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ABSTRACT 
Surrogate models have shown improved accuracy in predicting infrastructure responses during 
dynamic loadings. However, training a surrogate model for complex loading inputs across the entire 
hazard region remains challenging. This study provides insight into the training of surrogate models 
to estimate the responses of transmission tower-line structures in a coupled high-dimensional and 
high-resolution wind field and presents innovative methods for addressing these challenges. Four 
data- and physics-based spatial-temporal decoupling sampling methods are employed and cross-com
pared to obtain the most representative in-event wind profiles for training the surrogate model. Long 
Short-Term Memory (LSTM) is utilised as the surrogate model framework to predict the dynamic 
responses of the structure during the 2017 Hurricane Harvey. The accuracy and robustness of two 
transmission tower-line structure configuration surrogate models are validated by comparing the pre
dictions with finite element analyses by using randomly distributed temporal and geospatial wind pro
files throughout the hurricane. Finally, a single LSTM surrogate model is developed, trained by 
applying the full reference wind speed range of Hurricane Harvey for the regional-scale structural per
formance evaluation of the transmission tower-line system. The results demonstrate that the proposed 
surrogate model training methodology is general and can be applied to regional-scale structural per
formance evaluations.
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1. Introduction

The integrity of power network supporting structures is cru
cial for ensuring the stable and sustainable delivery of power 
from power plants to customers. Among all supporting 
structures, transmission tower-line structures are particularly 
vulnerable due to their location in various terrains and 
exposure to wind hazards. As the transmission network is 
an interconnected network composed of geographically dis
tributed physical transmission towers, assessing structural 
performance at a regional scale is crucial. To ensure an 
accurate evaluation of regional-scale structure performance, 
it is important to use an appropriate structural analysis tool, 
in addition to accounting for the complex wind loading. To 
evaluate the performance of the transmission tower-line sys
tem under wind loading, physical law-governed structural 
analysis tools, particularly Finite Element Models (FEM) are 
believed to yield reliable and accurate results. However, the 
computational burden of FEMs increases dramatically with 
the expansion in scale and integration stability requirement 
(Chopra, 2012). Consequently, structural surrogate models 
have been proposed and validated to alleviate the computa
tional burden of utilising numerical modelling in complex 

and large-scale engineering systems (Kroetz, Tessari, & 
Beck, 2017).

Among the various surrogate model configurations, the 
long short-term memory (LSTM) surrogate model is notable 
for capturing the high nonlinearity properties of the physical 
model, thereby accurately predicting the response time- 
history. Zhang et al. (2019) were the first to apply an LSTM 
surrogate model to predict the displacement time-history of 
a real-world building under seismic loading. Zhang, Liu, 
and Sun (2020) further introduced a physics-informed 
LSTM surrogate model, which improved prediction accuracy 
in a three-story moment frame model compared with their 
first LSTM model. Im, Lee, and Cho (2021) proposed a 
POD-LSTM surrogate model, which combined the LSTM 
with proper orthogonal decomposition (POD) to solve the 
computational limitations of large-scale elasto-plastic FE 
models. The results showed that the proposed POD-LSTM 
is efficient and accurate in predicting the structural plastic 
strain and von Mises stress. Torky and Ohno (2021) pre
sented a hybrid convolutional-LSTMs (ConvLSTM) model 
used for multi-input multi-output models, highlighting the 
importance of applying a data filtering technique to the 
input data. Liao, Lin, Zhang, and Wu (2023) introduced an 
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attention-based LSTM surrogate model to predict the seis
mic response of a bridge in cases of having limited training 
data.

While significant attention has been paid to constructing 
surrogate models for predicting the dynamic response of 
infrastructural structures (B. Li, Chuang, & Spence 
Seymour, 2021; B. Li & Spence Seymour, 2022; Mangalathu, 
Heo, & Jeon, 2018; Byung Kwan Oh, Glisic, Kim, & Park, 
2019; B. K. Oh, Glisic, Park, & Park, 2020; Shin, Scott, 
Stewart, & Jeon, 2020; Z. Y. Wang, Pedroni, Zentner, & Zio, 
2018), very few studies have concentrated on developing 
surrogate models for transmission structures under wind 
loading. Zhang, Song, and Shafieezadeh (2022) proposed an 
adaptive multi-fidelity GP reliability method for performing 
transmission tower reliability analysis, where transmission 
tower pushover analysis, considering the uncertainties of 
structural and static wind loading, is implemented to obtain 
the response defined for the limit state function. Jeddi et al. 
(2022) employed a gradient boost classifiers active learning 
method to derive the fragility curves of transmission towers 
under various natural hazards. The wind loading, adhering 
to the minimum design loads and associated criteria for 
buildings and other structures as specified in 7-22 (2022), is 
applied in a quasi-static manner over a one-minute loading 
window.

Xue, Xiang, and Ou (2021) proposed a convolutional 
neural network (CNN) model to predict the displacement of 
a free standing transmission tower under wind loadings. Xue 
and Ou (2021) demonstrated that the long short-term mem
ory (LSTM) surrogate model could predict the dynamic 
responses of highly nonlinear transmission tower-line sys
tems. From the literature review, the wind loading parameters 
used for calculating wind loading are derived from ASCE 7- 
22 (2022), where the calculation of wind speed along height 
employs either a power- or logarithmic-law. However, Yet, 
Li, Zhi, and Hu (2010) analysed wind speed data recorded at 
a meteorological tower and observed that the surface rough
ness coefficient varies with height and the mean wind speed 
at the reference height. Snaiki and Wu (2018) discovered that 
using power- or logarithmic-law wind profiles underestimates 
the effects of wind loading on tall buildings. Under the stand
ard ASCE 7-22 (2022) assumptions, the variance in wind pro
file height is solely related to ground roughness, and 
independent of wind speed.

For structural response analysis at a regional scale, it is 
essential to consider realistic wind profiles within a specific 
event. High-fidelity and high-resolution realistic hurricane 
wind field data are accessible from the numerical weather 
prediction (NWP) community database. For instance, the 
TIGGE archive, comprising forecast data from thirteen glo
bal NWP centres starting from 2006 (TIGGE); and the 
Weather Research and Forecasting (WRF) model, capable of 
producing simulations based on actual atmospheric condi
tions from observations and analyses (WRF). The NWP 
database provides high-resolution wind profiles considering 
land types, temperature. However, the data from these 
meteorological models, containing millions of wind profiles 
for a region, present complexities that the wind profile 

calculation methods stipulated by ASCE 7-22 (2022) cannot 
adequately describe.

In this paper, it is hypothesized that, during the same 
event, the spatial and temporal wind loading characteristics 
and their impact on transmission towers can be understood 
by selecting a limited set of training samples, namely an in- 
event surrogate model. This study aims to bridge gaps in 
the literature review by investigating the development of an 
in-event surrogate model for the transmission tower-line 
system. The objective of this model is to accurately predict 
the nonlinear time history of spatial-temporal wind loading 
during an evolving hurricane. The surrogate model utilises 
training data selected from the event and is expected to pre
dict the response at specific temporal and spatial points of 
interest. The input to the model is the dynamic wind load
ing of a transmission tower-line model with thousands of 
degrees of freedom. Owing to the complexity of spatial-tem
poral correlated wind loading inputs, the intrinsic turbu
lence wind stochasticity is decoupled from the explicit wind 
profile characteristics. Given the complex wind profiles in a 
specific event, it is crucial to adopt an appropriate sampling 
strategy so that the sampled wind profiles can reveal the 
complexities hidden within the wind profile parametric 
space.

The study evaluates the effectiveness of in-event surro
gate training in representing turbulence stochasticity and 
profile variation. The accuracy of the trained surrogate 
models is assessed by comparing the predicted and target 
displacement time histories using the root-mean-squared 
error (RMSE), cross-correlation coefficient, and peak dis
placement. Moreover, the robustness of the surrogate mod
els is validated by predicting the structural dynamic 
responses from unseen wind profiles at other timestamps 
and widely geospatially distributed wind profiles in the 
numerical weather prediction (NWP) hurricane model. 
Finally, the study develops a single LSTM model trained 
across the full range of the in-event reference wind speed of 
the wind profiles to perform a regional-scale transmission 
tower-line performance assessment. In summary, this paper 
aims to: (1) adopt and evaluate different sampling methods 
to reveal the complexities hidden within the wind profile 
parametric space; (2) comprehensively assess the accuracy 
and robustness of surrogate models trained by different 
sampling methods by evaluating two transmission tower- 
line structure configurations; (3) explore the adaptivity of 
applying surrogate models for regional-scale transmission 
tower-line performance evaluation.

The rest of the paper is organised as follows: In Section 2, 
the challenges related to the evaluation of hurricane-impacted 
power infrastructure performance are comprehensively dis
cussed, and a proposed solution is presented. Section 3 intro
duces the Long Short-Term Memory (LSTM) architecture 
and details the four training algorithms utilised for selecting 
representative wind profiles. In Section 4, an evaluation is 
conducted to assess the accuracy, robustness, and scalability 
of a two-tower one-span surrogate model. Section 5 focuses 
on assessing the adaptivity of the proposed surrogate model 
training when applied to a new transmission tower-line 
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configuration. Finally, Section 6 presents the findings and 
conclusions.

2. Regional hurricane impacted power 
infrastructure performance problem

During a hurricane event, wind loads can become so 
extreme that they exceed the structural design capacities of 
infrastructure, particularly transmission towers, resulting in 
physical damage. This damage can alter the topology of the 
power network, which in turn leads to power delivery inter
ruptions, commonly referred to as power outages. To assess 
the extent of damage to the power infrastructure caused by 
a hurricane, a framework has been devised, as depicted in 
Figure 1. Employing the framework proposed in Figure 1
necessitates an assessment of the characteristics of the intri
cate wind loading in hurricanes and the structural analysis 
tools required for response assessment.

2.1. Wind loading characteristics at a regional scale

Owing to the extensive length of the transmission tower-line 
system, the wind loadings it experiences are complex, and 
high-dimensional dynamic time histories. These loadings are 
spatially and temporally correlated, indicating their depend
ence on spatial location. Each time history consists of mean 
and turbulent wind speed components. When the analysis 
expands to a regional scale, the loading range broadens sig
nificantly, with the most critical factor being the widely dis
tributed wind profiles across the entire region. This section 
will discuss the characteristics of realistic wind loading dis
tribution in a regional-scale problem.

The dynamic wind speed at any node for a structure at 
any location is modelled as:

Vij xij , yij , zij , tð Þ ¼ Vz, ij xij , yij , zijð Þ þ vij xij, yij, zij, tð Þ (1) 

The dynamic wind loading on the transmission tower 
infrastructure can be calculated as:

Fijðxij, yij, zij, tÞ ¼ 0:5qVij xij , yij , zij , tð Þ
2Cf Am (2) 

where Vij xij, yij, zij, tð Þ is the dynamic wind speed time his
tory at the jth node of the ith power infrastructure; 
ðxij, yij, zijÞ indicates the geographical coordinate of the cor
responding node; Vz, ij is the mean wind component at that 
node controlled by the wind profile; vij is the turbulent 
wind component calculated from the wind power spectrum; 
q is the air density; Cf is the drag coefficient; and Am is the 
structural projected area. From the equation, it is intuitive 
that the complex wind loading across the entire region, Vij, 
can be decoupled into the mean wind speed component 
Vz, ij and turbulence wind component v ij: The following 
sections will explain their characteristics in the regional 
infrastructural response simulation.

2.1.1. Regional wind profile characteristics in weather 
Research and forecast model
In conventional wind engineering applications, the mean 
wind speed at a given geographical location (x, y) varies 
along the vertical elevation and follows either a power-law:

VzðzÞ

Vr
¼

z
zr

� �a

(3) 

where Vz is the mean wind speed at height z; Vr is the 
wind speed at reference height; zr is the reference height, 
which is 10 m in ASCE 7-22 (2022); and a is the surface 
roughness coefficient.

Or a logarithmic law:

Vz zð Þ ¼
V�

j
In

z − zd

z0

� �

(4) 

Figure 1. Schematic implementation of the proposed regional power system performance analysis framework during hurricane.
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where V� is the surface friction velocity; j is von Karman’s 
constant; zd is the zero-plane displacement; and z0 is the 
surface roughness length.

The wind profile calculated from the power-law in 
Equation (3) and the logarithmic-law in Equation (4) dem
onstrates that, given the reference wind speed, the only par
ameter determining the wind speed at height z is the 
surface roughness conditions. In ASCE 7-22 (2022), surface 
roughness is categorised by terrain categories. Consequently, 
the wind speed at reference height becomes a critical input 
parameter in the development of wind fragility models for 
structures. However, extensive research has shown that for a 
given wind speed at reference height (Vr), the wind profile 
is influenced by multiple parameters such as gust factor, tur
bulence intensity, and turbulence length scale (Kwon & 
Kareem, 2009; Q. S. Li et al., 2010; Snaiki & Wu, 2018). To 
address these uncertainties, an advanced numerical weather 
prediction (NWP) model, the Weather Research and 
Forecasting (WRF) model (Skamarock et al., 2019), is pro
posed in atmospheric science.

The WRF model is a numerical weather prediction sys
tem with a comprehensive description of atmospheric phys
ics that involves the land-surface process, turbulence and 
vertical mixing, diverse radiation, and cloud models (WRF). 
The WRF can generate meteorological field data at high 
time frequencies (less than hourly) with a terrain resolution 
of less than 1 km (Xue et al., 2020). Because of the high- 
resolution hurricane wind field information, the wind pro
files obtained from the WRF can represent spatial and tem
poral variations of the winds in a region instead of being 
described by a unique distribution (Constantinescu, Zavala, 
Rocklin, Lee, & Anitescu, 2011).

In this research, the WRF model is utilised to simulate 
Hurricane Harvey by using data collected from the NCEP 
GFS FNL (National Centres for Environmental Prediction 
Global Forecast System Final Analysis) and the MODIS 
(Moderate Resolution Imaging Spectroradiometer). The data 
collected from NCEP GFS FNL is designed with a grid at a 
27.8 km � 27.8 km horizontal resolution. The WRF model, 
a mesoscale numerical weather prediction system, can 

downscale the NCEP GFS wind profiles to a high resolution 
of less than 1 km horizontal resolution. This study utilises 
WRF simulation data from 25th of August to 27th of 
August, with a one-hour time interval. Figure 2 illustrates 
the complexity of wind profiles in realistic hurricanes by 
comparing the wind profiles obtained from the WRF model 
to those derived using the power-law method, with a refer
ence height wind speed taken as 40 m=s: The wind profiles 
from the WRF model encompass a wider wind speed range 
and retain the wind speed variations over height, as shown 
in Figure 2(a). The wind profile in log-log space, depicted 
in Figure 2(b), where the slope represents the surface rough
ness coefficient in Equation (3), reveals the strong nonli
nearity between wind speed and height, thereby indicating 
that the power-law is not sufficient to fully characterise the 
complexity of the wind profile in a hurricane.

2.1.2. Turbulent wind characteristics
The turbulent wind speed is computed from the sampled 
wind profile, in which the spatial and temporal correlation 
is considered. Based on the Shinozuka theory (Shinozuka & 
Deodatis, 1991), the turbulent wind speed v1 tð Þ, v2 tð Þ, . . . ,

�

vnp tð Þg at time t is:

vk yk, zk, tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Dxð Þ

p Xk

m¼1

XN

l¼1
Hjm xmlð Þ

�
�

�
�cosðxmlt

− hkm xmlð Þ þ UmlÞ (5) 

xml ¼ l − 1ð ÞDx þ
m
N

Dx, l ¼ 1, 2, . . . , N (6) 

where N is an arbitrarily large positive number; k is the 
number of simulation points, k ¼ 1, 2 . . . , np; Dx ¼

xup
N , the 

frequency increment; and xup is the cut-off frequency, that 
is, when x > xup, S xð Þ ¼ 0; Uml is uniformly distributed 
random phase angle in 0, 2p½ �: hkm is the H xð Þ phase angle. 
In engineering, S xð Þ and H xð Þ are real matrices, thus 
hkm ¼ 0, while Hjm is the S xð Þ Cholesky decomposed 
matrix as in Equation (5):

S xð Þ ¼ H xð ÞH� xð Þ
T (7) 

Figure 2. Wind profile comparison between WRF model and power-law: (a) wind profile in cartesian space; (b) wind profile in log-log space.
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in which, the fluctuating wind spectral density matrix S xð Þ

is calculated from Davenport auto-correlation spectrum and 
cross-correlation spectrum (Davenport, 1961).

To account for the stochastic nature of the dynamic wind 
loading imposed on the structure, Figure 3 depicts the gen
erated dynamic wind speed time history for the structure 
shown in Figure 12, across three different implementations 
with the same wind profile. The patterns of wind speed 
intensity in Figure 3 vary among the implementations, indi
cating that the turbulent wind speed component, as defined 
in Equation (7), influences the dynamic wind speed time 
history. Furthermore, for each dynamic wind speed imple
mentation, the pattern of wind speed time history differs 
among nodes due to the spatial correlation of wind speed, 
which is markedly distinct from seismic loadings.

2.2. Transmission tower-line structure analysis tool

Accurately estimating power infrastructural damage and fail
ure conditions during a hurricane event requires a high- 
fidelity, computationally efficient transmission tower-line 
structure model. The nonlinear system, subject to wind 
loadings and transmission line vibrations, exhibits strong 
tower-line coupling, making accurate modelling a challenge 
(Xie, Cai, & Xue, 2017). Although finite element models 
(FEMs) of coupled transmission tower-line systems under 
wind loading have been widely studied, evaluating these 
models on a regional scale involving tens of thousands of 
transmission towers is computationally prohibitive.

To overcome this limitation, the fragility curve of the 
transmission tower, considering transmission tower-line 
coupling, is extensively used (Fu, Li, Tian, Wang, & Cheng, 
2019; Tian, Zhang, & Fu, 2020; Xue et al., 2020). However, 
when applied to regional-scale power network reliability 
analysis, the pre-defined limit states significantly influence 
the generation of fragility curves. As a result, researchers 
have paid considerable attention to increasing FEM fidelity 
by considering uncertainties in material and geometry, com
ponent buckling, and joint models in the literature (Ma, 
Christou, & Bocchini, 2022; Ma, Khazaali, & Bocchini, 2021; 
Mohammadi Darestani, Shafieezadeh, & Cha, 2020; J. Wang, 
Li, Fu, & Li, 2021).

However, there are limitations to using fragility curves 
for regional power network resilience analysis. Firstly, the 
fragility function only provides the probability of infrastruc
tural responses exceeding a predefined limit state, without 
offering time histories or other high-resolution information 
that could be used to define additional limit states. 
Secondly, the fragility curves are developed based on wind 
profiles that adhere to theoretical power- or logarithmic-law 
assumptions. These theoretical fragility curves consider only 
the basic wind speed at reference height as input, without 
accounting for variations in wind profiles over height. 
Consequently, the tower failure probability is often inaccur
ately calculated (and often too conservative).

2.3. Proposed structure analysis tool and wind profiles 
sampling methods

To address the limitations discussed in Sections 2.1 and 2.2, 
this paper proposes a surrogate model trained with realistic 
wind profiles as an infrastructure analysis tool. The objective 
of the developed surrogate model is to enable prompt and 
accurate predictions when the transmission tower-line struc
ture is subjected to hurricane wind loading. Therefore, the 
representativeness of the dynamic wind loadings affects both 
the surrogate model prediction accuracy and robustness. 
Neural network models are widely utilised for solving 
sequence-to-sequence problems.

Among these models, Recurrent Neural Networks 
(RNNs) are preferred as they can manage functions involv
ing recurrence (Goodfellow, 2016). However, RNNs encoun
ter gradient vanishing problems while optimising model 
parameters, which restricts their ability to predict high 
nonlinearity and time-dependent dynamic problems 
(Goodfellow, 2016). To solve this problem, Hochreiter and 
Schmidhuber (1997) developed the Long Short-Term 
Memory (LSTM) model that incorporates gated features. 
These gated features enable the LSTM model to exploit cur
rent input-output local relations and explore both current 
and previous input-output globally. As a result, the LSTM 
model can maintain nonlinearity and time-dependence in 
time series.

To develop an effective surrogate model capable of pre
dicting the accurate dynamic time history of the 

Figure 3. Illustration of the generated dynamic wind speed time-history stochasticity among different implementations and the wind speed variations at each 
node for a single implementation given a determined wind profile.
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transmission tower-line system on a regional scale, the 
training dataset must be representative and align with realis
tic loading conditions. Given the broad and complex nature 
of wind loading across the entire region, it involves two 
types of variations: wind profile variation and turbulent 
dynamic wind stochasticity. As mentioned earlier, the wind 
loading in the entire region can be divided into the mean 
wind speed, which is dominated by the wind profile and the 
turbulence wind component. The hypothesis guiding the 
surrogate training is that the turbulent wind characteristics 
are implicitly embedded in each training sample, and the 
representativeness of training wind profiles predominates 
the quality of the surrogate model.

The Weather Research and Forecasting (WRF) model gen
erates millions of high-resolution regional wind profiles that 
cannot be adequately described by empirical engineering mod
els. For example, in the Hurricane Harvey WRF model, the 
mean wind speed ranging from ½30m=s, 40m=s� at a height of 
10 m encompasses over 200,000 wind profiles. It is impractical 
to use all these wind profiles to train the surrogate model. 
Therefore, appropriate sampling strategies must be employed 
to infer and extract the most representative wind profiles.

With respect to the wind profiles in the WRF model, 
they exhibit unique physical, mathematical, and statistical 
characteristics. Physically, a realistic wind profile can be 
approximated using a power-law or logarithmic-law func
tion, with varying parameters along its height. To identify 
representative samples, a law-based sampling method can be 
applied. Mathematically and statistically, each wind profile 
can be viewed as high-dimensional data, where each dimen
sion corresponds to a specific height. To partition the data, 
the k-medoids clustering method, which has been utilised in 
various domains, is applied (Likas, Vlassis, & Verbeek, 2003; 
Tzortzis & Likas, 2009). One potential method for sampling 
is random sampling, which does not require any prior 
knowledge about the wind profiles. In the processing of 
conducting this method, all wind profiles in the WRF model 
have an equal probability of being selected, making it a 

benchmark sampling method for assessing the accuracy and 
robustness of other proposed sampling methods. Apart from 
random sampling, three other methods have been employed 
to build the surrogate model: (1) physics-guided sampling 
based on the power-law, (2) k-medoids sampling, and (3) 
modified statistical sampling.

3. Methodology

3.1. LSTM architecture

The LSTM model comprises an input layer, multiple LSTM 
layers, fully connected layers, and output layers, as illus
trated in Figure 4. The input layer is dimensioned at m �

n � p, where m is the training size, n is the total number of 
time steps, and p equals the number of features, correspond
ing to the number of nodes in the numerical model. For 
each training sample, the sequence X ¼ x1, x2, x3, . . . , xn½ �

T 2

Rn�p is sequentially fed into n LSTM cells. Consequently, 
one LSTM cell processes one time-step with p features, 
xt 2 Rp: Figure 5 clarifies the detailed operation of the 
LSTM at time t in layer l, where f l

t , il
t , and ol

t symbolize 
the forget state, input state, and output state respectively. 
The cell state and hidden state connect the information 
stream from time t − 1 and t, depicted as continuous hori
zontal lines in Figure 5. The mathematical representations 
of these variable relationships are:

f l
t ¼ r W l

xf xt þ W l
hf hl

t−1 þ bf

� �
(8) 

il
t ¼ r W l

xixt þ W l
hih

l
t−1 þ bi

� �

(9) 

~c l
t ¼ tanh W l

xcxt þ W l
hchl

t−1 þ bc

� �

(10) 

ol
t ¼ r W l

xoxt þ W l
hohl

t−1 þ bo

� �

(11) 

cl
t ¼ f l

t � cl
t−1 þ il

t � ~c l
t (12) 

hl
t ¼ ol

t � tanh cl
t

� �

(13) 

Figure 4. Multi-layer LSTM architecture for the full sequence-to-sequence modelling.
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where, Wx� and b� represent the weight matrix and bias 
vector; cl

t−1 and hl
t−1 are the cell state and hidden state out

put that contains previous time step information; cl
t and hl

t 
are the cell state and hidden state output in the current 
state; ~c l

t represents the candidate values. The values in the 
forget gate f l

t and input state il
t are in the range between 

½0, 1� to indicate the contribution of the previous informa
tion stream and current input values to the current state.

From Equation (12), the LSTM cell achieves long-term 
dependence by using the forget gate to control the extent of 
previous information required and using the input gate to 
adjust the amount of current input candidate values infor
mation. Additionally, a sample input-output preprocessing 
technique proposed by Zhang et al. (2019) is used to 
increase the prediction accuracy and reduce the computa
tional time. Generally, the input sequence for one sample is 
X ¼ x1, x2, x3, . . . , xn½ �

T 2 Rn�p and y ¼ ½y1, y2, y3, � � � , yn� 2

Rn�q: The proposed method rearranges the input data X in 
a stacked size w as a new input vector to the LSTM cell. 
Therefore, the new input X0 ¼ x1, x2 � � � , xw½ �, xwþ1, xwþ2 � � � ,½

�

x2w�, � � � , xn−wþ1, xn−wþ2 � � � , xn½ �g
T is fed into the LSTM net

work. The optimal choice of stack size is based on the sam
pling frequency and characteristics of the input training 
sample; hence it is considered a hyper-parameter in the surro
gate model.

3.2. Wind profile sampling methods

3.2.1. Power-law-based sampling
The power-law-based sampling (PLS) method adopts a 
physics-based approach to generate wind profiles. This 
method calculates the wind speed at different heights using 
the power-law equation, which is influenced by the surface 
roughness coefficient and the basic wind speed at the refer
ence height. In the power-law-based sampling approach, the 
surface roughness coefficient is selected uniformly between 
the lower and upper bounds defined in ASCE 7-22 (2022). 
This method is considered offline, indicating that the chosen 
training profile inputs are not event-specific, allowing the 
surrogate model to be trained offline before the occurrence 
of the wind event. The PLS algorithm can generate a set of 

representative wind profiles, enabling the training of a sur
rogate model to predict the accurate dynamic time history 
of the transmission tower-line system on a regional scale.

3.2.2 K-medoids clustering sampling
K-medoids clustering is a statistical sampling method simi
lar to k-means clustering, wherein the representative object, 
known as the medoid within each cluster, is chosen from 
the dataset (Kaufman, 1990). Thus, in the k-medoids clus
tering method, the centroid of each group is constrained to 
the actual data samples. With this medoid feature, k- 
medoids clustering exhibits less sensitivity to outliers com
pared to k-means clustering (Park & Jun, 2009). Within 
each group, the k-medoids clustering method seeks to min
imise dissimilarity by defining distance functions such as 
Euclidean. Consequently, the objective function can be 
expressed as:

Loss ¼ argmin
Xk

i¼1

X

sj2Ci

f sj, mið Þ (14) 

where k is the total number of sets; sj is the sample in the 
data set; Ci is set i; mi is the medoids in set Ci; and f is the 
distance function. The minimum value of Equation (14) is 
determined by the predefined criteria.

From Equation (14), for each update, the distance 
between mi and the remaining samples needs to be calcu
lated. Hence, with a substantial number of samples, the k- 
medoids method is computationally intensive. To alleviate 
the computational burden, a modified k-medoids clustering 
method has been proposed. Among these, a simple and fast 
k-medoids algorithm by Park and Jun (2009) is the most 
widely used and available in many computation libraries 
(MATLAB, SK-LEARN). Consequently, in this paper, the k- 
medoids algorithm based on Park et al. (Park & Jun, 2009) 
is utilised. After the dataset has been partitioned into k sets, 
samples are randomly selected in each set to meet the train
ing sample number requirement. The partitioning of the 
wind profiles using k-medoids clustering by visualising the 
wind speed in the selected nodes is shown in Figure 6. The 

Figure 5. The diagram of the LSTM cell in layer l at time step t:
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stratified patterns in this figure demonstrate the distance- 
based functionality in KMCS.

3.2.3. Modified statistical sampling
Statistical sampling, also known as systematic sampling, is a 
probabilistic sampling method aiming to cover as wide a 
sample space as possible (Yates & Thornton, 1948). The ori
ginal systematic sampling method involves ordering the 
samples and partitioning the sequence into K intervals. A 
random sample is selected as the seed point in the first 
interval, and the samples in the remaining intervals are 
chosen at a fixed stride from the seed sample. This sampling 
method can work well for data with the same distribution 
property in each interval but may fail if the data have differ
ent distributions in each range. A modified systematic sam
pling method is proposed in this research to expand its 
application. The mean value l and the standard deviation 
r of the wind speed at each height are calculated as the 
metrics, which are subsequently used to derive the sampled 
data as follows:

wp ¼ VL − lð Þ þ d�r (15a) 

d ¼ VL :
VR − VL

N
: VR (15b) 

where wp is the sampled wind profile; d is the stride; VL is 
the lowest wind speed; VR is the highest wind speed; and N 
is the number of samples The proposed method remains the 
same as the original systematic sampling if the wind speed 
follows a uniform distribution. However, if the wind speed 
distribution is not uniform, Equation (15) allows for adjust
ments in the sampling to account for the wind speed distri
bution at each height while still covering a wider range of 
wind speeds. As the wind profile is a high-dimensional data 
that changes with height, the modified systematic sampling 
is performed at each predefined height. Then, the wind 
speeds are sequentially sampled and combined at each 
height to generate the profiles.

The procedures to implement the modified systematic 
sampling method can be illustrated in Figure 7. For the 
wind profiles in a region, first, apply Equation (15) to form 
the speed vector at each height into N points; then, select 
the ith point at each height to assemble the wind profile. In 
Figure 7, wpi is the ith generated wind profile; V hi , hj , hk½ � is 
the wind speed at the corresponding height; and hn is the 
total number of wind profile heights.

4. Performance assessment of the surrogate models

The sample cases used to evaluate the performance of the 
developed surrogate model are obtained from the power 
infrastructure performance simulation testbed during 
Hurricane Harvey. The wind profiles are extracted from the 
WRF model in the Texas region. According to the transmis
sion tower-line fragility analysis, the fragility curve of the 
transmission tower-line system is a function of the mean 
wind speed, which represents a wind speed range around it. 
In this paper, the wind profiles in the Texas Region are div
ided into 12 groups based on the 10 m high wind speed, 
ranging from 15 m=s to 70 m=s with 5 m=s intervals (Xue 
et al., 2020). A surrogate model can be developed for each 
group. The wind profiles with a wind speed at 10 m in the 
range of 4062:5 m=s during Hurricane Harvey are adopted 
as prototypes to investigate the performance of the surrogate 
model.

In regional power system resilience analysis, transmission 
towers are often grouped into units with identical designs at 

Figure 6. Visualization of k-medoids clustering based sampling on the regional 
wind profiles: (a): selected nodes wind speed distribution; (b) clustered wind 
profiles.

Figure 7. Visualization of modified systematic sampling on the regional wind profiles. At each height, the ith wind speed can be used to form the wind profile wpi:
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various locations (Panteli, Pickering, Wilkinson, Dawson, & 
Mancarella, 2017). Therefore, only a single unit of transmis
sion tower model is required for proof of concept. However, 
it is necessary to consider the coupling effects between the 
transmission tower and line in power system resilience ana
lysis (Xue et al., 2020). In this paper, two transmission tower- 
line structure configurations are modelled in OpenSees plat
form (Mazzoni, McKenna, Scott, & Fenves, 2006). The trans
mission tower is modelled by using the elastic beam-column 
elements with steel01 uniaxial bilinear steel material; the 
transmission line uses corotational truss element with initial 
stress material. The geometric nonlinearity is considered by 
taking the corotational geometric transformation. Hence, for 
the proposed transmission tower-line structures, both the 
material and geometric nonlinearity are considered.

In this study, the LSTM surrogate model is used to pre
dict the tower tip displacement time history, from which the 
maximum displacement can be utilized as a key indicator 
for assessing the fragility of transmission towers (Bi, Tian, 
Li, Ma, & Pan, 2023; Dikshit & Alipour, 2023; J. Wang, Li, 
Fu, Dong, & Sun, 2022). This approach primarily focuses on 
the global response of the tower and does not specifically 
address the local failure mechanisms of the tower. The fail
ure of transmission towers is commonly dominated by 
member buckling, which leads to structural instability (Ma 
et al., 2021). Owing to the high redundancy of the tower 
and complex loading conditions, there are many possible 
failure modes (Natarajan & Santhakumar, 1995). This com
plexity necessitates a comprehensive approach that includes 
detailed structural inventories and an in-depth analysis of 
element-level buckling.

However, the dynamic response of the tower tip displace
ment can indirectly reflect local element behaviours. This 
relationship can be obtained by comparing the buckled ele
ments in the nonlinear pushover analysis and the dynamic 
responses. Furthermore, Fei, Zhou, Han, and Wang (2012) 
showed that the tower tip displacement is the primary indi
cator to reflect the global stability of the structure. 
Moreover, in the literature, tower tip displacement is widely 
used to indicate the global response of the transmission 
tower-line system (Xue et al., 2020; Xue & Ou, 2021; Xue 
et al., 2021; Zhu & Ou, 2021). Consequently, in this study, 
the node labelled ‘target’ in Figures 12 and 21 is selected to 
represent the nonlinear time history response of the 

structure. Hence, the dynamic wind loading time history of 
the wind simulation nodes in both x and y directions, and 
the displacement of the ‘target’ node are used as the input- 
output pairs for training the surrogate model.

Neural network hyperparameters significantly impact com
putational time and prediction accuracy. Therefore, identify
ing appropriate hyperparameters is crucial (Goodfellow, 
2016). From the existing literature, with the provided training 
cases, the number of hidden units and LSTM layers are the 
two main hyperparameters that affect the prediction accuracy 
of the LSTM model (Xu, Lu, Cetiner, & Taciroglu, 2021; Xue 
& Ou, 2021). Hence, the effects of hidden units and LSTM 
layers on prediction accuracy are studied. Moreover, since the 
stacked input sequence is utilised to preprocess the samples, 
the influence of the stack size on the LSTM model is exam
ined. The determined LSTM architecture is then used to 
compare the effects of different sampling methods. The sur
rogate model is trained with the determined hyperparameters, 
and accuracy and robustness are evaluated using the same 
unseen testing wind profiles with surrogate models trained by 
different sampling methods. The flowchart in Figure 8 illus
trates the accuracy and robustness assessment of surrogate 
models trained with different sampling methods in the wind 
speed range of 4062:5 m=s:

4.1. Implementation of different sampling methods on 
regional wind loading conditions

In the previous section, four sampling methods are 
introduced: k-medoids clustering-based sampling (KMCS), 
random sampling (RS), power-law sampling (PLS), and 
modified systematic sampling (MSS). As depicted in 
Figure 8, the wind profiles for the Hurricane Harvey event 
are partitioned into training, accuracy, and robustness test
ing sets. The four proposed sampling methods extract the 
training and validation cases separately from the training 
wind profile database. The dynamic wind loadings are calcu
lated based on the methods described in Section 3 by using 
the sampled wind profiles and are then fed into the struc
ture model to obtain the target displacement.

The sampled wind profiles obtained using the proposed 
sampling methods are shown in Figure 9. All the sampled 
wind profiles cover the speed range of the wind profiles in 
the WRF model. However, the coverage area is slightly 

Figure 8. Flowchart of the surrogate model accuracy and robustness evaluation.
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different for each method. Since the KMCS and RS methods 
extract the raw wind profiles, the sampled wind profiles are 
a subset of all wind profiles in the WRF model event pool. 
In contrast, the PLS method, which uses the surface rough
ness coefficients recommended by ASCE 7-22 (2022) for all 
terrain categories, has broader coverage than the numerical 
model wind profiles and can be considered event-independ
ent. The MSS method automatically infers the wind speed 

distribution at each height and assembles it in order, result
ing in sampled wind profiles with similar coverage to 
KMCS and RS but more evenly distributed. Furthermore, 
since the KMCS and MSS methods cluster the wind profiles 
based on the defined distance metric, these two sampling 
methods should exhibit distinct patterns in each group. 
Figure 10 shows the wind profiles sampled in each group 
for these two methods.

Figure 9. Different sampling methods sampled wind profiles illustration for training and validation.

Figure 10. Illustration of the wind profiles clusters for k-medoids clustering sampling and modified systematic sampling method. KMCS: k-medoids clustering sam
pling method; MSS: modified systematic sampling method.
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4.2. Two-tower one-span transmission tower-line 
surrogate model

The two-tower one-span transmission tower-line model in 
this paper is based on the model discussed by Zhu and Ou 
(2021), where they detailed techniques for modelling trans
mission tower-lines. This model is employed as a test case 
in our study. Figure 12 displays the two-tower one-span 
model, the geometry of which is shown in Figure 11, and 
eight transmission lines, comprising six conductors and 
two ground wires. The lattice transmission towers are com
posed of A36 steel angles. The geometric and material prop
erties of the conductors and ground wires are listed in 
Table 1. The wind loading simulation points are shown in 
Figure 12.

4.2.1. Surrogate model accuracy evaluation
To compare prediction accuracy using different hyper- 
parameter values, 300 training samples, 100 validation sam
ples, and 100 testing samples were utilised. Wind profiles 
extracted from the Hurricane Harvey WRF model on the 
26th of August at 04:30, with a basic wind speed in the 
range of 4062:5 m=s, are employed for this study. 
The findings indicate that the most proficient LSTM struc
ture consists of six layers, each with 512 hidden units, and 
stacking the input sequence with four time-steps. This deter
mined LSTM architecture is then used to compare the 
effects of different sampling methods.

Figure 13(a) depicts the distribution of RMSE for surro
gate models trained using different sampling methods and 
training case numbers. The results indicate that the overall 
prediction accuracy of surrogate models increases with the 
number of training cases. The KMCS method exhibits the 
best prediction accuracy for all training case numbers, 
except for the surrogate model trained with 200 cases. In 
contrast, the MSS method has the worst prediction perform
ance across all training case numbers. The KMCS method is 
particularly effective as it improves the training efficiency by 
up to 30% compared to the worst-performing MSS method. 
However, for the k-medoids sampling method, 100 training 
cases do not yield acceptable accuracy due to the stochastic 
nature of turbulent loading.

When trained with 400 cases, all the four proposed sam
pling methods have improved accuracies. Table 2 compares 
the relative differences in RMSE prediction at the mean and 
75th percentile levels compared to the KMCS method. The 
MSS trained surrogate model shows a 10% larger RMSE 
prediction than the KMCS method at all accuracy levels. 
This may be because the MSS method sequentially 

Figure 11. Transmission tower geometry.

Figure 12. Two-tower one-span transmission tower-line model.

Table 1. Material and geometric properties of the ground wires, conductors, 
and insulator.

Component Ground wire Conductor Insulator

Cross-section Area (m2) 0.000329 0.000605 0.0908
Young’s Modulus (Gpa) 78 67 100
Density (kg=m3) 4602 1780 45.24
Sag (m) 2.9 3.7 \
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assembles the wind speed at each height to generate the 
wind profile, resulting in a more restricted variation in the 
wind profiles. The physics-based PLS method trained surro
gate model RMSE prediction is 7% larger than the KMCS 
trained surrogate models. Although the surface roughness 
coefficient takes values for all terrain categories in the PLS 
method, the sampled wind profiles are straight lines, as 
shown in Figure 2, and do not consider the variation of the 
wind profiles along the height. Therefore, the prediction 
accuracy of the PLS method trained surrogate model is rela
tively lower than that of the KMCS method.

As introduced in Section 4, when generating the trans
mission tower fragility curve, the peak tower top displace
ment in the predicted time history is generally chosen as the 
failure criterion (Xue et al., 2020). Therefore, the predicted 
peak displacement in the time history is another essential 
parameter to evaluate the accuracy of the developed surro
gate model. The predicted tower top peak displacement 
comparison with the FEM for 100, 200, and 400 cases is 
shown in Figure 13(b). The results indicate that with more 
training cases, the surrogate models predicted tower top 
peak displacement discrepancy with the FEM is smaller. 
With 400 training cases, the KMCS trained surrogate model 
peak displacement is 7.33% different from the FEM at the 
75th quantile. In Figure 14, the convergence rate of the pre
dicted tower top displacement time history and the peak 
displacement are compared. It can be observed that the pre
dicted response peak displacement converges faster than the 
displacement time history as the error difference between 
the prediction and target values in 200 cases and 400 cases 
are much smaller.

Statistically, when the training size increases to 400 sam
ples, the difference between each sampling algorithm is not 

distinctive for both the time history and peak displacement 
value prediction. The RMSE indicator is critical for compar
ing the predicted and target displacement time history. To 
further enhance the accuracy analysis of the surrogate model 
predicted displacement time history, the cross-correlation 
coefficient between the predicted and target displacement 
time history from KMCS is shown in Figure 15(a), in which 
the cross-correlation coefficient is all higher than 0.8, refer
ring to the high prediction accuracy. The comparisons of 
the predicted and target time history in Figure 15(b) (c), 
and (d) demonstrate the high fidelity of the trained surro
gate model. Besides, the average computational time is 52s 
for all the surrogate models, significantly decreasing com
pared to the FEMs (Zhu & Ou, 2021).

Figure 13. Comparison of the efficiency of the two-tower one-span surrogate model with different training sizes: (a) root mean square error; (b) maximum top 
displacement.

Table 2. RMSE of the four sampling methods trained two-tower one-span surrogate model prediction at mean and 75th 
quantile value for accuracy testing.

Mean value 75th quantile value

Absolute value Difference to KMCS (%) Absolute value Difference to KMCS (%)

KMCS 0.0202 0.000 0.0243 0.000
RS 0.0207 2.309 0.0249 2.248
PLS 0.0217 7.411 0.0262 7.520
MSS 0.0223 10.345 0.0272 11.797

Figure 14. Comparison of the different sampling methods trained two-tower 
one-span surrogate model trained by 100, 200, and 400 cases convergence rate 
for time history and peak displacement prediction.
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4.2.2. Robustness assessment of the trained surrogate 
model
Wind profiles utilised for training and assessing surrogate 
models are extracted at the timestamp of 26th of August at 
04:30, during the duration of Hurricane Harvey from 25th 
of August to 27th of August. Owing to the dynamic atmos
pheric conditions, such as humidity, temperature, and pres
sure gradient force variation, wind profile characteristics 
alter over time. Hence, evaluating the robustness of trained 
surrogate models at alternative timestamps is crucial to 
ascertain their proficiency. Moreover, as wind profiles 
within a hurricane encompass a vast geospatial region, 
assessing their geographical location is equally imperative to 
evaluate the robustness of the surrogate model. Therefore, 
to train the surrogate model effectively, it is essential to con
sider both the location and timestamp of wind profiles to 
evaluate the proficiency.

To assess the robustness of the trained surrogate model, 
wind profiles in the 4062:5 m/s range on the 26th of 
August at 08:30 were chosen, with 400 cases randomly 
selected from 40,000 wind profiles. Figure 16 depicts the 
predicted displacement time history RMSE for all sampling 
methods of the trained surrogate models. The mean and 
75th percentile RMSE values of prediction for wind profiles 
on 26th of August at 04:30 and 26th of August at 08:30 are 
summarised and compared in Table 3. Based on the table, 
for the robustness testing of 400 cases on 26th of August at 
08:30, the KMCS method is optimal, while the prediction 
accuracies of other models are comparable to the KMCS 
method. This finding supports the conclusion in 

section 4.2.1. Thus, the trained surrogate model can accur
ately predict the transmission tower-line displacement 
response at different timestamps.

Apart from the wind profiles at the timestamp 26th of 
August at 04:30 and 26th of August at 08:30, the wind pro
files in the range 4062:5 m=s for the rest of the timestamps 
are gathered to select another 400 cases to investigate the 
robustness of the trained surrogate model in the sizeable 
geospatial wind profiles distribution. The 400 sampled wind 
profiles in Figure 17 show that the tested wind profiles filled 
the geospatial space of all wind profiles. To better illustrate 
the predicted tower displacement time history RMSE, four 
sections, as shown in Figure 18, are used to depict the evo
lution of Hurricane Harvey. In Figure 18, the mean values 

Figure 15. KMCS method trained two-tower one-span surrogate model prediction RMSE cumulative probability and the predicted time-history for accuracy testing.

Figure 16. Robustness of the four sampling methods trained two-tower one- 
span surrogate model prediction RMSE on 26th of August at 08:30.
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of the RMSE indicate that the KMCS method is the smallest 
at all timestamps. Table 4 summarises the mean values and 
standard deviation of the RMSE for different sampling 
methods trained surrogate model. In this table, the KMCS 
method trained surrogate model predicted displacement 
time-history RMSE has both the smallest values and stand
ard deviation. Other surrogate models can also produce sat
isfactory results. These small prediction RMSE mean values 
and standard deviation of trained surrogate models manifest 
their accuracy and robustness in regional power-system 
infrastructure analysis.

4.2.3. Scalability evaluation of the trained surrogate 
models
To assess accuracy and robustness in sections 4.2.1 and 
4.2.2, wind speeds are restricted to a narrow interval of 
4062:5 m=s at a height of 10 metres. This interval repre
sents a narrow wind speed range in Hurricane Harvey and 
thus may not fully encapsulate the entire spectrum of pos
sible wind speeds. Furthermore, training a LSTM surrogate 
model for each wind speed interval can be time-consuming 
and may weaken the applicability of the model to regional 
scale problems. To circumvent this, a single LSTM surrogate 
model is developed to encompass the entire range of wind 
speeds pertinent for regional scale assessment of transmis
sion tower-line structure response.

A total of 1500 wind profile cases are randomly selected 
to construct the model, which is trained by using 1125 cases 
and tested with 375 cases. To evaluate the performance of 
the model, an additional set of 140 wind profile cases is uti
lised for testing, which excluded the cases used for training 
and validating the surrogate model. To verify the scalability 
and accuracy of the LSTM surrogate model trained on the 
full wind speed range (LSTM-F), the LSTM model trained 

on the 4062:5 m=s wind speed range (LSTM-N) is also 
employed to predict the displacement time-history for the 
140 testing cases. In Figures 19 and 20, the wind speed rep
resents the mean wind speed for each interval within a 
62:5 m=s range.

As depicted in Figure 19, the displacement time-history 
prediction RMSE for LSTM-N forms a bowl shape, wherein 
the prediction RMSE is large when the wind speed interval 
deviates significantly from the trained wind speed of 
4062:5 m=s: The bowl-shaped prediction RMSE arises 
because, when the wind speed at a 10-metre height diverges 
significantly from 4062:5 m=s, the mean wind force magni
tude exerting on the structure differs from that within the 
4062:5 m=s range. Furthermore, as outlined in section 3.2, 
the turbulence wind force is a function of the mean wind 
speed. Consequently, for mean wind speeds significantly dif
ferent from 40m=s, both the prediction RMSE mean and 
standard deviation are larger than those observed around 
40m=s: In contrast, the LSTM-F demonstrates small and 
consistent prediction RMSE values across the entire range of 
wind speeds, indicating its robustness and adaptability. 
Moreover, for the testing cases within the wind speed range 
of 4062:5 m=s, the mean RMSE prediction by LSTM-N is 
0.0182, whereas for LSTM-F, it is 0.0148. This suggests that 
by incorporating variability in the training data, the LSTM 
surrogate model becomes more robust.

Figure 20 compares one predicted displacement time-his
tory for each wind speed interval by LSTM-F and LSTM-N 
against the target displacement. In this figure, both the 
LSTM-F and LSTM-N displacement time-histories follow 
the same trend as the target displacement time-history. 
However, as LSTM-N is trained within a narrow wind speed 
interval, for wind speeds significantly different from 
4062:5 m=s, the magnitude of the LSTM-N predicted dis
placement time-history diverges from the target. The LSTM- 
F predicted displacement time-history, on the other hand, is 
similar in both trend and magnitude when compared with 
the target, further illustrating its robustness and adaptability 
across a broader range of wind speeds.

5. Adapting the LSTM model and sampling 
methodology to a new transmission tower-line 
model configuration

In this section, an investigation is carried out into the con
sistency of the LSTM surrogate model in conjunction with 
the proposed sampling methods for predicting the response 
of transmission tower-line structures with various configura
tions. The objective is to evaluate the overall performance of 
the proposed surrogate model training methodology across 

Table 3. Developed two-tower one-span surrogate model robustness RMSE assessment on 26th of August at 08:30.

Mean value 75% quantile value

26th of August at 04:30 26th of August at 08:30 26th of August at 04:30 26th of August at 08:30

KCMS-32 0.0210 0.0199 0.0243 0.0227
RS 0.0216 0.0204 0.0249 0.0234
PLS 0.0223 0.0210 0.0262 0.0239
MSS 0.0232 0.0220 0.0272 0.0257

Figure 17. Robustness assessment sampled wind profile geospatial 
distribution.
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different transmission tower models. The one-tower two- 
span transmission tower-line model is widely utilised to 
simulate intermediate tower boundary conditions in trans
mission lines. In this setup, a single tower supports two 
spans, with each span comprising transmission lines con
nected to the tower via insulators. This arrangement accur
ately represents the interconnection between the tower and 
the transmission lines. Additionally, spring elements are 
used to appropriately model the end boundary conditions of 
the transmission lines at adjacent towers. Consequently, the 
one-tower two-span transmission tower-line model, as 
shown in Figure 21, is employed. The geometric details and 
materials of the insulators, ground wires, and conductors 
are listed in Table 1.

5.1. Investigation on the adaptivity of LSTM structure 
and hyper-parameters

As illustrated in Figure 21, the one-tower two-span trans
mission tower-line configuration exhibits increased 

complexity due to the existence of a doubled number of 
lines highly exhibiting geometric nonlinear behaviour and 
the changes in line end boundary conditions. With the 
adoption of the two-span configuration, the nodes respon
sible for generating wind loading, as exemplified in 
Figure 21, increased to 156, in contrast to the two-tower 
one-span model, which utilises 98 nodes. This new struc
tural model configuration increases the dimensionality fea
ture for LSTM learning, which directly impacts the number 
of samples needed for optimal training as well as the archi
tecture of the LSTM model. To validate such impact, the 
trained LSTM surrogate model for the two-tower one-span 
structure model is used to exam the necessities of re-tuning 
the hyper-parameters.

Figure 22 presents the trained one-tower two-span surro
gate model prediction RMSE cumulative probability and the 
predicted time-history for accuracy testing using the two- 
tower one-span surrogate model hyperparameters. From 
Figure 22(a), 40% of the predicted and target displacement 
time history cross-correlation coefficient is less than 0.8. 
Figure 22(b) (c), and illustrate the large discrepancy between 
the target and predicted displacement time history. Hence, 
with the new transmission tower-line structure configuration 
adapted, the LSTM surrogate model hyper-parameters need 
to be re-tuned. It is also observed that the training reaches its 
convergence with 1000 samples, consisting of 750 training 
samples and 250 validation samples. The one-tower two-span 
LSTM surrogate model hyper-parameter tuning finds that the 
most proficient LSTM architecture consists of seven layers, 
each with 512 hidden units, and four stacking sizes.

Figure 18. The prediction RMSE by different sampling methods trained two-tower one-span surrogate model distribution over time.

Table 4. The mean values of the RMSE at different time sections and the 
standard deviation for each sampling method trained two-tower one-span sur
rogate model.

Stacked Timestamp
Mean Value of Root-Mean-Squared Error (m)

KMCS RS PLS MSS

2017-08-25: 1830–2130 0.0189 0.0196 0.0209 0.0221
2017-08-25: 2230–0130 0.0193 0.0193 0.0209 0.0213
2017-08-26: 0230–0630 0.0194 0.0203 0.0217 0.0212
2017-08-26: 0730–1130 0.0185 0.0192 0.0202 0.0203
Standard Deviation 0.00041 0.00049 0.00062 0.00071
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5.2. Investigation of LSTM accuracy performance with 
different sampling methods

Figure 23 displays the RMSE and percentage error for pre
dicting peak displacement in comparison to the Finite 
Element Model (FEM) results. Additionally, Table 5 summa
rises the RMSE differences in predicted displacement time 
history with the target displacement time history, providing 

mean and 75th percentile values, along with the relative dif
ferences compared to the K-medoids Clustering Sampling 
(KMCS) method across all 400 testing cases.

A comparison between Tables 5 and 2 reveals that the 
one-tower two-span surrogate model predicted RMSE is 
smaller than that of the two-tower one-span surrogate 
model. Furthermore, the predicted RMSE of Random 

Figure 19. The prediction RMSE by two-tower one-span LSTM surrogate model trained by full wind speed range and 4062:5 m=s:

Figure 20. The prediction displacement time-history by two-tower one-span LSTM surrogate model trained by full wind speed range and 4062:5 m=s:
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Sampling (RS), Power-Law-Based Sampling (PLS), and 
Modified Statistical Sampling (MSS) methods, in compari
son to KMCS, is notably larger, exceeding 12.7% for the 
mean percentile and 17.4% for the 75th percentile. In con
trast, for the two-tower one-span model, the maximum dif
ference is 10.3% for the mean percentile and 11.8% for the 
75th percentile. Figure 24 provides insight into the distribu
tion of the cross-correlation coefficient and a visual com
parison of the predicted displacement time history with the 
target. In Figure 24(a), it is evident that the predicted time 
history exhibits a strong linear correlation with the target. 
The results indicate that with the increased number of train
ing cases, the surrogate model prediction accuracy increases. 
Additionally, the KMCS outperforms other sampling 

methods in all different numbers of training cases. 
Figure 25 shows the convergence rate of the surrogate 
model accuracy measurement metrics. It can be observed 
that the predicted response peak displacement converges 
faster than the displacement time history as the error differ
ence between the prediction and target values in 700 and 
1000 cases are much smaller.

5.3. Investigation of LSTM robustness performance with 
different sampling methods

As discussed in Section 2.1, evaluating the robustness of the 
trained surrogate model is crucial due to the spatial and 
temporal variability of hurricanes, which can result in 

Figure 21. One-tower two-span transmission tower-line model.

Figure 22. Trained one-tower two-span surrogate model prediction RMSE cumulative probability and the predicted time-history for accuracy testing using two- 
tower one-span surrogate model hyper-parameter.
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changes to wind profile characteristics. The one-tower two- 
span surrogate models are trained by using wind profiles 
obtained on 26th of August at 04:30, while wind profiles 
from 26th of August at 08:30 are used to assess robustness. 
Figure 26 illustrates the RMSE of predicted displacement 
time histories for all sampling methods in the trained 

surrogate models. Evidently from Figure 26, the KMCS 
method is the most effective approach for selecting repre
sentative wind profiles. Table 6 provides a summary of the 
comparison of RMSE for predicted displacement time his
tories across different sampling methods at the two time
stamps. Notably, the mean and 75th percentile RMSE values 

Figure 23. Comparison of the efficiency of the one-tower two-span surrogate model with different training sizes: (a) root mean square error; (b) maximum top 
displacement.

Table 5. The mean values of the RMSE at different time sections and the standard deviation for each sampling method 
trained one-tower two-span surrogate model.

Mean Value 75% quantile value

Absolute value Difference to KMCS (%) Absolute value Difference to KMCS (%)

KMCS 0.0084 0.0000 0.0113 0.0000
RS 0.0095 14.3103 0.0141 25.1225
PLS 0.0106 26.8473 0.0132 17.4684
MSS 0.0094 12.6699 0.0137 21.1588

Figure 24. KMCS method trained one-tower two-span surrogate model prediction RMSE cumulative probability and the predicted time-history for accuracy testing.
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for the evaluated timestamps are consistent across all sam
pling methods, indicating the robustness of the trained one- 
tower two-span surrogate model.

6. Conclusions

In this paper, surrogate models of transmission tower-line 
systems are trained to predict the regional power infrastruc
ture response in high-resolution wind fields during the evo
lution of Hurricane Harvey. The surrogate model predicts 
the dynamic response of a coupled nonlinear transmission 
tower-line system during wind loadings. Owing to the com
plexities in the wind loading characteristics introduced 

by both the auto- and cross-spectrum in the time history 
and the realistic profiles extracted from the wind fields, 
effective in-event surrogate model training algorithms are 
investigated.

Two transmission tower-line structure models with dif
ferent levels of structural complexity have been utilised to 
verify the proposed surrogate model. The accuracy and 
robustness of these two models have been validated first. 
Then, to make the LSTM surrogate model applicable to all 
in-event reference wind speeds of the wind profiles, a single 
LSTM model is constructed. From the discussions, the fol
lowing conclusions can be derived:

� The in-event surrogate training method decouples the 
extrinsic wind profiles from the intrinsic stochastic wind 
turbulence in the complex wind loading and investigates 
different sampling methods to select the training profiles 
effectively.

� The proposed surrogate training method is adaptive to 
structures with different levels of complexity. With dif
ferent levels of structural complexity, the LSTM surro
gate model hyper-parameters need to be adjusted to 
attain superior prediction accuracy.

� The number of training size is proportional to the num
ber of LSTM units. Specifically, the two-tower one-span 
model utilised 400 training data samples alongside 96 
LSTM units, while the one-tower two-span model 
employed a larger dataset comprising 1000 training data 
samples and 152 LSTM units. The observed relationship 
serves as a valuable guideline on how to appropriately 
configure the training dataset size and LSTM unit count 
for applying the proposed surrogate model training 
methodology to diverse transmission tower-line 
structures.

� Among the four proposed data- and physics-based sam
pling methods, the k-medoids clustering sampling 
(KMSC) method outperforms other sampling methods in 
trained surrogate models, which leads to the benefits of 
using the in-event surrogate training method. Moreover, 
the physics-based power law sampling (PLS) is independ
ent of the hurricane wind field, which leads to the poten
tial to develop offline surrogate models for future 
hurricane events.

� The accuracy of the surrogate model is primarily over
ridden by the effectiveness of the surrogate model in 
capturing the transmission tower-line dynamic response 
given stochastic wind loading for small training dataset 
cases. With enough training cases, the effective selection 
and coverage of the wind profiles contribute to the 
accuracy of the surrogate models.

� With large training cases covering the entire in-event ref
erence wind speed, the LSTM surrogate model can gen
eralise the prediction of displacement time-history with 
acceptable accuracy. Hence, it is acceptable to extend the 
training and applying of the LSTM surrogate models to 
different transmission tower-line structures for regional 
scale transmission tower-line structure performance 
assessment.

Figure 25. Comparison of the different sampling methods trained one-tower 
two-span surrogate model trained by 400, 700, and 1000 cases convergence 
rate for time history and peak displacement prediction.

Figure 26. Robustness of the four sampling methods trained one-tower two- 
span surrogate model prediction RMSE on 26th of August at 08:30.

Table 6. Developed surrogate model robustness RMSE assessment on 26th of 
August at 08:30.

Mean value 75% quantile value

26th of  
August  

at 04:30

26th of  
August  

at 08:30

26th of  
August  

at 04:30

26th of  
August  

at 08:30

KMCS 0.0089 0.0084 0.0113 0.0113
RS 0.0106 0.0095 0.0149 0.0141
PLS 0.0110 0.0106 0.0135 0.0132
MSS 0.0104 0.0094 0.0146 0.0137
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