, ¢) are
such thatu < v < ¢ then

/w<v—¢>e{:sz”“/ Y — o).
X X

Thus for any u € Ey(X,0,¢) and v € PSH(X,0,$) such that u < v we have v €
Ey(X,0,9).

Proof We give a simplified proof based on the argument of [13, Lemma 2.4].
[e.¢]
/ V(v — )0y :/ ') (v < ¢ —1)dt
X 0

= 2/00 ¥ (2H0) (v < ¢ — 21)dt.
0

Now observe that {v < ¢ — 2t} C {u < ”er‘p —t} C {u < ¢ — t}, thus using Lemma 2.1

and the fact that 0} < 2"6 , )2

ngoow’(zt)93<u< U+¢—t>dt
0 2

o0
< 2"“/0 ¥ 000,142 <u < # - t) dt

<l / ” U200 (u < ¢ — t)dt.
0

Since v is concave, we get ¥/ (2r) < ¥/ (¢1).
< 2l / V(6! (u < ¢ — t)dt
0
="+l / U(u — ¢)or. o
X
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Lemma 2.3 (Integrability) Given u, v € £y (X, 0, ¢) we have
/ Y — ¢ < +oo.
X
In particular, ifu,v < ¢, then
[vw—owr <2 [ va-o+2 [ vo-sn
X X X

Proof The proof again generalizes the proof of [13, Lemma 2.5] and [21, Proposition 2.5].

o0

[vw=er=["vwo <o -
X 0
= 2/ V2NN 2t < ¢ — u}dt
X

< 2/ Y0 u < ¢ — 2t}dt.
X
Notice that {u < ¢ — 2t} C {u < —t + v} U {v < ¢ — t}. This gives
Onfu < —2t} <O0){u < —t+v}+0){v<¢—t}
and Lemma 2.1 gives
<O{u<—t+v}+0}{v<¢p—r1}

Noticethat {u < —t+v}={u—¢ < —t+v—¢}.Sincev—¢ <0, weget{u < —t+v} C
{u — ¢ < —t}. This gives us

<O0H{u—¢ < —t}+0}{v—¢ < —1}.

Using this we get
< 2/ YOO {u—¢ <1} +05{v—¢ <1}
X

=2/ W(u—¢)93+2/ V(v —9)by.
X X

Now assume u, v € £y (X, 6, ¢) then for some C, we haveu,v < ¢+ C.Letit =u—C
andv =v—C,sou,v < ¢. Then,

/w(u—me:}:f i — ¢+ C)6
X X

< / V(i — ¢)05 + / V()5 < oo.
X X
O
Corollary 2.4 The proposed quasi-metric Iy, (see Eq. (1)) on Ey (X, 6, @) is always finite.
Proof Letu,v € £4(X, 6, ¢). Then

Iy(u,v) = / Y(u—v)O) +06))
X

E/X(W(u—qﬁ)-l-lﬂ(v—qﬁ))(@f'i'@ﬁ)-
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Here we used [10, Lemma 2.6] which states that for any @, b € R, and any € W™, we
have ¥ (a + b) < ¥ (a) + ¥(b). By Lemma 2.3 all the terms in the expression above are
finite. O

Lemma 2.5 (Domination principle) [11, Proposition 3.11]. Let ¢ € PSH(X, 0) such that
fX 6’(;' > 0. Then foru,v € £(X, 0, ¢), if0]({u < v}) =0, thenu > v.

We also need the following slight generalization of [14, Theorem 2.2], removing the
assumption of uniform boundedness of .

Lemma2.6 Let67, j € {1,...,n} be smooth closed (1, 1)-forms on X whose cohomology

classes are big. Let u j, ulj- € PSH(X, 07) are such that u’j? — uj in capacity as k — oo. Let
Xk» X = 0 be quasi-continuous functions such that y; — x in capacity as k — oo. Then

X0 NOZ A AOL <liminf | 8l AOE A AB.
X 1 2 n k— 00 X uy uy Uy

Proof Consider xi,c = min(xx, C). Then xi, ¢ are uniformly bounded and quasi-continuous
and xx,c — xc in capacity. Therefore, using [14, Theorem 2.2]

fXCele-.-Aeg Sliminf/ XecOY A A0
X " x "N

k— 00 Upn

Since xx.c < xx, we have

xcOl Ao A 0" <liminf [ ypcO% A---A0" <Tliminf | x0Y Ao AB".
X ! T koo Jx T M u o Jx " u

n k— n

As xc /' x as C — oo and applying monotone convergence theorem, we get
/ Xeull N NG fliminf/ Xkelk INEUN S
X n k—o00 X u'y uk
]

The following result is mentioned in [31, Corollary 3.4]. We present a proof here for
completeness.

Lemma 2.7 Let ¢ € PSH(X, 0) such that fx 9; >0.Letuj € Ey(X, 0, @) such that
sup/ Y(u; —¢)9,;‘/_ < 00.
i JX '

Ifuj — uin L' (") for some u € PSH(X, 0), then u € Ey(X,0,9).

Proof Since there exists A such that supy u; < A for all j (see [23, Proposition 8.4]), and
the fact that Y (a + b) < ¥ (a) + ¥ (b) for any a, b € R we can assume without loss of
generality thatu j, u < ¢ for all j.

First, we assume that u; \ u. This implies that u ; — u in capacity. Also, ¥ (uy —¢) > 0
are quasicontinuous functions which converge in capacity to ¥ (u — ¢). Thus by Theorem 2.6,
we get that

[ vw- <tmint [ - o <.
X k—oo Jx
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In general, if u; — u in LY(»") and if vj = (supkzj up)*, then u; < v; < ¢. Thus, by
Lemma 2.2 we get

sup/ V(v —@)o) < ol sup/ Y(uj— @0, < oo.
j X J X J
Since v; \ u, by the argument above, we get that
/ V(u—¢)o) < liminf/ Y(vj — )b, < oo.
X j—oo Jx J

Although this shows that u has finite energy, we are yet to show that # has full mass. By

[11, Lemma 3.4] we just need to show that f{u§¢_c} 0;’0 — 0as C — oo. Here u€ =

max(u, ¢ — C). First, notice that vjc N\ 1€ in j — oo.
/ v’ —¢)0". <lim inf/ Y8 —¢)p" < 2" lim inf/ Vuj— )l .
X u i Jx vj ioJx i
Thus

U o n
/{u§¢7c}9ucfw(c)/)(¢(u ¢)9c_ ) supf Y — ¢)9 =0

as C — oo. This finishes the proof that u € £y (X, 0, ¢). m]

2.2 The operator Pg(u, v)

The notion of model potential and model type singularity was introduced by Darvas—Di
Nezza—Lu [11] to solve the Monge—Ampere equation in the prescribed singularity setting.
In particular, in [13], the authors showed that if ¢ is a model potential and if p is a non-
pluripolar positive measure such that j.(X) = | x 9(;)’ > 0, then there unique (up to a constant)
ue&(X,0,¢)suchthat ] = .

Recall that for an upper semicontinuous function f, we define Py(f) to be the largest
0-psh function lying below f. In particular,

Py(f) :=sup{v € PSH(X,0) : v < f}.

When u, v € PSH(X, 0), we say Py(u,v) := Pp(min(u, v)). For ¢ € PSH(X, 0), the
envelope of its singularity type is defined as

Py[¢] := sup{v € PSH(X, 6, ¢) : v < 0}.

A potential ¢ € PSH(X, 0) is called a model potential if ¢ = Py[¢]. Their importance in
understanding the space £(X, 0, ¢) and PSH(X, 6) and solving the Monge—Ampere equa-
tions is described in [11, 13]. In the rest of the section ¢ is a model potential.

The following part is adapted from [12]. We will use the following lemma repeatedly in
the arguments ahead.

Lemma 2.8 Let u be a non-pluripolar measure such that 0 < w(X) < oo and » > 0. Let
u,v € (X, 0, @) satisfy

9;1 > eku—wu’ 9;1 < e}\v—wu
for some Borel measurable function w : X — R U {—o00} that is bounded from above. Then

u<vonlX.
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Proof The proof is same as in [12, Lemma 2.5], adapted to the prescribed singularity case.
Using the comparison principle, we have

/ ekufwui/ 9;1 f/ 9:}1 5/ e)wiw/,LE/ e)‘u7U)dpL.
{v<u} {v<u} {v<u} {v<u} {v<u}

Thus all the expressions are equal and we get

Since w is bounded from above, e™" is never 0. Thus u{v < u} = 0 and hence 6] ({v <
u}) = 0. Now the domination principle (see Lemma 2.5) implies that u < v. ]

Theorem 2.9 Letu,v € £y (X, 0, ¢). Then
Py(u,v) :=sup{w € PSH(X,0) : w < min(u, v)} € £y (X, 0, ¢).
In particular, ifu,v € £(X, 6, @), then Py(u,v) € £(X, 0, ¢).

Proof Let u; = max(u,¢ — j) and v; = max(v, ¢ — j). Then u; and v; have the same
singularity type as ¢. Thus by Lemma 2.10 below, there is a unique function ¢; € £(X, 0, ¢)
with the same singularity type as ¢ such that

9(;’./ = e¢~/7”/¢93j + %Y 93,~ 3)
Notice that 9” > e%7"ig" . Defining u = e 9”1, we see that Lemma 2.8 1mp11es

that ¢; < uj, and similarly, ¢; < v;. Therefore, ¢; < min(u;, v;). Consequently, ¢; <
Py(uj,v;). Now we claim that

SUP/ V(pj — $)0,, < oo. )
i Jx
By Eq. (3), it is enough to show that
sup/ Y(g;) —¢))e"’f*“19,fj < 00. )
i Jx
Again, using the fact that ¥ (a + b) < ¥ (a) + ¥ (b), we get
Aw@—mwﬂwgsAwm—waWm+wa—mw”w,
Since ¥ (t)e' < C for some fixed C and for all ¢ < 0, observing @j < uj we get that

sc/%+/ww—@%-
X X

Asu e &y (X, 0, ¢), we get Eq. (5) and consequently Eq. (4).

Since ¢; < u; < uj, we get that supy ¢; is uniformly bounded. By the proof of
Lemma 5.1, we also get that ¢; » —oo uniformly. Thus up to choosing a subsequence,
we get that there exists ¢ € PSH(X, 0) such that ¢; — ¢ in Li(o™). By Lemma 2.7 we get
that ¢ € £y (X, 6, ¢). Since ¢; < Py(u;,v;), we get that ¢ < Py(u, v). Thus Lemma 2.2
tells us that Py(u, v) € £y (X, 0, ¢). O
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Lemma2.10 Let u,v € PSH(X, 0, ¢) such that u, v have the same singularity type as ¢.
Then there exists a unique ¢ € PSH(X, 0, ¢) with the same singularity type as ¢ such that

61 = 716 + V0]

Proof First we show uniqueness. Let ¢ be another solution. Let © = ¢"6.' + €'} and
w = u + v. Then u(X) < oo and w is bounded from above. Notice that 0(’; = ¢ " u and
9;3’ = ¢?~" 1. By Lemma 2.8 we get that ¢ = §.

Letu; = max(u, —j). Note that u; is no longer a 6-psh function, but now it is a bounded
function. Consider the measure

wi=e"0, +e %0,
Then p; is a non-pluripolar positive measure. By [11, Theorem 4.23], we get that there exists
aunique ¢; € gl (X, 6, ¢) such that

N T
ij_eluj.

Since u and v have the same singularity type, there exists C such that supy [u — v| < 2C.
Consider the function
u+v

w = 5 C—(n+1)In2.

Observing 6", 0} < 2"0!" we get
93} > ew,uj.
Now Lemma 2.8 implies that w < ¢;. As w has relative minimal singularity type we obtain
@; has relative minimal singularity type as well. Notice that for j > k, we have u; > py.
Thus,
ng > ey and Oy, = e L.

Lemma2.8 again shows that gy > ¢ ;. Thus ¢; is decreasesas j — 00.Letp =1lim; ¢;. Then
w < @ thus ¢ has the relative minimal singularity type and by continuity of non-pluripolar
Monge—Ampere operator under decreasing sequences, we get that

n __ p—upn Q—vn
Ow_e 0, +e"7"0,.

2.3 Metrics from a quasi-metric

If we relax the condition of the triangle inequality from the definition of a metric space, we
obtain what we call a quasi-metric space.

Definition 2.11 (Quasi-metric space) Given a set X a function p : X x X — [0,00) is a
quasi-metric if it satisfies

(1) (Non-degeneracy) Forany x,y € X, p(x,y) =0iff x = y.

(2) (Symmetry) Forall x,y € X, p(x,y) = p(y, X).

(3) (Quasi-triangle inequality)There exists C > 1 such that p(x, y) < C(p(x,z) + p(y, 2))
forall x,y,z € X.
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In [27] the authors show that given any quasi-metric, we can construct a metric comparable
to the quasi-metric using a p-chain approach. In particular, if we consider d,, : X x X —
[0, 00) given by

dp(x,y) =inf Zp(x,,, Xne1)? 1 x0, ..., xpe1 € X such that x = xg, y = x4
i=0

then d), is symmetric, satisfies triangle inequality, but in general d), (x, y) = O evenif x # y.
Butif 0 < p < 1is chosen such that (2C)? = 2, then d,, is non-degenerate and moreover,

dp(x,y) < p(x, y)P <4dp(x,y).
This shows that if for x,, x € X we have p(x,,x) — 0iff d,(x, x) — 0. Thus p and d),

induce the same topology.
3 Quasi-metricon £y (X, o, P
In this section we prove that the expression
Ly (u,v) = / Y —v)O, +6,)
X
is a quasi-metric on £y (X, 0, ¢) where ¢ € PSH(X, 6) is such that fx 9; > 0.

Theorem 3.1 (Quasi-triangle inequality) Let ¢ € PSH(X, 0) be such that fx 0; > 0, then
foranyu,v,w € £y (X, 0, ¢), the functional

Iy (u,v) = / Y(u—v)©6) +06))
X
satisfies
Iy (u,v) < C(Ly(u, w) + Iy (v, w))
for C =8 .3"+1,

Proof The proof is inspired from the proof in [19, Theorem 1.6]. We start with

[ v - /Oooeﬂwm —v) > . ©)
Changing the variable r = ¥ (2s), we get df = 2y (2s)ds. Thus
=2 /0 TR (Y= v) > Y )ds !
= 2/000 ' 2967 ({u — v| > 2s})ds. ®)
Observe that {w —s < u < v —2s} C {w < “E2 — Syand {u < v —2s} C {u <

w—s}U{w < #—%}mobtain

0" (< v—25)) <0"({u < w—s)) +6" ({w < ”“;2” — %}) ©)
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Since 0] < 3"0%,,, and £(X, 0, ¢) is convex [11, Corollary 3.15], we get
3

<05l < w—s) + 30, ({w< ”J;z” —%}) (10)

Now Lemma 2.1 gives

<0"(lu < w—s)) +3"0" ({w<”zzv—§}>. (11)

Again by the comparison principle we have
0} (fv <u—2s}) <0)({v < u—2s}).

By a similar computation as in Eq. (11) we get

<6]{v<w-—s}) +3"6, ({w< v+32u —%}) (12)

Combining Eqgs. (11) and (12) we get

08 ({lu —v| > 25}) < 0" ({u < v —2s}) + 6" ({v < u —2s})
<6 ({u <w-—s}) +3"6, ({w< u+2v _f}>

3 3

1O (v < w—s}) +3"6" <{w < ”+2“ %})
-3l
3
28
73

2
< 0"({lu — w| > s}) +3"6" (Hw ! + v

|
I

v+2u
3

+ 6] ({lv — w| > s}) +3"0)) (Hw —

Combining Egs. (8) and (13), we get

/ Y — )6 < 2[00 W )0 (1 — w] > shds
X 0

-i-2foo ¥'(29)0) ({lv — w| > s})ds
0

+2.3"/001p’(2s)9{;, <Hw— utv) i})ds

0 3 3

+2-3"/OO v (2s)0" <Hw— vt 2u 5}>ds. (14)
0 3 3
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Since ¥ is concave, therefore the slope is decreasing. Hence v¥/(2s) < v¥/(s) and ¥/ (25) <
¥’ (s/3). Using this in Eq. (14) we get

< 2/00 V)8 (= w| > s)ds
0

+2/ Y¥'()0) ({Jlv — w| > shds
0

+z.3"/°o¢/(s/3)9;; <Hw— ut2v
o 3

S
3

+2-3"/oo v (s/3)6" (Hw _vAu) 5}>ds. (15)
0 3 3

Changing the variable again t = ¥/ (s) in the first two terms and ¢ = 1 (s/3) in the last two
terms, we get

= 2/009:7(“/,(“ —w) > t}dt
0

+2/°°9:}({w<v —w) > 1)t
0

2.3+ /weg ({w<w—”22”> >t}>dl
0
+2.3"+1/009{; <{1/f<w—v+32u>>t}>dt. (16)
0
/Xw(u—v)e::52/}(w<u—w)9:+2fxw<v—w>93
+2.3n+1/w<w_u+2v)93}
« 3

2
+2.3"+1/X1//<w— ”+3 ”)9{;. (17)

Using the fact that ¥ (a +b) < Y (a) + ¥ (b) forany a, b € R, (see [10, Lemma 2.6]) we get

52/ xlf(u—w)Q,:'—i—Z/ Y —w)o)
X X

2t [ (o (55 +o (05) )
antl w—v 2(w — u) "
+2.3 /X(w< . >+w(73 ))ow. (18)

Since  is increasing in (0, oo) and symmetric, we get that ¥ (x/3) < ¥ (x) and ¥ (2x/3) <
Y (x) for any x € R, thus

52/ W(u—w)ﬁ,;'—i-Z/ Y(v—w)o)
X X

+4.3n+1Aw(w_u)9$+4.3n+1/xw(u}—v)9$ (19)

< 4.3 (T, w) + (v, w)). (20)
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A similar computation for [, ¥ (u — v)6] gives
I, v) < 8- 3" (I (u, w) + (v, w)). Q1)
This finishes the proof of quasi-triangle inequality. O
Theorem 3.2 (Non-degeneracy) If u, v € £y (X, 6, ¢), such that I, (u, v) =0, then u = v.
Proof Let I, (u, v) = 0. Then
/ Y —v)6) —i—/ Y —v)6) =0.
X X

Thus we have u = v almost everywhere with respect to 6] and 6. Using Lemma 2.5, we
getthatu = v. O

The symmetry of Iy (u, v) follows from the fact that the weight function is an even
function. This finishes the proof of the fact that I, is a quasi-metric on &y (X, 6, ¢).

4 Completeness

In this section we finish the proof of Theorem 1.1 by showing that the quasi-metric is complete.
We need the following lemma to construct a monotone sequence and show that it converges.

Theorem 4.1 (Pythagorean identity) Let ¢ € PSH(X,0) and let u,v € £4(X,60,¢). We
know that max(u, v) € £y (X, 0, ¢). Moreover, they satisfy

Iy (u, v) = Iy (max(u, v), u) + Iy (max(u, v), v).

Proof
Iy (max(u, v), u) 2/ Y (max(u, v) — ) O + 0i)
X
= f I/I(U - u)(or’:]ax(u,v) + 9;[)
{v>u}
Since u +— 6" is plurifine local, we have ]1{U>u}9r’1’1ax(u!v) =16,
- / U — )@ + 0.
{v>u}
Similarly,

Ly (max(u, v), v) = /Xl//(max(u, V) = V) Oppaxuvy T 6)
and the same computation as before gives
= [ -+,
{u>v}
Adding the two gives
Iy (max (u, v), u) + Iy (max(u, v), v) = / Y —v)6, +6,)
X

= Iy (u, v).
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Proposition 4.2 Ifu;,u € £y (X,0,¢) suchthatu; \ uoru; /' u, then

/le(uj — u)OZ’j — 0.
Consequently, by the monotone convergence theorem Ly (uj, u) — 0.

Proof Without loss of generality, we can assume that uj, u < ¢ < 0. First, we assume that
¢ —L <uj,u < ¢. We also assume that u;  u and the proof for u; " u is similar.
Thus O < u; —u < L, which implies 0 < v (u; — u) < ¥ (L). For some large enough A,
0 < Aw. Thus PSH(X, ) C PSH(X, Aw), and we get that u;, u € PSH(X, Aw). Hence
they are quasi-continuous (at least with respect to Cap,,). So we can find an open set O such
that u j, u are continuous on X\ O and Cap,,(O) < &. The next part follows the proof in [12,
Corollary 2.12] adapted to our case. We have

/ Yuj; — u)%'j = / Yuj; — u)%'j +f Yu; — u)@,fj.
be X\0 o

Since X\ O is compact and v (z; — u) are continuous functions decreasing to 0, by Dini’s
theorem, we get that the convergence is uniform. So for large enough j, ¥ (u; —u) < ¢ on
X\O.

Moreover,

[ v —wey <vaw [
o : o

< V(L)L Capy 4(0)

< W(LIL" f(Cap,,(0))

<Y (L)L" f(e).
Here we used [25, Theorem 1.1] with (61, ¥1) = (0, ¢) and (03, ¥») = (w,0) and thus
Capy , < f(Cap,) where f : RT — R™ is continuous and f(0) = 0. Combining these
two results we get that for large enough j,

/ V(uj — b, < evol®) + C f(e).
X
Therefore, lim_, o [y ¥ (u; — u)QL’]j — 0.

Now we remove the assumption that ¢ — L < u; < ¢. Let u]L = max{u;,¢ — L} and
u’ = max{u, ¢ — L}. We want to show that

V w(uj—u)eﬁ,—/ Vi —uh)or,
X X J

uniformly with respect to j. Since u; “\ u, we have that u; > u. On the set {u > ¢ — L},
we have u” = u and u JL = u . Using the fact that Monge—Ampere measures are plurifine,
we get that

— 0 asL — oo

/ Y —uw)! = / Yt —uhe, .
{u>¢—L) ' ! (u>¢p—L} : uj

Thus we need to show that

/ Y —u)or — / Yl —ut)o", | — 0.
{u<¢—L} / (u<¢—L) uj

We will show that both the terms go to 0 as L — oo independent of ;.
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Notice that since u; > u we have u; —u = (¢ —u) — (¢ —u;) < ¢ — u. Since
¥ is increasing in (0, 00) we have ¥ (u; —u) < ¥ (¢ —u) = ¥ (u — ¢). Now we can
construct a weight 1} such that & is still even, &(0) = 0and \Zl(O,oo) is smooth increasing
and concave such that ¥ (1) < &(t) and ¥ (1)/ &(t) N\ 0 as t — oo. Moreover, we require
that u € SV}(X, 0,¢).Since u; > u, wehaveu; € ‘S&(X’ 0, ¢) as well. Now

[ v s [ w-em
{u=g—L} ’ {u=g—L}

V(L) - "
< — Y(u—@)o, ..
V(L) Ju<p-L) ! !

Since u, u; € 6']/; (X, 0, ¢), Lemma 2.3 tells us

i oo oo,
= (L)( V(u— )6 V(uj— )0,

Using Lemma 2.2 and noticing that u < u; < ¢ we get that

52(2”+1+1>If( )/ U — o).

Since u has finite ¥ energy, fX U — )6, is finite and Y(L)/Y(L) — Oas L — oo
independent of j. The same proof shows that f{u<¢7” l/f(ullf — uL)Gl:’L — 0 independent of
= : j

J.
We can also modify the proof to show that it works when u; " u. O

Lemmad.3 Let u; € Ey (X, 0, @) be a decreasing that is I, -Cauchy: for any ¢ > 0, there
exists N such that Iy (uj, uy) < ¢ for j,k > N. Thenlimy_, o ux =: u € £y (X, 0, ¢) and
Iy (ug, u) — 0.

Proof Find a subsequence of {u;} and still denote it by {u;} such that
Iy (ug, upsy) < €%

where C is the same constant as in Theorem 3.1. Let u = limy uj. We have to show uy # —oo.
We have Iy, (1, ¢) is bounded as k — o00. To see this, repeated application of Theorem 3.1
gives

Ly (P, up) < Cy (P, ur) + Iy (uy, ug))
< Cly(¢,uy) + Czll/f(ulv uz) + Czlxp(uz, ug).
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Doing this k times we get

k
< Cly(¢,uy) +ZC]11//(MJ'—1: uj)
=2
k
< Cly(¢.u) +» Clc2/+2

=2

o0
< Cly(¢un)+C*» C™/
j=2

C -
=CI , — =C.
v (¢ u1)+C—l

This gives us
/ Y(ur — $)0) < I(¢.u) < C.
X
Without loss of generality we can assume thatu; < ¢ souy < u; < ¢. Since uy is decreasing,

we have uy — ¢ is decreasing, thus ¥ (ux — ¢) is increasing. Applying monotone convergence
theorem we get that

/ Y(u— )0y <C.
X

Thus u # —oo. Hence u € PSH(X, 6). Since u; \( u and

/XW(Mk — )0}, < Iy(up.¢) <C

using Lemma 2.7 we get thatu € £y (X, 0). Now we need to show that Iy (uy, u) — 0. This
means

/ Y (up — )0, +/ ¥ (ux — u)o,, — 0.
X X

For the first integral, we notice that uy > u, thus uy —u > 0 and ux — u \( 0 and thus
Y (ux — u) \y 0. Thus we can apply the monotone convergence theorem to get

/ Y (ug —u)d,; — 0.
X
To show that
| = e, o
X
we use Proposition 4.2. Thus Iy (uy, u) — 0. ]
Lemma4.4 Let {ur} € Ey (X, 0, @) be such that

Ly (g, ugsr) < €2,

Then uy are uniformly bounded from above.
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Proof Let
vy = max{uy, ..., ug}.
Then repeated application of Theorems 3.1 and 4.1 gives

Iy (9, vr) < Cly(¢,uy) + Cly(uy, max{uy, ..., ur})
< Cly(p,u1) + Cly(uy, max{u, ..., u})
< Cly (¢, ur) + C*Iy (ur, uz) + C*Iy (uz, maxfua, . .., ur})
< Cly (¢, u1) + C* Iy (ur, un) + C* Iy (uz, max{us, ..., u}).

Doing this k times we get
< Cly($, u) + C* Iy (ur, u2) + - - - + C* Iy (ug—1, ug)
<C.

Therefore,

/ ¥ (v —$)85 < C.
X

Let wy = max{¢, v;} € &y (X, 6). Then wy — ¢ > 0 and as v is pointwise increasing, we
get that wy — ¢ is pointwise increasing. As ¥ is increasing on [0, 0c0), we get that ¥ (wx — ¢)
is pointwise increasing. Let w := limj_, oo wg. Then Y (w — @) = limg— o 7 V(Wi — @).
The monotone convergence theorem implies

fw(w—¢>9$= lim / w<wk—¢>9"s/ Vo — )0 < C.
X k—o00 X X

Thus the set K = {{y(w — ¢) < (C + 1)/fX 0;} has positive Qq';—measure. Thus K is
not PSH(X, w)-polar. We can find a constant A such that &6 < Aw. Then PSH(X, 0) C
PSH(X, Aw).

Consider the set

Fx = {go € PSH(X, Aw) : sup ¢ :0}.
K

Since K is not PSH(X, Aw)-polar, we know that F is compact in L' (w”)-tgpology. This
follows from [20, Theorem 4.7]. Let iy = supg vk. Lete be suchthat ¢ (e) = (C+1)/ fx 9;.
Then K = {w — ¢ < e}. Notice that ¢ < 0 gives

ok = supvx < sup(vx — @) < sup(w — @) <e.
K K K
Define Uy = v — ak. Then vy € PSH(X,0) C PSH(X, Aw). Since supg vx = 0, we
have vy € Fg. Since F is relatively compact, we have {vy} is relatively compact in L'(x )

topology and hence uniformly bounded from above. Therefore vy = vy + o are uniformly
bounded from above and hence u; < vy are uniformly bounded from above. O

The following theorem is the last step in proving completeness of the quasi-metric.

Theorem 4.5 Let {u;} € £y (X, 0, ¢) be an Iy-Cauchy sequence. Then there exists u €
Ey(X,0,¢) such that Iy (uj, u) — 0.
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Proof Extract a subsequence and still denote it by {«;} such that
Ty(uj,ujpr) < c=%

where C is the same constant as in Theorem 3.1. By Lemma 4.4 {u ;} are uniformly bounded
from above. Thus

vj == (supug)* € PSH(X, 0).
k>j

Since u; < v; we know using Lemma 2.2 that v; € &y (X, 0, ¢). Define
vi- s=max{uj, Ujiy, ..., Ujy).

Then vﬁ. €&y (X,0,¢)and vé /" v; almost everywhere. Lemma 2.7 implies Iy, (vé, vj) —
0 as I — oo. Using quasi-triangle inequality twice we get that Iy (v;,vj41) =<
Cc? lim;_ oo I¢(v§+l, ”5‘4-1)- Now,
I,/,(Uj»_H, U§'+1) = Iy (max{u;, véﬂ}, véﬂ).
Using Theorem 4.1, we get
< Iy (uj. Vi)
Using Theorem 3.1, we get
<Cly(uj,ujp1) + Cly(ujpr, max{ujyi, véjrlz}).
This again by Theorem 4.1 gives us
< Cly(uj, ujn) + Cly (ujn, V' ).
Applying this / times we get

[

<Y CM Iy ujror,uj0)
k=1

I
< Ckc—2j—2k+2

k=1
o0
< ZC—Zj—k+2
k=1
2
<cur b e O
C—-1 C—-1
Thus we obtain that
. c4
I N <CcW -,
y (U, vj41) < C -1

This shows that {v;} is a decreasing Iy -Cauchy sequence. Thus by Lemma 4.3, we get that
there exists v € £y (X, 6, ¢) such that Iy, (v;, v) — 0.

Now we want to show that {u;} and {v;} are equivalent sequences, i.e., Iy (u;, v;) —
0. Then Iy (uj,v) < Cly(uj,v;) + Cly(vj,v). As both the terms go to 0, we get that
I¢ (uj, U) — 0.
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Now,

Iy (uj, vi») = Iy (u;, max{u;, vé.:_ll})
< Iy (uj,vigh)
< Cly(uj, ujrn) + Cly(ujp, ')
<Cly(uj,ujy1) +Cly(uji1, Ué'fQ)
<Cly(uj,uji1) + C211//(Mj+1, ujio) + CZL/;(M,/'H, v3122)~
Doing this / times we get

<Cly(uj,ujtr) + Czlw(uj+1, uj2) + . -~Clll/f(uj+l—lv ujyr)

!
< Z cko—2k=2j+2

Thus

C3

Ly(uj,vj) < Cly(uj, v§)+C1¢(v§,vj) < C—zjc —

by taking limit / — oo. Thus Iy (u;, v;) — 0. Hence we have found v € &£y (X, 6, ¢) such
that Iy (uj, v) — 0. Thus (£ (X, 6, ¢), Iy) is a completely metrizable topological space
when topologized with the quasi-metric 7y, O

This finishes the proof for completeness for of the quasi-metric I, on the space
Ey(X,0,9).
5 Properties of the new topology

The following lemma generalizes [19, Lemma 1.5] and Lemma 2.7.

Lemma5.1 Letuj € £y (X, 0, ¢) be a decreasing sequence and ¢ € Ey (X, 0, ¢) be such
that

sup/ Vuj— (p)&,j’j < 00.
jeNJX

Thenu =limju; € £4(X, 0, ¢).

Proof First we show that u; / —oo uniformly. If, on the contrary, u — oo uniformly, up
to choosing a subsequence and relabeling, we can assume that u; < —j. Choose an A such
that 9(;’{90 > —A} > 0. Now
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/ Yu; — <,0)9;’j = f Qgi{W(uj — @) > t}dt
X 0
= /0 1//’(S)9L’Zj{|uj — | > s}ds
= /oo V()0 {p <uj—s)ds
o .

oo
+/ W’(S)O,:’j{uj < @ —s}ds.
0
Using comparison principle and the fact that ¥'(s) > 0, we get
o0
> / VY ()0pfuj < ¢ — s}ds.
0
Since u; < —j, we getthat {—j < ¢ — s} C {u; < ¢ —s}. Thus,
oo
> [ vesp-i <o - sds.
0
Choosing j > A, we can write
j—A
> / WSO > s — j)ds.
0
Again, we notice that s < j — A implies that {¢p > —A} C {¢ > s — j}, which gives
j—A
> / V)0 e > —Alds
0
—0Mg > AW (j — A) > 0
as j — oo. This is a contradiction to the fact that fX Yuj — go)@,fj is bounded in j.

Moreover we observe that Iy, (u j, ¢) is bounded. Notice that, like in the previous argument,
we have

/Xw(uj —9)b, =/0 V' ()0p{u; < ¢ —s}ds +/O V' ()0p{p < uj—s}.

Using comparison principle for the first expression and the fact that u; < u in the second
expression, we get that

oo o0

< [ wes g <o =sias+ [ 60 < - s)ds

0 0
S/ Yuj— )by, +f Y(ur — ¢)bg.

X : X

Thus [y ¥ (u; — ®)b, is bounded from above independent of j. Now notice that
/ Y —@)by, < ly(p.uj).
¥ .

By Quasi-triangle inequality for I, we get
= CUy (@, 9)+ Iy(u;, ¢))

§C(1¢(¢>,<p)+/xw(u,/ — )0y, +/XW(W —¢)9$)~
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Thus [y ¥(u; — ¢)0;; is bounded from above independent of j and u = lim;u; €
PSH(X, 0), thus by Lemma 2.7 we get thatu € £y (X, 0, ¢). O

The following theorem is the generalization of [2, Proposition 2.6]. Also when ¥/ (¢) = |¢|,
the following theorem appears in [29, Proposition 5.7].

Theorem 5.2 Let uj,u € Ey(X,0,¢) be such that Iy(uj,u) — 0. Then there exits a
subsequence still denoted by uj and vj, w; € Ey(X,0,¢) suchthat v; < u; < w; and v;
increase to u a.e. and w j decrease to u. Thus, by Proposition 4.2 and monotone convergence
theorem, Iy (vj, u) — O and Iy (w;, u) — 0.

Proof We can pass to a subsequence of (u;) such that Iy (u;, u) < C —2J where C is the
same constant as in Theorem 3.1. By quasi-triangle inequality, Iy (uj, u;j11) < C ~2j+2 By
Lemma 4.4, u; are uniformly bounded from above. Thus

wj = (supug)* € Ey (X, 0, ).
k>j

Moreover, by the proof of Theorem 4.5 we get that w; is a decreasing sequence in £y (X, 0)
and is equivalent to u ;. Hence w; > u; and w; \( u and thus Iy (w;, u) — 0.

For j < k, define vk = Py(min(uj, ..., ug)). By Theorem 2.9, v]; € &y(X,0,9).
Moreover, by [11, Lemma 3.7],

k
n n
DD
I=j

Therefore
k k )
/Xl/f(u - v’;)el'% < fow(u —un)f, <Y Iy, up) < €22
I=j I=j

Also v’; is decreasing as k — oo, thus v; := limy v? € Ey(X,0,¢) by Lemma 5.1 v; €
Ey(X,0,9).
Since vlj‘. decreases to v;, we get that vf. — v; in capacity. Moreover, the functions

Y(u — v’]‘.) — ¥ (u — v;) in capacity. Using Lemma 2.6, we get that

/ Y(u— ;)0 <lim inf/ U —vhen < cH2,
X J k—o00 X J vj

Since (supkzj up)* = w;j, therefore, SUpg>;j Uk = wj a.e. As w; \ u, we get that
limsup, uy = u a.e. For any v;, we have v; < uy for k > j. Taking limsup we get
j <lim SUpy j Uk = U. Therefore, v = (lim; v;)* < u.
By the same argument as before, we have,

j—o0o

/w(u—u)e,'} gliminf/ ¥ —v))6,, <liminfC~ 2ji+2 = .
X J—7oo Jx

Thus 6]} ({u # v} = 0. Again using the domination principle (see Lemma 2.5), we get that
u < v everywhere. This shows that u = v.
Thus we found an increasing sequence v; < u; increasing to u. O
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Corollary 5.3 The Iy -topology on £y (X, 6, ¢) is stronger than the usual L' (") topology
on &y (X, 0, ¢). More precisely, if ux,u € Ey(X, 0, ¢) such that Iy (uy, u) — 0, then

/ lugy — ulw™ — 0
X

Proof Itisenough to show L' (w") convergence for a subsequence. Let u j, be the subsequence
provided by Theorem 5.2 and vj, and wj, be corresponding monotone sequences. Then
vj <uj <wj andv; <u < wj. Then

/|ujk—u|a)" 5/(wjk—vjk)a)"
X X

ff(wjk —u)w"+/(u—vjk)w”
X X
—0

as k — oo.

by the monotone convergence theorem. Thus the new topology is stronger and has more
open, thus closed sets. O

Theorem 5.4 Ifu;,u € £4(X,0, ), such that Iy (uj,u) — 0as j — oo, thenu; — u in
capacity.

Proof 1t is enough to show the convergence in capacity for a subsequence. Let u;, be a
subsequence as provided by Theorem 5.2 and vj, and wj, are corresponding monotone
sequences converging to u. We get that v;, — u and w;, — u in capacity. We want to claim
that u j, — u in capacity as well. Fix ¢ > 0.

{luj, —ul > e} C{wj, —vj, > e} C{wj, —u>¢e/2}U{u —v; >¢e/2}.
Taking capacity of above sets we get
Cap,{luj —ul > e} < Cap,{wj, —u > &/2} + Cap,{u —vj, > &/2}

and taking limit k — oo we get limy_, oo Cap,,{|u, —u| > e} =0.

Since for any subsequence uj, of u; we can find another subsequence u; for which
lim; oo Capw{lujk[ —u| > ¢} =0, we get that lim;_, o Cap,,{|lu; — u| > ¢} = 0. Thus Iy,
convergence implies convergence in capacity. O

Corollary 5.5 (Weak convergence of measures) Ifuy, u € £y (X, 0, ¢) such that I, (uy, u) —
0, then Olfk — 6)' weakly as measures.

Proof Since uy — u in Iy, Theorem 5.4 shows that u;y — u in capacity. Since uy, u have
full mass, [11, Theorem 2.3] (see also [34, Theorem 1] and [33, Theorem 1]) implies that
6, — 0, weakly. O

6 Kahler Ricci flow

In [22], authors showed that we can start Kéhler Ricci flow from any potential ¢ with zero
Lelong numbers. They showed that if ¢ € PSH(X, w) has zero Lelong numbers then there
exist smooth potentials ¢; for small time such that

0, |:(CU +dde)"
L og | — 2T

ot

o ] . ¢ — ginL' (@) ast — 0. (22)
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Di Nezza—Lu [15, Corollary 5.2] further showed that ¢; — ¢ in capacity.
Without loss of generality, we can assume that ¢ < —1. In [22, Lemma 2.9], the authors
showed that (for § = 1 and @ = 1) for a continuous w-psh function u, satisfying

(0 +ddu)" = " o"
we have
(1 =2px) +tu(x) +n(tInt —t) < ¢;.

Since ¢ < —1, we have ¢ < (1 — 2¢)¢ for small ¢ and since u is continuous there exists
some constant C such that C < u. Combining these, we get

px)+1C+n(tlnr —1) < ¢
or
o(x) <@ —tC —n(tint —1).

Notice that —tC — n(tInt —t) = f(¢) satisfies f(t) — Oast — 0.
Since ¢, — @ in L' (»") ast — 0, we also obtain that ¢; + f(t) converge to ¢ in LYo
ast — 0.

Lemma 6.1 Given ¢ € £y (X, w) and a sequence ¢; € Ey (X, w) such that
Y =9j
and ¢; — @ in L") as j — oo, then Iy (¢, ¢) — 0 as j — oo.

Proof Since ¢; — ¢ in L' (™), we get a subsequence @j, such that 9, — ¢, a.e. Consider
the functions

Vj =Supgj,.
k>j

Then vj € PSH(X, w) and v;? = v; except on a pluripolar set. Moreover, since vj @ @"
almost everywhere, we get that v;’f \\ ¢ everywhere.

This shows that vj "\ ¢ except on a pluripolar set. This means lim—, o0 SUP;> j ¥k, = ¢
except on a pluripolar set. Therefore

limsupg; =¢
k— 00
except on a pluripolar set. Since ¢, > ¢, we automatically have
liminf ;, > ¢
k—oo -
everywhere.
Therefore, ¢, — ¢ except on a pluripolar set. Using ¢ < ¢, < v and that vy \ ¢ as
k — oo, we get
lim / Y(pj, — <P)CUZ < lim / Y(vg — (p)w; =0. (23)
k—oo Jx k—oo Jx

Moreover, since ¢, > ¢, we have

[ vt =0, = [ v, @i > o+
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Using comparison theorem, we get
o0
< / V' ()l (@) > ¢ +5)ds
0
=/ ¥ (@), _(p)w:};-
X
Taking limit we get
Jim [ iy oy, < fim [ iy oy =o.
Combining these two we get
Jim Iy (g 9) = lim /X V@) — 0@, +al) =0.
Since this holds for any subsequence of ¢;, we get that

Iy (¢j, ¢) — 0.
m]

The following corollary generalizes the [22, Proposition 5.2] where they show that ¢; — ¢
in energy if ¢ € £1(X, w).

Corollary 6.2 Let ¢ € £y (X, w). Let ¢; be the solution to Eq. (22). Then Iy (¢;, ) — 0 as
t — 0.

Proof We saw earlier that the assumptions imply that

o=@+ f)
where f(t) — 0ast — 0. Since ¢; + f(¢) are also O-psh functions which converge in
L'(w")topast — 0, using Lemma 6.1, we get that Iy, (¢;, ) — Oast — 0. ]

Note that using Theorem 5.4 and Corollary 5.5 we obtain that ¢; — ¢ in capacity and

a)("ft — a)g as t — 0, thus finishing the proof of Theorem 1.3.
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