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ABSTRACT

Surrogate models have shown improved accuracy in predicting infrastructure responses during
dynamic loadings. However, training a surrogate model for complex loading inputs across the entire
hazard region remains challenging. This study provides insight into the training of surrogate models
to estimate the responses of transmission tower-line structures in a coupled high-dimensional and
high-resolution wind field and presents innovative methods for addressing these challenges. Four
data- and physics-based spatial-temporal decoupling sampling methods are employed and cross-com-
pared to obtain the most representative in-event wind profiles for training the surrogate model. Long
Short-Term Memory (LSTM) is utilised as the surrogate model framework to predict the dynamic
responses of the structure during the 2017 Hurricane Harvey. The accuracy and robustness of two
transmission tower-line structure configuration surrogate models are validated by comparing the pre-
dictions with finite element analyses by using randomly distributed temporal and geospatial wind pro-
files throughout the hurricane. Finally, a single LSTM surrogate model is developed, trained by
applying the full reference wind speed range of Hurricane Harvey for the regional-scale structural per-
formance evaluation of the transmission tower-line system. The results demonstrate that the proposed
surrogate model training methodology is general and can be applied to regional-scale structural per-
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formance evaluations.

1. Introduction

The integrity of power network supporting structures is cru-
cial for ensuring the stable and sustainable delivery of power
from power plants to customers. Among all supporting
structures, transmission tower-line structures are particularly
vulnerable due to their location in various terrains and
exposure to wind hazards. As the transmission network is
an interconnected network composed of geographically dis-
tributed physical transmission towers, assessing structural
performance at a regional scale is crucial. To ensure an
accurate evaluation of regional-scale structure performance,
it is important to use an appropriate structural analysis tool,
in addition to accounting for the complex wind loading. To
evaluate the performance of the transmission tower-line sys-
tem under wind loading, physical law-governed structural
analysis tools, particularly Finite Element Models (FEM) are
believed to yield reliable and accurate results. However, the
computational burden of FEMs increases dramatically with
the expansion in scale and integration stability requirement
(Chopra, 2012). Consequently, structural surrogate models
have been proposed and validated to alleviate the computa-
tional burden of utilising numerical modelling in complex

and large-scale engineering systems (Kroetz, Tessari, &
Beck, 2017).

Among the various surrogate model configurations, the
long short-term memory (LSTM) surrogate model is notable
for capturing the high nonlinearity properties of the physical
model, thereby accurately predicting the response time-
history. Zhang et al. (2019) were the first to apply an LSTM
surrogate model to predict the displacement time-history of
a real-world building under seismic loading. Zhang, Liu,
and Sun (2020) further introduced a physics-informed
LSTM surrogate model, which improved prediction accuracy
in a three-story moment frame model compared with their
first LSTM model. Im, Lee, and Cho (2021) proposed a
POD-LSTM surrogate model, which combined the LSTM
with proper orthogonal decomposition (POD) to solve the
computational limitations of large-scale elasto-plastic FE
models. The results showed that the proposed POD-LSTM
is efficient and accurate in predicting the structural plastic
strain and von Mises stress. Torky and Ohno (2021) pre-
sented a hybrid convolutional-LSTMs (ConvLSTM) model
used for multi-input multi-output models, highlighting the
importance of applying a data filtering technique to the
input data. Liao, Lin, Zhang, and Wu (2023) introduced an
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attention-based LSTM surrogate model to predict the seis-
mic response of a bridge in cases of having limited training
data.

While significant attention has been paid to constructing
surrogate models for predicting the dynamic response of
infrastructural ~structures (B. Li, Chuang, & Spence
Seymour, 2021; B. Li & Spence Seymour, 2022; Mangalathu,
Heo, & Jeon, 2018; Byung Kwan Oh, Glisic, Kim, & Park,
2019; B. K. Oh, Glisic, Park, & Park, 2020; Shin, Scott,
Stewart, & Jeon, 2020; Z. Y. Wang, Pedroni, Zentner, & Zio,
2018), very few studies have concentrated on developing
surrogate models for transmission structures under wind
loading. Zhang, Song, and Shafieezadeh (2022) proposed an
adaptive multi-fidelity GP reliability method for performing
transmission tower reliability analysis, where transmission
tower pushover analysis, considering the uncertainties of
structural and static wind loading, is implemented to obtain
the response defined for the limit state function. Jeddi et al.
(2022) employed a gradient boost classifiers active learning
method to derive the fragility curves of transmission towers
under various natural hazards. The wind loading, adhering
to the minimum design loads and associated criteria for
buildings and other structures as specified in 7-22 (2022), is
applied in a quasi-static manner over a one-minute loading
window.

Xue, Xiang, and Ou (2021) proposed a convolutional
neural network (CNN) model to predict the displacement of
a free standing transmission tower under wind loadings. Xue
and Ou (2021) demonstrated that the long short-term mem-
ory (LSTM) surrogate model could predict the dynamic
responses of highly nonlinear transmission tower-line sys-
tems. From the literature review, the wind loading parameters
used for calculating wind loading are derived from ASCE 7-
22 (2022), where the calculation of wind speed along height
employs either a power- or logarithmic-law. However, Yet,
Li, Zhi, and Hu (2010) analysed wind speed data recorded at
a meteorological tower and observed that the surface rough-
ness coefficient varies with height and the mean wind speed
at the reference height. Snaiki and Wu (2018) discovered that
using power- or logarithmic-law wind profiles underestimates
the effects of wind loading on tall buildings. Under the stand-
ard ASCE 7-22 (2022) assumptions, the variance in wind pro-
file height is solely related to ground roughness, and
independent of wind speed.

For structural response analysis at a regional scale, it is
essential to consider realistic wind profiles within a specific
event. High-fidelity and high-resolution realistic hurricane
wind field data are accessible from the numerical weather
prediction (NWP) community database. For instance, the
TIGGE archive, comprising forecast data from thirteen glo-
bal NWP centres starting from 2006 (TIGGE); and the
Weather Research and Forecasting (WRF) model, capable of
producing simulations based on actual atmospheric condi-
tions from observations and analyses (WRF). The NWP
database provides high-resolution wind profiles considering
land types, temperature. However, the data from these
meteorological models, containing millions of wind profiles
for a region, present complexities that the wind profile

calculation methods stipulated by ASCE 7-22 (2022) cannot
adequately describe.

In this paper, it is hypothesized that, during the same
event, the spatial and temporal wind loading characteristics
and their impact on transmission towers can be understood
by selecting a limited set of training samples, namely an in-
event surrogate model. This study aims to bridge gaps in
the literature review by investigating the development of an
in-event surrogate model for the transmission tower-line
system. The objective of this model is to accurately predict
the nonlinear time history of spatial-temporal wind loading
during an evolving hurricane. The surrogate model utilises
training data selected from the event and is expected to pre-
dict the response at specific temporal and spatial points of
interest. The input to the model is the dynamic wind load-
ing of a transmission tower-line model with thousands of
degrees of freedom. Owing to the complexity of spatial-tem-
poral correlated wind loading inputs, the intrinsic turbu-
lence wind stochasticity is decoupled from the explicit wind
profile characteristics. Given the complex wind profiles in a
specific event, it is crucial to adopt an appropriate sampling
strategy so that the sampled wind profiles can reveal the
complexities hidden within the wind profile parametric
space.

The study evaluates the effectiveness of in-event surro-
gate training in representing turbulence stochasticity and
profile variation. The accuracy of the trained surrogate
models is assessed by comparing the predicted and target
displacement time histories using the root-mean-squared
error (RMSE), cross-correlation coefficient, and peak dis-
placement. Moreover, the robustness of the surrogate mod-
els is validated by predicting the structural dynamic
responses from unseen wind profiles at other timestamps
and widely geospatially distributed wind profiles in the
numerical weather prediction (NWP) hurricane model.
Finally, the study develops a single LSTM model trained
across the full range of the in-event reference wind speed of
the wind profiles to perform a regional-scale transmission
tower-line performance assessment. In summary, this paper
aims to: (1) adopt and evaluate different sampling methods
to reveal the complexities hidden within the wind profile
parametric space; (2) comprehensively assess the accuracy
and robustness of surrogate models trained by different
sampling methods by evaluating two transmission tower-
line structure configurations; (3) explore the adaptivity of
applying surrogate models for regional-scale transmission
tower-line performance evaluation.

The rest of the paper is organised as follows: In Section 2,
the challenges related to the evaluation of hurricane-impacted
power infrastructure performance are comprehensively dis-
cussed, and a proposed solution is presented. Section 3 intro-
duces the Long Short-Term Memory (LSTM) architecture
and details the four training algorithms utilised for selecting
representative wind profiles. In Section 4, an evaluation is
conducted to assess the accuracy, robustness, and scalability
of a two-tower one-span surrogate model. Section 5 focuses
on assessing the adaptivity of the proposed surrogate model
training when applied to a new transmission tower-line



configuration. Finally, Section 6 presents the findings and
conclusions.

2. Regional hurricane impacted power
infrastructure performance problem

During a hurricane event, wind loads can become so
extreme that they exceed the structural design capacities of
infrastructure, particularly transmission towers, resulting in
physical damage. This damage can alter the topology of the
power network, which in turn leads to power delivery inter-
ruptions, commonly referred to as power outages. To assess
the extent of damage to the power infrastructure caused by
a hurricane, a framework has been devised, as depicted in
Figure 1. Employing the framework proposed in Figure 1
necessitates an assessment of the characteristics of the intri-
cate wind loading in hurricanes and the structural analysis
tools required for response assessment.

2.1. Wind loading characteristics at a regional scale

Owing to the extensive length of the transmission tower-line
system, the wind loadings it experiences are complex, and
high-dimensional dynamic time histories. These loadings are
spatially and temporally correlated, indicating their depend-
ence on spatial location. Each time history consists of mean
and turbulent wind speed components. When the analysis
expands to a regional scale, the loading range broadens sig-
nificantly, with the most critical factor being the widely dis-
tributed wind profiles across the entire region. This section
will discuss the characteristics of realistic wind loading dis-
tribution in a regional-scale problem.

The dynamic wind speed at any node for a structure at
any location is modelled as:

Vij(Xip yij Zip t) = Vaii(%ip Vi 25) + Vi (Xip Yipp 2 1) (1)
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The dynamic wind loading on the transmission tower
infrastructure can be calculated as:

F,'j (.x,‘j,)/,'j, Z,'j, t) = OSPVU(XIJ,)/ZJ, Z,'j, t)ZCfAm (2)

where Vii(xij» yij> zij 1) 18 the dynamic wind speed time his-
tory at the j node of the i power infrastructure;
(x> yij» zij) indicates the geographical coordinate of the cor-
responding node; V ;; is the mean wind component at that
node controlled by the wind profile; v; is the turbulent
wind component calculated from the wind power spectrum;
p is the air density; Cr is the drag coefficient; and A, is the
structural projected area. From the equation, it is intuitive
that the complex wind loading across the entire region, Vi,
can be decoupled into the mean wind speed component
V.;; and turbulence wind component v ;. The following
sections will explain their characteristics in the regional
infrastructural response simulation.

2.1.1. Regional wind profile characteristics in weather
Research and forecast model

In conventional wind engineering applications, the mean
wind speed at a given geographical location (x,y) varies
along the vertical elevation and follows either a power-law:

V o

v, -
where V, is the mean wind speed at height z; V, is the
wind speed at reference height; z, is the reference height,
which is 10m in ASCE 7-22 (2022); and o is the surface

roughness coefficient.
Or a logarithmic law:

Vi(z) = %In (Z — Z‘*) (4)
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Figure 1. Schematic implementation of the proposed regional power system performance analysis framework during hurricane.
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where V, is the surface friction velocity; k is von Karman’s
constant; z; is the zero-plane displacement; and z; is the
surface roughness length.

The wind profile calculated from the power-law in
Equation (3) and the logarithmic-law in Equation (4) dem-
onstrates that, given the reference wind speed, the only par-
ameter determining the wind speed at height z is the
surface roughness conditions. In ASCE 7-22 (2022), surface
roughness is categorised by terrain categories. Consequently,
the wind speed at reference height becomes a critical input
parameter in the development of wind fragility models for
structures. However, extensive research has shown that for a
given wind speed at reference height (V,), the wind profile
is influenced by multiple parameters such as gust factor, tur-
bulence intensity, and turbulence length scale (Kwon &
Kareem, 2009; Q. S. Li et al.,, 2010; Snaiki & Wu, 2018). To
address these uncertainties, an advanced numerical weather
prediction (NWP) model, the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2019), is pro-
posed in atmospheric science.

The WRF model is a numerical weather prediction sys-
tem with a comprehensive description of atmospheric phys-
ics that involves the land-surface process, turbulence and
vertical mixing, diverse radiation, and cloud models (WRF).
The WRF can generate meteorological field data at high
time frequencies (less than hourly) with a terrain resolution
of less than 1km (Xue et al, 2020). Because of the high-
resolution hurricane wind field information, the wind pro-
files obtained from the WRF can represent spatial and tem-
poral variations of the winds in a region instead of being
described by a unique distribution (Constantinescu, Zavala,
Rocklin, Lee, & Anitescu, 2011).

In this research, the WRF model is utilised to simulate
Hurricane Harvey by using data collected from the NCEP
GFS FNL (National Centres for Environmental Prediction
Global Forecast System Final Analysis) and the MODIS
(Moderate Resolution Imaging Spectroradiometer). The data
collected from NCEP GFS FNL is designed with a grid at a
27.8km x 27.8km horizontal resolution. The WRF model,
a mesoscale numerical weather prediction system, can
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downscale the NCEP GFS wind profiles to a high resolution
of less than 1km horizontal resolution. This study utilises
WRF simulation data from 25th of August to 27th of
August, with a one-hour time interval. Figure 2 illustrates
the complexity of wind profiles in realistic hurricanes by
comparing the wind profiles obtained from the WRF model
to those derived using the power-law method, with a refer-
ence height wind speed taken as 40 m/s. The wind profiles
from the WRF model encompass a wider wind speed range
and retain the wind speed variations over height, as shown
in Figure 2(a). The wind profile in log-log space, depicted
in Figure 2(b), where the slope represents the surface rough-
ness coefficient in Equation (3), reveals the strong nonli-
nearity between wind speed and height, thereby indicating
that the power-law is not sufficient to fully characterise the
complexity of the wind profile in a hurricane.

2.1.2. Turbulent wind characteristics

The turbulent wind speed is computed from the sampled
wind profile, in which the spatial and temporal correlation
is considered. Based on the Shinozuka theory (Shinozuka &
Deodatis, 1991), the turbulent wind speed {v;(t),v:(t), ...,
Vup(t)} at time ¢ is:

k
V(Yo 2k 1) = V/ 2(Aw) Z

|Hjm(mm1) |cos(comlt

M=

m=1 |=1
- ekm((oml) + (Dml) (5)
mW:U—IMm+%AQZ:LL“qN 6)

where N is an arbitrarily large positive number; k is the
number of simulation points, k =1,2...,np; Aw = wl\”}”, the
frequency increment; and ®,, is the cut-off frequency, that
is, when ® > w,,, S(w)=0; ®,; is uniformly distributed
random phase angle in [0,27]. 0y, is the H(®) phase angle.
In engineering, S(®w) and H(w) are real matrices, thus
Orn = 0, while Hj, is the S(w) Cholesky decomposed

matrix as in Equation (5):

S(o) = H(o)H* (0)"
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Figure 2. Wind profile comparison between WRF model and power-law: (a) wind profile in cartesian space; (b) wind profile in log-log space.
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Figure 3. lllustration of the generated dynamic wind speed time-history stochasticity among different implementations and the wind speed variations at each

node for a single implementation given a determined wind profile.

in which, the fluctuating wind spectral density matrix S()
is calculated from Davenport auto-correlation spectrum and
cross-correlation spectrum (Davenport, 1961).

To account for the stochastic nature of the dynamic wind
loading imposed on the structure, Figure 3 depicts the gen-
erated dynamic wind speed time history for the structure
shown in Figure 12, across three different implementations
with the same wind profile. The patterns of wind speed
intensity in Figure 3 vary among the implementations, indi-
cating that the turbulent wind speed component, as defined
in Equation (7), influences the dynamic wind speed time
history. Furthermore, for each dynamic wind speed imple-
mentation, the pattern of wind speed time history differs
among nodes due to the spatial correlation of wind speed,
which is markedly distinct from seismic loadings.

2.2. Transmission tower-line structure analysis tool

Accurately estimating power infrastructural damage and fail-
ure conditions during a hurricane event requires a high-
fidelity, computationally efficient transmission tower-line
structure model. The nonlinear system, subject to wind
loadings and transmission line vibrations, exhibits strong
tower-line coupling, making accurate modelling a challenge
(Xie, Cai, & Xue, 2017). Although finite element models
(FEMs) of coupled transmission tower-line systems under
wind loading have been widely studied, evaluating these
models on a regional scale involving tens of thousands of
transmission towers is computationally prohibitive.

To overcome this limitation, the fragility curve of the
transmission tower, considering transmission tower-line
coupling, is extensively used (Fu, Li, Tian, Wang, & Cheng,
2019; Tian, Zhang, & Fu, 2020; Xue et al., 2020). However,
when applied to regional-scale power network reliability
analysis, the pre-defined limit states significantly influence
the generation of fragility curves. As a result, researchers
have paid considerable attention to increasing FEM fidelity
by considering uncertainties in material and geometry, com-
ponent buckling, and joint models in the literature (Ma,
Christou, & Bocchini, 2022; Ma, Khazaali, & Bocchini, 2021;
Mohammadi Darestani, Shafieezadeh, & Cha, 2020; J. Wang,
Li, Fu, & Li, 2021).

However, there are limitations to using fragility curves
for regional power network resilience analysis. Firstly, the
fragility function only provides the probability of infrastruc-
tural responses exceeding a predefined limit state, without
offering time histories or other high-resolution information
that could be used to define additional limit states.
Secondly, the fragility curves are developed based on wind
profiles that adhere to theoretical power- or logarithmic-law
assumptions. These theoretical fragility curves consider only
the basic wind speed at reference height as input, without
accounting for variations in wind profiles over height.
Consequently, the tower failure probability is often inaccur-
ately calculated (and often too conservative).

2.3. Proposed structure analysis tool and wind profiles
sampling methods

To address the limitations discussed in Sections 2.1 and 2.2,
this paper proposes a surrogate model trained with realistic
wind profiles as an infrastructure analysis tool. The objective
of the developed surrogate model is to enable prompt and
accurate predictions when the transmission tower-line struc-
ture is subjected to hurricane wind loading. Therefore, the
representativeness of the dynamic wind loadings affects both
the surrogate model prediction accuracy and robustness.
Neural network models are widely utilised for solving
sequence-to-sequence problems.

Among these models, Recurrent Neural Networks
(RNNs) are preferred as they can manage functions involv-
ing recurrence (Goodfellow, 2016). However, RNNs encoun-
ter gradient vanishing problems while optimising model
parameters, which restricts their ability to predict high
nonlinearity and time-dependent dynamic problems
(Goodfellow, 2016). To solve this problem, Hochreiter and
Schmidhuber (1997) developed the Long Short-Term
Memory (LSTM) model that incorporates gated features.
These gated features enable the LSTM model to exploit cur-
rent input-output local relations and explore both current
and previous input-output globally. As a result, the LSTM
model can maintain nonlinearity and time-dependence in
time series.

To develop an effective surrogate model capable of pre-
dicting the accurate dynamic time history of the
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transmission tower-line system on a regional scale, the
training dataset must be representative and align with realis-
tic loading conditions. Given the broad and complex nature
of wind loading across the entire region, it involves two
types of variations: wind profile variation and turbulent
dynamic wind stochasticity. As mentioned earlier, the wind
loading in the entire region can be divided into the mean
wind speed, which is dominated by the wind profile and the
turbulence wind component. The hypothesis guiding the
surrogate training is that the turbulent wind characteristics
are implicitly embedded in each training sample, and the
representativeness of training wind profiles predominates
the quality of the surrogate model.

The Weather Research and Forecasting (WRF) model gen-
erates millions of high-resolution regional wind profiles that
cannot be adequately described by empirical engineering mod-
els. For example, in the Hurricane Harvey WRF model, the
mean wind speed ranging from [30m/s,40m/s| at a height of
10 m encompasses over 200,000 wind profiles. It is impractical
to use all these wind profiles to train the surrogate model.
Therefore, appropriate sampling strategies must be employed
to infer and extract the most representative wind profiles.

With respect to the wind profiles in the WRF model,
they exhibit unique physical, mathematical, and statistical
characteristics. Physically, a realistic wind profile can be
approximated using a power-law or logarithmic-law func-
tion, with varying parameters along its height. To identify
representative samples, a law-based sampling method can be
applied. Mathematically and statistically, each wind profile
can be viewed as high-dimensional data, where each dimen-
sion corresponds to a specific height. To partition the data,
the k-medoids clustering method, which has been utilised in
various domains, is applied (Likas, Vlassis, & Verbeek, 2003;
Tzortzis & Likas, 2009). One potential method for sampling
is random sampling, which does not require any prior
knowledge about the wind profiles. In the processing of
conducting this method, all wind profiles in the WRF model
have an equal probability of being selected, making it a

benchmark sampling method for assessing the accuracy and
robustness of other proposed sampling methods. Apart from
random sampling, three other methods have been employed
to build the surrogate model: (1) physics-guided sampling
based on the power-law, (2) k-medoids sampling, and (3)
modified statistical sampling.

3. Methodology
3.1. LSTM architecture

The LSTM model comprises an input layer, multiple LSTM
layers, fully connected layers, and output layers, as illus-
trated in Figure 4. The input layer is dimensioned at m X
n x p, where m is the training size, n is the total number of
time steps, and p equals the number of features, correspond-
ing to the number of nodes in the numerical model. For
each training sample, the sequence X = [x}, x5, %3, ..., xn}T S
R™? is sequentially fed into n LSTM cells. Consequently,
one LSTM cell processes one time-step with p features,
x¢ € RP. Figure 5 clarifies the detailed operation of the
LSTM at time ¢ in layer , where f}, i, and o symbolize
the forget state, input state, and output state respectively.
The cell state and hidden state connect the information
stream from time t — 1 and t, depicted as continuous hori-
zontal lines in Figure 5. The mathematical representations
of these variable relationships are:

fi= G(chf"t + Wighy_, + by ) ®
i = G<W§a’xt + Wby + b") ®
¢ = tanh(Wﬁth + Wi, + bf) (10
0, = G(mext + Wi ki, + b") (a
d=fd, +i-2 12

b= ol - tanh () "

Output
FC-2 I [ ] i o I o ® @ [ ] I
FC-1 %\ ® \ @® ] (2] @ [ J ® e [} [ ]
e e " C e
LSTM . .
k .
ha
a .
Cn-1, LSTM '
1" Cell :
LSTM o Wt "
1 C n-3 i1 f
h”}l_g h/l% E‘A__‘
| ! 1 :
Input

Figure 4. Multi-layer LSTM architecture for the full sequence-to-sequence modelling.
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where, W,, and b, represent the weight matrix and bias
vector; clt_1 and hi_l are the cell state and hidden state out-
put that contains previous time step information; ¢\ and hﬁ
are the cell state and hidden state output in the current
state; Elt represents the candidate values. The values in the
forget gate flt and input state if are in the range between
[0,1] to indicate the contribution of the previous informa-
tion stream and current input values to the current state.

From Equation (12), the LSTM cell achieves long-term
dependence by using the forget gate to control the extent of
previous information required and using the input gate to
adjust the amount of current input candidate values infor-
mation. Additionally, a sample input-output preprocessing
technique proposed by Zhang et al. (2019) is used to
increase the prediction accuracy and reduce the computa-
tional time. Generally, the input sequence for one sample is
X = [x1.%2,%3, ..., xa)" €RVP and y = [y, 95,95 > V) €
R™4. The proposed method rearranges the input data X in
a stacked size w as a new input vector to the LSTM cell.
Therefore, the new input X’ = {\}[xl,xz C LX) X X2 s
Xow)s s [Knowt b Xnowr2 > X T is fed into the LSTM net-
work. The optimal choice of stack size is based on the sam-
pling frequency and characteristics of the input training
sample; hence it is considered a hyper-parameter in the surro-
gate model.

3.2. Wind profile sampling methods

3.2.1. Power-law-based sampling

The power-law-based sampling (PLS) method adopts a
physics-based approach to generate wind profiles. This
method calculates the wind speed at different heights using
the power-law equation, which is influenced by the surface
roughness coefficient and the basic wind speed at the refer-
ence height. In the power-law-based sampling approach, the
surface roughness coefficient is selected uniformly between
the lower and upper bounds defined in ASCE 7-22 (2022).
This method is considered offline, indicating that the chosen
training profile inputs are not event-specific, allowing the
surrogate model to be trained offline before the occurrence
of the wind event. The PLS algorithm can generate a set of

representative wind profiles, enabling the training of a sur-
rogate model to predict the accurate dynamic time history
of the transmission tower-line system on a regional scale.

3.2.2 K-medoids clustering sampling

K-medoids clustering is a statistical sampling method simi-
lar to k-means clustering, wherein the representative object,
known as the medoid within each cluster, is chosen from
the dataset (Kaufman, 1990). Thus, in the k-medoids clus-
tering method, the centroid of each group is constrained to
the actual data samples. With this medoid feature, k-
medoids clustering exhibits less sensitivity to outliers com-
pared to k-means clustering (Park & Jun, 2009). Within
each group, the k-medoids clustering method seeks to min-
imise dissimilarity by defining distance functions such as
Euclidean. Consequently, the objective function can be
expressed as:

Loss = argmin Z:;l Zf(sj, mi) (14)

sieC;

where k is the total number of sets; s; is the sample in the
data set; C; is set i; m; is the medoids in set C;; and f is the
distance function. The minimum value of Equation (14) is
determined by the predefined criteria.

From Equation (14), for each update, the distance
between m; and the remaining samples needs to be calcu-
lated. Hence, with a substantial number of samples, the k-
medoids method is computationally intensive. To alleviate
the computational burden, a modified k-medoids clustering
method has been proposed. Among these, a simple and fast
k-medoids algorithm by Park and Jun (2009) is the most
widely used and available in many computation libraries
(MATLAB, SK-LEARN). Consequently, in this paper, the k-
medoids algorithm based on Park et al. (Park & Jun, 2009)
is utilised. After the dataset has been partitioned into k sets,
samples are randomly selected in each set to meet the train-
ing sample number requirement. The partitioning of the
wind profiles using k-medoids clustering by visualising the
wind speed in the selected nodes is shown in Figure 6. The
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stratified patterns in this figure demonstrate the distance-
based functionality in KMCS.

3.2.3. Modified statistical sampling

Statistical sampling, also known as systematic sampling, is a
probabilistic sampling method aiming to cover as wide a
sample space as possible (Yates & Thornton, 1948). The ori-
ginal systematic sampling method involves ordering the
samples and partitioning the sequence into K intervals. A
random sample is selected as the seed point in the first
interval, and the samples in the remaining intervals are
chosen at a fixed stride from the seed sample. This sampling
method can work well for data with the same distribution
property in each interval but may fail if the data have differ-
ent distributions in each range. A modified systematic sam-
pling method is proposed in this research to expand its
application. The mean value p and the standard deviation
o of the wind speed at each height are calculated as the
metrics, which are subsequently used to derive the sampled
data as follows:

wp = (Vp — ) +dxo (15a)

106

90

80

70F

Node 21

S50F

Height (m)

40
364} Node 7

20F

0 —— 1 1 1 1
0 10 20 30 40 50 60
Wind Speed (m/s)

Figure 6. Visualization of k-medoids clustering based sampling on the regional
wind profiles: (a): selected nodes wind speed distribution; (b) clustered wind
profiles.

Ve =V,
dZVLi%t

where wp is the sampled wind profile; d is the stride; V is
the lowest wind speed; Vy is the highest wind speed; and N
is the number of samples The proposed method remains the
same as the original systematic sampling if the wind speed
follows a uniform distribution. However, if the wind speed
distribution is not uniform, Equation (15) allows for adjust-
ments in the sampling to account for the wind speed distri-
bution at each height while still covering a wider range of
wind speeds. As the wind profile is a high-dimensional data
that changes with height, the modified systematic sampling
is performed at each predefined height. Then, the wind
speeds are sequentially sampled and combined at each
height to generate the profiles.

The procedures to implement the modified systematic
sampling method can be illustrated in Figure 7. For the
wind profiles in a region, first, apply Equation (15) to form
the speed vector at each height into N points; then, select
the iy, point at each height to assemble the wind profile. In
Figure 7, wp; is the iy, generated wind profile; V7, ] is
the wind speed at the corresponding height; and h, is the
total number of wind profile heights.

Vr (15b)

4, Performance assessment of the surrogate models

The sample cases used to evaluate the performance of the
developed surrogate model are obtained from the power
infrastructure performance simulation testbed during
Hurricane Harvey. The wind profiles are extracted from the
WRF model in the Texas region. According to the transmis-
sion tower-line fragility analysis, the fragility curve of the
transmission tower-line system is a function of the mean
wind speed, which represents a wind speed range around it.
In this paper, the wind profiles in the Texas Region are div-
ided into 12 groups based on the 10m high wind speed,
ranging from 15 m/s to 70 m/s with 5 m/s intervals (Xue
et al., 2020). A surrogate model can be developed for each
group. The wind profiles with a wind speed at 10m in the
range of 40*+2.5 m/s during Hurricane Harvey are adopted
as prototypes to investigate the performance of the surrogate
model.

In regional power system resilience analysis, transmission
towers are often grouped into units with identical designs at

38 39 40 41 42 44 46
Wind Speed at height hi (m/s)

Wind Speed at height hi (m/s)

48 50 52 45 50 55
Wind Speed at height hk (m/s)

Figure 7. Visualization of modified systematic sampling on the regional wind profiles. At each height, the iy, wind speed can be used to form the wind profile wp;.



various locations (Panteli, Pickering, Wilkinson, Dawson, &
Mancarella, 2017). Therefore, only a single unit of transmis-
sion tower model is required for proof of concept. However,
it is necessary to consider the coupling effects between the
transmission tower and line in power system resilience ana-
lysis (Xue et al., 2020). In this paper, two transmission tower-
line structure configurations are modelled in OpenSees plat-
form (Mazzoni, McKenna, Scott, & Fenves, 2006). The trans-
mission tower is modelled by using the elastic beam-column
elements with steel0l uniaxial bilinear steel material; the
transmission line uses corotational truss element with initial
stress material. The geometric nonlinearity is considered by
taking the corotational geometric transformation. Hence, for
the proposed transmission tower-line structures, both the
material and geometric nonlinearity are considered.

In this study, the LSTM surrogate model is used to pre-
dict the tower tip displacement time history, from which the
maximum displacement can be utilized as a key indicator
for assessing the fragility of transmission towers (Bi, Tian,
Li, Ma, & Pan, 2023; Dikshit & Alipour, 2023; J. Wang, Li,
Fu, Dong, & Sun, 2022). This approach primarily focuses on
the global response of the tower and does not specifically
address the local failure mechanisms of the tower. The fail-
ure of transmission towers is commonly dominated by
member buckling, which leads to structural instability (Ma
et al, 2021). Owing to the high redundancy of the tower
and complex loading conditions, there are many possible
failure modes (Natarajan & Santhakumar, 1995). This com-
plexity necessitates a comprehensive approach that includes
detailed structural inventories and an in-depth analysis of
element-level buckling.

However, the dynamic response of the tower tip displace-
ment can indirectly reflect local element behaviours. This
relationship can be obtained by comparing the buckled ele-
ments in the nonlinear pushover analysis and the dynamic
responses. Furthermore, Fei, Zhou, Han, and Wang (2012)
showed that the tower tip displacement is the primary indi-
cator to reflect the global stability of the structure.
Moreover, in the literature, tower tip displacement is widely
used to indicate the global response of the transmission
tower-line system (Xue et al, 2020; Xue & Ou, 2021; Xue
et al., 2021; Zhu & Ou, 2021). Consequently, in this study,
the node labelled ‘target’ in Figures 12 and 21 is selected to
represent the nonlinear time history response of the
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structure. Hence, the dynamic wind loading time history of
the wind simulation nodes in both x and y directions, and
the displacement of the ‘target’ node are used as the input-
output pairs for training the surrogate model.

Neural network hyperparameters significantly impact com-
putational time and prediction accuracy. Therefore, identify-
ing appropriate hyperparameters is crucial (Goodfellow,
2016). From the existing literature, with the provided training
cases, the number of hidden units and LSTM layers are the
two main hyperparameters that affect the prediction accuracy
of the LSTM model (Xu, Lu, Cetiner, & Taciroglu, 2021; Xue
& Ou, 2021). Hence, the effects of hidden units and LSTM
layers on prediction accuracy are studied. Moreover, since the
stacked input sequence is utilised to preprocess the samples,
the influence of the stack size on the LSTM model is exam-
ined. The determined LSTM architecture is then used to
compare the effects of different sampling methods. The sur-
rogate model is trained with the determined hyperparameters,
and accuracy and robustness are evaluated using the same
unseen testing wind profiles with surrogate models trained by
different sampling methods. The flowchart in Figure 8 illus-
trates the accuracy and robustness assessment of surrogate
models trained with different sampling methods in the wind
speed range of 40+2.5 m/s.

4.1. Implementation of different sampling methods on
regional wind loading conditions

In the previous section, four sampling methods are
introduced: k-medoids clustering-based sampling (KMCS),
random sampling (RS), power-law sampling (PLS), and
modified systematic sampling (MSS). As depicted in
Figure 8, the wind profiles for the Hurricane Harvey event
are partitioned into training, accuracy, and robustness test-
ing sets. The four proposed sampling methods extract the
training and validation cases separately from the training
wind profile database. The dynamic wind loadings are calcu-
lated based on the methods described in Section 3 by using
the sampled wind profiles and are then fed into the struc-
ture model to obtain the target displacement.

The sampled wind profiles obtained using the proposed
sampling methods are shown in Figure 9. All the sampled
wind profiles cover the speed range of the wind profiles in
the WRF model. However, the coverage area is slightly

Pre-determined
LSTM Architecture

]

1 Random Sampling i
1 1

pieEEesE s s 1

i K-medoids Sampling
1

Training Wind
Profile Database itniininininiteiinie !
1 Physics-guided sampling

1

R e e 1
' Statistic Sampling H
1 1

Figure 8. Flowchart of the surrogate model accuracy and robustness evaluation.

LSTM Surrogate Accuracy Accuracy
Models Testing Database | Evaluation
Robustness Robustness
Testing Database | Evaluation
Scalability
Evaluation
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Figure 10. lllustration of the wind profiles clusters for k-medoids clustering sampling and modified systematic sampling method. KMCS: k-medoids clustering sam-

pling method; MSS: modified systematic sampling method.

different for each method. Since the KMCS and RS methods
extract the raw wind profiles, the sampled wind profiles are
a subset of all wind profiles in the WRF model event pool.
In contrast, the PLS method, which uses the surface rough-
ness coefficients recommended by ASCE 7-22 (2022) for all
terrain categories, has broader coverage than the numerical
model wind profiles and can be considered event-independ-
ent. The MSS method automatically infers the wind speed

distribution at each height and assembles it in order, result-
ing in sampled wind profiles with similar coverage to
KMCS and RS but more evenly distributed. Furthermore,
since the KMCS and MSS methods cluster the wind profiles
based on the defined distance metric, these two sampling
methods should exhibit distinct patterns in each group.
Figure 10 shows the wind profiles sampled in each group
for these two methods.



4.2. Two-tower one-span transmission tower-line
surrogate model

The two-tower one-span transmission tower-line model in
this paper is based on the model discussed by Zhu and Ou
(2021), where they detailed techniques for modelling trans-
mission tower-lines. This model is employed as a test case
in our study. Figure 12 displays the two-tower one-span
model, the geometry of which is shown in Figure 11, and
eight transmission lines, comprising six conductors and
two ground wires. The lattice transmission towers are com-
posed of A36 steel angles. The geometric and material prop-
erties of the conductors and ground wires are listed in
Table 1. The wind loading simulation points are shown in
Figure 12.
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Figure 11. Transmission tower geometry.
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Figure 12. Two-tower one-span transmission tower-line model.
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4.2.1. Surrogate model accuracy evaluation

To compare prediction accuracy using different hyper-
parameter values, 300 training samples, 100 validation sam-
ples, and 100 testing samples were utilised. Wind profiles
extracted from the Hurricane Harvey WRF model on the
26th of August at 04:30, with a basic wind speed in the
range of 40%+2.5 m/s, are employed for this study.
The findings indicate that the most proficient LSTM struc-
ture consists of six layers, each with 512 hidden units, and
stacking the input sequence with four time-steps. This deter-
mined LSTM architecture is then used to compare the
effects of different sampling methods.

Figure 13(a) depicts the distribution of RMSE for surro-
gate models trained using different sampling methods and
training case numbers. The results indicate that the overall
prediction accuracy of surrogate models increases with the
number of training cases. The KMCS method exhibits the
best prediction accuracy for all training case numbers,
except for the surrogate model trained with 200 cases. In
contrast, the MSS method has the worst prediction perform-
ance across all training case numbers. The KMCS method is
particularly effective as it improves the training efficiency by
up to 30% compared to the worst-performing MSS method.
However, for the k-medoids sampling method, 100 training
cases do not yield acceptable accuracy due to the stochastic
nature of turbulent loading.

When trained with 400 cases, all the four proposed sam-
pling methods have improved accuracies. Table 2 compares
the relative differences in RMSE prediction at the mean and
75th percentile levels compared to the KMCS method. The
MSS trained surrogate model shows a 10% larger RMSE
prediction than the KMCS method at all accuracy levels.
This may be because the MSS method sequentially

Table 1. Material and geometric properties of the ground wires, conductors,
and insulator.

Component Ground wire Conductor Insulator
Cross-section Area (m?) 0.000329 0.000605 0.0908
Young’s Modulus (Gpa) 78 67 100
Density (kg/m®) 4602 1780 45.24
Sag (m) 29 3.7 \
. b :;......
> > ey
° L .:.4'...;1 >
° ® k '

® Wind Speed Simulating Point
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Figure 13. Comparison of the efficiency of the two-tower one-span surrogate model with different training sizes: (a) root mean square error; (b) maximum top

displacement.

Table 2. RMSE of the four sampling methods trained two-tower one-span surrogate model prediction at mean and 75th

quantile value for accuracy testing.

Mean value

75th quantile value

Absolute value

Difference to KMCS (%)

Absolute value Difference to KMCS (%)

KMCS 0.0202 0.000 0.0243 0.000
RS 0.0207 2.309 0.0249 2.248
PLS 0.0217 7411 0.0262 7.520
MSS 0.0223 10.345 0.0272 11.797
assembles the wind speed at each height to generate the 0.16 — . ;

. . . . C . . =% Time history RMSE - KMC
wind profile, resulting in a more restricted variation in the -G Time history RMSE - RS
wind profiles. The physics-based PLS method trained surro- 0.14¢ ¢ Time history RMSE - PLS {____

L. R Time history RMSE - MSS
gate model RMSE prediction is 7% larger than the KMCS - Peak displacement error - KMCS
trained surrogate models. Although the surface roughness 0.2} : o jjgjjg:‘; :i:g}:;::z:: emor-RS__J
coefficient takes values for all terrain categories in the PLS R vy, Wi g L PRSI DGR BHOF - MBS
method, the sampled wind profiles are straight lines, as g o1t R e 1

g8 | T ==~ Y
shown in Figure 2, and do not consider the variation of the e T P 1 o P

. . . & --- "~iltg
wind profiles along the height. Therefore, the prediction 50081 e =% A
accuracy of the PLS method trained surrogate model is rela-
tively lower than that of the KMCS method. 0.06 - 1

As introduced in Section 4, when generating the trans-
mission tower fragility curve, the peak tower top displace- 0.04F 8:"' .
ment in the predicted time history is generally chosen as the T 5
failure criterion (Xue et al., 2020). Therefore, the predicted 0.02— . :

peak displacement in the time history is another essential
parameter to evaluate the accuracy of the developed surro-
gate model. The predicted tower top peak displacement
comparison with the FEM for 100, 200, and 400 cases is
shown in Figure 13(b). The results indicate that with more
training cases, the surrogate models predicted tower top
peak displacement discrepancy with the FEM is smaller.
With 400 training cases, the KMCS trained surrogate model
peak displacement is 7.33% different from the FEM at the
75th quantile. In Figure 14, the convergence rate of the pre-
dicted tower top displacement time history and the peak
displacement are compared. It can be observed that the pre-
dicted response peak displacement converges faster than the
displacement time history as the error difference between
the prediction and target values in 200 cases and 400 cases
are much smaller.

Statistically, when the training size increases to 400 sam-
ples, the difference between each sampling algorithm is not

100 training cases 200 training cases 400 training cases

Figure 14. Comparison of the different sampling methods trained two-tower
one-span surrogate model trained by 100, 200, and 400 cases convergence rate
for time history and peak displacement prediction.

distinctive for both the time history and peak displacement
value prediction. The RMSE indicator is critical for compar-
ing the predicted and target displacement time history. To
further enhance the accuracy analysis of the surrogate model
predicted displacement time history, the cross-correlation
coefficient between the predicted and target displacement
time history from KMCS is shown in Figure 15(a), in which
the cross-correlation coefficient is all higher than 0.8, refer-
ring to the high prediction accuracy. The comparisons of
the predicted and target time history in Figure 15(b) (c),
and (d) demonstrate the high fidelity of the trained surro-
gate model. Besides, the average computational time is 52s
for all the surrogate models, significantly decreasing com-
pared to the FEMs (Zhu & Ou, 2021).
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Figure 15. KMCS method trained two-tower one-span surrogate model prediction RMSE cumulative probability and the predicted time-history for accuracy testing.

4.2.2. Robustness assessment of the trained surrogate
model

Wind profiles utilised for training and assessing surrogate
models are extracted at the timestamp of 26th of August at
04:30, during the duration of Hurricane Harvey from 25th
of August to 27th of August. Owing to the dynamic atmos-
pheric conditions, such as humidity, temperature, and pres-
sure gradient force variation, wind profile characteristics
alter over time. Hence, evaluating the robustness of trained
surrogate models at alternative timestamps is crucial to
ascertain their proficiency. Moreover, as wind profiles
within a hurricane encompass a vast geospatial region,
assessing their geographical location is equally imperative to
evaluate the robustness of the surrogate model. Therefore,
to train the surrogate model effectively, it is essential to con-
sider both the location and timestamp of wind profiles to
evaluate the proficiency.

To assess the robustness of the trained surrogate model,
wind profiles in the 40*2.5m/s range on the 26th of
August at 08:30 were chosen, with 400 cases randomly
selected from 40,000 wind profiles. Figure 16 depicts the
predicted displacement time history RMSE for all sampling
methods of the trained surrogate models. The mean and
75th percentile RMSE values of prediction for wind profiles
on 26th of August at 04:30 and 26th of August at 08:30 are
summarised and compared in Table 3. Based on the table,
for the robustness testing of 400 cases on 26th of August at
08:30, the KMCS method is optimal, while the prediction
accuracies of other models are comparable to the KMCS
method. This finding supports the conclusion in
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Figure 16. Robustness of the four sampling methods trained two-tower one-
span surrogate model prediction RMSE on 26th of August at 08:30.

section 4.2.1. Thus, the trained surrogate model can accur-
ately predict the transmission tower-line displacement
response at different timestamps.

Apart from the wind profiles at the timestamp 26th of
August at 04:30 and 26th of August at 08:30, the wind pro-
files in the range 40*2.5 m/s for the rest of the timestamps
are gathered to select another 400 cases to investigate the
robustness of the trained surrogate model in the sizeable
geospatial wind profiles distribution. The 400 sampled wind
profiles in Figure 17 show that the tested wind profiles filled
the geospatial space of all wind profiles. To better illustrate
the predicted tower displacement time history RMSE, four
sections, as shown in Figure 18, are used to depict the evo-
lution of Hurricane Harvey. In Figure 18, the mean values
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Table 3. Developed two-tower one-span surrogate model robustness RMSE assessment on 26th of August at 08:30.

Mean value

75% quantile value

26th of August at 04:30

26th of August at 08:30

26th of August at 04:30

26th of August at 08:30

KCMS-32 0.0210 0.0199 0.0243 0.0227
RS 0.0216 0.0204 0.0249 0.0234
PLS 0.0223 0.0210 0.0262 0.0239
MSS 0.0232 0.0220 0.0272 0.0257
285 on the 40%2.5 m/s wind speed range (LSTM-N) is also
All Wind Profiles . . . .
e « Testing Wind Profiles employed to predict the displacement time-history for the
d . e 140 testing cases. In Figures 19 and 20, the wind speed rep-
» :15"-::‘: c L resents the mean wind speed for each interval within a
2 P e *+2.5 m/s range.
«isf’ “oe '1- I DR . N As depicted in Figure 19, the displacement time-history
N R P R TR o 0 N prediction RMSE for LSTM-N forms a bowl shape, wherein
5is LA : £ 5 o the prediction RMSE is large when the wind speed interval
S v Tas e deviates significantly from the trained wind speed of
= ‘-.’.;'o e ‘e 40%+2.5 m/s. The bowl-shaped prediction RMSE arises
¢ S s w e e «% o° . . .
— because, when the wind speed at a 10-metre height diverges
i e ES P T significantly from 40+2.5 m/s, the mean wind force magni-
Longitude tude exerting on the structure differs from that within the
Figure 17. Robustness assessment sampled wind profile geospatial 40*2.5 m/s range. Furthermore, as outlined in section 3.2,
distribution. the turbulence wind force is a function of the mean wind

of the RMSE indicate that the KMCS method is the smallest
at all timestamps. Table 4 summarises the mean values and
standard deviation of the RMSE for different sampling
methods trained surrogate model. In this table, the KMCS
method trained surrogate model predicted displacement
time-history RMSE has both the smallest values and stand-
ard deviation. Other surrogate models can also produce sat-
isfactory results. These small prediction RMSE mean values
and standard deviation of trained surrogate models manifest
their accuracy and robustness in regional power-system
infrastructure analysis.

4.2.3. Scalability evaluation of the trained surrogate
models

To assess accuracy and robustness in sections 4.2.1 and
4.2.2, wind speeds are restricted to a narrow interval of
40*2.5 m/s at a height of 10 metres. This interval repre-
sents a narrow wind speed range in Hurricane Harvey and
thus may not fully encapsulate the entire spectrum of pos-
sible wind speeds. Furthermore, training a LSTM surrogate
model for each wind speed interval can be time-consuming
and may weaken the applicability of the model to regional
scale problems. To circumvent this, a single LSTM surrogate
model is developed to encompass the entire range of wind
speeds pertinent for regional scale assessment of transmis-
sion tower-line structure response.

A total of 1500 wind profile cases are randomly selected
to construct the model, which is trained by using 1125 cases
and tested with 375 cases. To evaluate the performance of
the model, an additional set of 140 wind profile cases is uti-
lised for testing, which excluded the cases used for training
and validating the surrogate model. To verify the scalability
and accuracy of the LSTM surrogate model trained on the
full wind speed range (LSTM-F), the LSTM model trained

speed. Consequently, for mean wind speeds significantly dif-
ferent from 40m/s, both the prediction RMSE mean and
standard deviation are larger than those observed around
40m/s. In contrast, the LSTM-F demonstrates small and
consistent prediction RMSE values across the entire range of
wind speeds, indicating its robustness and adaptability.
Moreover, for the testing cases within the wind speed range
of 40+2.5 m/s, the mean RMSE prediction by LSTM-N is
0.0182, whereas for LSTM-F, it is 0.0148. This suggests that
by incorporating variability in the training data, the LSTM
surrogate model becomes more robust.

Figure 20 compares one predicted displacement time-his-
tory for each wind speed interval by LSTM-F and LSTM-N
against the target displacement. In this figure, both the
LSTM-F and LSTM-N displacement time-histories follow
the same trend as the target displacement time-history.
However, as LSTM-N is trained within a narrow wind speed
interval, for wind speeds significantly different from
40*2.5 m/s, the magnitude of the LSTM-N predicted dis-
placement time-history diverges from the target. The LSTM-
F predicted displacement time-history, on the other hand, is
similar in both trend and magnitude when compared with
the target, further illustrating its robustness and adaptability
across a broader range of wind speeds.

5. Adapting the LSTM model and sampling
methodology to a new transmission tower-line
model configuration

In this section, an investigation is carried out into the con-
sistency of the LSTM surrogate model in conjunction with
the proposed sampling methods for predicting the response
of transmission tower-line structures with various configura-
tions. The objective is to evaluate the overall performance of
the proposed surrogate model training methodology across
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Figure 18. The prediction RMSE by different sampling methods trained two-tower one-span surrogate model distribution over time.

Table 4. The mean values of the RMSE at different time sections and the
standard deviation for each sampling method trained two-tower one-span sur-
rogate model.

Mean Value of Root-Mean-Squared Error (m)

Stacked Timestamp

KMCS RS PLS MSS
2017-08-25: 1830-2130 0.0189 0.0196 0.0209 0.0221
2017-08-25: 2230-0130 0.0193 0.0193 0.0209 0.0213
2017-08-26: 0230-0630 0.0194 0.0203 0.0217 0.0212
2017-08-26: 0730-1130 0.0185 0.0192 0.0202 0.0203
Standard Deviation 0.00041 0.00049 0.00062 0.00071

different transmission tower models. The one-tower two-
span transmission tower-line model is widely utilised to
simulate intermediate tower boundary conditions in trans-
mission lines. In this setup, a single tower supports two
spans, with each span comprising transmission lines con-
nected to the tower via insulators. This arrangement accur-
ately represents the interconnection between the tower and
the transmission lines. Additionally, spring elements are
used to appropriately model the end boundary conditions of
the transmission lines at adjacent towers. Consequently, the
one-tower two-span transmission tower-line model, as
shown in Figure 21, is employed. The geometric details and
materials of the insulators, ground wires, and conductors
are listed in Table 1.

5.1. Investigation on the adaptivity of LSTM structure
and hyper-parameters

As illustrated in Figure 21, the one-tower two-span trans-
mission tower-line  configuration exhibits increased

complexity due to the existence of a doubled number of
lines highly exhibiting geometric nonlinear behaviour and
the changes in line end boundary conditions. With the
adoption of the two-span configuration, the nodes respon-
sible for generating wind loading, as exemplified in
Figure 21, increased to 156, in contrast to the two-tower
one-span model, which utilises 98 nodes. This new struc-
tural model configuration increases the dimensionality fea-
ture for LSTM learning, which directly impacts the number
of samples needed for optimal training as well as the archi-
tecture of the LSTM model. To validate such impact, the
trained LSTM surrogate model for the two-tower one-span
structure model is used to exam the necessities of re-tuning
the hyper-parameters.

Figure 22 presents the trained one-tower two-span surro-
gate model prediction RMSE cumulative probability and the
predicted time-history for accuracy testing using the two-
tower one-span surrogate model hyperparameters. From
Figure 22(a), 40% of the predicted and target displacement
time history cross-correlation coefficient is less than 0.8.
Figure 22(b) (c), and illustrate the large discrepancy between
the target and predicted displacement time history. Hence,
with the new transmission tower-line structure configuration
adapted, the LSTM surrogate model hyper-parameters need
to be re-tuned. It is also observed that the training reaches its
convergence with 1000 samples, consisting of 750 training
samples and 250 validation samples. The one-tower two-span
LSTM surrogate model hyper-parameter tuning finds that the
most proficient LSTM architecture consists of seven layers,
each with 512 hidden units, and four stacking sizes.
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Figure 19. The prediction RMSE by two-tower one-span LSTM surrogate model trained by full wind speed range and 40+2.5 m/s.
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Figure 20. The prediction displacement time-history by two-tower one-span LSTM surrogate model trained by full wind speed range and 40+2.5 m/s.

5.2. Investigation of LSTM accuracy performance with
different sampling methods

Figure 23 displays the RMSE and percentage error for pre-
dicting peak displacement in comparison to the Finite
Element Model (FEM) results. Additionally, Table 5 summa-
rises the RMSE differences in predicted displacement time
history with the target displacement time history, providing

mean and 75th percentile values, along with the relative dif-
ferences compared to the K-medoids Clustering Sampling
(KMCS) method across all 400 testing cases.

A comparison between Tables 5 and 2 reveals that the
one-tower two-span surrogate model predicted RMSE is
smaller than that of the two-tower one-span surrogate
model. Furthermore, the predicted RMSE of Random
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Figure 22. Trained one-tower two-span surrogate model prediction RMSE cumulative probability and the predicted time-history for accuracy testing using two-

tower one-span surrogate model hyper-parameter.

Sampling (RS), Power-Law-Based Sampling (PLS), and
Modified Statistical Sampling (MSS) methods, in compari-
son to KMCS, is notably larger, exceeding 12.7% for the
mean percentile and 17.4% for the 75th percentile. In con-
trast, for the two-tower one-span model, the maximum dif-
ference is 10.3% for the mean percentile and 11.8% for the
75th percentile. Figure 24 provides insight into the distribu-
tion of the cross-correlation coefficient and a visual com-
parison of the predicted displacement time history with the
target. In Figure 24(a), it is evident that the predicted time
history exhibits a strong linear correlation with the target.
The results indicate that with the increased number of train-
ing cases, the surrogate model prediction accuracy increases.
Additionally, the KMCS outperforms other sampling

methods in all different numbers of training cases.
Figure 25 shows the convergence rate of the surrogate
model accuracy measurement metrics. It can be observed
that the predicted response peak displacement converges
faster than the displacement time history as the error differ-
ence between the prediction and target values in 700 and
1000 cases are much smaller.

5.3. Investigation of LSTM robustness performance with
different sampling methods

As discussed in Section 2.1, evaluating the robustness of the
trained surrogate model is crucial due to the spatial and
temporal variability of hurricanes, which can result in
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Table 5. The mean values of the RMSE at different time sections and the standard deviation for each sampling method

trained one-tower two-span surrogate model.

Mean Value 75% quantile value
Absolute value Difference to KMCS (%) Absolute value Difference to KMCS (%)
KMCS 0.0084 0.0000 0.0113 0.0000
RS 0.0095 14.3103 0.0141 25.1225
PLS 0.0106 26.8473 0.0132 17.4684
MSS 0.0094 12.6699 0.0137 21.1588
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Figure 24. KMCS method trained one-tower two-span surrogate model prediction

changes to wind profile characteristics. The one-tower two-
span surrogate models are trained by using wind profiles
obtained on 26th of August at 04:30, while wind profiles
from 26th of August at 08:30 are used to assess robustness.
Figure 26 illustrates the RMSE of predicted displacement
time histories for all sampling methods in the trained
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RMSE cumulative probability and the predicted time-history for accuracy testing.

surrogate models. Evidently from Figure 26, the KMCS
method is the most effective approach for selecting repre-
sentative wind profiles. Table 6 provides a summary of the
comparison of RMSE for predicted displacement time his-
tories across different sampling methods at the two time-
stamps. Notably, the mean and 75th percentile RMSE values
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Figure 26. Robustness of the four sampling methods trained one-tower two-
span surrogate model prediction RMSE on 26th of August at 08:30.

Table 6. Developed surrogate model robustness RMSE assessment on 26th of
August at 08:30.

Mean value 75% quantile value

26th of 26th of 26th of 26th of

August August August August

at 04:30 at 08:30 at 04:30 at 08:30
KMCS 0.0089 0.0084 0.0113 0.0113
RS 0.0106 0.0095 0.0149 0.0141
PLS 0.0110 0.0106 0.0135 0.0132
MSS 0.0104 0.0094 0.0146 0.0137

for the evaluated timestamps are consistent across all sam-
pling methods, indicating the robustness of the trained one-
tower two-span surrogate model.

6. Conclusions

In this paper, surrogate models of transmission tower-line
systems are trained to predict the regional power infrastruc-
ture response in high-resolution wind fields during the evo-
lution of Hurricane Harvey. The surrogate model predicts
the dynamic response of a coupled nonlinear transmission
tower-line system during wind loadings. Owing to the com-
plexities in the wind loading characteristics introduced
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by both the auto- and cross-spectrum in the time history
and the realistic profiles extracted from the wind fields,
effective in-event surrogate model training algorithms are
investigated.

Two transmission tower-line structure models with dif-
ferent levels of structural complexity have been utilised to
verify the proposed surrogate model. The accuracy and
robustness of these two models have been validated first.
Then, to make the LSTM surrogate model applicable to all
in-event reference wind speeds of the wind profiles, a single
LSTM model is constructed. From the discussions, the fol-
lowing conclusions can be derived:

e The in-event surrogate training method decouples the
extrinsic wind profiles from the intrinsic stochastic wind
turbulence in the complex wind loading and investigates
different sampling methods to select the training profiles
effectively.

e The proposed surrogate training method is adaptive to
structures with different levels of complexity. With dif-
ferent levels of structural complexity, the LSTM surro-
gate model hyper-parameters need to be adjusted to
attain superior prediction accuracy.

e The number of training size is proportional to the num-
ber of LSTM units. Specifically, the two-tower one-span
model utilised 400 training data samples alongside 96
LSTM units, while the one-tower two-span model
employed a larger dataset comprising 1000 training data
samples and 152 LSTM units. The observed relationship
serves as a valuable guideline on how to appropriately
configure the training dataset size and LSTM unit count
for applying the proposed surrogate model training
methodology to  diverse tower-line
structures.

e Among the four proposed data- and physics-based sam-
pling methods, the k-medoids clustering sampling
(KMSC) method outperforms other sampling methods in
trained surrogate models, which leads to the benefits of
using the in-event surrogate training method. Moreover,
the physics-based power law sampling (PLS) is independ-
ent of the hurricane wind field, which leads to the poten-
tial to develop offline surrogate models for future
hurricane events.

e The accuracy of the surrogate model is primarily over-
ridden by the effectiveness of the surrogate model in
capturing the transmission tower-line dynamic response
given stochastic wind loading for small training dataset
cases. With enough training cases, the effective selection
and coverage of the wind profiles contribute to the
accuracy of the surrogate models.

transmission

e With large training cases covering the entire in-event ref-

erence wind speed, the LSTM surrogate model can gen-
eralise the prediction of displacement time-history with
acceptable accuracy. Hence, it is acceptable to extend the
training and applying of the LSTM surrogate models to
different transmission tower-line structures for regional
scale transmission tower-line structure performance
assessment.
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