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Abstract

Let (X, w) be a Kihler manifold and ¥ : R — R be a concave weight. We show
that H,, admits a natural metric dy whose completion is the low energy space &y,
introduced by Guedj—Zeriahi. As dy is not induced by a Finsler metric, the main
difficulty is to show that the triangle inequality holds. We study properties of the
resulting complete metric space (Ey, dy,).

1 Introduction

Let (X, w) be a compact connected Kéhler manifold. A basic problem in Kéhler
geometry is to find various canonical metrics among the Kihler metrics o’ that are in
the same de Rham cohomology class as w [12, 44]. Due to Hodge theory, such o’ can
be written as o’ = @ + i99u, where u is a smooth function from the space of Kéhler
potentials:

He = {v € C®(X) wy:=w+iddv > 0}.

When studying weak notions of Kihler metrics, or degenerations of smooth ones,
a natural space to consider is the space of w-plurisubharmonic (w-psh) functions
PSH(X, w). With slight abuse of precision, we say that v : X — [—00, 00) is w-psh
if it is usc, integrable and w, := w + i 99v > 0 in the sense of currents.

As pointed out in a series of works by Guedj—Zeriahi, and their collaborators [2, 11,
31, 34] the space of full mass potentials £ = {v € PSH(X, w) [y o} = [y ®"} hasa
prominent role in the study of weak solutions to complex Monge—Ampere equations
with measure theoretic right hand side. Here o] is the non-pluripolar complex Monge—
Ampere measure of v, extending the interpetation of Bedford—Taylor and Cegrell from
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the local case [1, 13]. To study &, itis feasible to consider various weights ¢ : R — Rt
and consider the subspaces with finite ¢-energy:

Ep = {v €& | Ep(v) ::/ PV, < oo}
X

One important point is that £ can be exhausted by a special class of finite energy
subspaces [34, Proposition 2.2]:

£ = U 51/,. (D
yeWw-

Here W™ is the space of weights ¢ : [—o0, oo] — [0, oo] that are even and contin-
uous on R, in addition to being smooth, concave, and strictly increasing on (0, 00),
normalized by ¥ (0) = 0 and v (+00) = oo. Following terminology of [34], we will
call elements of W™ concave weights, and the spaces &y low energy classes (see
Remark 2.1 for superficial differences in our discussion compared to [34]).

As noticed in [4, Section 2], the subspace & = {v € £ fx [v|w) < oo} has a
complete metric topology. This was refined further in [20], where it was noticed that the
more general high energy classes £, are the metric completions of an appropriately
defined Orlicz—Finsler metric structure on the smooth space H,,. Recall that high
energy classes &£, are given by weights x : R — R™, that are even convex functions
satisfying x (0) = 0, x’(1) = 1 and a growth estimate ¢ x’'() < px(¢) (notation:
X €WDH.

Moreover, in [20] it was also pointed out the the resulting metric spaces (€, dy)
admit geodesic segments connecting arbitrary points. This latter fact had a wide
range of applications, including energy properness [5, 14, 15, 26], K-stability [6],
convergence and existence the weak Calabi flow [3, 41], etc.

Unfortunately, for all x € W[j‘ we have the inclusions £, € & C &£. As a
result, it is natural to ask if subspaces of £ not included in &£ can be naturally
topologized/geometrized as well. One may even ask: does £ admit a natural topol-
ogy/geometry? Revisiting (1), one is tempted to first find a natural metric topology
on the low energy spaces &y, as these exhaust £. This is what we accomplish in this
paper.

Not much is known about the metric geometry of low energy spaces, despite their
wast array of applications to weak solutions of complex Monge—Ampere equations
[11, 34]. The only related result seems to be [36, Theorem 1.6], implying existence of
a metrizable uniform space topology on £, := {u € £, fX lul?wl; < oo}, p € (0,1).

To start, let Hﬁ = PSH(X,w)NC L1 where by C! we denote functions on X
with bounded mixed second partial derivatives. Equivalently, ’HHA) is the space of w-psh
potentials with bounded Laplacian. Given ug, u; € H,, let[0, 1] >t — u, € Hf) be
Chen’s weak geodesic joining ug, u1 [17, 18]. We introduce the following candidate
metric on H,,:

dy (uo, u1) 1=/X¢(b'to)wf,’0- (2)
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The above definition of dy bears superficial similarities with the one in [20, (2)],
dealing with the case of high energy classes. However it is not difficult to see that d
is not induced by the length metric of a Finsler structure, contrasting with [20]. Thus
one has to work hard to prove the triangle inequality, this being the first main result
of this paper:

Theorem 1.1 (H,, dy) is a metric space.

Hoping for further analogies with the case of high energy classes [20], one might
mistakenly expect that (H,,, dy ) is at least a length space, and the weak geodesic t —
u, appearing in (2) is a metric dy-geodesic connecting uq, u1. This is unfortunately
not the case either. In fact, when ¥ (t) = |¢|%, @ € (0, 1), one can easily verify that the
dy -length of smooth curves inside H,, is always zero. In addition, this also confirms
that dy, can not be induced by a Finsler metric on H,,.

In fact, the right analogy to follow here is the one coming from the case of toric
Kéhler manifolds (X7, wr), and restricting dy, to the torus invariant potentials Hg.
As is well known, the Legendre transform £ transforms Hg bijectively into the space
Conv,(P) of smooth convex functions on a Delzant polytope P C R" with specific
asymptotics near d P (for details see [32, Section 4] or [19]). By the same calculations
as in [32, Proposition 4.3], we obtain that for ug, u; € ’Hg we have

dy (o, u1) = /P Y (L(up) — L(u1))dp,

with u being the Lebesque measure on P. By Lemma 2.6 below we immediately see
that in this case dy satisfies the triangle inequality trivially.

In addition, the dy-completion of ’HaT) will be LY (P) N Conv(P), the space of
convex functions on P that have finite {-integral. This space is exactly the Legendre
dual of ET, the set of torus invariant potentials in &y [32, Proposition 4.5].

With the toric analogies in mind, our reader is perhaps less surprised by the statement
of Theorem 1.1 above, and might also expect that the metric completion of (H,,, dy)
equals £y, even in the absence of toric symmetries. This is confirmed in our next main
result.

Theorem 1.2 The metric dy, extends to £y, making (Ey, dy) a complete metric space,
that is the metric completion of (H, dy).

This result is analogous to [20, Theorem 2] that deals with the case of high energy
classes. The similarities don’t stop here. Paralleling [20, Theorem 3], the dy, metric is
comparable to a concrete analytic expression:

Theorem 1.3 For any ug, u1 € £y we have
dy (ug, uy) < /Xlﬁ(uo —uwy, + /x Y(uo — uwlt, <22"dy (o, ur).  (3)

This result implies that the expression Iy (uo, u) := [y ¥ (wo—u1)wj + [ ¥ (wo—
ui)wy,, satisfies a quasi-triangle inequality, a result of independent interest. Previously
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430 T. Darvas

this was obtained using analytic methods for the weights () = [t|”, p € (0, 1) in
[36, Theorem 1.6].

As pointed about above, the absence of a background Finsler structure requires a
new approach to the proof of Theorem 1.1. However once the triangle inequality is
obtained, many pluripotential theoretic arguments can be used from [20], and this will
be apparent in the proofs of Theorems 1.2 and 1.3.

Contrasting with the case of high energy classes explored in [20], our methods
suggest that the metric dy is somehow positively curved (see Proposition 4.4 and
Corollary 4.3). However it remains to be seen if such a notion can be defined for non-
geodesic metric spaces, as it is the case here. Since weak geodesic segments are used
to define dy, in (2), it could be beneficial to understand what role these curves play
from a metric/geometric point of view. In a different direction, it would be interesting
to extend our results to more singular spaces. There has been a flurry of activity in
this latter area recently, focusing on the high energy case [29, 42, 43]. Lastly, we
are curious if the quantization scheme of the high energy spaces from [27] has an
analogue in our low energy context. We hope to investigate these questions, as well
as applications in future works.

Organization. In Sect.2 we recall known results about finite energy classes, and
obtain the second order variation of low energy weak quasi-norms. After some pre-
liminary results on our candidate metric dy, in Sect. 3, we prove the triangle inequality
(and Theorem 1.1) in Sect.4. Theorem 1.2 is proved in Sect. 5. Finally, Theorem 1.3
is proved in Sect. 6.

2 Preliminaries

Most of our notation and terminology builds on that of [20, 34] and the survey [23].
We refer our reader to these works for a detailed background. Below we only recall
the basics, adapted to our specific context.

2.1 Finite energy classes

We recall here some basic facts about the class £ C PSH(X, w) and its subspaces.
We refer to the original papers [11, 34] and the recent book [35] for a complete
picture. For v € PSH(X, w), the canonical cutoffs vj,, & € R are given by the formula
v, := max(—h, v). By an application of the comparison principle of Bedford—Taylor
theory, it follows that the Borel measures 1~ _p) (@ + i09vp)" are increasing in /.
As a result, one can make make sense of (w + iddv)" as the limit of these increasing
measures, even if v is unbounded:

o = (w+i3dv)" = lim L= _p(w +iddvy)". 4)
h— 00
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The Mabuchi geometry... 431

With this definition, @] is called the non-pluripolar Monge—Ampere measure of v. It

follows from (4) that
/w,’jf/w”::V,
X X

bringing us to the class of full mass potentials £. By definition, v € £ if

/ a)ﬁ = lim Lys—ny(w+ iaf_)vh)” =V. 4)
X X

h— o0

Suppose ¢ : [—o0, o] — [0, oo] is a continuous even function, with ¢ (0) = 0
and ¢ (£00) = oo. Such ¢ is referred to as a weight. The set of all weights is denoted
by W. By definition, for v € £ we have v € & if

Ey(v) ::/ P ()w, < oo.
X
The two special classes of weights that are most interesting in the theory are:

W- = {w eWw | Y is concave, strictly increasing, and smooth on (0, co)},

W:,r = {X ew | x is convex and tx'(t) < px(t), t € R},

where p > 1. We note the sign difference between our convention for W™, Wi, and
the ones in [34] and [22, Section 2.3].

Of particular importance are the weights x,(t) = |¢|”, p > 0, and the associated
classes £, = &y,. Note that x, € W, for p > 1 and x, € W~ for0 < p < 1. The
case p = | interpolates between convex and concave energy classes since

5)( C51 C&p,

forany x € W and ¢ € W™,
In this work we will be focusing on the concave weights YW~ . As mentioned in the
introduction, the interest in them comes from the following fact [34, Proposition 2.2]:

E=vely |YyeWw ) 6)

Remark 2.1 To be precise, in [34] the authors proved (6) for concave weights 1 that
are not necessarily smooth on (0, co). However it is elementary to see that for a non-
smooth concave weight ¢ we can find another concave weight 1/7, smooth on (0, c0),
such that &, = &7 . Indeed, one can even make sure that 1y — ¥ is bounded. Because
of this, very little is gained from working with more general concave weights. For
sake of brevity we leave it to the interested reader to work out the details of our results
in the case when the weights ¢ € YW~ are not assumed to be smooth on (0, c0). This
can be carried out using approximation, much in the same way as it is done in [20].
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432 T. Darvas

The following result is sometimes called the “fundamental estimate”:

Proposition 2.2 [34,Lemma 2.3, Lemma3.5] Let ¢ € W’UW;F, p=>LIfu,veéy
withu < v <0 then

Ey(v) < CEp(u).

Here C > 0 depends only on p.

If € W~ UWF, p > 1 then the ¢-energy has a very useful continuity property:

Proposition 2.3 [34, Proposition5.6] Let¢ € VV_UVV;,|r and{u;}jen C PSH(X, w)N
L is a sequence decreasing to u € PSH(X, w). Ifsup; Eg(uj) < oo thenu € Ey.
Moreover we have

Ey(u) = lim Eg(u;j).
j—00

Using the canonical cutoffs, the last two results imply the very important “monotonicity
property”:

Corollary 2.4 Letp € W™ UW, p> 1. Ifu <vandu € Ey then v € &.

We note that the continuity property of the Monge—Ampere operator from Bedford—
Taylor theory [1] is also preserved in this more general setting:

Proposition 2.5 [11, Theorem 2.17] Suppose {vilken C E(X,w) decreases
(increases a.e.) to v € E(X, w). Then v — w); weakly.

A more general weak convergence result is proved in [23, Proposition 2.20], and
the remark following it.

2.2 The L2 metric and weak geodesics

As introduced by Mabuchi, and independently by Semmes and Donaldson, H,, can
be endowed with a natural infinite dimensional L?-type Riemannian metric:

1

fx o8

One can compute the Levi—Civita connection V(,(-) of this inner-product and the
associated geodesic equation. For a thorough discussion of the > Mabuchi—Semmes—
Donaldson geometry, as well as its Levi-Civita connection, we refer to the surveys [8,
Section 4], [23, Section 3.1], as well as the original papers [17, 30, 39, 40].

Unfortunately smooth geodesics connecting arbitrary ug, u; € H, don’texist,buta
weak notion of geodesic was studied by Chen [17]. His construction can be generalized
to construct weak geodesic segments connecting points of PSH(X, w) N L (X).
Following Berndtssson, we recall how this argument works.

(e, Bl = / waBol, a, B € T,Hy = C(X), ™
X
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The Mabuchi geometry... 433

As before, let S C C be the strip {0 < Re s < 1} and @ be the pullback of w to the
product § x X. As argued in [7, Section 2.1], for ug, u; € PSH(X, w) N L*°(X) the
following Dirichlet problem has a unique solution:

u € PSH(S x X, ®) N L°(S x X)

(@+idu)"T' =0

u+ir,x) =u(t,x)vVx e X,t € (0,1),r e R

tl_i)r(l)l’1 u(t,x) =up1(x),vx € X. (8)

Since the solution # invariant in the imaginary direction, we denote it by [0, 1] > ¢ —
u; € PSH(X, w) N L™ and call it the weak geodesic joining ug and u;.

In case ug, u; € Hy, in [17] it was proved that Au € L*°(S x X). Such a curve
0,113 ¢ — u, € PSH(X,w) N CH! =: ’Hﬁ is called a Cl’l—geodesic.

A curve [0,1] 5 t+ — v; € PSH(X, w) is called a subgeodesic if v(s,x) :=
VRes (X) € PSH(S x X, @). We recall that the solution u of (8) is constructed as the
upper envelope

u=supv, )
vesS

where S is the following set of weak subgeodesics:
S= {(0, 1) 3t — v, € PSH(X, w) is a subgeodesic with liI(I)ll v < uo,l} .
t—0,
For a thorough discussion of weak geodesics we refer to Sect. 3 in the survey [23].

2.3 First and second order variation of weak quasi-norms

To start, we observe that concave weights are subadditive:

Lemma 2.6 Letyr € W™. Then ) is subadditive, i.e., Y (a+b) < ¥ (a)+y(b), a,b €
R.

Proof Since ¥ is increasing on [0, co) we have that Y (a + b) = ¥ (la + b|) <
¥ (Ja| + |b]). On the other hand, since 94 is decreasing on (0, 0o0), we can finish the
proof in the following way:

|al
V(lal) = ¥(al) — ¥ (0) :/o A (r)dt

lal+]b]|
> /hl 0+ (dt = Y (lal + b)) — ¥ (1D]).

O
To any concave weight ¥ € W™, and a finite measure space (Y, ), one

can associate the space L}f. These will be p-measurable functions f, such that
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434 T. Darvas

fY Y (f)du < oo. For such functions f, we can associate the a weak quasi-norm
that is only homogeneous, and typically does not satisfy (even weaker versions of) the
triangle inequality:

1 fllyys = inf{N > 0 st /Y V(N < 1), (10)

When ¢ € Wl'f, the above quantity does define a bona-fide norm, and these are
used in the Kéhler geometry literature for approximation of L? Finsler metrics [20,
24]. Despite the fact that in our case the triangle inequality fails, these weak quasi-
norms will still be important in our discussion. To note, compared to [20, (13)], our
definition in (10) is slightly different. There, to obtain the Holder inequality [20, (14)],
we needed a version of (10) that is invariant with respect to taking scalar multiples of
Y. Our definition here is intentionally not scale invariant, since we need exactly this
property in the last step of the proof of Proposition 4.4 below.

Givenu € Hy and f € Lan, we will denote || f ||y, p simply as || £y, .. To start,
we note the following elementlzlu'y convergence result.

Lemma 2.7 Let pu and i be finite Borel measures on Y. Let v € W~, and fi, f
be bounded functions that are pi-measurable and w-measurable respectively. If

Jy v(cfodur — [y ¥(cfHdu forall ¢ € [0, 00), then || filly, e = If lly -

Proof We can assume that f # 0 (a.e. with respect to w). In this case [0, 00) > ¢ —
f y ¥(cf)du € Ris strictly increasing and continuous (the latter by the dominated
convergence theorem). As a result, for any & > 0 there exists 8!, 8> > 0 such that:

145 </¢<+)au
27y "\l — 8

f e
§1+sand1—£§/1ﬁ(— du <1-——-.
v\ Sfllyp + 82 2

In addition, 8!, 82 \, O as ¢ \, 0.

By ou; s’as:umption we have that [, ¥ (fi/(Ifllyu —8D)due  —
Sy WA f g —8)du and Ty U/ AL f o + 82))d i

— fY (/U Ny +82))du. By definition of our weak quasi-norm we con-

clude that || f 1y, — 8} < liminfy || filly, e < limsupg || felly.e < 1y + 82,
finishing the proof. Letting ¢ N\ 0, the result follows. O

Lemma 2.8 Let fi, f be continuous functions on a compact topological space Y and
fr — f uniformly. Let u and [ be Borel measures on Y with finite mass such
that uy — w weakly. Then fy Y(cfr)dur — fy Y(cf)du for any c € [0, co) and
I filly e = I -

Proof For any ¢ > 0 we have that {(cfy) — ¥ (cf) uniformly. Since we are deal-
ing with finite measure spaces and Y is compact, it follows that fY Y(cf)dur —
[y ¥ (cf)d . The last claim follows from Lemma 2.7. |
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The Mabuchi geometry... 435

In case we have smooth maps [0, 1] 2t — v; € Hy, [0, 1] 2t — f; € C* with
fir > 0,itis easy to see thatt — || f;|ly,v, is smooth. Indeed, since |9, o0) 18 smooth,
the arguments of [20, Proposition 3.1] carry over without change, and we have the
following precise formula for the first derivative:

Proposition 2.9 Suppose v € W™. Given a smooth curve (0,1) 3t — u; € H, i.e.

u(t, x) ;= u;(x) € C*°((0, 1) x X), and a positive smooth vector field (0,1) 2t —
fr € C*(X) along this curve, the following formula holds:

Jx W( ik )Vﬂrf 1O,

_ S N _fr
Jx W( TFilym ) Ty @i

Ol fellyu, = ; (1)

where V is the covariant derivative of the L> Mabuchi—Semmes—Donaldson metric

).

Recall that Chen’s g-geodesics are smooth curves t — u, that solve the following
elliptic equation [17]:
Vo,udiuw)) = ea’. (12)

As pointed out in [17], the advantage of e-geodesics is that they are smooth, and
approximate uniformly the weak C'!!-geodesic connecting ug, u; € H,, that solves
(8).

For this paper we need to compute the second order variation of the length of very
special vector fields across e-geodesics (c.f. [38, Section 4] and [16, Section 5]):

Proposition 2.10 Suppose v € W™. Let [0, 112 5 (s, 1) = u(s,t) € Hy be smooth
and an e-geodesic in each t-direction, such that d;u > 0. The following formula holds:

RN
2 n
S 0" ) (185l (Taan)’ + A0, 8,12, + b (Vi Byt Vi, B0) 2 )
B Iy ¥ (mnawr
(13)
where {-, -}Czou is the Poisson bracket of w,, and we introduced n = “aﬁjﬁ, for

simplicity. In particular, for fixed s, the map t — ||0sully,y is concave.
Proof The proof is a careful calculation of the derivative of the right hand side of (11)
in case s € [0, 1] is fixed and f; := dsu(s, t), u; := u(s,t).

We start with some side calculations, and put things together in the end. Since
/ x ¥ (mwy = 1, the product rule for the Levi—Civita connection gives:

/ ' () Voun w, = 3:/ Y (mawy = 0. (14)
X X
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436 T. Darvas

Using this identity and the product rule of the Levi—Civita connection again, we can
differentiate the denominator of the right hand side of (11) and obtain:

8;[ ¥ (mn w, =/ ¥ (1) 0 Va,u (. 15)
X X

Next we turn to the numerator of the right hand side of (11). The product rule again
gives:

d, / W () Vi udott o = / 1) Vi () Vst )+ / W () Vi Vo
X X X

:/ w//(n)va,u(n)va,ﬁsuwﬁ-i-/ W(ﬂ)va,uvasuatuwﬁ-
X X
(16)

For the last term on the right of (16) we make the following side computation:

/ W () Vo Vi udoucs! = f W () R(Gyie, dy10)hu " + / W () Vi Vayudytt !
X

/Iﬂ”(n){avu du)* o] +8/ Iﬂ(n)Var< > f
E M”l//u Wy

= ———— | Y {dsu, du)* !
||asu||¢,ufx s

’ " " n
—¢& ¥'(n) Ay, ogu - — + (un — | Vou 8su>wu)a)u
X ! wlt

1 &
= —/ w”(n){asu, atu}z wZ + —/ I/f”(ﬂ)(kuaxu, un asu>wuwnv
10sully.u Jx 9selly,u Jx
(17)

where in the second we used the precise formula curvature R(:, -)(-) (computed in
[16, (5.13)] or [8, Theorem 5]) and (12), in the third line we used the formula for the
Levi—Civita connection, and in the last line we used integration by parts.

For the first term of (16) we use that d;u = ||dsu||y,.7, and the product rule for the
Levi—Civita connection:

/;(W”(U)Va,u(n)vatuasu w),

= IlasUIlw,u/Xl/f”(n)(va,u(n))zwﬁ +3tI|8Su|I¢,u/Xl/f”(n)nva,u(n) w, (18)
Substituting (17) and (18) into (16) we arrive at
3:/X1ﬁ/(77)Va,u3suwZ =/XW(n)(az||3su||¢,u77Va,u(n)+ ||3su||1//,u(Va,u77)2
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The Mabuchi geometry... 437

n

o P — (Y, By, Y, O )w) " (19)
(A, yu}* + ———— (Ve dsut, Vi, dsu) — )
IBsully,u [Bsullyy X T g )

Differentiating (11), we bring the above calculations together:

O [x W' (n)Vo,udsuw O [y v (mnw)
O N0sully.u = Jx e ”—a,nasm,u’fx,—;’
Jx ¥ (mnelt Jx ¥ (mnelt
3 [x V' () Vaudsuel ¥ (N Va,u (!
_ ol D —atnasunw,ufx L (20)
[x ¥ (et Jx ¥ (Mmoo

where in the last line we used (15). Next, in the numerator of the first fraction we now
substitute (19) and notice that the last term on the right hand side of (20) will cancel
with the first term on the right hand side of (19), ultimately yielding (13). O

3 The candidate metric d.,,

We start with a preliminary discussion of our candidate metric dy, defined in (2). By
He’s theorem [37, Theorem 1.1], we know that for ug, u; € Hﬁ = PSH(X,w) N
{Ay,v € L} =PSH(X, w) N C'!, we also have u; € HHAJ, t € [0, 1], where t — u;
is the weak geodesic connecting ug, u1.

Itis not yet known if ¢t — u; is C !in the ¢-direction when ug, U1 € H}u’l . However,
since t — u; is t-convex, it makes sense to define i as the right derivative at t = 0
and 1| as the left derivative at r = 1. As aresult, it is possible to extend the definition
(2) to potentials with bounded Laplacian:

dy (ug, uy) I=/Xlﬂ(ﬁo)w;’0- (21)

This will be helpful since many operations on potentials are stable in the class Hc%,
and are not stable in H,,. For example, by [25, Theorem 2.5], we know that u, v € Hﬁ
implies P (u, v) € H5. The same property is not true for potentials of H,,.

In addition, we also introduce

dy (ug, ur) = ltiolly.ug» (22)

where the term on the right hand side is the weak quasi-norm of 1o with respect to the
weight ¢ and the measure wy, (10).

In case of ug, u; € Hy, by [20, Lemma 4.10] (slightly extending [7, Proposition
2.2]) we obtain that t — f x ¥ (ciy)wy,, is constant for any ¢ € Ry. By definition of
the weak quasi-norms, this immediately gives that t — |[it;]|y, ., is constant as well,
hence in this case:

dy (ug, u1) = llits ||y, foranyz e [0, 1. (23)
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438 T. Darvas

dy (uo, u1) = / W(u,)a);’t, for any ¢ € [0, 1]. (24)
X

Though we will not need it, by [20, Lemma 4.10] the same formulas hold in case

ug, U] € Hc% as well. However in this case one has to clarify what i, means for

t € (0, 1). As follows from [20, Lemma 4.10] (and its proof), 8;’ u; = 9; u; a.e with

respect to wy, . As aresult, i, is a.e. well defined with respect to wj, , allowing to make

sense of the right hand side of (23) and (24) in this more general situation as well.
First we prove an approximation result for the above introduced notions:

Proposition 3.1 Let ug,u; € Hf) and u](‘),ull‘ € Hﬁ such that u](‘) — ug and

ull‘ — uy uniformly. Then we have that dy, (ul(‘), u’f) — dy (uo, u1) and c?w (ul(‘), u’f) —

dAl/f(Mo, uy).

Proof First we show that dw(u/(‘), u]f) — d,p(uo, uy). Let [0, 1] 5 t — uy, uf € Hﬁ
be the weak geodesic joining ug, u1 and uO, “1 respectively. We first claim that the
push-forward measures |u0|*w K weakly converge to |ug| o]

Assuming the claim, since ulé, o are uniformly bounded [21, Theorem 1], we can

apply this to i to arrive at the conclusion:

up*

dw(ué,u’D:/ ¥ (i), =f ¥ (jigo", — / ¥ (i)t = dy (o, uy).
X 0 X 0 X

Now we prove the claim. From [20, Theorem 3] and the triangle ineqality for d,,
we know that dp(ula, ulf) — dp(up, uy) for all p > 1. By [20, Lemma 4.11] this is
equivalent with [y |L'tglpa)2k — [y liwol? @),

0

Since the global masses of the pushforward measures |L'¢’6|*w”k, |up|s", are
o Uy

finite, and zi’(‘), o are uniformly bounded, the Stone—Weierstrass theorem implies
that one(|1l’(‘)|)a)”k — [y a(lio))e);, for any @ € C(R). This is equivalent with

|M0|*0) P = Iuol*wu , as desired.

We can repeat the above for ¥ (ct) instead of ¥ (¢) for any ¢ € [0, 00), and conclude
that di//(”m 1) — d¢(uo, u1) via Lemma 2.7. O

Next, we point out that an analogue of the Pythagorean identity holds for dy:

Lemma3.2 Lety e W™ andu,v € 'HC%. Then for P(u,v) € HC% we have that
dy (u,v) = dy (u, P(u, v)) +dy (v, P(u, v)).

Proof This is a consequence of [20, Proposition 4.13] for f := . O
Next we point out that the operator u — P (u, w) is dy -shrinking:

Proposition3.3 Lety e W_andu, v, w € ’Hf). Then we have

dy(P(u, w), P(v,w)) <dy(u,v).
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Proof The proofis exactly the same as that of [22, Proposition 8.2], where one replaces
the convex weight |¢|> with our weight ¥ € W~ O

Using the argument of [20, Lemma 4.2] we note the following lemma:

Lemma3.4 Leta, B,y € Hﬁ suchthata > B > y. Then dy (o, B) < dy(a, y) and
dy (o, B) < dy(a, y). Analogously, dy (v, B) < dy(y,a) and dy(y, B) < dy (v, o).

Proof Let [0,1] > t — us, v € Hﬁ be the weak geodesics connecting «, 8 and
a, y respectively. We notice that they are both decreasing, satisfy u; > v, by the
comparison principle, and ug = vyp = «. From this it follows that 0 > 11 > 1¢. Using
this, (21) and (22) yield that dy, («, B) < dy («, y) and c?w(a, B) = ciw(a, y). The last

sentence is proved analogously, using two weak geodesics meeting at y . O

4 The triangle inequality

First we obtain the triangle inequality for dy, in a special case (Proposition 4.4), and
then derive the general version from this using the Pythagorean identity for dy, .

We start with the analogue of [16, Lemma 5.2] in our setting, that will only hold in
the particular case of increasing smooth curves (c.f. [38, Theorem 1.2]).

Proposition4.1 Let ¢ > 0 and [0,1] > s — uos,u1s € He be smooth curves
satisfying dsugs > 0, 0su1,s > 0. For fixed s, let [0,1] > t — uf’s € H, be the

. . 1 .
g-geodesic connecting uo s, u1,s. Thent — fo 0suf slly,uz ds is concave.

Proof By assumption, dsug.s, dsu1,s > 8 > 0 for some constant §. By the proof of [23,
Corollary 3.4] we get that Bsuf’s >§ > Oforanyt,s € [0, 1] and & > 0. In particular,
s = ||0su ||y, is smooth and the results of Sect. 2.3 are applicable. In particular, since
¥ l[0,00) 18 concave, Proposition 2.10 gives:

d2 1 1 d2
d7/0 851 s Iy, o s =/0 Wﬂasuisﬂx//,u,,sds <0.

This is equivalent to concavity of t — fol ll9suf e ds. O

Proposition 4.2 Let ug,uy € Hy with ug < uy. Let [0,1] 5 5 — u; € HQA) be
the (increasing) weak geodesic joining uo, uy. Then c?¢ (uo,uy) = fol il u,ds >
fol 112 ly,c,ds, wheret — ¢, is any smooth increasing curve (&5 > 0) joining Lo = uo
and & = uy.

The following argument is due to Lempert.

Proof Let § > 0 such that u; — ug > 8 and £, > & for all s € [0, 1]. From (9) we
obtain that u; > ug + &¢. Since t — u, is t-convex, we obtain that 1, > g > 5.

By (23) we know that s — ||iis]ly,u, is constant equal to ¢ > 0. Since ¥ is concave
and smooth on (§/2¢, 00), it admits a concave extension Jf to (—o0, 0co) such that
1/~/|(5 /2¢,00) = V1(8/2¢,00)- Such extension of course is non-unique.
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As gLS > 0, Proposition 2.9 implies that s — ”é-s ly.¢, is smooth. Since weak quasi-
norms are homogeneous, it is possible to reparametrize [0, 1] 3 s — ¢ € Hy, to

a smooth curve [0, 1] 3 5 — ZS € H, such that s — ||€:s||1//,§s is constant and the
yr-arclength does not change:

1 1 . .
/0 ||§s||1/1,;3d5=/0 12ellyz.ds = 1%l 7. L €10.1].

Since t — —@(t /c) is convex, [38, Theorem 1.1] implies that

= e [P
- L= [ /xw<i—‘>w’ids-

In particular, by the mean value theorem, we obtain that . x¥ (%)a)’g < 1 for some

t
t € [0, 1]. By the definition of the weak quasi-norm, we get that ”Et”wf < c¢. But
since s — |||, 7 is constant, we actually get that ||§;|| vi SC= llzts | y,u, for all
s € [0, 1]. Integratlng this inequality on [0, 1] yields the desued estimate. O

As a corollary of the above two results, we obtain the following:

Corollary 4.3 Suppose we are given o, B,y € H5 suchthata > B > y. Let [0, 1] 5
t— o, Y € H(ﬁ be the weak geodesic joining ag 1= B, a1 := o and yp := B, y1 :=
y respectively. Then the function t — 3,/, (o, ¥1) is concave.

Proof Using Proposition 3.1 and [28], we can assume that«, 8, y € Hyando > 8 >
y.

As in the first step of the proof of Proposition 4.2, there exists § > O suchthatc; > §
andy, < —d8forallr € [0, 1].Let[0, 1] 5t — o, yf € H,, be the e-geodesic joining
af == B,af :=aand y; := B, y{ = y respectively. As e—geodesics converge to
weak geodesics in the C!*-topology, for small enough &, we also have a; > 6 and
y¢ < —6.Inparticular, t — o is strictly increasing and t — y is strictly decreasing

Let t,¢/ € (0,1]. Now let ¢/ > 0 be small enough so that both &'-geodesics

et eet s,s’t ast. .
[0, 1] 55— vy vs € H,, joining v, =y and v =aj, respectlvely
vy e v/ and v}’ - o, are strictly increasmg (ie. 05", 305" > 0).

For s € [0, 1] fixed, let [0,1] > A — US,E(A s) be the e-geodesic joining
8 #(0,5) = v“ " and n” E(1,5) = v“ ' Notice that ng E, D) =af

and 0%, 0) = Yi—nrar
We fix A € [0, 1]. Combining previous results we can finish the proof:

(A=A)r+at’

(1= R)dy (@, vo) + My o, y) = Tim (1= 2dy (@, v) + Ady (o, 7))
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1
= lim lim (A ((1 - )\‘)“asva,é‘ ,t||¢’vs,5/w:)lg.5,’[ + )"HBSU&g ! ”w’vs.s/)ds>

e—=0e'—0
1
: &g _ ’ ,
= 8111})/0 18sm” (A =M1 + A", )My, et ((1—nyrarr 5) 95

= gf}) dy (@) 3y Y(—ayrpar)
=dy (1—2)1421"> YA=1)t401")s

where in the first line we have used Proposition 3.1, in the second line we have used
(23) and Lemma 2.8, in the third line we have used Proposition 4.1, in the fourth line
we have used Proposition 4.2, and in the last line we have used Proposition 3.1 again.

(]

Proposition 4.4 Given«, B8,y € ’HC% such that o > 8 > y, we have that

dy(a,y) <dy(a, B) +dy(B.y). (25)

Proof Using Proposition 3.1, we can assume that ., 8, y are smooth Kihler potentials,
moreover o > f8 > y.

Let[0,1] 3¢t — us, vy € HL% be the weak geodesics connecting ug := fand u| :=
o, respectively vg := B and vy := y. By Corollary 4.3 we get that r — (21/, (us, vy) 18
concave. Hence, since ci/, (1o, v9) =0, — dA'// (uy, v;)/t 1s decreasing.

Let [0, 1] > + — n; be the weak geodesic connecting 9 = « and 1 = y. We can
use the 1/-version of [20, Lemma 4.1] (whose proof is identical) to write:

n n dy (us, v ur—v
l70lly,a = dy (a, y) = dy(u1, v1) < lim dy s, vr) < limsup I = Ol
t—0 t t—0 !
. Uy — Ut . .
= lim sup H H = |lito — volly, g,
t—0 t v

where in the last step we have used that w{)'r — a)g weakly, moreover (u; — vy)/t —
o — Vo uniformly, as ¢+ — 0. Indeed, this allows an application of Lemma 2.8 to
conclude.

Finally, if we replace ¥ (¢) with V() = w(t)/fX Y (o)w), € W, the same
inequality as above implies that, 1 = ||f70||]/~,,a < ||120—1}0||1/~,’ﬂ,i.e.,fx &(do—z}o)a)g >
1 ie., [y (o — o) wp > Jx ¥ (o)wl. Using Lemma 2.6 we now conclude that

dy (@, B) +dy (B, y) = /X ¥ (i)l + /X ¥ (B0

> [ wiio = w0 = [ wiioel = dyap).
X X

We are ready to prove the general case of the triangle inequality.
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Theorem 4.5 Letu, v, w € Hf). Then we have
dy (u, w) < dy(u,v) +dy (v, w). (26)
Proof The triangle inequality follows from the following sequence of inequalities:

dyu,v) +dy (v, w) =dy@u, Pu,v)) +dy(Pu,v),v)

+dy (v, P(v,w)) +dy(P(v, w), w)

>dyu, P(u,v)) +dy(P(v,w), P(u, v, w))
+dy (P(u,v), P(u,v,w)) +dy (P, w), w)

=dy, P(u,v)) +dy(Pu,v), P(u,v, w))
+dy(w, P(v, w)) +dy (P, w), P(u, v, w))

>dyu, P(u,v,w)) +dy(w, P(u, v, w))

>dyu, P(u, w)) +dy(w, P(u, w))

=dyu, w),

where in the first and last line we have used the Pythagorean identity for dy, (Lemma
3.2), in the second line we have used Proposition 3.3 for the second and third terms,
in the fourth line we have used twice the particular case of the triangle inequality
obtained in Proposition 4.4, and in the fifth line we used Lemma 3.4. O

Corollary 4.6 (HGA), dy) is a metric space.

Proof By the previous result, we only need to argue that dy (ug, 1) = O implies
uy)=1uj.

If dy(up,u1) = 0, by Lemma 3.2 we have dy (uo, P(ug,u1)) = 0 and also
dy (u1, P(ug, u1)) = 0. By the first estimate of Proposition 4.7 below, it follows that
ug = P(ug, up) a.e. with respect to a)’;,(uo’ul), and similarly, u; = P(ug, u1) a.e. with
respect to 'y (wo.uy)- e can now use the domination principle of full mass potentials
due to Dinew [ 10, Proposition 5.9] to obtain that ug < P(ug, u1) anduj < P(ug, u1).
As the reverse inequalities are trivial, we get that ug = P (ug, u1) = u;. m]

Proposition 4.7 Suppose u, v € 'Hﬁ with u < v. Then we have:

mm(—l—/UMv—ww;/mww—umﬁ>sdwww>5/nww—uwﬁ~@”
on+1 X x X

Proof Using Proposition 3.1 we can assume that « and v are smooth. Suppose [0, 1] 3
t— w; € ’Hﬁ is the weak geodesic segment joining wo = u and w; = v. By (24) we
have

@mm=/wmw4=/wmmﬁ
X X
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Since u < v, we have that u < w;, as follows from the comparison principle. Since
(t, x) = wy(x) is convex in the ¢ variable, we get 0 < wo < v—u < wy, and together
with the above identity we obtain part of (27):

/ V(v —uwwy < dy(u,v) 5/ V(v —u)w),. (28)
X X

Now we prove the rest of (27). Using o/} < 2"w?u +v)/2 and concavity of ¢ on [0, 00),

we obtain that
1 u—+v
pYEs) [X Y(v—uow, < /;{W(T - u)w?u+v)/2'

Since u < (u + v)/2, the first estimate of (28) allows to write:

1 u—+v
W/)(@ﬁ(v—u)wﬁfaﬁ,,( > u)

Finally, Lemma 3.4 implies that dy ((« + v)/2, u) < dy (v, u), giving the remaining
estimate in (27). O

5 Extending d, to £y, and completeness

Given ug, u1 € £y (X, w), by a classical result of Demailly [28] (see [9] for a short
argument) there exists decreasing sequences ug, u’f € H, such that ué \{ o and
u]f \ u1. We propose to extend dy, to &y in the following way:

dy (uo, uy) = klirgo dy (ub, u). (29)

Very similar to the high energy case [20], we will show that the limit on the right hand
side exists and is independent of the approximating sequences. For this, we first prove
the next lemma:

Lemma 5.1 Suppose u € &y and {uy} C Hc% is a sequence decreasing to u. Then
dy(up,ug) — O0asl, k — oo.

Proof We can suppose that [ < k. Then uy < u;, hence by Proposition 4.7 we have:

dy (u, ug) < /XW(uk — u;)wzk.

Let us fix / momentarily, and let {v;}; € H,, be such that v; \  u;. Thenu —v;, uy —
vj € Ey (X, wy;) and u — vj < ux —v;j < 0. Hence, applying Proposition 2.2 for the
class £y (X, w,,) we obtain

dy (ug, ug) S/ ¥ (uk — upw,, < li}n/ Y (uk —vj)oy,
X p X
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SCIim/ w(u—vj)a);‘=C/ Y —u)w),. (30)
J X X

As u; decreases to u € &y, by the dominated convergence theorem we have
dw(u],uk)%oasl,k—)OO. O

Our next lemma confirms that the way we proposed to extend the dy, metric to £y,
in (29) is consistent.

Lemma 5.2 Given ugp,u; € S}f, the limit in (29) is finite and independent of the
approximating sequences ul(‘), uj € Hﬁ.

Proof By Proposition 3.1 we can assume that the approximating sequences are smooth.
By the triangle inequality and Lemma 5.1 we can write:

|d¢,(u6, ull) — dw(u](‘), u]f)| < dw(uf), u'é) +dw(ul], u]f) — 0, [,k — oo,

proving that dy, (ul(‘), u]f) is indeed convergent.

Now we prove that the limit in (29) is independent of the choice of approximat-
ing sequences. Let vlo, vll € 'H,, be different approximating sequences. By adding
small constants we arrange that the sequences uf), ull, respectively vé, vll, are strictly
decreasing to ug, uj.

Fixing k for the moment, the sequence {max{uﬁ“, v(j) }} jen decreases pointwise to

ué“. By Dini’s lemma there exists jiz € N such that for any j > j; we have vé < ulé.

By repeating the same argument we can also assume that v{ < u]f for any j > ji. By
the triangle inequality again

|d1/,<u16,u]1‘> —dy <U(J), v{>| < d,;,(ul(‘), vé) —i—dw(u]f, v{), Jj = Jjk.

From (30) it follows that for k big enough dy (), v8), dy (u1, v¥), j > ji are arbi-
trarily small. As a result, dy (1o, u1) is independent of the choice of approximating
sequences.

When ug, u; € HC%, one can approximate with the constant sequence, hence the
restriction to H,, of the extended dy from (29) coincides with the original definition
@20n. O

By the above result, [23, Proposition 2.20], and the remark following it, many
properties of dy extend to £y, in particular the triangle inequality, the Pythagorean
formula, etc. We list these in the proposition below and leave the standard proofs to
the interested reader.

Proposition 5.3 Let v € W™. Then the following hold:

(i) dy : Ey x Ey — R satisfies the triangle inequality.
(ii) Ifu,v € &y then P(u,v) € Ey and dy (u, v) = dy (u, P(u, v))+dy (v, P(u, v)).
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(iil) Suppose u,v € Ey with u < v. Then we have:

max <L/ w(v—u)wﬁ,/ va—u)w’J) <dy(u,v) 5/ V(v —u)w),.
n+1 x % x

(iv) Foru,v,w € &y we have dy (P (u, w), P(v, w)) < dy (u, v).
We now argue that non-degeneracy of dy, on &y holds as well:

Proposition 5.4 Given ug, u1 € Ey if dy (uo, u1) = 0 then ug = uy. In particular,
(Ey, dy) is a metric space.

Proof We can repeat the argument of Corollary 4.6. By Proposition 5.3(ii) it fol-
lows that dy (uo, P(uo, u1)) = 0 and also dy (u1, P(up, u1)) = 0. By Proposition
5.3(iii), it follows that ug = P (ug, u1) a.e. with respect to “)79(”0, ) and similarly,
uy = P(up,up) a.e. with respect to a)’;,(uo’ul). We can now use the domination
principle of full mass potentials due to Dinew [10, Proposition 5.9] to obtain that
ug < P(ug,uy) and u; < P(ug, u1). As the reverse inequalities are trivial, we get
that ug = P(ug, uy) = u;y. O

Corollary 5.5 If {wilken C &y decreases or increases a.e. to w € &y then
dy (Wi, w) — 0.

Proof By Proposition 5.3(iii), we have dy (w, wy) < fX V(w — wp)(wy, + o).
We can use [23, Proposition 2.20] (and the remark following it) to conclude that
dy (w, wy) — 0. O

Lemma 5.6 Suppose {ui}ken C Ey be an increasing dy—bounded sequence. Then
supy uy is a bounded sequence.

Proof Using Theorem 6.1 from below we have that f x ¥(max(ug, 0))o" <
[y Vo™ < 22"5dy (uy, 0) < C, for some C > 0. Let v := limy max(0, uy)),
a measurable function on X. By the monotone convergence theorem we obtain that
fx Y (v)o" < C. This implies that for some d > 0 the set K := {v < d} has non-zero
Lebesgue measure, hence K is also non-pluripolar.

On K we have that u; < d. As a result, due to [33, Corollary 4.3] we obtain that
{urlx € PSH(X, w) is relatively L'-compact, hence sup x Uk can not converge to oo,
finishing the proof. O

Next we argue that bounded monotone sequences in &y have limits inside &£y.
Using the previous lemma, the proof of this result is very similar to [23, Lemma 3.34]:

Lemma 5.7 Suppose {uy}ren C Ey is adecreasing/increasing dy -bounded sequence.
Then u = limy_, o uy € &y and additionally dy (u, uy) — 0.

Proof Due to the previous lemma, after subtracting a constant, we can assume without
loss of generality that u; < 0.

Let us assume that {uy}; is decreasing. From Proposition 5.3(iii) we have that
f X w(uk)w;‘k is uniformly bounded. Due to [34, Proposition 5.6] we get that u =
limy uy € £y (X, w). Corollary 5.5 implies that dy, (ug, u) — 0.
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Now us assume that {u;}; is increasing. Due to the previous lemma, there exists
u € &y (X, o) such that ug " u. By Corollary 5.5 again, dy (ug, u) — 0. O

Finally, we argue completeness of (Ey, dy):

Theorem 5.8 (Ey, dy) is a complete metric space, that is the metric completion of
(He, dy).

Proof By Corollary 5.5 and [28] H,, is a dy-dense subset of £;. We need to argue
completeness, which can be done identically as in [20], due to Proposition 3.3.

Indeed, suppose {uy}ren C Ey is a dy-Cauchy sequence. We will prove that there
exists v € &y such thatdy (ux, v) — 0. After passing to a subsequence we can assume
that

dy(u,up41) <172, 1 e N

By [22, Theorem 3.6] we can introduce vlk = PQug, g1, ..., uk+1) € Ey, [k e N,
We argue first that each decreasing sequence {vlk }ien is dy -Cauchy. We observe that
vlkJrl = P(vlk, Uk+i+1) and vlk = P(vlk, ui+1). Using this and Proposition 5.3(iv) we
can write:

1
dy (Wfp, vf) = dy (PO}, tggi+1), POOJ, ugs1)) < dy (Uris1s ugrr) < S

From Lemma 5.7 it follows now that each sequence {vlk }ieN is dy -convergening to
some v¥ € &y . By the same trick as above, we can write:

d1// (Uk, vk-‘rl) — lgngo di// (v;’(-‘r]’ v{('ﬁ‘]) — lli)r{:o dw <P(uk, vlk+1)’ P(uk+la U[k+1))
1
= dy (uk, ukt1) = s
dy (W%, ) = Tlim dy (o, ) = lim dy (P(uk, v, P(uk,uk))

[—o00 =00

< lim dy () wp)
[—o0

= lim dy (P(ukH, v, uk)
[— o0

[—o00

< lim dy (P(uk+1, v, uk+1) + dy (g1, ug)

I+k 1
< l;ngozkdwj,u,m < o
j:

Consequently, {v¥};cn is an increasing dy -bounded dy, -Cauchy sequence that is equiv-
alent to {u}ren. By Lemma 5.7 there exists v € £y such that dy, (v, v) — 0, which
in turn implies that dy (ug, v) — 0, finishing the proof. O
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6 An analytic expression governing the d,, metric
As another application of the Pythagorean formula we will show that the dy, metric is

comparable to a concrete analytic expression, reminiscent of the analogous result for
high energy classes [20, Theorem 3]:

Theorem 6.1 For any ug, uy € £y we have

dy (up, u1) < /Xllf(uo—ul)wﬁo +/X1/f(uo—u1)wﬁ, < 2234y (ug, uy).  (31)

Proof To obtain the first estimate we use the triangle inequality and Proposition 5.3(iii):

dy (ug, u1) < dy (uo, max(ug, u1)) + dy (max(ug, u1), uy)
< / V(o — max(u, u1))wy, +/ ¥ (max (ug, u1) — up)w,,
X X

=/{ }w(uo—ul)wﬁo-i-/ V(uo — u)wy,
uy>ug

{uo>u1}

5/ w(uo—ul)wZOWL/ Y (uo — u)wy, .
X X

Now we deal with the second estimate in (31). By the next result, Proposition 5.3(ii)
and Proposition 5.3(iii) we can write

2" 2dy (uo, uy) > dy (Mo, adl ;L ul) > dxp(uo, P(Mo, ol —; u1)>

> / I/f(uo - P(uo, ”02”1))wz’0~
X

7 n 1
> .
(uo4u1)/2 (,()M0 we can write:

By a similar reasoning as above, and the fact that 2"

2y ) = 0, ) =y (B p (i, M)

uo +up uo +up n
= /X 1/f( ) B P<u0’ ) ))w(uo+u1)/2

1 ug + uy uo +uj
Ry MY

Adding the last two estimates, and using sublinearity and concavity of i (Lemma 2.6)
we obtain:

22”+3d¢(uo7 up) > /Xl//<uo - P(uo, uo—;ul)>

up +up up +up n
2 )_ 2 )) uo

+ W(P<Mo,
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ug —u n 1 n
2/;{‘#(71)60,40 > E/)(w(uo_ul)wuo‘

By symmetry we also have 22"*4dy, (ug, u1) > [y ¥ (uo — u)w! , and adding these

up’
last two estimates together the second inequality in (31) follows. O

Lemma 6.2 Suppose ug, uy € Ey. Then we have

dy (uo, MOTJH“> < 2"Y3dy (ug, uy).

Proof Using Proposition 5.3(ii) and (iii) we can start writing:

dv/(uo, uo-;m) =d1//(u()7 P(u(), uo-;m)) +dw(uo-§u1 7 P(uo, uo;ul»

uog +up

< dy (o, Puo, un) +dy (2, Puo, un))
5/ w(uo—P(uo,uu))w'})(uo.ul)+/ v
X X

< /X V(o — P(uo, 1)0p ) + /X ¥ (max (i, uo) — P(uo, u1))@p g )

uo +ug
( ) — P(uo, ’41))"3?’(:40,.41)

5/ (14 Lz D 0 = PG, 1)) + Loy ¥ = Platg, 1)) )
X

< 2""2(dy (uo, P(uo, u1)) +dy (ur, P(uo, u1))) = 2""2dy (uo, uy),

where in the second line we have used the first claim of Lemma 3.4 and the fact that
P(ug, u1) < P(ug, (ug + u1)/2), in the third and sixth line Proposition 5.3(iii), and
in the last equality we have used Proposition 5.3(ii). O
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