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After a brief introduction highlighting the challenges of fluorine chemistry and the latest
developments in the field, this Perspective will discuss how a combination of fluorine and
fluorous chemistry together with fluorinated reagents helped to bridge between organic, molecular,
macromolecular, supramolecular and biological sciences to create functions in the laboratory of
the corresponding author. The reactivity of fluoride as a leaving group is best illustrated by
SnAr reactions when it helped to demonstrate single electron transfer-mediated side reactions and
through molecular design replaced activated aryl fluorides with aryl chlorides in the synthesis
of poly(etherketone)s. Subsequently it was demonstrated how Ni(II) sigma complexes provided an
orthogonal approach to the Suzuki-type cross-coupling of arylfluorides, other halides and all aryl C-
O based electrophiles. Fluorinated reagents facilitated cylotrimetrization vs cyclotetramerization of
bis(methoxy)benzyl chloride and alcohol and the synthesis of the simplest molecular liquid crystals.
Triflic acid, methyl triflate facilitated the most tolerant living polymerizations including of cyclic
siloxanes, functional vinyl ethers and oxazolines to generate self-organizable dendronized polymers
while fluorine, trifluoromethyl and trifluoromethoxy groups facilitated disassembly and reassembly of
liquid crystal polyethers and poly(p-phenylenes). Fluorinated stereocenters accessed the first heterochiral
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recognition in side-chain liquid crystal poly(vinyl ether)s and their model compounds. Alkali metal
triflates mediated self-organization of supramolecular nonfluorinated and fluorinated self-assembling
minidendrons, dendrons, dendrimers and self-organizable dendronized polymers. The role of fluorinated
alkyl groups and of alkali metal triflates in the self-assembly, disassembly and isomorphic replacement
analysis, of supramolecular helical columns, of the assembly of helical cogwheel coat and of spherical
supramolecular dendrimers forming Frank-Kasper periodic and quasiperiodic arrays was highlighted. A
brief discussion of fluorinated amino acids, peptides and peptoids and their potential role in the self-
assembly and functions resulted from dendritic dipeptides followed by a discussion of semifluorinated
amphiphilic Janus dendrimers as models of biological membranes, including for cell fusion and fission,

concludes this Perspective.

1 Introduction

Fluorine, the most electronegative element and the smallest after
hydrogen is the 13" most abundant from the crust of Earth. It
exists mostly as fluorite also known as fluorspar (CaF;), cryolite
(Na3AlFg) and fluorapatite (Cas(PO4)3F). HF is the only hydrogen
halide that is liquid (bp 19.5 °C), non-ionizable and the weakest
(HF pKa 3.17; HCI pKa -6.3; HBr pKa -8.7; HI pKa -9.3) of all
hydrohalic acids. The combination of highest electronegativity
and small size makes C-F the strongest bond of all organic
chemical bonds. The fluoride anion is the most basic halide and
the least efficient leaving group in Sx1 and Snx2 reactions. The
strength of C-F bond transforms both aliphatic and aromatic
perfluorinated molecules into thermally stable compounds
[1-11]. Perfluorinated linear paraffins adopt a helical
conformation that is induced by the electrostatic repulsion
of fluorine atoms in the relative 1,3-positions making them
lipophilic but insoluble in their hydrogenated homologues at
low temperature. This particularity led to the development of
the field of fluorous chemistry [12]|. Perfluorinated aromatic
hydrocarbons are electron acceptors. Fluorinated carboxylic and
sulfonic acids and alcohols have lower pKa values than the
corresponding hydrogenated homologues. The pKa of CF;SO3H
is =15 which makes it the classic superacid while that of CH3SO3H
is —=7. The strongly basic fluoride is an efficient hydrogen bond
acceptor and therefore, due to its strong solvation it is a very
poor nucleophile. HF was obtained in 1764 by reacting CaF,
with H;SO4 under heat. However, since HF does not conduct
electricity its electrolysis to F, was successful only in 1886. This
experiment led in 1906 to the Nobel Prize in Chemistry to Henry
Moissan. The unusual high reactivity of HF and F, limited access
to the synthesis of organofluorine compounds and polymers
to industrial companies only, particularly DuPont. While we
never dared to work with fluorine or HF in our laboratory,
we were fascinated by the fact that fluorine self-organizes at
very low temperature the Pm3n or Al5 Frank-Kasper phase
[13,14] that we discovered in supramolecular dendrimers in
1997 [15] and elaborated its fundamental principles after the
discovery. The refrigerant Freon-12 (CCl;F,) and the accidental
discovery of Teflon by Roy J. Plunkett employed mostly in non-
stick cookware, the development of amorphous Teflon, Teflon AF,
Cytop [16] some semifluorinated polymers such us polyvinylidene
fluoride, polyvinyl fluoride, Nafion and surfactants, dental care
products, pharmaceuticals and agrochemicals are only few of
the fluorinated and semifluorinated compounds that increased

the standard of our life during the 20" century. The early
part of 21" century witnessed a tremendous development
of organofluorine chemistry in academic laboratories [17-
33] bypassing even the need to employ HF in the synthesis
of fluorinated organic compounds. This development changed
fluorine chemistry from an industrially limited method to
an academic accessible methodology. Our laboratory never
had been involved in a research program devoted to fluorine
chemistry. One reason was that during early 1980" to early
2010t T (VP) was a consultant to Central Research from the
Experimental Station of DuPont including the organofluorine
research group and therefore, in this way potential conflicts
of interest with DuPont were avoided. However, due to its
numerous functions fluorinated reagents and compounds have
been employed for many years in our laboratory to solve some
fundamental problems of organic, molecular, macromolecular,
supramolecular and biological sciences, unrelated to DuPont
research and technological interests. Consequently, VP was
repeatedly invited to present plenary and invited lectures at
international conferences on Fluorine and Fluorous Chemistry,
without ever having the time to contribute the content of his
lecture to the particular Symposium publications. Therefore,
the decision was made to dedicate this Invited Perspective to
provide a survey of our laboratory contributions to the creation
of functions via fluorinated structures in all topics of research
mentioned above. A brief introduction to the concept discussed
before employing fluorine and fluorination was made to justify
each topic of research. Future perspectives and new experiments
will be also briefly mentioned.

2 Some contributions to organofluorine chemistry

2.1 What transforms fluoride from the least efficient leaving

group in Sy 1 and Sy2 to the most efficient in SyAr reactions?

Due to the smallest size and highest electronegativity of fluorine,
fluoride is the least efficient leaving group in stepwise Sy1 and
concerted Sy2 reactions. In both cases the breaking of the C-
X bond occurs in the rate-determining step, although usually
Sn2 is usually a concerted one step reaction. However, the same
fluoride becomes the best leaving group in SyAr reactions. What
makes fluoride the best leaving group in SyAr reactions and
why the other halides, that are the most efficient in Sy1 and
Sn2 reactions, are the least efficient in SyAr reactions? SyAr
is an addition-elimination reaction (Fig. 1) although recently
concerted examples were reported [25]. In the first addition
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(@) Aromatic nucleophilic substitution mechanism (SyAr); (b) radical-
nucleophilic aromatic substitution (Sgy1) and the reductive elimination
mechanism. The Figure was redrawn from references 35-38.

Fig. 1

step of this aromatic nucleophilic substitution the nucleophile
attacks the ipso position of the leaving group and transforms
the aromatic compound into a non-aromatic intermediate named
the Meisenheimer complex. The first step is the rate-limiting
step of SyAr. During the second step the Meisenheimer complex
becomes aromatic and the leaving group is eliminated (Fig. 1).
Therefore, the nature of the halogen forming the C-X bond is
not so important in the second step as it is in the first step.
The addition of the nucleophile is the slow step of this reaction
since it breaks aromaticity while the elimination of the leaving
group is the fast step during which the aromaticity is regained in
an exothermic reaction. The Meisenheimer complex is stabilized
by the presence of strong electron-withdrawing groups in the
ortho- and para-positions of the leaving group. Therefore, the rate
determining step of SxAr is increased by the presence of strong
electron-withdrawing groups including by the electronegativity of
the leaving group. Two commercial polymers were produced by
this aromatic nucleophilic substitution. The amorphous aromatic
poly(ether sulfone) (PES) was produced in the 1980 by Union
Carbide from the reaction of 4,4’-dichlorodiphenylsulfone with
bisphenol-A while the crystalline aromatic poly(ether ketone)
(PEK) was commercialized by Hoechst from the reaction of 4,4'-
difluorobenzophenone (DFB) with hydroquinone. The presence
of fluorine in the structure of DFB made the price of PEK almost
prohibitive although its physical properties were extraordinary.
I (VP) was a consultant for Hoechst during that time. During

one of my visits in the late 1980 the vice-president of research
of Hoechst, Professor Harald Cherdron, who also co-authored
one of the best textbooks of Practical Macromolecular Organic
Chemistry [34] asked me (VP) if I could think of a way to replace
fluorine with the less expensive chlorine during the synthesis
of PEK. My answer was, yes I believe I could, but it would take
some mechanistic work to understand the difference between the
reaction of DFB and and of 4,4’-dichlorobenzophenone (DCB)
with the same nucleophiles. My graduate student Robert S. Clough
was immediately assigned to this project for his PhD thesis. A
first communication published in 1991 [35] demonstrated that
PEK synthesized from DCB contained both chlorobenzophenone
and benzophenone chain ends. A single electron transfer (SET)
mechanism was suggested by us to complete with the SyAr
mechanism. SET from the nucleophile acting as an electron-
donor to the halobenzophenone-end group would provide a
radical anion of the aryl halide. When the halide was chlorine
it could leave as a good leaving group producing an aryl radical
that ultimately will become a benzophenone chain end (Fig. 1).
This reductive elimination reaction did not occur with DFB
since the fluoride was an inefficient leaving group under these
conditions. This reaction did not occur during the synthesis of PES
from 4,4’-dichlorodiphenylsulfone and bisphenol-A. Two reasons
were most probably responsible for this difference. The sulfone
was a better electron-withdrawing group than the keto group
and therefore, could stabilize the Maisenheimer complex better
than the keto group. The phenolate of bisphenol A was less
electron donating that the phenolate of completely deprotonated
hydroquinone. Replacing 4,4’-dichlorodiphenyl sulfone with 4,4’-
diiododiphenyl sulfone in the synthesis of PES while maintaining
bisphenol A did not generate the reductive dehalogenation while
replacing bisphenol A with hydroquinone induced the reductive
elimination [36,37]. Bis(aryl chloride)s containing several keto
groups and bisphenols containing ether bonds were immediately
designed, synthesized and employed in the synthesis of PEK with
high molar mass without undergoing any reductive elimination.
Even DCB could be used to make very high molar mass PEK in the
presence of less electron-donor bisphenols than hydroquinone
[38]. These results were obtained during the Christmas Eve of
1993. I called my contact from Hoechst, Dr. Arnold Schneller, at
home to announce our great success and both our success and
his reply were very disappointing to all of us. Hoechst decided to
shut down the production of PEK one day earlier. This process was
not a reversible process, but it provided the best demonstration of
the outcome of not solving scientific problems in time. Solving
scientific problems is also a race as it was in the classic case of
solving the structure of the double helix of DNA [39,40].

2.2 Orthogonal and quantitative Ni-catalyzed homo- and
cross-coupling of aryl halides, fluorinated sulfonates and
fluorides including with indefinitely air-stable sigma-Ni'
precatalysts

In 1992 our laboratory started to develop synthetic methodologies
based on Ni-catalyzed homocoupling of aryltriflates and
arylenebistriflates derived from hydroquinones and from
other derivatives for the synthesis of complex functional
biphenyls and soluble poly(paraphenylene)s by exploring the
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constitutional isomerism as a tool to decrease crystallinity [41-
43]. Several years later, in 1995, the aryl mesylates evolved into
4-fluorobenzenesulfonates [44], tosylates and mesylates [45].
During the same year aryl triflates, fluorosulfonates, tosylates,
phenyl sulfonates and even mesylates were shown by our
laboratory to undergo Ni-catalyzed Suzuki-Miyaura-like cross-
coupling with arylboronic acids [46]. At that time Pd-catalysis
could not yet mediate cross-couplings of aryl sulfonates including
mesylates. Simple methodologies for the synthesis of complex
functional biphenyls including fluorinated biphenyl resulted
from regiospecific homocoupling of aryl mesylates [47]. The
generality of Ni-catalyzed cross-coupling of aryl mesylates was
demonstrated with carbanion synthons like organotin (Stille-type
cross-coupling) -magnesium and -zinc. Very efficient Ni-catalyzed
cyanation of aryl mesylates were all demonstrated in 1995 [48].
In the next step more active Ni-catalysts including based on the
mixed-ligand effect were elaborated [49]. Borylation of functional
aryl iodides, bromides, chlorides and tosylates including with
neopentylborane generated in-situ was subsequently elaborated
[50-55]. Cross-coupling of aryl sulfamates [56] followed. The
first activated sigma Ni(Il) precatalyst was elaboratyed in 2012
[57] simultaneous with more elaborated cross-coupling rections
[58,59]. The literature on this topic was reviewed in 2011 [60]. In
2014 a library of air-stable sigma complexes of Ni(Il) precatalysts
was developed by our laboratory [61]. These catalysts facilitated
the cross-coupling of aryl fluorides (Fig. 2) with aryl boronic
esters and the orthogonal cross-coupling of aryl fluorides with
aryl iodides, bromides, chlorides and mesylates [62]. Finally,
our air-stable sigma Ni(II) precatalyst was shown to be the only
catalyst providing quantitative cross-coupling of all six C-O
based electrophiles, aryl mesylates, sulfamates, carboxylic esters,
carbonates, carbamates and methyl ethers with aryl boronic
esters demonstrating the highest efficacy and generality than of
any other previously reported catalyst [63]. This generality of
Ni-catalysis and of its air-stable catalyst have been demonstrated
in the synthesis of libraries of very complex and multifunctional
building blocks to be discussed later.

2.3 Selective electrophilic cyclotrimerization and

cyclotetramerization of 3,4-bis(methyloxy)benzyl derivatives
with fluorinating acids and salts
The  products  distribution
cyclooligomerizations of 3,4-bis(methytoxy)benzyl chloride,
3,4-bis(methoxy)benzyl  alcohol, N-veratrylethanilamine-N-
tosylate and 1,2-bis(methoxy)benzene with formaldehyde and
with paraformaldehyde using a large diversity of conditions
was investigated in order to discover reaction conditions for

during the electrophilic

the large-scale synthesis of the cyclotriveratrylene (CTV) and
cyclotetraveratrylene (CTTV) [64]. CTV and CTTV are precursors
for the synthesis of building blocks that self-organize pyramidal
and columnar hexagonal thermotropic liquid crystals. CTV,
the kinetic cyclization product, was discovered to be formed
almost exclusively when 3,4-bis(methoxy)benzyl chloride was
reacted with stoichiometric amount of AgBF; in methylene
chloride (Fig. 3). CTV also forms in large conversion when
3,4-bis(methoxy)benzyl alcohol was reacted with CF3;SO3H
in bulk. The thermodynamic product CTTV forms under

high conversion by the electrophilic oligomerization of 3,4-
bis(methyloxy)benzyl alcohol with excess of CF;COOH in
methylene chloride (Fig. 3). Nonnucleophilic counter-anions
based on the electronegative fluorine were employed in all these
experiments. These methodologies were employed to produce
in a very simple way libraries of CTTV-based columnar liquid
crystals [65] and libraries of self-organizable dendronized CTTV
exhibiting a diversity of columnar and Frank-Kasper assemblies
[66]. The synthesis of CTTV by this methodology was expanded
to prepare the fist hyperbranched polymer containing CTTV
columnar assemblies [67].

2.4 Asystematic approach to the synthesis of the simplest class
of thermotropic liquid crystals containing a single benzene unit
by fluorination and of other liquid crystals and derived functions
Rod-like thermotropic liquid crystals require a minimum of
two aromatic units incorporated either in a biphenyl or
phenylbenzoate fragment containing an alkyl group that
determines their melting temperature and a functional group
preferentially -CN that provides a dipole moment [68]. When
the alkyl group was replaced with a semifluorinated alkyl
group attached to benzene it was demonstrated that the largest
diversity of functional groups -NO,, -CN, -CO,CH3, -CH,OH,
-CO;H, and -COCHj3; could be attached in the para-position of
the semifluorinated alkyl group from benzene to generate the
simplest class of liquid crystal displaying Sy and Sc phases. The
thermal stability of the LC phase increases with the increase of
the length of the perfluorinated fragment attached to the alkoxy
group. A ratio of the perhydrogenated [(CH;)m]/perfluorinated
[F(CF2)n] segment lengths of m/n smaller than 1 favors the
formation of the liquid crystalline phases when n + m = 10
and 12. Additional substitution in the 2-position of the benzene
ring with a methyl group decreases the thermal stability of the
liquid crystal phase [69]. The structure of these liquid crystal
phases was determined by X-ray diffraction [70]. We expect
that using fluorine as a substituent in the 2-position may
provide a new class of liquid crystals with very broad thermal
stability. This statement is supported by the incorporation of
fluorine in two new classes of substituted diphenylacetylene and
phenylethyny(diphenylacetylene) liquid crystals [71-75].

Cyclotrimerization of some of these substituted acetylenes
form the simplest disc-like molecules that self-assemble into
columnar liquid crystals [76]. Some unprecedented functions were
designed from the focal conic texture of semifluorinated liquid
crystal Sy structures [77-79]. They include toroidal microchannels
and molecularly designed superhydrophobic surfaces. Recently
semifluorinated discotic triphenylene based liquid crystals were
developed [80]. They display columnar hexagonal liquid crystal
phases in the range of short alkyl groups that up to very recently,
with the exception of one supramolecular example [81] formed
only helical columnar crystals [82-84]. This is a very important
advance in the design of columnar liquid crystals.

2.5 Helical conformation of linear perfluorinated alkanes and of
Teflon

The small increase in size from hydrogen to fluorine is sufficient to
transform the zig-zac conformation of polyethylene into a helical
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Fig. 2

(a) Cross-coupling of ortho, meta, and para electron-deficient aryl halides and aryl mesylates with electron-rich and neutral aryl neopentylglycolboronates
catalyzed by NillCI(1-naphthyl)(PCy3),/PCys in anhydrous THF at 23 °C. (b) Cross-coupling of aryl fluorides with aryl neopentylglycolboronates catalyzed by NillCI(1-
naphthyl)(PCy3),/PCys/ZrF4 in toluene at 100 and 120 °C. Adapted with permission [62]. Copyright 2016, Georg Thieme Verlag.

conformation for poly(tetrafluoroethylene) (Teflon) [85-87]. 19F-
NMR [88] and vibrational circular dichroism spectroscopies
[89] demonstrated that the helicity from the crystal state is
persistent in solution even at very short linear perfluoroalkanes
containing 6 to 8 carbons. Attachment of a stereogenic center at
the end of the perfluoroalkane select the handedness of the helix
(Fig. 4). Therefore, perfluoroalkanes are the simplest and the most
basic chiral helix that can be exploited in many fundamental and
practical applications. This helicity is induced by the electrostatic
repulsions of the fluorine atoms from the 1,3-positions of the
linear structure.

3 Fluorine in polymer synthesis

3.1 Synthesis of poly(methylsiloxane)s with different molecular
weight and of poly(methysiloxane-co-dimethylsiloxane)s with
different molecular weight and composition by cationic ring
opening polymerization initiated with CF;SOsH
Poly(methylsiloxane)s with different molecular weight and

poly(methylsiloxane-co-dimethylsiloxane)s with different
molecular weight and composition were synthesized
by cationic ring opening polymerization of 1,3,5,7-

tetramethylcyclotetrasiloxane (D4') and by copolymerization of
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Synthesis of CTTV and CTV by employing fluorinated reagents.
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Circular dichroism (CD) spectra of the enantiomeric perfluorinated
compounds. Adapted and modified from reference 89.

D’ with 1,3,5,7-octamethylcyclotetrasiloxane (D4) intitiated with
CF3SO3H. The molecular weight of the polymers was controlled in
both cases by using the proper amount of hexamethyldisiloxane
(MM) as chain terminator. Polymerization were carried out in bulk
at room temperature for 24 h in order to reach equilibrium and
therefore, to generate a random distribution of the two monomer
repeat units in the resulting copolymer (Fig. 5) [90]. Details of
the mechanism of polymerization and copolymerization as well
as of the equilibrium random composition were discussed in the
original publication [90]. Again, the nonnucleophilic counter-
anion responsible for these polymerizations was generated with
the help of fluorine. These homopolymers and copolymers
were functionalized by hydrosilylation with mesogenic groups
containing terminal olefins. They generated well defined side-
chain liquid crystalline polymers employed in fundamental
studied involving molecular engineering of phase transition and
the design of biphasic highly decoupled side-chain liquid crystal
polymers [90-105]. Alternatively, they were functionalized with

self-assembling dendrons containing terminal olefins to produce
self-organizable dendronized polymers [106-117].

3.2 Synthesis of side-chain liquid crystals and other functional
polymers by living group transfer polymerization catalyzed by
hydrofluoride, HF ;™

Living group transfer polymerization of acrylates was discovered
at DuPont Experimental Station by Owen Webster [118-120]. Our
laboratory employed it for the living polymerization of a diversity
of liquid crystalline monomers and of bifunctional monomers to
elucidate fundamental concepts in the field of side-chain liquid
crystal polymers and also to create reactive polymers [121,122].
GTP remains one of the most efficient living polymerizations
that produces extremely well-defined polymers from functional
monomers while tolerating a large diversity of functional groups.

3.3 Living polymerization of substituted polyphenylacetylenes
mediated by the ortho-substituent effect

Cis-stereoisomers of polyphenylacetylene (PPA) exhibit a helical
conformation that impacted dramatically the fundamental and
applied fields of helical polymers [123-131]. The simplest way to
induce the living polymerization of substituted phenyl acetylene
is by placing substituents in the ortho-position of the triple
bond from the monomer (Fig. 6) [132]. This methodology was
not yet investigated in details and we consider that fluorinated
substituents like CF3;, OCF3, SCF3 and even larger must be studied
in view of the ortho-substituent effect to produce both living
polymerization regardless of the polymerization method and also
affect chain conformation and conjugation [132,133].

3.4 Living cationic polymerization of vinyl ethers containing
functional mesogenic groups and self-assembling dendrons
initiated with CF3SO3H/(CH3)ZS

Webster group from Experimental Station at DuPont elaborated
the living cationic polymerization of isobutyl vinyl ether initiated
by CF3SO3H in the presence of (CH3),S and other dialkyl sulfides
at-40to-15 °C [134] (Fig. 7). Triflic acid adds to the vinyl ether and
the resulting carbocation enters immediately into an equilibrium
with the sulfide that is more nucleophilic that the triflate
counteranion forming the unreactive sulfonium. The equilibrium
between sulfonium and carbocationic species is shifted towards
sulfonium and thus provides a very small concentration of
carbocationic propagating species. This process reduces the
concentration of chain transfer reactions yielding a polymer with
well-defined molecular weight that is determined by the ratio
between vinyl ether and triflic acid initiator. This methodology
provides polymers with very narrow polydispersity and the
fluorinated nonnucleophilic counteranion is responsible for this
process. I (VP) was involved as a consultat in the development of
this methodology. In 1986 we discovered side-chain liquid crystal
poly(vinyl ether)s [135]. In 1991 we demonstrated that liquid
crystal vinyl ethers that contain additional nucleophilic sites in
addition to the (CHj3),S nucleophile and many functional groups
including crown-ethers and semifluorinated spacers undergo an
even more efficient living cationic polymerization than isobutyl
vinyl ether at O °C rather than at -40 to -15 °C as reported
by DuPont laboratory [37,136-165]. When onium salts were
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Fig. 6
The dependence of number-average molecular weight versus
conversion for the MoCls initiated polymerization of ortho-
trimethylsilylphenylacetylene  (top). Data  between parentheses

represent M, /M. Ultraviolet spectra (solution in CCls) for the purified
polyphenylacetylene, poly(ortho-methylphenylacetylene, and poly(ortho-
trimethylsilylphenylacetylene)prepared in toluene (bottom). This figure was
adapted and modified from reference 132.

used as precursors of the cationic polymerization of vinyl
ethers polymers with broader polydispersities were obtained
both under thermal and UV mediated conditions [166,167].
Together with theoretical thermodynamic schemes [168] this
work allowed to elucidate the most fundamental principles of
side-chain liquid crystal polymers [169,170]. No better living
polymerization method was developed in the meantime. In
parallel with these experiments, the living polymerization of
vinyl ethers containing self-assembling dendrons was elaborated
by the same catalytic system to provide extremely well defined
self-organizable dendronized polymers [171,172]. Living cationic
polymerization of vinyl ethers containing perfluorinated alkyl
groups was also accomplished [173]. Amorphous, crystalline and
liquid crystalline poly(vinyl ether)s were accomplished by this
methodology.
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OR OR 2 y /CH3
CH CH HC—GSQ
3 3
/ " TioH ©/ OrR CHs
SO T HS “H,c=cH
CHj © CHy |
oTf OR

Propogation

Fig.7

Mechanism of living cationic polymerization of isobutyl vinyl ether. This figure
was redrawn from reference 134.

3.5 Chiral molecular recognition including between fluorinated
enantiomers and diastereomers in chiral side-chain liquid crystal
poly(vinyl ether)s synthesized by living cationic polymerization
initiated with CF3SO3’H/(CH3)2.S

This series of experiments could not have been performed
before the living cationic polymerization of mesogenic vinyl
ethers initiated with CF3SO3H/(CHj3),S discussed in the previous
subchapter was discovered. This research started with the
synthesis and living polymerization if vinyl ethers containing
chiral mesogenic units that were of great interest for the design of
chiral Sc* phases. Methodologies for the synthesis of enantiomers
and diastereomers containing a stereogenic center with functional
groups including fluorine were elaborated [148,153,165,174-179].
Reactive liquid crystalline polymers that can be crosslinked
after alignment [180] and monolayers of these polymers on
the surface of water were also investigated [181]. These first
series of experiments provided the methodologies required to
investigate for the first time heterochiral interactions between
molecular, macromolecular and copolymer pairs containig R and

]
=
=
v
@
Q.
w
B
]
(-9




aAndadsiad

Giant, 16, 2023, 100193

a) b)
65
H-(CHZ-(i':H)x-OCHa H-(CHz-(i':H)x-OCH3 I
(l) (l) it a0 P oo
(GHae (Ghae 6o
SA

T(°C)
3

0 O
¥ &

s’
Fo, e
: [Sesee)
o o]
404 o o
K

Poly[(S)-8]

Poly[(R)-8] 35

0 02 04 06 08 1
Mol Fraction of (R)-8

Fig. 8

c) d)
25
H-(CHZ-(i':H)x-OCH3 H-(CHZ-(i':H)x-OCHg,
0 0 I
1 1
(CH2)11 (CH2)11
) d 20
5 s,
¢ ) "
0”0 0”0
Cla,, cl 104
K
Poly[(S)-11] Poly[(R)-11] i
"0 02 04 06 08 1

Mol Fraction of (R)-11

(a) composition of the binary mixtures of poly[(R)-11] with poly[(S)-11]. This figure wad adapted and modified from references 182 and 189. Copyright 1994 & 1999,

American Chemical Society.

S enantiomers and diastereomers. Investigation of this molecular
recognition process requires comparison of polymer homologous
series of enantiomers and diastereomers as a function of degree of
polymerization. Due to the polydispersity effect these experiments
cannot be performed with a single molecular weight sample or
pair of samples even at very narrow polydispersity. Therefore,
the demonstration of strictly identical phase transitions for
enantiomers requires first to demonstrate strictly identical phase
transition dependences as a function of molecular weight. Only
after that comparison of different ratios between enantiomers
and diastereomers as polymer mixtures and as copolymers can
pe performed. These very demanding experiments could be
performed only with the help of this living polymerization and
copolymerizetion [182-190].

Fluorinated stereocenters and fluorinated aromatic part of the
mesogen were very important for these series of experiments.
Hetereochiral interactions were detected as a positive deviation
from the linear dependence of a phase transition temperatures
as a function of composition (Fig. 8). These interactions
are very important since less than 100 % enantiomeric
purities are affecting their physical properties. Other fascinating
properties incorporated by low molar mass fluorination in liquid
crystals were reviewed and will not be discussed here [191].
Heterochiral interactions were discovered in between fluorinated,
and chlorinated enantiomers that are frequently used in the
design of liquid crystals for displays applications.

3.6 Synthesis of side-chain liquid crystal polymers containing
semifluorinated spacers and cyclopolymerization to incorporate
crown-ethers in the main-chain by living cationic polymerization
and cyclopolymerization initiated with CF;SO3H/(CHs),S

Vinyl ethers containing a semifluorinated spacers between the
vinyl group and the mesogenic group as well as divinyl
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Living cationic copolymerization accompanied by cyclization of |,2-bis(
2-ethenyloxyethoxy)benzene (DVE) with 11-[ (4'-cyano-4-biphenyl)oxy]
undecanyl vinylether (CVE) and 3-[2-(1,2,2-trifluoroethoxy-2-(4-methoxy-
4-((Y- methylsti1bene)oxy))-1-(trifluoromethyl)trifluoroethoxy]-1-[2-
(ethenyloxy)ethoxy]-2,2,3,3-tetrafluoropropane (MVE). This figure was
redrawn from reference 193.

CH,Cl,

Fig. 9

ethers which can incorporate crown ethers in the main chain
by cyclopolymerization were both designed and employed in
living polymerizations and copolymerizations mediated with
CF3SO3H/(CH3),S (Fig. 9) [192,193].

It is remarkable that this initiating system tolerates so
much functionality during its living polymerization process. The
incorporation of crown ethers in liquid crystals is important
since it provides access to molecular recognition directed phase
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transitions and functionalization. This topic will be demonstrated
and discussed in details in a different subchapter.

3.7 Synthesis of side-chain-liquid crystal polymers and
self-organizable dendronized polymers by living cationic ring
opening polymerization of cyclic imino ethers initiated with
CF3;503;Me (MeOT()

The cationic polymerization of cyclic imino ethers, the most
common being 2-substituted-2-oxazolines, were discovered
independently in four different laboratories [194-197]. Methods
for the living cationic ring opening polymerization including
methodologies to accomplish high molecular weight polymers
were elaborated and reviewed [198-200].

Cyclic iminoethers were employed in the synthesis of
numerous functional polymers and block copolymers that we
will not be discussed here. However, we will provide only
two examples that cannot be made easily by other methods
[201,202]. In 1987 our laboratory discovered the synthesis of side-
chain liquid crystal polymers by the living cationic ring-opening
polymerizatioin of cyclic imino ethers containing mesogenic
groups [203]. In the year 2000 our laboratory initiated a program
for the convenient synthesis of the simplest class of dendronized
polymers by attaching minidendrons as side groups to cyclic
imino ethers and to other monomers that undergo living ring
opening polymerization by other methods [204-206].

A diversity of electrophilic initiators including methyl and
benzyl halides and tosylates was used for the living polymerization
of functional cyclic iminoethers. Our preferred initiator is
however methyl triflate since it provides very fast initiation
and chain end functionalization with many nucleophiles
(Fig. 10a). This combination of cyclic imino ether functionalized
with minidendrons and methyl triflate initiator allowed a
detailed structure-phase behavior degree of polymerization
correlation to be elaborated for visualizable self-organizable
dendronized polymers exhibiting columnar hexagonal phases
[206] as the one developed with living cationic polymerization of
liquid crystalline poly(vinyl ether)s and dendronized poly(vinyl
ether)s. 3,4-Dialkoxysubstituted phenyl poly(oxazoline)s with
n-octyl, n-decyl, n-dodecyl and n-tridecyl generated only
columnar hexagonal mesophases regardless of their degree of
polymerization [206]. Increasing the alkyl chain length to n-
tetradecyl and n-pentadecyl generated dendronized polymers
exhibiting Pm3n known also as Frank-Kasper A15 phase at low
degrees of polymerization, followed by a columnar hexagonal
phase at high degrees of polymerization [207]. This degree of
polymerization dependence of phase behavior transiting from
spherical dendronized polymers to columnar hexagonal resemble
the similar trend observed with higher generation dendronized
polymers prepared by conventional radical polymerization
[208,209].

However, the living polymerization of dendronized oxazolines
allowed the precise mapping of the phase behavior as a function of
the degree of polymerization and it was employed to demonstrate
the limitations of living polymerization methodologies in the
design and construction of 3D structures based on single polymer
chains [207]. Attaching three n-dodecyl alkyl groups in the 3,4,5-
positions of the dendron changed the Pm3n or A15 cubic phase of

the polyoxazoline into a body centered cubic (BCC) phase [211].
Semifluorination of the n-dodecyl groups of the 3,4,5-dendron
generated only columnar forming dendronized poly(oxazoline)s
[212]. Changing back to 3,4-disubstituted phenyl dendrons, this
time containing n-hexadecyl alkyl groups, provided a dendronized
poly(oxazoline) displaying Pm3n or A15 phase at very low degree
of polymerization, tetragonal P4,/mnm or sigma Frank-Kasper
phase [213] between degrees of polymerization 10 and 50 and
columnar hexagonal P6mm at higher degree of polymerization
than 75 [214]. Increasing the mn-alkyloxy group of the 3,4-
disubstituted dendronized poly(oxazoline) from n-hexadecyl to
n-heptadecyloxy groups provides an extraordinarily complex
system which displays within only five monomer repeat units
liquid crystal liquid quasicrystal (Fig. 10b) [215]. A1S5 and sigma
Frank-Kasper phases [210]. These experiments demonstrated the
extraordinary capability of minidendritic poly(oxazoline)s to map
the phase behavior of the dendronized polymers. No other
living polymerizations except of vinyl ethers and of oxazolines,
both mediated by fluorinated initiators giving nonnucleopihilic
counter-anions, and discussed in this subchapter and in the
previous subchapters could contribute with the same level of
precision and functionality tolerance to solve these fundamental
problems of supramolecular polymer chemistry. These two living
polymerizations are complementary to each other. The vinyl
ether polymerization proceeds efficiently at 0 °C while that of
oxazolines at high temperatures that allowed polymerization to
exceed the size of the supramolecular spheres forming cubic
phases since in the isotropic disordered state where spheres are
most probably random coil or extended propagating chains.

3.8 Synthesis of side-chain liquid crystal poly(vinyl ether)
copolymers with poly(vinyl ether)s containg semifluorinated side
groups initiated with CF3SO3H/(CH3),S

This methodology allowed also the synthesis of the first AB
semifluorinated block copolymer containing side-chain liquid
crystal polymer segments (Fig. 11) [216]. They exhibit a
microphase separated morphology, that was not determined at
that time. Fluorinated initiators for living radical polymerization
were used to synthesize end-functionalized polystyrene and
polybuthylmethacrylate containing perfluorocarbon chain ends.
Upon mixing their perfluorinated fragments interact with each
other providing a new approach to block copolymer-like self-
assembly of fluorocarbon end-functionalized polystyrene and
polybutylmethacrylate [217].

3.9 Sequence-defined including alternating multicomponent
semifluorinated polyethylene oligomers synthesized by single
electron-transfer (SET) self-organize a columnar hexagonal
mesophase

A simple methodology by the SET-mediated synthesis of
multi-alternating semifluorinated polyethylene oligomers was
developed (Fig. 12) [218,219]. This block alternating block
copolymer structure was designed to self-organize columnar
hexagonal mesophase and it did.
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3.10 Fluorinated reagents monomers and solvents in living
radical polymerizations

The participating reagents of all living polymerization
methodologies, including INIFERTERS such as dithiocarbamates,
xanthates, tetraphenylethanes, alkoxyamines, nitroxides, chain
transfer agents for RAFT, initiators, ligants and solvents for ATRP
and for SET-LRP, initiators for iodine transfer polymerization, etc.,
were fluorinated in order to functionalize the chain end of the
resulting polymers and to improve polymerization conditions
in different solvents including fluorinated solvents and for
different monomers including fluorinated monomers. A review
covering this topic up to 2002 in a very well-organized way is
available [220]. More recent related reviews but more specialized
are also available [221-231]. This is a large field of research that
is outside the scope of this perspective and with the exception

of several experiments on SET-LRP that were elaborated in our
laboratory will not be discussed here. A method for the synthesis
of perfluorosulfonyl chloride and bromide and their use as
initiators in living radical polymerization catalyzed by CuCl was
investigated (Fig. 13) [232].

Arylsulfonyl halide were introduced as initiators in metal
catalyzed living radical polymerization by our laboratory in 1995
[233-246].

Perfluorosulfonyl halides act as intitiators via a different
mechanism from alkyl halides and arylsulfonyl halides
[247,248]]. Aryl and alkyl sulfonyl halides act as initiators
by the addition of their sulfonyl radicals to the double
bond of the monomer while perfluoroalkylsulfonyl halides
generate the sulfonyl radical by metal catalysis, extrude the
SO, and subsequently the resulting perfluoalkyl radical adds
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Fig. 13

(a) Synthesis of perflurosulfonyl halides; (b) metal catalyzed living radiocal
polymerization of styrene initiated with perflurosulfonyl halides. This figure
was adapted and redrawn from reference 232. Copyright © 2000, John Wiley
& Sons, Inc.

as an initiator to the monomer (Fig. 13). Metal catalyzed
living radical polymerization initiated with perfluorosulfonyl
halides was carried out with styrene to demonstrate this
mechanism of initiation [232]. Interestingly perfluoroalkyl
sulfonyl halides could also be used in copolymerization of
tetrafluoroethylene with hexafluoropropylene [232]. This last
experimental was performed at the Experimental Station of
DuPont. Fuorinated alcohols including 2,2,2-trifluoroethanol
(TFE) and 2,2,3,3-tetrafluoropropanol (TFP) were used as solvents
in single-electron-transfer living radical polymerization (SET-
LRP) [249-259] of hydrogenated hydrophilic, hydrophobic
and amphiphilic acrylates and methacrylates [260-263].
They are generating the highest molar mass polymers
from this class obtained so far by any methodology for
some of them [264] as well as in the polymerization of
selected examples of fluorinated acrylates and methacrylates
such as 1H,1H,2H,2H-perfluorooctyl acrylate, 2,2,3,3,4,4-
heptafluorobutyl acrylate and 1H,1H,5H-octafluoropentyl
methacylate, 1,1,1,3,3,3-hexafluoroisopropyl acrylate (HFIPA),
1,1,13,3,3-Hexafluoroisopropyl methacrylate (HFIPM),
pentafluorophenyl acrylate (PFPA) and pentafluorophenyl
methacrylate (PFPM) [265]. Both TFE and TFP are excellent solvent
for the disproportionation of Cu()X into Cu(0) and Cu(Il)X,.
Hexafluoroisopropanol (HFIP) is not a disproportionating solvent.
However, its mixtures with water provide also an excellent
solvent for SET-LRP [266]. Improved activity of TFE and TFP in
mixtures with water was also observed [267]. These experiments
allowed the design of novel reactive semifluorinated polyacrylate
and polymethacrylates as well as reaction condition for the
transesterification and transamidation of their side groups [268].

SET-LRP experiments are most conveniently performed with
Cu-wire as a catalyst. Cu-wires are covered with Cu-oxides
predominantly Cu,O that although is reactive and was employed
itself as a catalyst [236,249,250,269-273] exhibit lower activity
than Cu(0). At the same time the surface of Cu(0) wire is not
homogeneous since not all faces of the Cu(0) face centered
cubic unit cell of the Cu(0) crystal exhibit identical reactivity
in SET-reactions and therefore, even in the absence of oxidation
different Cu-wires exhibit different reactivity [274]. Reduction
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(a) Two-step synthesis of [omimPFg¢]; (b) living radical polymerization of MMA
initiated from PDSC and catalyzed by Cu,0/bpy at 70 °C; (c) determination
of the external order of reaction of the rate constant of propagation on the
concentration of ionic liquid for the LRP of MMA initiated from PDSC and
catalyzed by Cu,0/bpy at 70 °C. This Figure was adapted and modified from
reference 285. Copyright © 2005, John Wiley & Sons, Inc.

of Cu,O with hydrazine [275], strong acid dissolution [276] or
even the use of acetic acid as a solvent [277] do not undergo the
induction period (IP). Therefore, it is not surprising the SET-LRP
of methacrylic acid is not accompanied by IP [278]. No IP was
observed during SET-LRP in TFE and TFP [279]. This self-activating
mechanism of fluorinated alcohols was quite surprising since the
pKa of TFE is 12.46 while that of TFP is 13.05. However, these pKa
values seem to be sufficient to activate the surface of Cu(0)-wire
during the SET-LRP process. A synergistic and cooperative effect
was observed for mixtures of TFE and TFP with DMSO [264].
This effect is similar to that observed in other mixtures
of solvents [280], but in addition to the increased in rate
of polymerization, it produces the highest molar mass poly(2-
ethylhexyl acrylate) with perfectly controlled chain ends by SET-
LRP or by any other method. Originally the mechanism of
this cooperative and synergistic effect was not explained. At
this point we have at least a hypothesis for it. Recently it has
been demonstrated that DMSO has a very unusual capability to
stabilize Cu(0) nanoparticles during disproportionation of Cu(I)X
into Cu(0) and Cu(II)X, exhibiting a catalytic effect [281-283].
Most probably, mixtures of DMSO with other solvents including
fluorinated alcohols may exhibit the same catalytic process at
a certain composition [280]. A catalytic effect of the ionic
liquid 1-butyl-3-methylimidaziolinium hexafluorophosphate was
observed during the metal catalyzed living radical polymerization
initiated with arenesulfonyl halides (Fig. 14) [284]. These
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Synthesis of poly(vinylidene fluoride-co-trifluoroethylene) block copolymers.
This figure was redrawn from reference 286. Copyright © 1997, John Wiley &
Sons, Inc.

experiments with fluorinated reagents provided an important
contribution to the field of living polymerization including,
new solvents for SET-LRP, extremely good control of the
living polymerization of hydrophilic, hydrophobic, amphiphilic
and fluorinated monomers with excellent molecular weight
dependence to extremely high molecular weights and perfect
chain ends functionality, self-activation activity of the catalyst
by the fluorinated solvents, new reactive polymers by simple
methodologies, synergistic effect of the fluorinated alcohols with
DMSO, catalytic effect of solvent, to name just a few. Considering
the reduced number of experiments performed on this topic, this
number of accomplishments is remarkable.

3.11 Synthesis of poly(vinylidene fluoride-co-trifluoroethylene)
by phase transfer catalyzed modification of polyvinylidene
fluoride
Poly(vinylidene fluoride-co-trifluoroethylene) is of great interest
for its piezo and pyroelectric properties but the synthesis of this
copolymer is limited to the conventional radical copolymerization
that provides a statistical copolymer [286]. In order to expand
the synthetic methodologies of this synthesis we developed
an new concept that involved a phase transfer catalyzed
dehydrofluorination of poly(vinylidene fluoride) followed by
halogenation of the resulting double bonds and exchange of
the added chloride or bromide with fluoride via KF or KHF,.
The first step was accomplished in solution (DMF or DMSO)
with potassium tert-butoxide or NaOH and tetrabutylammonium
hydrogen sulfate (TBAH) as phase transfer catalyst. This step
was also carried out in heterogeneous state with powder, single
crystals or films of polymer, aqueous NaOH and TBAH. Although
both chlorination and bromination of the resulting polymer
double bonds were carried out, as expected the most successful
intermediate for the next step was the brominated compound.
The strongly basic character of the fluoride made the
third step difficult particularly with the chlorinated copolymer.
However, the brominated material was successfully functionalized
by replacing the bromide with fluoride and thus creating a
block copolymer of poly(vinylidene fluoride-b-trifluoroethylene)
(Fig. 15) [286,287]. The brominated or chlorinated intermediates
from this process (Fig. 15) can be used for graft-copolymerization
by a related mechanism as the one used in the case of PVC [288].
Experiments on this line must be performed.

3.12 Living phase-transfer catalyzed (PTC) and single-electron
transfer (SET) mediated polyetherifications

Single electron transfer (SET)-mediated polymerizations
proceeding via radical-ions both radical-anion and radical-cation
species and phase-transfer catalyzed (PTC) polyetherifications
were shown during the mid 1980" to deviate from the
conventional condensation polymerizations proceeding with
equal reactivity of growing species regardless of the degree of
polymerization. In both cases reactivity of the growing species
increases as the degree of polymerization increases thus providing
the first examples of living-like condensation polymerizations
(Fig. 16) [37,176,285,286,289-323]. This became an entirely new
field of research [324,325].

Mechanistic explanations were provided for all polymerization
systems but they will not be discussed here. It is just important to
mention that these polymerizations generated narrow molecular
weight distribution polymers with well-defined chain-ends that
were employed in the synthesis of block copolymers and for the
elucidation of some fundamental aspects that will be discussed
later.

3.13 Expanding architectural complexity with liquid crystal
polyethers and liquid crystal polyethers based on conformational
isomerism including with fluoro and trifluoromethyl substitution
The discovery of liquid «crystal polyethers by PTC
polyetherification (Fig. 17) [292,294-298,299,300,326] and
the ability to prepare them with different molecular weight and
identical chain ends allowed a large diversity of fundamental
problems from this field to be solved and almost at the same
time facilitated the discovery of an additional new concept,
liquid crystal polyethers based on conformational isomerism.
[298,327-343]. Fluorine, and trifluorophenyl substituted liquid
crystal polymers based on conformational isomerism played an
important role in these fundamental studies [344-346]. Liquid
crystal polyethers based on conformational isomerism were
equipped with constitutional isomerism [347-352].

This combination of conformational and constitutional
isomerism allowed the discovery of nematic liquid crystalline
dendrimers [352-354], liquid-crystalline main-chain elastomers
[355], the molecular design of nematic, smectic and columnar
phases of main chain LC polyethers [356], and macrocyclic
liquid crystals [160,161,357-371]. This work demonstrated that
macrocyclics and not linear is the most suitable conformation
providing the most stable liquid crystal phases thus infirming
a concept promoted for over 100 years [372-374]. This led to
the design of the first example of main-chain and side-chain
liquid crystal polymers based on macrocyclic mesogenic groups
[370,375-377].

4 Fluorine and fluorinated reagents in self-assembly,
disassembly, reassembly and self-organization

4.1 Self-organization mediated by alkali metal triflates

Alkali metal salts of triflic acid or alkali metal triflates have
excellent solubility in fragments of polyethylene glycol known
as podants, crown ethers and cryptands. This is due to the weak
interaction between the nonnucleophilic and nonbasic triflate
anion and the metal cation. Starting in 1987 we reported the
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SET polymerization mechanism demonstrating phenol or phenolate addition to the phenoxy radical. Plots of percent conversion versus reaction time for the
polymerization of BDMP under different reaction conditions:(a) 6N aqueous NaOH and air, o; (b) 6N agueous NaOH and nitrogen, e.; (c) 3N aqueous NaOH and air,

. This Figure was adapted and redrawn from reference 303.
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Fig. 17

Polymerization of polyethers of mesogenic bisphenols. This figure was redrawn
from reference 326. Copyright © 1984 John Wiley & Sons, Inc.

co-assembly of alkali metal triflates with oligoethylene fragment
of liquid crystal polyethers that acted as recognition sited
for the metal salts [378] to mediate phase transitions of the
corresponding liquid crystal polymers. Side-chain liquid crystal
polymers containing crown ethers in the side-groups were also
employed in these complexation experiments [379]. We named
this process molecular recognition directed phase transitions in
liquid crystalline polymers. Lower order phases such as nematic
will increase their thermal stability while higher order like smectic
and crystalline would decrease their stability transforming a
polymer containing crystal and liquid crystal multiple phases
into a polymer exhibiting only a very broad temperature range
for its nematic phase [379]. Libraries of liquid crystal polymers

containing crown ethers were elaborated and subjected to
these experiments [141,380-384]. New concepts in mesomorphic
polyelectrolytes were generated by the synthesis of side-chain
liquid crystalline polymers containing end-on [385] and side-on
[385] fixed mesogenic groups and oligooxyethylene spacers.
Once we elaborated the principles of molecular recognition
directed phase transitions in liquid crystals by complexation
with alkali metal triflates we expanded the same very simple
methodology to molecular recognition directed self-assembly
of supramolecular columns and helical columns from dendrons
or minidendrons containing crown ethers or oligooxyethylene
fragments at their apex (Fig. 18) [386-390]. When dendrons
were attached to oligooxyethylene glycols they were also
functionalized with polymerizable groups and polymerized.
The resulting polymers have a backbone jacketed with a dendritic
coat assembling a columnar structure. When dendronized
crown ethers or oligooxyethylenes are only crystalline,
complexation induces a columnar assembly that exhibits a
columnar hexagonal liquid crystal whose characterization by
X-ray allowed to construct the supramolecular model of the
assembly. Therefore, either non-self-assembling dendronized
crown ethers or oligooxyethylenes form already a supramolecular
assembly, or if they do not, complexation with metal triflates
induces the self-assembly and self-organization process. In the
case the building blocks self-organized in a columnar hexagonal
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Me(CH;)410
o
Me(CH)110
[e]
Me(CH;)410

Fig. 18

Schematic representation of the self-assembly of the tapered endo-receptor (2,4,7,10,13-pentaoxacyclopentadecan-2-ylmethyl 3,4,5-tris(dodecy1oxy)benzoate)
minidendron, into a tubular molecular architecture upon complexation with NaCF3SO,. This figure was adapted and redrawn with permission from reference 390.

Copyright © 1994, Royal Society of Chemistry.

liquid crystal, complexation with metal triflates enhances the
stability of the resulting assembly. A comparison of the role of
complexation by comparison with the equivalent contribution
of H-bonding and of a polymer backbone was possible for the
first time. This comparison was published in a brief review article
and it will not be repeated here [391]. However, what we would
like to mention here is that the center of all these supramolecular
columns consists of an ionically conducting channel whose
ionic conductivity is determined by the state of the assembly
[386]. These materials are of great interest as polyelectrolytes
for batteries. Alkali metal triflates is a new but very general
self-assembly and self-organization concept [212,392-398] that
produces supramolecular assemblies or polymers resembling
Tobacco Mosaic Virus [171,399] with numerous applications and
even more complex design capabilities [400,401].

4.2 Supramolecular organizations mediated by
phenyl-perfluorophenyl stacking interractions
Phenyl-perfluorophenyl stacking interractions is a new concept
that mediates self-assembly by a very simple and elegant
methodology [402-410]. This very simple methodology was used
to mediate phase transitions in liquid crystals and in polymers
as well as to construct new macromolecular architectures. This
concept, that is inspired from biology, is so simple and powerful
that not even a figure is needed to imagine its infinite capabilities.

4.3 Fluorocarbons and fluorinated amphiphiles in drug delivery
and biomedical research

Fluorinated hydrocarbons and fluorinated amphiphiles are not
enzymatically degraded. However, due to their lipophilicity they
are easily eliminated from the organism. They have numerous
biomedical applications including for in vivo oxygen transport as
blood substitutes in diagnosis and in drug delivery. Numerous

review articles on this topic are available and we are not going
to expand this topic more than just to refresh our readers about
their utility [411-422].

4.4 Disassembly poly(p-phenylene) crystal structure by
substitution with —CF3 and —OCF3

Poly(paraphenylene) is an insoluble polymer that decomposes
before melting. Therefore, transforming it into a soluble polymer
via minimum chemical modification of its repeat unit is of interest
for many fundamental questions accompanied by potential
technologic applications. Incorporation of large substituents in a
regioirregular placement is one method to accomplish this goal
[41-44,51,423-425].

A method elaborated in our laboratory [47] provided access
for the first time to a comparison of the regioregular and
regioirregular poly(p-phenylene)s by employing the Ni(0)-
catalyzed homocoupling of arylene bismesylates developed in
our laboratory [426]. A diversity of substituents were employed
in these experiments, between many of them being o-, m- and
p-fluorobenzoketone. Surprisingly fluorine was again the most
active substituent employed to disassemble the 3D order of
poly(p-phenylene). The next series of experiments was with —CF3
and —-OCF3 substituents. Regioregular and regioirregular poly(p-
phenylene)s containing these substituents allowed the synthesis
of the highest molecular weight and, soluble and completely free
of crystallization poly(p-phenylene)s (Fig. 19) [427].

This polymer had excellent physical properties and it almost
ended up being a commercial product from DuPont. For reasons
that we prefer to keep confidential it was not commercialized.
However, it demonstrated the power of —CF; and specially of
—OCF; as substituents to disassemble 3D structure of poly(p-
phenylene) and most probably of many other crystalline
polymers.
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CF, OCF,
FsC F,CO

Fig. 19

—)
PPhs, Et,NI, Zn
THF, 67 °C, 24 h

NiClo(PPhs),

83%
M, = 55200; M,,/M,, = 2.04; 2(m + n) = 363

Ni(0)-Catalyzed copolymerization of 2,2«disubstituted-4,4<bis[(methylsulfonyl)oxylbiphenyls. This figure was redrawn from reference 427. Copyright © 1996,

American Chemical Society.

4.5 Extraordinary amplification of the self-assembly of dendrons
and dendronized polymers and the induction of their
spontaneous homeotropic alignment by semifluorination
Self-assembly and self-organization of dendrons, minidendrons
and dendronized polymers as well as of minidendronized
polymers was discovered in our laboratory in the late 1980, The
first supramolecular structure discovered by these experiments
was columnar that most frequently self-organizes a columnar
hexagonal periodic array [74,171,172,205,253,391,399,401,428-
463]. Libraries of self-assembling dendrons and dendronized
polymers were subsequently elaborated to discover the
fundamental principles for the self-organization of columnar
hexagonal and helical columnar hexagonal periodic arrays
[208,209,400,464-473]. Placing interacting functional groups at
the apex of the self-assembling dendron or polymer backbones
increase the tendency of self-assembly and self-organization.
When the apex contains an oligooxyethylene frangment attached
or not to a polymer backbone or a crown ether, complexation
with alkali metal triflates already discussed in subchapter 4.1,
also help the self-organization process. Semifluorination of
dendrimers started as early as in 1992 [474-477] and continued
for almost all classes of conventional dendrimers. An excellent
review article on this topic is available [478]. However, most of
this work was dedicated to potential applications [479-486] and
will not be discussed again here. Systematic investigations on
self-assembly, disassembly, reassembly and self-organization were
performed in our laboratory and will be briefly mentioned here.
Semifluorination of the alkyl groups from the periphery of the
dendron, minidendron and dendronized polymers provides,
by comparison with all apex functionalities, an extraordinary
amplification of the self-assembly and self-organization both
for the dendrons and for the dendronized polymers [455,487].
Replacement of four out of a total of twelve carbons with
perfluorinated fragments eliminates the crystallization of the
building block and induces the self-organization of a columnar
hexagonal phase. Increasing the number of fluorinated carbons
from four to six and to eight out of the total of twelve carbons
continues to increase the thermal stability of the columnar
assembly. This trend was observed with minidendrons, first
generation dendrons and with the corresponding dendronized
polymers. This semifluorination concept was also applied to
dendronized crown ethers [392]. Two different crown ethers were
employed in these experiments. The contribution of fluorination
was compared in this case with the contribution of complexation
with alkali metal triflates. In addition to the extraordinary
increase of self-assembly, semifluorination provided access to
an extraordinarily simple method for the self-organization

of the resulting supramolecular columns with their long axis
perpendicular to an untreated optical microscope glass slide. This
alignment is known as homeotropic alignment and is a very
complex process in the area of columnar hexagonal or of any
other 1D and 2D liquid crystals and self-organizations [392].
A final experiment exploring the capabilities of fluorination
was reported in 2022. It demonstrated not only the increase
in self-assembly and self-organization but also it showed a
dramatic increase in the order of the supramolecular assembly via
fluorination [488]. These experiments demonstrated definitively
the extraordinary capability of semifluorination to both accelerate
and increase the order during self-assembly and self-organization.
The spontaneous homeotropic alignment allowed for the first
time the direct visualization of the supramolecular columns
assembled both from minidendrons and from first generation
dendrons organized perpendicular and parallel to the glass
surface and also the determination of the physical properties of
these supramolecular columns (Fig. 20) [450]. The homeotropic
alignment of semifluorinated dendrons was observerved also
in other laboratoris [489,490] demonstrating the generality of
this concept. Semifluorination of dendrons and minidendrons
allowed the elaboration of several new concepts in the field or
self-assembly and self-organization. They will be discussed in the
following subchapters.

4.6 Fluorination mediates self-assembly, co-assembly and
self-organization of helical self-repairing electronically active
periodic arrays derived from conjugated-minidendrons
Semifluorinated self-assembling minidendrons were equipped
at their apex with libraries of electron-acceptor and electron-
donor groups [491]. Both the minidendrons containing
electron-acceptor and electron-donor groups self-assemble in
supramolecular helical columns with the acceptor and donor
groups in the center of their helical column (Fig. 21). This
arrangement provides a dramatic increase of the charge carrier
mobility of the donor or acceptor groups from the center of the
helical columns when compared with the mobility of the same
compound in its native state. Co-assembly of donor and acceptor
dendrons self-organize a donor-acceptor complex in the center
of the helical column. This complex has also a dramatically
increased charge carrier mobility when compared with that
of the parent non-dendronized complex. Polymers containing
electron-acceptor and electron-donor side groups were also
synthesized and characterized for their charge carrier mobility to
display as expected low mobilities. However, the complementary
donor-polymer co-assemble with the acceptor-dendrons and
the acceptor-polymer co-assemble with the donor-dendrons
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Fig. 20

Phase-contrast micrograph of (a) homeotropically and (b) planar-aligned LC assemblies generated by supramolecular cylinders self-assembled. This figure was
adapted and modified from reference 450. Copyright © 1997, he American Association for the Advancement of Science.
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Fig. 21

Schematic illustration of complex electronic supramolecular materials mediated by dendrons containing donor (D) and acceptor (A) groups, and their co-assembly
with complementary amorphous polymers containing D and A side groups (a). The different systems forms hexagonal columnar (®y), centred rectangular
columnar (®,.c) and simple rectangular columnar (®.) arrays; a and b are lattice dimensions. The self-repairing process of back-folded (brown) electronically
active supramolecular helical pyramidal columns self-assembled by semifluorinated minidendron attached to the acceptor groups (b). This figure was adapted and
modified from references 491 and 492. Copyright © 2002, Macmillan Magazines Ltd. Copyright © 2006 John Wiley & Sons, Inc.
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Fig. 22

(a-i) The diversity of possibilities for the attachment of a self-assembling dendron or dendrimer to a covalent or supramolecular backbone. Topologies generated
from linear covalent and supramolecular polymers dendronized with self-assembling dendrons, twin dendritic molecules, and Janus dendrimers. (j) Self-assembly
of hydrogenated twin dendritic molecules, of polymers dendronized with hydrogenated twin dendritic molecules, and their coassembly (all in blue). Self-assembly
of fluorinated twin dendritic molecules (in yellow) and of semifluorinated Janus dendrimers (half in blue and half in yellow). This figure was reproduced with

permission from reference 495. Copyright © 2012, American Chemical Society.
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R = H(CH;)—
(3,4,5)12G2-CO,CH,

R = F(CF,)s(CH,)4—
(3,4,5)12F;G2-CO,CH;

Cub: Pm3n
T=50°C,a=75.0A
D=465A,u=15.1

1 layer !

T=50°C,a=358A
D=358A,u=0.87

Chemical composition affecting the structure of self-organized supramolecular dendrimers. Structures, self-assembly, and self-organization of the second
generation dendrons: (a) structure of (3,4,5)212G2-CO,Me; (b) radial plot from XRD of the Cub: Pm3n phase; (c) Radial plot from XRD of the hexagonal: P6mm
phase; (d) all-trans cone conformation of (3,4,5)212G2-CO,Me; (e) all gauche-crown conformation of (3,4,5)212F8G2-CO,Me; (f) all trans-taper conformation of
(3,4,5)%12F8G2-CO, Me. Parts of this figure were adapted from reference 442 and modified. Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

incorporating the polymer backbone and its donor-acceptor
complex in the center of the helical supramolecular columns. An
increased conductivity was observed also in these cases. These
structural organizations were elucidated by a complementary
combination of oriented fiber X-ray diffraction and solid-state
'H-NMR experiments. This structural analysis methodology
demonstrated for the case of supramolecular columns containing
acceptors a backfolded structural defect of the acceptor on the
donor part of the dendron. However, a heating-cooling and
reheating process was demonstrated to self-repair these structural
defects. Fig X illustrated schematically this concept. Libraries of

donor-dendrons and acceptor-dendrons were synthesized and
their self-assembly analyzed to demonstrate the generality of this

concept [492,493].

4.7 Twin-fluorinated and Janus fluorinated-hydrogenated
minidendritic benzamides

Both twin-hydrogenated and twin-fluorinated minidendritic
benzamides self-assemble into helical columns self-organizing
columnar hexagonal periodic arrays (Fig. 22) [446,494]. Janus
fluorinated-hydrogenated  minidendritic ~benzamides  self-
assemble into bilayered vesicular pyramidal columns with double
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Fig. 24

(a) Small-angle X-ray powder diffractograms of the Pm3™n phase. Expected
and observed electron density (p) distributions. (b) Molecular model of
(3,4,5)212F8G2-CO,H (c) Expected pxy,2) distribution in a Pm3n unit cell
of (3,4,5)212F862-C02Haccording to the spheres model. (d) 2-Dimensional
p(xy) maps of the z = 0 level. (e) Color coding. Adapted with permission from
reference 511. Copyright 2003, American Chemical Society.

column diameter from their twin-fluorinated or hydrogenated
homologues (Fig. 22) [494].

This is a very simple concept employed in the design and
prediction of the columnar supramolecular assemblies with
numerous applications in even more complex architectural design
to be discussed in the following subchapters.

4.8 Self-organizable vesicular columns assembled from
polymers dendronized with fluorinated-hydrogenated Janus
dendrimers provide access to the first examples of reverse
thermal actuators or reverse molecular machines

Top of Fig. 22 outlines all topologies generated from linear
covalent and supramolecular polymers dendronized with self-
assembling dendrons, twin dendrimers and Janus dendrimers
[495]. Covalent polymers dendronized with twin dendrons

self-organize polymers jacketed with bundles of supramolecular
columns which can program by co-assembly new supramolecular
columnar hexagonal superlattices (Fig. 22) [452,496,497].
Polymers dendronized with Janus fluorinated-hydrogenated
dendrimers self-organize self-repairing vesicular assemblies
(Fig. 22). Fibers of these supramolecular columns act as reverse
thermal actuators or reverse molecular machines [495]. They
contrast polymers dendronized with self-assembling dendrons
that generate conventional molecular machines that expand on
heating [126-128,443,498,499]. Janus fluorinated-hydrogenated
dendrimers were also developed as promising F-MRI traceable
probes [500]. Fluorinated dendrimers and dendrons can be
considered to act as a fluorous phase since their immiscibility to
the hydrogenated part may mediate their unusual assembly and
co-assembly [501]. Closely related examples of semifluorinated
Janus dendrimers were also reported from other laboratories
[502].

4.9 Transformation of a spherical supramolecular dendrimer
into a pyramidal column by fluorination

Higher generation self-assembling dendrons and dendrimers or
even minidendrons with strong interacting groups at their apex
[444] self-assemble into spherical supramolecular dendrimers that
self-organize a diversity of cubic periodic arrays or even liquid
quasicrystals [15,213,215,450,503].

Self-organizable dendronized polymers also
supramolecular spheres self-organizing similar periodic and
quasiperiodic arrays [206-211,214,465,470,504,505]. We will not
discuss them here [211,453,464,465,467-470,473,504-521].

Although their mechanism was elucidated by investigating
rational libraries they are outside of the scope of this Perspective. A
supramolecular orientational memory effect at the transition from
spherical to columnar assemblies was also discovered to generate
unprecedented columnar hexagonal arrangements of helical
columns [522-525] and it will not be discussed here. However,
we would just like to mention the spherical supramolecular
dendrimers received substantial theoretical interest from many
laboratories [526-528] and their periodic and quasiperiodic arrays
were in the meantime discovered in block copolymers [529-532],
surfactants [533-535], giant molecules [536,537], and became an
active topic of research in self-organized soft matter. Fluorination
of a second generation dendron that self-organizes spherical
supramolecular dendrimers transforms it from sphere into a
pyramidal column when the functional group at its apex is —
COOCHj; and therefore non-interacting (Fig. 23) [442]. However,
when the -COOCH; group was transformed into a -COOH
interacting group the self-organization of the fluorinated dendron
into a supramolecular sphere was reestablished (Fig. 24) [511].
In order to clarify and elucidate this very interesting result,
additional work on the reversibility of spherical to pyramidal
assembly via fluorination is required.

can form

4.10 Application of fluorination as an isomorphic replacement
tool in the analysis of the cubic Pm3n or A15 Frank-Kasper phase
generated from spherical supramolecular dendrimers

Two models were original propose when the Pm3n phase was
discovered in potentially spherical supramolecular dendrimers
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(a) The mechanism of addition of phenol to perfluoropropyl vinyl ether. (b) Synthesis of the first generation dendritic benzyl chlorides (3,4,5)PPVEG1-CH,Cl and
second generation AB3 (3,4,5)2PPVEG2-COOCH3; c) comparison of the self-assembly of (3,4,5)RfG1-CO;H, (3,4,5)2RfG2-CO,H, and (3,4,5)212G2-CO,H. Adapted with

permission from reference 538. Copyright 2010, John Wiley & Sons, Inc.

[15]. One model was based on spherical supramolecular
dendrimers and the second model was based on distorted
supramolecular columns. No method to discriminate between
these two models was available at the submission for publication
time. One of the co-authors of the paper (VP) made the decision

to favor the spherical assembly. The justification for this decision
in front of all other co-authors was very simple. The paper will
be rejected by the dendrimer community if we claim that high
generation supramolecular dendrimers are not spherical. This
idea was protected by a previous publication demonstrating that
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modified from reference 539.

“willow-like” dendrimers [354] fold into conventional nematic
and smectic phases, but I (VP) considered that this was too early
to convince the dendrimer community about the inability of
high generation dendrimers to form non-spherical assemblies.
The first definitive support for the spherical supramolecular
dendrimers came from transmission electron microscopy
[450]. The second evidence for the spherical supramolecular
dendrimer came from the transformation of the apex group of
the fluorinated dendrimer reported to transform the spherical
shape into a pyramidal shape from -COOCH; to —-COOH
(Fig. 25). This transformation regenerated the X-ray diffraction of
the Pm3n phase. The -COOH group at the apex was transformed
into —-COORDb and therefore heavy atoms were available both
at the periphery of the supramolecular dendron and at its
apex. This allowed the combination of X-ray diffraction and
electrondensity maps via isomorphic replacement to complement
the transmission electron microscopy work and definitively
demonstrate that the Pm3n phase is in fact an A15 Frank-Kasper
phase generated from spherical supramolecular dendrimers
(Fig. 25) [511]. The supramolecular spherical dendrimers are
generated by maximizing their entropy by minimizing their
area or surface (spherical supramolecular dendrimers received
substantial theoretical interest from many laboratories [526,527].
Since due to their helicity perfluoroalkyl groups are more rigid
than the hydrogenated alkyl groups they are not as suitable
as the alkyl groups in maximizing entropy and therefore, they
favour columnar assemblies. Additional work on this hypothesis

is also required in order to support this reassembly concept by
fluorination.

4.11 From amplified self-assembly of dendrons and dendrimers
to their disassembly via an environmentally friendly
perfluoropropyl alkyl group

Perfluoroalkyl groups larger than perfluorooctyl are biopersistent
and bioaccummulative and therefore, are considered
environmentally unfriendly although they are lipophilic and
of biological interest for this physical property. Our laboratory
elaborated a method to functionalize dendrons and dendrimers
as well as Janus dendrimers by addition of their phenolates to
perfluoropropyl vinyl ether (Fig. 26) [538]. Regardless of their
generation number the resulting dendrons are liquid although
they are a fluorous material. Therefore, this semifluorination
provides a disassembly effect since it does not mediate the self-
assembly in a supramolecular architecture. However, as it will
be shown in additional subchapters, they mediate self-assembly
in water. A disassembly followed by reassembly was previously
designed in our laboratory for the deracemization process in
the crystal state mediated by a columnar hexagonal crystal
phase assembled from hat-shaped dendrimers [466]. This process
transforms a syndiotactic or atactic supramolecular polymer
into an isotactic or in other words a homochiral supramolecular
polymer with numerous practical applications including in
recycling. It is expected that this process can be perfected by
engineering and design by fluorination.
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Selected examples of fluorinated amino acids.

4.12 The cogwheel mechanism of self-assembly and the
perfluorinated alkyl coat

Extensive screening through libraries of dendronized arylene
bisimides including perylene bisimides (PBI) and naphthalene
bisimides (NBI) via structural and retrostructural analysis
[447,540-544] led to the discovery of the cogwheel mechanism
[466] of helical self-organization that is accompanied by
helical deracemization and therefore, disregards chirality. The
cogwheel mechanism of helical self-organization is the second
mechanism discovered in our laboratory that is accompanied by
deracemization in the crystal state. The first one is based on a
hat-shape conformation of the self-assembling dendrimer [466].
The cogwheel mechanism assemble helical columns with the
alkyl groups of the dendron jacketing the column in a parallel
way to the long axis of the column. The structural requirement

for the cogwheel mechanism of self-assembly requires that
the alkyl coat must have a length equal to half the helical
pitch of the helical column [539] (Fig. 26). Any deviation from
this strict rule decreases the rate of helical self-organization.
A perfect agreement between the length of the alkyl coat and
the half pitch of the helix was accomplished by sequence-
defined self-assembling dendrons. This perfectly designed coat
provides an extraordinary acceleration of the cogwheel helical
self-organization [545,546]. While elucidating the molecular
structure of the cogwheel coat we also screened through libraries
of semifluorinated arylene bisimides in order to functionalize
the coat while maintaining a thermodynamic control for its
self-organization [547]. Rewardingly, it was discovered that the
perfluoropropyl vinyl ether derived fluorinated alkyl group
containing 6 atoms including one oxygen mediates the helical
self-organization of dendronized PBI and of tetrachlorinated
PBI (Cl4PBI) via a cogwheel mechanism even if the helical coat
does not contain the minimum of 8 carbons of its alkyl chain
demanded in the original discovery [539]. This most probably
may mean that the higher stiffness of the perfluoro alkyl helps
to fill the space better than the nonfluorinated longer alkyl. This
remarkable discovery illuminated the capabilities available for
the design of functionalized helical cogwheel coats of interest for
numerous potential applications.

5 Fluorine and fluorinated components in biological
sciences

5.1 Fluorinated amino acids in proteins, peptides and peptoids
The development of fluorinated amino acids and their
incorporation in peptides, proteins and peptoids is part of
the general effort to incorporate non-canonical or unnatural
amino acids into proteins in order to search for the limits of the
synthetic capabilities of the living organism and expand it with
the help of more than the 20 natural amino acids. The general
endeavor of this synthetic effort is to provide an expansion of
the genetic code beyond the 20 natural amino acids. According
to our knowledge this effort started almost simultaneously and
independently in in the late 1980 in the laboratories of Peter G.
Schultz and David A. Tirrell (Fig. 27) [548-565].

This field expanded immediately in many laboratories around
the world [566-576]. Soon after this field expanded from proteins
and peptides to peptoids [577-587].

One general conclusion was obtained both for fluorinated
peptides, proteins and peptoids. Fluorination enhances the
hydrophobic effect and through it increases the rate of folding and
the stability of the folded proteins. A brief report the current status
of on the expansion of the genetic code was recently published
[588]. This is a very important combination of effects expected to
provide a diversity of new functions not only in proteins but also
in peptides, peptoids and in their conjugates.

5.2 Self-assembly of amphiphilic dendritic dipeptides into
aquaporin mimics

The amphiphilic dendritic dipeptide (4-3,4-3,5)12G2-CH;-Boc-
L-Tyr-L-Ala-OMe was designed to self-assemble in bulk and
in the hydrophobic bilayer of a phospholipid vesicle into
a helical porous cylinder [589] that mimics the structure
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Trans-tapered low-temperature (top-left), and cis-globular high-temperature (top-right), conformers of the I-I stereoisomer of (4-3,4-3,5)12G2-CH,-Boc-I-Tyr-I-Ala-
OMe and (4-3,4-3,5)12G2-CH;-Boc-I-Tyr-d-Ala-OMe. a, Side view of the right-handed supramolecular column. b, Top view of a. ¢, Top view of a single porous column
layer. d, Cross-section through the hydrophobic pore (without dendrons) showing its B-barrel structure (CH3 of Ala is white, CH3 of Boc are blue, O is red, C-N of
dipeptide are green, aromatic groups are grey) assembled from the -helical dipeptides. e, Schematic model for the self-assembly of the dipeptidic g-barrel pore.
The green arrows indicate the dipeptides. The Figure was adapted and modified from reference 603. Copyright © 2004, Macmillan Magazines Ltd.
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Chemical structures of amphiphilic Janus dendrimers used for vesicle assembly, fluorescent labeling, and chelating. b) Synthesis of a Janus dendrimer conjugated to
a nitrilotriacetic acid (NTA) ligand (RH-NTA) and scheme of RH-NTA binding to histidine (His) residues from proteins. c) Schematic showing layering of a protein and
DNA coat to dendrimersome vesicle. d) His-SNAP proteins binds to RH-NTA to form the initial protein layer. Adapted with permission from reference 622. Copyright

2017, National Academy of Sciences of the United States of America (NAS).

of the transmembrane protein Aquaporin [589,590]. Selective
transport for water but not for alkali metal ions and halides
was demonstrated for this simple Aquaporin mimic [591]. The
principles of self-assembly of this dendritic dipeptide were
investigated [81,430,472,592-598] and will not be repeated here.
The single handed helical confomation and its hydrophobic
channel seems to be responsible for its water transport selectivity

and activity (Fig. 28). This work inspired laboratories from
around the world to develop related supramolecular assemblies
for selective water transport [599-602] and most recent results
demonstrated higher rate of water transport than even Aquaporin
and the same selectivity. The question we have is the following.
If fluorination stabilized the folded structure of proteins and
enhances their hydrophobic effect, would replacing the —-CHj3
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group from alanine from the dendritic dipeptide (4-3,4-3,5)12G2-
CH;-Boc-L-Tyr-L-Ala-OMe with —CF; group via trifluoroalanine
provide the most selective, active and the simplest to synthesize
ionic channel for water purification? The answer to this question
depends on the ability of the trifluoro methyl part of alanine from
the fluorinated dipeptide to replace the nonfluorinated methyl
group in exactly the same part of the supramolecular dendritic
dipeptide channel (Fig. 28) [603,591]. This question deserves to
be answered by performiong this experiment.

5.3 Semifluorinated amphiphilic Janus dendrimers as models of
biological membranes including for cell fusion and fission
Amphiphilic Janus dendrimers (IDs) were discovered in 2010
in our laboratory [391,604-613]. They provide very simple
amphiphilic molecules that generate access to programmed
vesicles, named dendrimersomes, with monodisperse molar
mass distribution and predicted dimensions by simple
injection of their ethanol solution in water or in buffer.
Janus glycodendrimers (JGDs) including sequence-defined JGDs
assembling glycodendrimersomes were subsequently elaborated
[614-626] and expanded in one of the most successful mimics
of the glycan of biological membranes. Janus dendrimers and
Janus glycodendrimers co-assemble with both bacterial and
human cells generating mixed cell with numerous potential
applications [606,607,627,628]. Dendrimersomes assembled
from Janus dendrimers engulf living bacteria by endocythosis
[629] providing access to biomedical applications while co-
assembly of liposomes, dendrimersomes and polymersomes with
JDs conjugated to mono- and tris-nitrilotriacetic acid (NTA and
trisNTA) enhances protein recruitment [630]. They are also of
great interest in other areas of chemical biology [631]. Aside from
entirely hydrogenated JDs and JGDs, semifluorinated and hybrid
semifluorinated JDs and JGDs were also elaborated (Fig. 29). The
most suitable fluorinated fragment for this construction is based
on the perfluoropropyl vinyl ether discussed in subchapter 4.9.
Due to the fluorophobic effect of the fluorinated JD self-sorting
and co-assembly of fluorinated, hydrogenated and hybrid JDs
into dendrimersomes were observed [632]. JDs co-assembled
from fluorinated, hydrogenated and hybris JDs were elaborated
as models for cell fusion and fission [633]. Semifluorinated JDs
were also shown to encapsulate hydrophobic components in
dendrimersomes and also decorate their surface with proteins
and nucleic acids (Fig. 29) [622]. Semifluorinated JDs exhibit a
lamellar to sponge phase transition [634].

These experiments demonstrate the remarkable potential
of semifluorinated JDs and JGDs in numerous biomedical
applications and we expect that they might also impact the field of
mRNA delivery with one component sequence defined ionizable
amine amphiphilic Janus dendrimers (IAJDs) that were recently
elaborated in our laboratory [635-640].

6 Conclusions

This Perspective is a very personalized view of the research
involving completely different, but many times complementary
areas of fluorine chemistry performed mostly in our laboratory.
This is not a review article but a Perspective and therefore,
contains only very few mentions of related research performed

in other laboratories. We apologize for being very restricted
in our discussions and for missing excellent work perfomed
in numerous other laboratories. Representative research that
impacted this field mostly during this century and was performed
in other laboratories was briefly discussed in the Introduction
chapter. Some additional laboratories influential in this area
are mentioned here [641-661]. Nevertheless, we hope that this
Perspective, wich attempts to cover even unpublished events
that fovored success and failures, provides a very broad view on
the unlimited capabilities of fluorine chemistry via a multitude
of methodologies covering aspects from organic, molecular,
macromolecular, supramolecular and biological sciences and
providing a mechanism to bridge in between all these disciplines,
with a single element, Fluorine, in order to generate functions.
This Perspective is based on Invited Lectures invited by
Pierangelo Metrangolo and Giuseppe Resnati and presented at the
International Symposium of Fluorine Chemistry in Como, Italy,
August 23-28, 2015 and by Veronique Gouverneur and presented
during the International Symposium on Fluorine Chemistry in
Oxford, UK, July 22-27, 2018. The contents of these lectures
were never published in the Proceedings of these International
Symposia but provided the outline of this Perspective. I (VP) thank
again the organizers of these International Symposia for their
invitations. Many generations of very dedicated, hard working
and gifted high school, undergraduate and graduate students,
postdocs and research scholars from all over the world were
involved in this work and I would like to use this opportunity
to thank to all of them for their excellent contributions to the
work presented here and also for creating the most multinational-
international and challenging scientific environment in my (VP)
laboratories at Case Western Reserve University and at the
University of Pennsylvania.
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