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Abstract
Let (X , ω) be a Kähler manifold and ψ : R → R+ be a concave weight. We show
that Hω admits a natural metric dψ whose completion is the low energy space Eψ ,
introduced by Guedj–Zeriahi. As dψ is not induced by a Finsler metric, the main
difficulty is to show that the triangle inequality holds. We study properties of the
resulting complete metric space (Eψ, dψ).

1 Introduction

Let (X , ω) be a compact connected Kähler manifold. A basic problem in Kähler
geometry is to find various canonical metrics among the Kähler metrics ω′ that are in
the same de Rham cohomology class as ω [12, 44]. Due to Hodge theory, such ω′ can
be written as ω′ = ω + i∂∂̄u, where u is a smooth function from the space of Kähler
potentials:

Hω := {v ∈ C∞(X) ωv := ω + i∂∂̄v > 0}.

When studying weak notions of Kähler metrics, or degenerations of smooth ones,
a natural space to consider is the space of ω-plurisubharmonic (ω-psh) functions
PSH(X , ω). With slight abuse of precision, we say that v : X → [−∞,∞) is ω-psh
if it is usc, integrable and ωv := ω + i∂∂̄v ≥ 0 in the sense of currents.

As pointed out in a series of works by Guedj–Zeriahi, and their collaborators [2, 11,
31, 34] the space of full mass potentials E = {v ∈ PSH(X , ω)

∫
X ωn

v = ∫
X ωn} has a

prominent role in the study of weak solutions to complex Monge–Ampère equations
withmeasure theoretic right hand side. Hereωn

v is the non-pluripolar complexMonge–
Amperemeasure of v, extending the interpetation of Bedford–Taylor and Cegrell from
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428 T. Darvas

the local case [1, 13]. To study E , it is feasible to consider variousweightsφ : R → R
+

and consider the subspaces with finite φ-energy:

Eφ :=
{

v ∈ E | Eφ(v) :=
∫

X
φ(v)ωn

v < ∞
}

.

One important point is that E can be exhausted by a special class of finite energy
subspaces [34, Proposition 2.2]:

E =
⋃

ψ∈W−
Eψ. (1)

Here W− is the space of weights φ : [−∞,∞] → [0,∞] that are even and contin-
uous on R, in addition to being smooth, concave, and strictly increasing on (0,∞),
normalized by ψ(0) = 0 and ψ(±∞) = ∞. Following terminology of [34], we will
call elements of W− concave weights, and the spaces Eψ low energy classes (see
Remark 2.1 for superficial differences in our discussion compared to [34]).

As noticed in [4, Section 2], the subspace E1 = {v ∈ E ∫
X |v|ωn

v < ∞} has a
completemetric topology. Thiswas refined further in [20],where it was noticed that the
more general high energy classes Eχ are the metric completions of an appropriately
defined Orlicz–Finsler metric structure on the smooth space Hω. Recall that high
energy classes Eχ are given by weights χ : R → R

+, that are even convex functions
satisfying χ(0) = 0, χ ′(1) = 1 and a growth estimate tχ ′(t) ≤ pχ(t) (notation:
χ ∈ W+

p ).
Moreover, in [20] it was also pointed out the the resulting metric spaces (Eχ , dχ )

admit geodesic segments connecting arbitrary points. This latter fact had a wide
range of applications, including energy properness [5, 14, 15, 26], K-stability [6],
convergence and existence the weak Calabi flow [3, 41], etc.

Unfortunately, for all χ ∈ W+
p we have the inclusions Eχ ⊆ E1 � E . As a

result, it is natural to ask if subspaces of E not included in E1 can be naturally
topologized/geometrized as well. One may even ask: does E admit a natural topol-
ogy/geometry? Revisiting (1), one is tempted to first find a natural metric topology
on the low energy spaces Eψ , as these exhaust E . This is what we accomplish in this
paper.

Not much is known about the metric geometry of low energy spaces, despite their
wast array of applications to weak solutions of complex Monge–Ampère equations
[11, 34]. The only related result seems to be [36, Theorem 1.6], implying existence of
a metrizable uniform space topology on Ep := {u ∈ E,

∫
X |u|pωn

u < ∞}, p ∈ (0, 1).

To start, let H�
ω := PSH(X , ω) ∩ C1,1̄, where by C1,1̄ we denote functions on X

with boundedmixed second partial derivatives. Equivalently,H�
ω is the space ofω-psh

potentials with bounded Laplacian. Given u0, u1 ∈ Hω, let [0, 1] 
 t → ut ∈ H�
ω be

Chen’s weak geodesic joining u0, u1 [17, 18]. We introduce the following candidate
metric on Hω:

dψ(u0, u1) :=
∫

X
ψ(u̇0)ω

n
u0 . (2)
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The Mabuchi geometry... 429

The above definition of dψ bears superficial similarities with the one in [20, (2)],
dealing with the case of high energy classes. However it is not difficult to see that dψ

is not induced by the length metric of a Finsler structure, contrasting with [20]. Thus
one has to work hard to prove the triangle inequality, this being the first main result
of this paper:

Theorem 1.1 (Hω, dψ) is a metric space.

Hoping for further analogies with the case of high energy classes [20], one might
mistakenly expect that (Hω, dψ) is at least a length space, and the weak geodesic t →
ut appearing in (2) is a metric dψ -geodesic connecting u0, u1. This is unfortunately
not the case either. In fact, whenψ(t) = |t |α, α ∈ (0, 1), one can easily verify that the
dψ -length of smooth curves inside Hω is always zero. In addition, this also confirms
that dψ can not be induced by a Finsler metric on Hω.

In fact, the right analogy to follow here is the one coming from the case of toric
Kähler manifolds (XT , ωT ), and restricting dψ to the torus invariant potentials HT

ω .
As is well known, the Legendre transform L transformsHT

ω bijectively into the space
Convω(P) of smooth convex functions on a Delzant polytope P ⊂ R

n with specific
asymptotics near ∂P (for details see [32, Section 4] or [19]). By the same calculations
as in [32, Proposition 4.3], we obtain that for u0, u1 ∈ HT

ω we have

dψ(u0, u1) =
∫

P
ψ(L(u0) − L(u1))dμ,

with μ being the Lebesque measure on P . By Lemma 2.6 below we immediately see
that in this case dψ satisfies the triangle inequality trivially.

In addition, the dψ -completion of HT
ω will be Lψ(P) ∩ Conv(P), the space of

convex functions on P that have finite ψ-integral. This space is exactly the Legendre
dual of ET

ψ , the set of torus invariant potentials in Eψ [32, Proposition 4.5].
With the toric analogies inmind, our reader is perhaps less surprised by the statement

of Theorem 1.1 above, and might also expect that the metric completion of (Hω, dψ)

equals Eψ , even in the absence of toric symmetries. This is confirmed in our next main
result.

Theorem 1.2 The metric dψ extends to Eψ , making (Eψ, dψ) a complete metric space,
that is the metric completion of (Hω, dψ).

This result is analogous to [20, Theorem 2] that deals with the case of high energy
classes. The similarities don’t stop here. Paralleling [20, Theorem 3], the dψ metric is
comparable to a concrete analytic expression:

Theorem 1.3 For any u0, u1 ∈ Eψ we have

dψ(u0, u1) ≤
∫

X
ψ(u0 − u1)ω

n
u0 +

∫

X
ψ(u0 − u1)ω

n
u1 ≤ 22n+5dψ(u0, u1). (3)

This result implies that the expression Iψ(u0, u) := ∫
X ψ(u0−u1)ωn

u0 +
∫
X ψ(u0−

u1)ωn
u1 satisfies a quasi-triangle inequality, a result of independent interest. Previously
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430 T. Darvas

this was obtained using analytic methods for the weights ψ(t) = |t |p, p ∈ (0, 1) in
[36, Theorem 1.6].

As pointed about above, the absence of a background Finsler structure requires a
new approach to the proof of Theorem 1.1. However once the triangle inequality is
obtained, many pluripotential theoretic arguments can be used from [20], and this will
be apparent in the proofs of Theorems 1.2 and 1.3.

Contrasting with the case of high energy classes explored in [20], our methods
suggest that the metric dψ is somehow positively curved (see Proposition 4.4 and
Corollary 4.3). However it remains to be seen if such a notion can be defined for non-
geodesic metric spaces, as it is the case here. Since weak geodesic segments are used
to define dψ in (2), it could be beneficial to understand what role these curves play
from a metric/geometric point of view. In a different direction, it would be interesting
to extend our results to more singular spaces. There has been a flurry of activity in
this latter area recently, focusing on the high energy case [29, 42, 43]. Lastly, we
are curious if the quantization scheme of the high energy spaces from [27] has an
analogue in our low energy context. We hope to investigate these questions, as well
as applications in future works.

Organization. In Sect. 2 we recall known results about finite energy classes, and
obtain the second order variation of low energy weak quasi-norms. After some pre-
liminary results on our candidate metric dψ in Sect. 3, we prove the triangle inequality
(and Theorem 1.1) in Sect. 4. Theorem 1.2 is proved in Sect. 5. Finally, Theorem 1.3
is proved in Sect. 6.

2 Preliminaries

Most of our notation and terminology builds on that of [20, 34] and the survey [23].
We refer our reader to these works for a detailed background. Below we only recall
the basics, adapted to our specific context.

2.1 Finite energy classes

We recall here some basic facts about the class E ⊂ PSH(X , ω) and its subspaces.
We refer to the original papers [11, 34] and the recent book [35] for a complete
picture. For v ∈ PSH(X , ω), the canonical cutoffs vh, h ∈ R are given by the formula
vh := max(−h, v). By an application of the comparison principle of Bedford–Taylor
theory, it follows that the Borel measures 1{v>−h}(ω + i∂∂̄vh)

n are increasing in h.
As a result, one can make make sense of (ω + i∂∂̄v)n as the limit of these increasing
measures, even if v is unbounded:

ωn
v := (ω + i∂∂̄v)n = lim

h→∞1{v>−h}(ω + i∂∂̄vh)
n . (4)
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The Mabuchi geometry... 431

With this definition, ωn
v is called the non-pluripolar Monge–Ampère measure of v. It

follows from (4) that

∫

X
ωn

v ≤
∫

X
ωn =: V ,

bringing us to the class of full mass potentials E . By definition, v ∈ E if

∫

X
ωn

v = lim
h→∞

∫

X
1{v>−h}(ω + i∂∂̄vh)

n = V . (5)

Suppose φ : [−∞,∞] → [0,∞] is a continuous even function, with φ(0) = 0
and φ(±∞) = ∞. Such φ is referred to as a weight. The set of all weights is denoted
byW . By definition, for v ∈ E we have v ∈ Eφ if

Eφ(v) :=
∫

X
φ(v)ωn

v < ∞.

The two special classes of weights that are most interesting in the theory are:

W− = {
ψ ∈ W ∣

∣ ψ is concave, strictly increasing, and smooth on (0,∞)},
W+

p = {
χ ∈ W ∣

∣ χ is convex and tχ ′(t) ≤ pχ(t), t ∈ R
}
,

where p ≥ 1. We note the sign difference between our convention forW−,W+
p , and

the ones in [34] and [22, Section 2.3].
Of particular importance are the weights χp(t) = |t |p, p > 0, and the associated

classes Ep := Eχp . Note that χp ∈ W+
p for p ≥ 1 and χp ∈ W− for 0 < p ≤ 1. The

case p = 1 interpolates between convex and concave energy classes since

Eχ ⊂ E1 ⊂ Eψ,

for any χ ∈ W+
p and ψ ∈ W−.

In this work we will be focusing on the concave weightsW−. As mentioned in the
introduction, the interest in them comes from the following fact [34, Proposition 2.2]:

E = {v ∈ Eψ | ψ ∈ W−}. (6)

Remark 2.1 To be precise, in [34] the authors proved (6) for concave weights ψ that
are not necessarily smooth on (0,∞). However it is elementary to see that for a non-
smooth concave weight ψ we can find another concave weight ψ̃ , smooth on (0,∞),
such that Eψ = Eψ̃ . Indeed, one can even make sure that ψ − ψ̃ is bounded. Because
of this, very little is gained from working with more general concave weights. For
sake of brevity we leave it to the interested reader to work out the details of our results
in the case when the weights ψ ∈ W− are not assumed to be smooth on (0,∞). This
can be carried out using approximation, much in the same way as it is done in [20].
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432 T. Darvas

The following result is sometimes called the “fundamental estimate”:

Proposition 2.2 [34, Lemma 2.3, Lemma 3.5] Letφ ∈ W−∪W+
p , p ≥ 1. If u, v ∈ Eφ

with u ≤ v ≤ 0 then

Eφ(v) ≤ CEφ(u).

Here C > 0 depends only on p.

If φ ∈ W− ∪W+
p , p ≥ 1 then the φ-energy has a very useful continuity property:

Proposition 2.3 [34, Proposition 5.6] Letφ ∈ W−∪W+
p and {u j } j∈N ⊂ PSH(X , ω)∩

L∞ is a sequence decreasing to u ∈ PSH(X , ω). If sup j Eφ(u j ) < ∞ then u ∈ Eφ .
Moreover we have

Eφ(u) = lim
j→∞ Eφ(u j ).

Using the canonical cutoffs, the last two results imply the very important “monotonicity
property”:

Corollary 2.4 Let φ ∈ W− ∪ W+
p , p ≥ 1. If u ≤ v and u ∈ Eφ then v ∈ Eφ .

Wenote that the continuity property of theMonge–Ampère operator fromBedford–
Taylor theory [1] is also preserved in this more general setting:

Proposition 2.5 [11, Theorem 2.17] Suppose {vk}k∈N ⊂ E(X , ω) decreases
(increases a.e.) to v ∈ E(X , ω). Then ωn

vk
→ ωn

v weakly.

A more general weak convergence result is proved in [23, Proposition 2.20], and
the remark following it.

2.2 The L2 metric and weak geodesics

As introduced by Mabuchi, and independently by Semmes and Donaldson, Hω can
be endowed with a natural infinite dimensional L2-type Riemannian metric:

〈α, β〉u = 1
∫
X ωn

∫

X
αβωn

u , α, β ∈ TuHω = C∞(X). (7)

One can compute the Levi–Civita connection ∇(·)(·) of this inner-product and the
associated geodesic equation. For a thorough discussion of the L2 Mabuchi–Semmes–
Donaldson geometry, as well as its Levi-Civita connection, we refer to the surveys [8,
Section 4], [23, Section 3.1], as well as the original papers [17, 30, 39, 40].

Unfortunately smooth geodesics connecting arbitrary u0, u1 ∈ Hω don’t exist, but a
weak notion of geodesicwas studied byChen [17]. His construction can be generalized
to construct weak geodesic segments connecting points of PSH(X , ω) ∩ L∞(X).
Following Berndtssson, we recall how this argument works.
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The Mabuchi geometry... 433

As before, let S ⊂ C be the strip {0 < Re s < 1} and ω̃ be the pullback of ω to the
product S × X . As argued in [7, Section 2.1], for u0, u1 ∈ PSH(X , ω) ∩ L∞(X) the
following Dirichlet problem has a unique solution:

u ∈ PSH(S × X , ω̃) ∩ L∞(S × X)

(ω̃ + i∂∂u)n+1 = 0

u(t + ir , x) = u(t, x) ∀x ∈ X , t ∈ (0, 1), r ∈ R

lim
t→0,1

u(t, x) = u0,1(x),∀x ∈ X . (8)

Since the solution u invariant in the imaginary direction, we denote it by [0, 1] 
 t →
ut ∈ PSH(X , ω) ∩ L∞ and call it the weak geodesic joining u0 and u1.

In case u0, u1 ∈ Hω in [17] it was proved that �u ∈ L∞(S × X). Such a curve
[0, 1] 
 t → ut ∈ PSH(X , ω) ∩ C1,1̄ =: H�

ω is called a C1,1̄-geodesic.
A curve [0, 1] 
 t → vt ∈ PSH(X , ω) is called a subgeodesic if v(s, x) :=

vRes(x) ∈ PSH(S × X , ω̃). We recall that the solution u of (8) is constructed as the
upper envelope

u = sup
v∈S

v, (9)

where S is the following set of weak subgeodesics:

S =
{

(0, 1) 
 t → vt ∈ PSH(X , ω) is a subgeodesic with lim
t→0,1

vt ≤ u0,1

}

.

For a thorough discussion of weak geodesics we refer to Sect. 3 in the survey [23].

2.3 First and second order variation of weak quasi-norms

To start, we observe that concave weights are subadditive:

Lemma 2.6 Letψ ∈ W−. Thenψ is subadditive, i.e.,ψ(a+b) ≤ ψ(a)+ψ(b), a, b ∈
R.

Proof Since ψ is increasing on [0,∞) we have that ψ(a + b) = ψ(|a + b|) ≤
ψ(|a| + |b|). On the other hand, since ∂+ψ is decreasing on (0,∞), we can finish the
proof in the following way:

ψ(|a|) = ψ(|a|) − ψ(0) =
∫ |a|

0
∂+ψ(t)dt

≥
∫ |a|+|b|

|b|
∂+ψ(t)dt = ψ(|a| + |b|) − ψ(|b|).

��
To any concave weight ψ ∈ W−, and a finite measure space (Y , μ), one

can associate the space Lψ
μ . These will be μ-measurable functions f , such that
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434 T. Darvas

∫
Y ψ( f )dμ < ∞. For such functions f , we can associate the a weak quasi-norm
that is only homogeneous, and typically does not satisfy (even weaker versions of) the
triangle inequality:

‖ f ‖ψ,μ := inf{N > 0 s.t.
∫

Y
ψ( f /N )dμ ≤ 1}. (10)

When ψ ∈ W+
p , the above quantity does define a bona-fide norm, and these are

used in the Kähler geometry literature for approximation of L p Finsler metrics [20,
24]. Despite the fact that in our case the triangle inequality fails, these weak quasi-
norms will still be important in our discussion. To note, compared to [20, (13)], our
definition in (10) is slightly different. There, to obtain the Hölder inequality [20, (14)],
we needed a version of (10) that is invariant with respect to taking scalar multiples of
ψ . Our definition here is intentionally not scale invariant, since we need exactly this
property in the last step of the proof of Proposition 4.4 below.

Given u ∈ Hω and f ∈ Lψ
ωn
u
, we will denote ‖ f ‖ψ,ωn

u
simply as ‖ f ‖ψ,u . To start,

we note the following elementary convergence result.

Lemma 2.7 Let μ and μk be finite Borel measures on Y . Let ψ ∈ W−, and fk, f
be bounded functions that are μk-measurable and μ-measurable respectively. If∫
Y ψ(c fk)dμk → ∫

Y ψ(c f )dμ for all c ∈ [0,∞), then ‖ fk‖ψ,μk → ‖ f ‖ψ,μ.

Proof We can assume that f �≡ 0 (a.e. with respect to μ). In this case [0,∞) 
 c →∫
Y ψ(c f )dμ ∈ R is strictly increasing and continuous (the latter by the dominated
convergence theorem). As a result, for any ε > 0 there exists δ1ε , δ

2
ε > 0 such that:

1 + ε

2
≤

∫

Y
ψ

(
f

‖ f ‖ψ,μ − δ1

)

dμ

≤ 1 + ε and 1 − ε ≤
∫

Y
ψ

(
f

‖ f ‖ψ,μ + δ2

)

dμ ≤ 1 − ε

2
.

In addition, δ1ε , δ
2
ε ↘ 0 as ε ↘ 0.

By our assumption we have that
∫
Y ψ

(
fk/(‖ f ‖ψ,μ − δ1)

)
dμk →∫

Y ψ( f /(‖ f ‖ψ,μ − δ1))dμ and
∫
Y ψ( fk/(‖ f ‖ψ,μ + δ2))dμk

→ ∫
Y ψ( f /(‖ f ‖ψ,μ + δ2))dμ. By definition of our weak quasi-norm we con-

clude that ‖ f ‖ψ,μ − δ1ε ≤ lim infk ‖ fk‖ψ,μk ≤ lim supk ‖ fk‖ψ,μk ≤ ‖ f ‖ψ,μ + δ2ε ,

finishing the proof. Letting ε ↘ 0, the result follows. ��
Lemma 2.8 Let fk, f be continuous functions on a compact topological space Y and
fk → f uniformly. Let μ and μk be Borel measures on Y with finite mass such
that μk → μ weakly. Then

∫
Y ψ(c fk)dμk → ∫

Y ψ(c f )dμ for any c ∈ [0,∞) and
‖ fk‖ψ,μk → ‖ f ‖ψ,μ.

Proof For any c > 0 we have that ψ(c fk) → ψ(c f ) uniformly. Since we are deal-
ing with finite measure spaces and Y is compact, it follows that

∫
Y ψ(c fk)dμk →∫

Y ψ(c f )dμ. The last claim follows from Lemma 2.7. ��
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The Mabuchi geometry... 435

In case we have smooth maps [0, 1] 
 t → vt ∈ Hω, [0, 1] 
 t → ft ∈ C∞ with
ft > 0, it is easy to see that t → ‖ ft‖ψ,vt is smooth. Indeed, since ψ |(0,∞) is smooth,
the arguments of [20, Proposition 3.1] carry over without change, and we have the
following precise formula for the first derivative:

Proposition 2.9 Suppose ψ ∈ W−. Given a smooth curve (0, 1) 
 t → ut ∈ H, i.e.
u(t, x) := ut (x) ∈ C∞((0, 1) × X), and a positive smooth vector field (0, 1) 
 t →
ft ∈ C∞(X) along this curve, the following formula holds:

∂t‖ ft‖ψ,ut =
∫
X ψ ′

(
ft

‖ ft‖ψ,ut

)
∇u̇t ftω

n
ut

∫
X ψ ′

(
ft

‖ ft‖ψ,ut

)
ft

‖ ft‖ψ,ut
ωn
ut

, (11)

where ∇ is the covariant derivative of the L2 Mabuchi–Semmes–Donaldson metric
(7).

Recall that Chen’s ε-geodesics are smooth curves t → ut that solve the following
elliptic equation [17]:

∇∂t u∂t uωn
u = εωn . (12)

As pointed out in [17], the advantage of ε-geodesics is that they are smooth, and
approximate uniformly the weak C11̄-geodesic connecting u0, u1 ∈ Hω that solves
(8).

For this paper we need to compute the second order variation of the length of very
special vector fields across ε-geodesics (c.f. [38, Section 4] and [16, Section 5]):

Proposition 2.10 Suppose ψ ∈ W−. Let [0, 1]2 
 (s, t) → u(s, t) ∈ Hω be smooth
and an ε-geodesic in each t-direction, such that ∂su > 0. The following formula holds:

∂2t ‖∂su‖ψ,u

=
∫
X ψ ′′(η)

(
‖∂su‖ψ,u

(∇∂t uη
)2 + 1

‖∂su‖ψ,u
{∂su, ∂t u}2ωu

+ ε
‖∂su‖ψ,u

〈∇ωu ∂su, ∇ωu ∂su〉ωn

ωn
u

)
ωn
u

∫
X ψ ′(η)ηωn

u
,

(13)

where {·, ·}2ωu
is the Poisson bracket of ωu, and we introduced η := ∂su‖∂su‖ψ,u

, for
simplicity. In particular, for fixed s, the map t → ‖∂su‖ψ,u is concave.

Proof The proof is a careful calculation of the derivative of the right hand side of (11)
in case s ∈ [0, 1] is fixed and ft := ∂su(s, t), ut := u(s, t).

We start with some side calculations, and put things together in the end. Since∫
X ψ(η)ωn

u = 1, the product rule for the Levi–Civita connection gives:

∫

X
ψ ′(η)∇∂t uη ωn

u = ∂t

∫

X
ψ(η)ωn

u = 0. (14)
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436 T. Darvas

Using this identity and the product rule of the Levi–Civita connection again, we can
differentiate the denominator of the right hand side of (11) and obtain:

∂t

∫

X
ψ ′(η)η ωn

u =
∫

X
ψ ′′(η) η ∇∂t u(η)ωn

u . (15)

Next we turn to the numerator of the right hand side of (11). The product rule again
gives:

∂t

∫

X
ψ ′(η)∇∂t u∂su ωn

u =
∫

X
ψ ′′(η)∇∂t u(η)∇∂t u∂su ωn

u +
∫

X
ψ ′(η)∇∂t u∇∂t u∂su

=
∫

X
ψ ′′(η)∇∂t u(η)∇∂t u∂su ωn

u +
∫

X
ψ ′(η)∇∂t u∇∂su∂t u ωn

u .

(16)

For the last term on the right of (16) we make the following side computation:

∫

X
ψ ′(η)∇∂t u∇∂t u∂suωn

u =
∫

X
ψ ′(η)R(∂t u, ∂su)∂t u ωn

u +
∫

X
ψ ′(η)∇∂su∇∂t u∂t u ωn

u

= 1

‖∂su‖ψ,u

∫

X
ψ ′′(η){∂su, ∂t u}2 ωn

u + ε

∫

X
ψ ′(η)∇∂s

(
ωn

ωn
u

)

ωn
u

= 1

‖∂su‖ψ,u

∫

X
ψ ′′(η){∂su, ∂t u}2 ωn

u

− ε

∫

X
ψ ′(η)

(

�ωu∂su ·
(

ωn

ωn
u

)

+ 〈∇ωu

(
ωn

ωn
u

)

,∇ωu∂su〉ωu

)
ωn
u

= 1

‖∂su‖ψ,u

∫

X
ψ ′′(η){∂su, ∂t u}2 ωn

u + ε

‖∂su‖ψ,u

∫

X
ψ ′′(η)〈∇ωu∂su,∇ωu∂su〉ωuω

n,

(17)

where in the second we used the precise formula curvature R(·, ·)(·) (computed in
[16, (5.13)] or [8, Theorem 5]) and (12), in the third line we used the formula for the
Levi–Civita connection, and in the last line we used integration by parts.

For the first term of (16) we use that ∂su = ‖∂su‖ψ,uη, and the product rule for the
Levi–Civita connection:

∫

X
ψ ′′(η)∇∂t u(η)∇∂t u∂su ωn

u

= ‖∂su‖ψ,u

∫

X
ψ ′′(η)

(∇∂t u(η)
)2

ωn
u + ∂t‖∂su‖ψ,u

∫

X
ψ ′′(η)η∇∂t u(η) ωn

u (18)

Substituting (17) and (18) into (16) we arrive at

∂t

∫

X
ψ ′(η)∇∂t u∂su ωn

u =
∫

X
ψ ′′(η)

(
∂t‖∂su‖ψ,uη∇∂t u(η) + ‖∂su‖ψ,u

(∇∂t uη
)2
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+ 1

‖∂su‖ψ,u
{∂su, ∂t u}2 + ε

‖∂su‖ψ,u
〈∇ωu∂su,∇ωu∂su〉ω

n

ωn
u

)
ωn
u (19)

Differentiating (11), we bring the above calculations together:

∂2t ‖∂su‖ψ,u = ∂t
∫
X ψ ′(η)∇∂t u∂suωn

u∫
X ψ ′(η)ηωn

u
− ∂t‖∂su‖ψ,u

∂t
∫
X ψ ′(η)ηωn

u∫
X ψ ′(η)ηωn

u

= ∂t
∫
X ψ ′(η)∇∂t u∂suωn

u∫
X ψ ′(η)ηωn

u
− ∂t‖∂su‖ψ,u

∫
X ψ ′′(η)η∇∂t u(η)ωn

u∫
X ψ ′(η)ηωn

u
, (20)

where in the last line we used (15). Next, in the numerator of the first fraction we now
substitute (19) and notice that the last term on the right hand side of (20) will cancel
with the first term on the right hand side of (19), ultimately yielding (13). ��

3 The candidatemetric dÃ

We start with a preliminary discussion of our candidate metric dψ , defined in (2). By
He’s theorem [37, Theorem 1.1], we know that for u0, u1 ∈ H�

ω := PSH(X , ω) ∩
{�ωv ∈ L∞} = PSH(X , ω) ∩ C11̄, we also have ut ∈ H�

ω , t ∈ [0, 1], where t → ut
is the weak geodesic connecting u0, u1.

It is not yet known if t → ut isC1 in the t-direction when u0, u1 ∈ H1,1̄
ω . However,

since t → ut is t-convex, it makes sense to define u̇0 as the right derivative at t = 0
and u̇1 as the left derivative at t = 1. As a result, it is possible to extend the definition
(2) to potentials with bounded Laplacian:

dψ(u0, u1) :=
∫

X
ψ(u̇0)ω

n
u0 . (21)

This will be helpful since many operations on potentials are stable in the classH�
ω ,

and are not stable inHω. For example, by [25, Theorem 2.5], we know that u, v ∈ H�
ω

implies P(u, v) ∈ H�
ω . The same property is not true for potentials ofHω.

In addition, we also introduce

d̂ψ(u0, u1) = ‖u̇0‖ψ,u0 , (22)

where the term on the right hand side is the weak quasi-norm of u̇0 with respect to the
weight ψ and the measure ωn

u0 (10).
In case of u0, u1 ∈ Hω, by [20, Lemma 4.10] (slightly extending [7, Proposition

2.2]) we obtain that t → ∫
X ψ(cu̇t )ωn

ut is constant for any c ∈ R+. By definition of
the weak quasi-norms, this immediately gives that t → ‖u̇t‖ψ,ut is constant as well,
hence in this case:

d̂ψ(u0, u1) = ‖u̇t‖ψ,ut , for any t ∈ [0, 1]. (23)
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dψ(u0, u1) =
∫

X
ψ(u̇t )ω

n
ut , for any t ∈ [0, 1]. (24)

Though we will not need it, by [20, Lemma 4.10] the same formulas hold in case
u0, u1 ∈ H�

ω as well. However in this case one has to clarify what u̇t means for
t ∈ (0, 1). As follows from [20, Lemma 4.10] (and its proof), ∂+

t ut = ∂−
t ut a.e with

respect to ωn
ut . As a result, u̇t is a.e. well defined with respect to ωn

ut , allowing to make
sense of the right hand side of (23) and (24) in this more general situation as well.

First we prove an approximation result for the above introduced notions:

Proposition 3.1 Let u0, u1 ∈ H�
ω and uk0, u

k
1 ∈ H�

ω such that uk0 → u0 and

uk1 → u1 uniformly. Then we have that dψ(uk0, u
k
1) → dψ(u0, u1) and d̂ψ(uk0, u

k
1) →

d̂ψ(u0, u1).

Proof First we show that dψ(uk0, u
k
1) → dψ(u0, u1). Let [0, 1] 
 t → ut , ukt ∈ H�

ω

be the weak geodesic joining u0, u1 and uk0, u
k
1 respectively. We first claim that the

push-forward measures |u̇k0|∗ωn
uk0

weakly converge to |u̇0|∗ωn
u0 .

Assuming the claim, since u̇k0, u̇0 are uniformly bounded [21, Theorem 1], we can
apply this to ψ to arrive at the conclusion:

dψ(uk0, u
k
1) =

∫

X
ψ(u̇k0)ω

n
uk0

=
∫

X
ψ(|u̇k0|)ωn

uk0
→

∫

X
ψ(|u̇0|)ωn

u0 = dψ(u0, u1).

Now we prove the claim. From [20, Theorem 3] and the triangle ineqality for dp
we know that dp(uk0, u

k
1) → dp(u0, u1) for all p ≥ 1. By [20, Lemma 4.11] this is

equivalent with
∫
X |u̇k0|pωn

uk0
→ ∫

X |u̇0|pωn
u0 .

Since the global masses of the pushforward measures |u̇k0|∗ωn
uk0

, |u̇0|∗ωn
uk0

are

finite, and u̇k0, u̇0 are uniformly bounded, the Stone–Weierstrass theorem implies
that

∫
X α(|u̇k0|)ωn

uk0
→ ∫

X α(|u̇0|)ωn
u0 for any α ∈ C(R). This is equivalent with

|u̇k0|∗ωn
uk0

→ |u̇0|∗ωn
u0 , as desired.

We can repeat the above forψ(ct) instead ofψ(t) for any c ∈ [0,∞), and conclude
that d̂ψ(uk0, u

k
1) → d̂ψ(u0, u1) via Lemma 2.7. ��

Next, we point out that an analogue of the Pythagorean identity holds for dψ :

Lemma 3.2 Let ψ ∈ W− and u, v ∈ H�
ω . Then for P(u, v) ∈ H�

ω we have that

dψ(u, v) = dψ(u, P(u, v)) + dψ(v, P(u, v)).

Proof This is a consequence of [20, Proposition 4.13] for f := ψ . ��
Next we point out that the operator u → P(u, w) is dψ -shrinking:

Proposition 3.3 Let ψ ∈ W− and u, v, w ∈ H�
ω . Then we have

dψ(P(u, w), P(v,w)) ≤ dψ(u, v).
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Proof The proof is exactly the same as that of [22, Proposition 8.2], where one replaces
the convex weight |t |2 with our weight ψ ∈ W−. ��

Using the argument of [20, Lemma 4.2] we note the following lemma:

Lemma 3.4 Let α, β, γ ∈ H�
ω such that α ≥ β ≥ γ . Then dψ(α, β) ≤ dψ(α, γ ) and

d̂ψ(α, β) ≤ d̂ψ(α, γ ). Analogously, dψ(γ, β) ≤ dψ(γ, α) and d̂ψ(γ, β) ≤ d̂ψ(γ, α).

Proof Let [0, 1] 
 t → ut , vt ∈ H�
ω be the weak geodesics connecting α, β and

α, γ respectively. We notice that they are both decreasing, satisfy ut ≥ vt by the
comparison principle, and u0 = v0 = α. From this it follows that 0 ≥ u̇0 ≥ v̇0. Using
this, (21) and (22) yield that dψ(α, β) ≤ dψ(α, γ ) and d̂ψ(α, β) ≤ d̂ψ(α, γ ). The last
sentence is proved analogously, using two weak geodesics meeting at γ . ��

4 The triangle inequality

First we obtain the triangle inequality for dψ in a special case (Proposition 4.4), and
then derive the general version from this using the Pythagorean identity for dψ .

We start with the analogue of [16, Lemma 5.2] in our setting, that will only hold in
the particular case of increasing smooth curves (c.f. [38, Theorem 1.2]).

Proposition 4.1 Let ε > 0 and [0, 1] 
 s → u0,s, u1,s ∈ Hω be smooth curves
satisfying ∂su0,s > 0, ∂su1,s > 0. For fixed s, let [0, 1] 
 t → uε

t,s ∈ Hω be the

ε-geodesic connecting u0,s, u1,s . Then t → ∫ 1
0 ‖∂suε

t,s‖ψ,uε
t,s
ds is concave.

Proof By assumption, ∂su0,s, ∂su1,s ≥ δ > 0 for some constant δ. By the proof of [23,
Corollary 3.4] we get that ∂suε

t,s ≥ δ > 0 for any t, s ∈ [0, 1] and ε > 0. In particular,
s → ‖∂su‖ψ,u is smooth and the results of Sect. 2.3 are applicable. In particular, since
ψ |[0,∞) is concave, Proposition 2.10 gives:

d2

dt2

∫ 1

0
‖∂suε

t,s‖ψ,ut,s ds =
∫ 1

0

d2

dt2
‖∂suε

t,s‖ψ,ut,s ds ≤ 0.

This is equivalent to concavity of t → ∫ 1
0 ‖∂suε

t,s‖ψ,uε
t,s
ds. ��

Proposition 4.2 Let u0, u1 ∈ Hω with u0 < u1. Let [0, 1] 
 s → us ∈ H�
ω be

the (increasing) weak geodesic joining u0, u1. Then d̂ψ(u0, u1) = ∫ 1
0 ‖u̇s‖ψ,us ds ≥

∫ 1
0 ‖ζ̇s‖ψ,ζs ds, where t → ζt is any smooth increasing curve (ζ̇s > 0) joining ζ0 := u0
and ζ1 := u1.

The following argument is due to Lempert.

Proof Let δ > 0 such that u1 − u0 > δ and ζ̇s > δ for all s ∈ [0, 1]. From (9) we
obtain that ut ≥ u0 + δt . Since t → ut is t-convex, we obtain that u̇t ≥ u̇0 ≥ δ.

By (23) we know that s → ‖u̇s‖ψ,us is constant equal to c > 0. Since ψ is concave
and smooth on (δ/2c,∞), it admits a concave extension ψ̃ to (−∞,∞) such that
ψ̃ |(δ/2c,∞) = ψ |(δ/2c,∞). Such extension of course is non-unique.
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As ζ̇s > 0, Proposition 2.9 implies that s → ‖ζ̇s‖ψ,ζs is smooth. Since weak quasi-
norms are homogeneous, it is possible to reparametrize [0, 1] 
 s → ζs ∈ Hω to

a smooth curve [0, 1] 
 s → ζ̃s ∈ Hω such that s → ‖˙̃
ζs‖ψ,ζs is constant and the

ψ-arclength does not change:

∫ 1

0
‖ζ̇s‖ψ,ζs ds =

∫ 1

0
‖ ˙̃
ζs‖ψ,ζ̃s

ds = ‖˙̃
ζl‖ψ,ζ̃l

, l ∈ [0, 1].

Since t → −ψ̃(t/c) is convex, [38, Theorem 1.1] implies that

1 =
∫ 1

0

∫

X
ψ

( u̇s
c

)
ωn
us ds =

∫ 1

0

∫

X
ψ̃

( u̇s
c

)
ωn
us ds

≥
∫ 1

0

∫

X
ψ̃

( ˙̃
ζs

c

)
ωn

ζs
ds =

∫ 1

0

∫

X
ψ

( ˙̃
ζs

c

)
ωn

ζs
ds.

In particular, by the mean value theorem, we obtain that
∫
X ψ(

˙̃
ζt
c )ωn

ζ̃t
≤ 1 for some

t ∈ [0, 1]. By the definition of the weak quasi-norm, we get that ‖ ˙̃
ζ t‖ψ,ζ̃t

≤ c. But

since s → ‖˙̃
ζs‖ψ,ζ̃s

is constant, we actually get that ‖ ˙̃
ζs‖ψ,ζ̃s

≤ c = ‖u̇s‖ψ,us for all
s ∈ [0, 1]. Integrating this inequality on [0, 1] yields the desired estimate. ��

As a corollary of the above two results, we obtain the following:

Corollary 4.3 Suppose we are given α, β, γ ∈ H�
ω such that α ≥ β ≥ γ . Let [0, 1] 


t → αt , γt ∈ H�
ω be the weak geodesic joining α0 := β, α1 := α and γ0 := β, γ1 :=

γ respectively. Then the function t → d̂ψ(αt , γt ) is concave.

Proof Using Proposition 3.1 and [28], we can assume that α, β, γ ∈ Hω and α > β >

γ .
As in the first step of the proof of Proposition 4.2, there exists δ > 0 such that α̇t > δ

and γ̇t < −δ for all t ∈ [0, 1]. Let [0, 1] 
 t → αε
t , γ

ε
t ∈ Hω be the ε-geodesic joining

αε
0 := β, αε

1 := α and γ ε
0 := β, γ ε

1 := γ respectively. As ε−geodesics converge to
weak geodesics in the C1,α-topology, for small enough ε, we also have α̇ε

t > δ and
γ̇ ε
t < −δ. In particular, t → αε

t is strictly increasing and t → γ ε
t is strictly decreasing

Let t, t ′ ∈ (0, 1]. Now let ε′ > 0 be small enough so that both ε′-geodesics
[0, 1] 
 s → v

ε,ε′,t
s , v

ε,ε′,t ′
s ∈ Hω joining v

ε,ε′,t
0 := γ ε

t and v
ε,ε′,t
1 := αε

t , respectively

v
ε,ε′,t ′
0 := γ ε

t ′ and v
ε,ε′,t ′
1 := αε

t ′ are strictly increasing (i.e. ∂sv
ε,ε′,t
s , ∂sv

ε,ε′,t ′
s > 0).

For s ∈ [0, 1] fixed, let [0, 1] 
 λ → ηε′,ε(λ, s) be the ε-geodesic joining
ηε′,ε(0, s) := v

ε,ε′,t
s and ηε,ε′,ε(1, s) := v

ε,ε′,t ′
s . Notice that ηε′,ε(λ, 1) = αε

(1−λ)t+λt ′

and ηε′,ε(λ, 0) = γ ε
(1−λ)t+λt ′ .

We fix λ ∈ [0, 1]. Combining previous results we can finish the proof:

(1 − λ)d̂ψ(αt , γt ) + λd̂ψ(αt ′ , γt ′) = lim
ε→0

(
(1 − λ)d̂ψ(αε

t , γ
ε
t ) + λd̂ψ(αε

t ′, γ
ε
t ′ )

)
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= lim
ε→0

lim
ε′→0

( ∫ 1

0

(
(1 − λ)‖∂svε,ε′,t‖

ψ,vε,ε′ ωn
vε,ε′,t + λ‖∂svε,ε′,t ′ ‖

ψ,vε,ε′
)
ds

)

≤ lim
ε→0

∫ 1

0
‖∂sηε′,ε((1 − λ)t + λt ′, s)‖

ψ,ηε′,ε((1−λ)t+λt ′,s)ds

≤ lim
ε→0

d̂ψ(αε
(1−λ)t+λt ′ , γ

ε
(1−λ)t+λt ′)

= d̂ψ(α(1−λ)t+λt ′, γ(1−λ)t+λt ′),

where in the first line we have used Proposition 3.1, in the second line we have used
(23) and Lemma 2.8, in the third line we have used Proposition 4.1, in the fourth line
we have used Proposition 4.2, and in the last line we have used Proposition 3.1 again.

��
Proposition 4.4 Given α, β, γ ∈ H�

ω such that α ≥ β ≥ γ , we have that

dψ(α, γ ) ≤ dψ(α, β) + dψ(β, γ ). (25)

Proof Using Proposition 3.1, we can assume that α, β, γ are smoothKähler potentials,
moreover α > β > γ .

Let [0, 1] 
 t → ut , vt ∈ H�
ω be the weak geodesics connecting u0 := β and u1 :=

α, respectively v0 := β and v1 := γ . By Corollary 4.3 we get that t → d̂ψ(ut , vt ) is
concave. Hence, since d̂ψ(u0, v0) = 0, t → d̂ψ(ut , vt )/t is decreasing.

Let [0, 1] 
 t → ηt be the weak geodesic connecting η0 = α and η1 = γ . We can
use the ψ-version of [20, Lemma 4.1] (whose proof is identical) to write:

‖η̇0‖ψ,α = d̂ψ(α, γ ) = d̂ψ(u1, v1) ≤ lim
t→0

d̂ψ(ut , vt )

t
≤ lim sup

t→0

‖ut − vt‖ψ,vt

t

= lim sup
t→0

∥
∥
∥
ut − vt

t

∥
∥
∥

ψ,vt
= ‖u̇0 − v̇0‖ψ,β,

where in the last step we have used that ωn
vt

→ ωn
β weakly, moreover (ut − vt )/t →

u̇0 − v̇0 uniformly, as t → 0. Indeed, this allows an application of Lemma 2.8 to
conclude.

Finally, if we replace ψ(t) with ψ̃(t) := ψ(t)/
∫
X ψ(η̇0)ω

n
α ∈ W−, the same

inequality as above implies that, 1 = ‖η̇0‖ψ̃,α ≤ ‖u̇0−v̇0‖ψ̃,β , i.e.,
∫
X ψ̃(u̇0−v̇0)ω

n
β ≥

1, i.e.,
∫
X ψ(u̇0 − v̇0)ω

n
β ≥ ∫

X ψ(η̇0)ω
n
α . Using Lemma 2.6 we now conclude that

dψ(α, β) + dψ(β, γ ) =
∫

X
ψ(u̇0)ω

n
β +

∫

X
ψ(v̇0)ω

n
β

≥
∫

X
ψ(u̇0 − v̇0)ω

n
β ≥

∫

X
ψ(η̇0)ω

n
α = dψ(α, γ ).

��
We are ready to prove the general case of the triangle inequality.
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Theorem 4.5 Let u, v, w ∈ H�
ω . Then we have

dψ(u, w) ≤ dψ(u, v) + dψ(v,w). (26)

Proof The triangle inequality follows from the following sequence of inequalities:

dψ(u, v) + dψ(v,w) = dψ(u, P(u, v)) + dψ(P(u, v), v)

+ dψ(v, P(v,w)) + dψ(P(v,w),w)

≥ dψ(u, P(u, v)) + dψ(P(v,w), P(u, v, w))

+ dψ(P(u, v), P(u, v, w)) + dψ(P(v,w),w)

= dψ(u, P(u, v)) + dψ(P(u, v), P(u, v, w))

+ dψ(w, P(v,w)) + dψ(P(v,w), P(u, v, w))

≥ dψ(u, P(u, v, w)) + dψ(w, P(u, v, w))

≥ dψ(u, P(u, w)) + dψ(w, P(u, w))

= dψ(u, w),

where in the first and last line we have used the Pythagorean identity for dψ (Lemma
3.2), in the second line we have used Proposition 3.3 for the second and third terms,
in the fourth line we have used twice the particular case of the triangle inequality
obtained in Proposition 4.4, and in the fifth line we used Lemma 3.4. ��

Corollary 4.6 (H�
ω , dψ) is a metric space.

Proof By the previous result, we only need to argue that dψ(u0, u1) = 0 implies
u0 = u1.

If dψ(u0, u1) = 0, by Lemma 3.2 we have dψ(u0, P(u0, u1)) = 0 and also
dψ(u1, P(u0, u1)) = 0. By the first estimate of Proposition 4.7 below, it follows that
u0 = P(u0, u1) a.e. with respect to ωn

P(u0,u1)
, and similarly, u1 = P(u0, u1) a.e. with

respect to ωn
P(u0,u1)

. We can now use the domination principle of full mass potentials
due to Dinew [10, Proposition 5.9] to obtain that u0 ≤ P(u0, u1) and u1 ≤ P(u0, u1).
As the reverse inequalities are trivial, we get that u0 = P(u0, u1) = u1. ��

Proposition 4.7 Suppose u, v ∈ H�
ω with u ≤ v. Then we have:

max

(
1

2n+1

∫

X
ψ(v − u)ωn

u ,

∫

X
ψ(v − u)ωn

v

)

≤ dψ(u, v) ≤
∫

X
ψ(v − u)ωn

u . (27)

Proof Using Proposition 3.1 we can assume that u and v are smooth. Suppose [0, 1] 

t → wt ∈ H�

ω is the weak geodesic segment joining w0 = u and w1 = v. By (24) we
have

dψ(u, v) =
∫

X
ψ(ẇ0)ω

n
u =

∫

X
ψ(ẇ1)ω

n
v .
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Since u ≤ v, we have that u ≤ wt , as follows from the comparison principle. Since
(t, x) → wt (x) is convex in the t variable, we get 0 ≤ ẇ0 ≤ v−u ≤ ẇ1, and together
with the above identity we obtain part of (27):

∫

X
ψ(v − u)ωn

v ≤ dψ(u, v) ≤
∫

X
ψ(v − u)ωn

u . (28)

Nowwe prove the rest of (27). Using ωn
u ≤ 2nωn

(u+v)/2 and concavity ofψ on [0,∞),

we obtain that

1

2n+1

∫

X
ψ(v − u)ωn

u ≤
∫

X
ψ

(u + v

2
− u

)
ωn

(u+v)/2.

Since u ≤ (u + v)/2, the first estimate of (28) allows to write:

1

2n+1

∫

X
ψ(v − u)ωn

u ≤ dψ

(
u + v

2
, u

)

.

Finally, Lemma 3.4 implies that dψ((u + v)/2, u) ≤ dψ(v, u), giving the remaining
estimate in (27). ��

5 Extending dÃ to EÃ and completeness

Given u0, u1 ∈ Eψ(X , ω), by a classical result of Demailly [28] (see [9] for a short
argument) there exists decreasing sequences uk0, u

k
1 ∈ Hω such that uk0 ↘ u0 and

uk1 ↘ u1. We propose to extend dψ to Eψ in the following way:

dψ(u0, u1) = lim
k→∞ dψ(uk0, u

k
1). (29)

Very similar to the high energy case [20], we will show that the limit on the right hand
side exists and is independent of the approximating sequences. For this, we first prove
the next lemma:

Lemma 5.1 Suppose u ∈ Eψ and {uk}k ⊂ H�
ω is a sequence decreasing to u. Then

dψ(ul , uk) → 0 as l, k → ∞.

Proof We can suppose that l ≤ k. Then uk ≤ ul , hence by Proposition 4.7 we have:

dψ(ul , uk) ≤
∫

X
ψ(uk − ul)ω

n
uk .

Let us fix l momentarily, and let {v j } j ∈ Hω be such that v j ↘ ul . Then u − v j , uk −
v j ∈ Eψ(X , ωv j ) and u − v j ≤ uk − v j ≤ 0. Hence, applying Proposition 2.2 for the
class Eψ(X , ωul ) we obtain

dψ(ul , uk) ≤
∫

X
ψ(uk − ul)ω

n
uk ≤ lim

j

∫

X
ψ(uk − v j )ω

n
uk
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≤ C lim
j

∫

X
ψ(u − v j )ω

n
u = C

∫

X
ψ(u − ul)ω

n
u . (30)

As ul decreases to u ∈ Eψ , by the dominated convergence theorem we have
dψ(ul , uk) → 0 as l, k → ∞. ��

Our next lemma confirms that the way we proposed to extend the dψ metric to Eψ

in (29) is consistent.

Lemma 5.2 Given u0, u1 ∈ Eψ , the limit in (29) is finite and independent of the
approximating sequences uk0, u

k
1 ∈ H�

ω .

Proof ByProposition 3.1we can assume that the approximating sequences are smooth.
By the triangle inequality and Lemma 5.1 we can write:

|dψ(ul0, u
l
1) − dψ(uk0, u

k
1)| ≤ dψ(ul0, u

k
0) + dψ(ul1, u

k
1) → 0, l, k → ∞,

proving that dψ(uk0, u
k
1) is indeed convergent.

Now we prove that the limit in (29) is independent of the choice of approximat-
ing sequences. Let vl0, v

l
1 ∈ Hω be different approximating sequences. By adding

small constants we arrange that the sequences ul0, u
l
1, respectively vl0, v

l
1, are strictly

decreasing to u0, u1.
Fixing k for the moment, the sequence {max{uk+1

0 , v
j
0 }} j∈N decreases pointwise to

uk+1
0 . By Dini’s lemma there exists jk ∈ N such that for any j ≥ jk we have v

j
0 < uk0.

By repeating the same argument we can also assume that v j
1 < uk1 for any j ≥ jk . By

the triangle inequality again

|dψ

(

uk0, u
k
1

)

− dψ

(

v
j
0 , v

j
1

)

| ≤ dψ

(

uk0, v
j
0

)

+ dψ

(

uk1, v
j
1

)

, j ≥ jk .

From (30) it follows that for k big enough dψ(u j
0, v

k
0), dψ(u j

1, v
k
1), j ≥ jk are arbi-

trarily small. As a result, dψ(u0, u1) is independent of the choice of approximating
sequences.

When u0, u1 ∈ H�
ω , one can approximate with the constant sequence, hence the

restriction to Hω of the extended dψ from (29) coincides with the original definition
(21). ��

By the above result, [23, Proposition 2.20], and the remark following it, many
properties of dψ extend to Eψ , in particular the triangle inequality, the Pythagorean
formula, etc. We list these in the proposition below and leave the standard proofs to
the interested reader.

Proposition 5.3 Let ψ ∈ W−. Then the following hold:

(i) dψ : Eψ × Eψ → R satisfies the triangle inequality.
(ii) If u, v ∈ Eψ then P(u, v) ∈ Eψ and dψ(u, v) = dψ(u, P(u, v))+dψ(v, P(u, v)).
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(iii) Suppose u, v ∈ Eψ with u ≤ v. Then we have:

max

(
1

2n+1

∫

X
ψ(v − u)ωn

u ,

∫

X
ψ(v − u)ωn

v

)

≤ dψ(u, v) ≤
∫

X
ψ(v − u)ωn

u .

(iv) For u, v, w ∈ Eψ we have dψ(P(u, w), P(v,w)) ≤ dψ(u, v).

We now argue that non-degeneracy of dψ on Eψ holds as well:

Proposition 5.4 Given u0, u1 ∈ Eψ if dψ(u0, u1) = 0 then u0 = u1. In particular,
(Eψ, dψ) is a metric space.

Proof We can repeat the argument of Corollary 4.6. By Proposition 5.3(ii) it fol-
lows that dψ(u0, P(u0, u1)) = 0 and also dψ(u1, P(u0, u1)) = 0. By Proposition
5.3(iii), it follows that u0 = P(u0, u1) a.e. with respect to ωn

P(u0,u1)
, and similarly,

u1 = P(u0, u1) a.e. with respect to ωn
P(u0,u1)

. We can now use the domination
principle of full mass potentials due to Dinew [10, Proposition 5.9] to obtain that
u0 ≤ P(u0, u1) and u1 ≤ P(u0, u1). As the reverse inequalities are trivial, we get
that u0 = P(u0, u1) = u1. ��
Corollary 5.5 If {wk}k∈N ⊂ Eψ decreases or increases a.e. to w ∈ Eψ then
dψ(wk, w) → 0.

Proof By Proposition 5.3(iii), we have dψ(w,wk) ≤ ∫
X ψ(w − wk)(ω

n
wk

+ ωn
w).

We can use [23, Proposition 2.20] (and the remark following it) to conclude that
dψ(w,wk) → 0. ��
Lemma 5.6 Suppose {uk}k∈N ⊂ Eψ be an increasing dψ–bounded sequence. Then
supX uk is a bounded sequence.

Proof Using Theorem 6.1 from below we have that
∫
X ψ(max(uk, 0))ωn ≤∫

X ψ(uk)ωn ≤ 22n+5dψ(uk, 0) ≤ C, for some C > 0. Let v := limk max(0, uk)),
a measurable function on X . By the monotone convergence theorem we obtain that∫
X ψ(v)ωn ≤ C . This implies that for some d > 0 the set K := {v ≤ d} has non-zero

Lebesgue measure, hence K is also non-pluripolar.
On K we have that uk ≤ d. As a result, due to [33, Corollary 4.3] we obtain that

{uk}k ⊂ PSH(X , ω) is relatively L1-compact, hence supX uk can not converge to ∞,
finishing the proof. ��

Next we argue that bounded monotone sequences in Eψ have limits inside Eψ.

Using the previous lemma, the proof of this result is very similar to [23, Lemma 3.34]:

Lemma 5.7 Suppose {uk}k∈N ⊂ Eψ is a decreasing/increasing dψ -bounded sequence.
Then u = limk→∞ uk ∈ Eψ and additionally dψ(u, uk) → 0.

Proof Due to the previous lemma, after subtracting a constant, we can assume without
loss of generality that uk ≤ 0.

Let us assume that {uk}k is decreasing. From Proposition 5.3(iii) we have that∫
X ψ(uk)ωn

uk is uniformly bounded. Due to [34, Proposition 5.6] we get that u =
limk uk ∈ Eψ(X , ω). Corollary 5.5 implies that dψ(uk, u) → 0.

123



446 T. Darvas

Now us assume that {uk}k is increasing. Due to the previous lemma, there exists
u ∈ Eψ(X , ω) such that uk ↗ u. By Corollary 5.5 again, dψ(uk, u) → 0. ��

Finally, we argue completeness of (Eψ, dψ):

Theorem 5.8 (Eψ, dψ) is a complete metric space, that is the metric completion of
(Hω, dψ).

Proof By Corollary 5.5 and [28] Hω is a dψ -dense subset of Eψ . We need to argue
completeness, which can be done identically as in [20], due to Proposition 3.3.

Indeed, suppose {uk}k∈N ⊂ Eψ is a dψ -Cauchy sequence. We will prove that there
exists v ∈ Eψ such that dψ(uk, v) → 0.After passing to a subsequence we can assume
that

dψ(ul , ul+1) ≤ 1/2l , l ∈ N.

By [22, Theorem 3.6] we can introduce vkl = P(uk, uk+1, . . . , uk+l) ∈ Eψ, l, k ∈ N.
We argue first that each decreasing sequence {vkl }l∈N is dψ -Cauchy. We observe that
vkl+1 = P(vkl , uk+l+1) and vkl = P(vkl , uk+l). Using this and Proposition 5.3(iv) we
can write:

dψ(vkl+1, v
k
l ) = dψ(P(vkl , uk+l+1), P(vkl , uk+l)) ≤ dψ(uk+l+1, uk+l) ≤ 1

2k+l
.

From Lemma 5.7 it follows now that each sequence {vkl }l∈N is dψ -convergening to
some vk ∈ Eψ . By the same trick as above, we can write:

dψ(vk, vk+1) = lim
l→∞ dψ

(

vkl+1, v
k+1
l

)

= lim
l→∞ dψ

(

P(uk, v
k+1
l ), P(uk+1, v

k+1
l )

)

≤ dψ(uk, uk+1) ≤ 1

2k
,

dψ(vk, uk) = lim
l→∞ dψ(vkl , uk) = lim

l→∞ dψ

(

P(uk, v
k+1
l−1 ), P(uk, uk)

)

≤ lim
l→∞ dψ(vk+1

l−1 , uk)

= lim
l→∞ dψ

(

P(uk+1, v
k+2
l−2 ), uk

)

≤ lim
l→∞ dψ

(

P(uk+1, v
k+2
l−2 ), uk+1

)

+ dψ(uk+1, uk)

≤ lim
l→∞

l+k∑

j=k

dψ(u j , u j+1) ≤ 1

2k−1 .

Consequently, {vk}k∈N is an increasingdψ -boundeddψ -Cauchy sequence that is equiv-
alent to {uk}k∈N. By Lemma 5.7 there exists v ∈ Eψ such that dψ(vk, v) → 0, which
in turn implies that dψ(uk, v) → 0, finishing the proof. ��
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6 An analytic expression governing the dÃ metric

As another application of the Pythagorean formula we will show that the dψ metric is
comparable to a concrete analytic expression, reminiscent of the analogous result for
high energy classes [20, Theorem 3]:

Theorem 6.1 For any u0, u1 ∈ Eψ we have

dψ(u0, u1) ≤
∫

X
ψ(u0 − u1)ω

n
u0 +

∫

X
ψ(u0 − u1)ω

n
u1 ≤ 22n+5dψ(u0, u1). (31)

Proof Toobtain thefirst estimateweuse the triangle inequality andProposition 5.3(iii):

dψ(u0, u1) ≤ dψ(u0,max(u0, u1)) + dψ(max(u0, u1), u1)

≤
∫

X
ψ(u0 − max(u0, u1))ω

n
u0 +

∫

X
ψ(max(u0, u1) − u1)ω

n
u1

=
∫

{u1>u0}
ψ(u0 − u1)ω

n
u0 +

∫

{u0>u1}
ψ(u0 − u1)ω

n
u1

≤
∫

X
ψ(u0 − u1)ω

n
u0 +

∫

X
ψ(u0 − u1)ω

n
u1 .

Now we deal with the second estimate in (31). By the next result, Proposition 5.3(ii)
and Proposition 5.3(iii) we can write

2n+2dψ(u0, u1) ≥ dψ

(
u0,

u0 + u1
2

)
≥ dψ

(
u0, P

(
u0,

u0 + u1
2

))

≥
∫

X
ψ

(
u0 − P

(
u0,

u0 + u1
2

))
ωn
u0 .

By a similar reasoning as above, and the fact that 2nωn
(u0+u1)/2

≥ ωn
u0 we can write:

2n+2dψ(u0, u1) ≥ dψ

(
u0,

u0 + u1
2

)
≥ dψ

(u0 + u1
2

, P
(
u0,

u0 + u1
2

))

≥
∫

X
ψ

(u0 + u1
2

− P
(
u0,

u0 + u1
2

))
ωn

(u0+u1)/2

≥ 1

2n

∫

X
ψ

(u0 + u1
2

− P
(
u0,

u0 + u1
2

))
ωn
u0 .

Adding the last two estimates, and using sublinearity and concavity ofψ (Lemma 2.6)
we obtain:

22n+3dψ(u0, u1) ≥
∫

X
ψ

(
u0 − P

(
u0,

u0 + u1
2

))

+ ψ
(
P

(
u0,

u0 + u1
2

)
− u0 + u1

2

))
ωn
u0
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≥
∫

X
ψ

(u0 − u1
2

)
ωn
u0 ≥ 1

2

∫

X
ψ(u0 − u1)ω

n
u0 .

By symmetry we also have 22n+4dψ(u0, u1) ≥ ∫
X ψ(u0 − u1)ωn

u1 , and adding these
last two estimates together the second inequality in (31) follows. ��
Lemma 6.2 Suppose u0, u1 ∈ Eψ . Then we have

dψ

(

u0,
u0 + u1

2

)

≤ 2n+2dψ(u0, u1).

Proof Using Proposition 5.3(ii) and (iii) we can start writing:

dψ

(
u0,

u0 + u1
2

)
= dψ

(
u0, P

(
u0,

u0 + u1
2

))
+ dψ

(u0 + u1
2

, P
(
u0,

u0 + u1
2

))

≤ dψ(u0, P(u0, u1)) + dψ

(u0 + u1
2

, P(u0, u1)
)

≤
∫

X
ψ(u0 − P(u0, u1))ω

n
P(u0,u1)

+
∫

X
ψ

(u0 + u1
2

− P(u0, u1)
)
ωn
P(u0,u1)

≤
∫

X
ψ(u0 − P(u0, u1))ω

n
P(u0,u1)

+
∫

X
ψ(max(u1, u0) − P(u0, u1))ω

n
P(u0,u1)

≤
∫

X

(
(1 + 1{u0≥u1})ψ(u0 − P(u0, u1)) + 1{u1≥u0}ψ(u1 − P(u0, u1))

)
ωn
P(u0,u1)

≤ 2n+2(dψ(u0, P(u0, u1)) + dψ(u1, P(u0, u1))
) = 2n+2dψ(u0, u1),

where in the second line we have used the first claim of Lemma 3.4 and the fact that
P(u0, u1) ≤ P(u0, (u0 + u1)/2), in the third and sixth line Proposition 5.3(iii), and
in the last equality we have used Proposition 5.3(ii). ��
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