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ABSTRACT

Careful prompt design is critical to the use of large language models in zero-
shot or few-shot learning. As a consequence, there is a growing interest in auto-
mated methods to design optimal prompts. In this work, we propose TEst-tiMe
Prompt Editing using Reinforcement leArning (TEMPERA). In contrast to prior
prompt generation methods, TEMPERA can efficiently leverage prior knowledge,
is adaptive to different queries, and provides an interpretable prompt for every
query. To achieve this, we design a novel action space that allows flexible editing
of the initial prompts covering a comprehensive set of commonly-used compo-
nents like instructions, few-shot exemplars, and verbalizers. The proposed method
achieves significant gains compared with recent SoTA approaches like prompt tun-
ing, AutoPrompt, and RLPrompt, across a variety of tasks, including sentiment
analysis, topic classification, natural language inference, and reading comprehen-
sion. Our method achieves 5.33x on average improvement in sample efficiency
when compared to the traditional fine-tuning methods. Our code is available at
https://github.com/tianjunz/TEMPERA.

1 INTRODUCTION

With the recent advances in pre-training large language models (Brown et al., 2020; Fedus et al.,
2021; Raffel et al., 2020; Chowdhery et al., 2022), prompting, or in-context learning provides a data-
efficient framework for performing NLU (Li & Liang, 2021; Shin et al., 2020b; Gao et al., 2020b).
Such methods achieve impressive zero-shot and few-show performance in many downstream tasks.

However, the prompt often has to be carefully tuned to achieve consistent performance for each
task (Lu et al., 2021). For example, prompt tuning aims to optimize a continuous prefix embed-
ding via gradient descent and directly takes generated output from the frozen pre-trained language
model (Lester et al., 2021; Liu et al., 2021b;a). On the contrary, discrete prompt optimization focuses
on constructing meaningful instructions, in-context exemplars and verbalizers (Brown et al., 2020;
Gao et al., 2020b). Prior work often performs black-box optimization or applies RL-based methods
for direct generation (Deng et al., 2022; Sun et al., 2022; Prasad et al., 2022). Recent works in
the prompt tuning field have shown that, performing instance-dependent prompt tuning (Wu et al.,
2022; Jiang et al., 2022) can improve the performance of some downstream tasks. The correspond-
ing concept in the discrete prompt optimization domain is intriguing since it allows users to provide
different instructions for different inputs and task. Unlike prompt tuning, such instructions can be
more human interpretable. However, finding such query-dependent prompts is often overlooked and
is not feasible given the inefficiency of black-box optimization.

In this paper, we investigate the importance of providing query-dependent discrete prompts and
demonstrate how this can be achieved via efficient search. To this end, we propose the concept
of test-time editing through reinforcement learning (RL) that allows the agent to perform different
editing techniques at test time to construct query-dependent prompts efficiently.

We formulate discrete prompt optimization as an RL problem by sequentially editing an initial
prompt, which only requires high-level guidance on which part to edit and what tools to use. Dif-
ferent from prior work, this formulation strikes a good balance between human prior knowledge,
flexibility, feasibility and interpretability. The method allows easy incorporation of human knowl-
edge since one can provide a manually chosen initial prompt and allow RL to perform editing on
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it. It also achieves a balance between search flexibility and feasibility because by enabling different
editing techniques, the prompt can be transformed to very different forms but the search space is
more feasible compared to direct generation. The final prompt is also more interpretable since the

editing tools we adopted usually do not change the semantic meaning of the sentence.

To summarize, we propose to construct query-
dependent prompts through test-time editing and
formulate this as an RL problem. We carefully
design the action space, enabling the agent to
flexibly edit the instructions, in-context exem-
plars and verbalizers. To better train the RL
agent, we propose using the score difference be-
tween consecutive prompts before and after edit-
ing as rewards and developing a set of techniques
that help improve the final performance (e.g., re-
ward normalization). We also adopt an attention-
based policy architecture to attend over possible
candidates or design choices, and show this can
be effective for RL training.

Following the standard few-shot text classifi-
cation setting, we benchmark our algorithm
extensively on multiple tasks (including those
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Figure 1: Data Efficiency for TEMPERA:
We comopare the data efficiency of TEMPERA
and standard fine-tuning in a few-shot setting.
Results are averaged across four tasks: SST2,
AG News, RTE and MR. It shows that our

from GLUE (Wang et al.,, 2018) and Super-
GLUE (Wang et al., 2019)). We show that TEM-
PERA can achieve SoTA performance (e.g., 1.8%
better in SST-2 and 3.9% better in CR) compared to few-shot finetuning, prompt tuning and discrete
prompt optimization. We also show that TEMPERA is on 4x more data efficient (over the average of
4 tasks SST2, MR, AG News and RTE) compared with traditional finetuning methods (Figure 1). In
addition, we perform extensive ablations on different aspects of the proposed algorithm. We demon-
strate that TEMPERA is robust to the prompt pool size and the number of few-shot exemplars.

method achieves comparable performance using
4x fewer examples.

2 RELATED WORK

Prompting in language models and sensitivity to prompts. Recent research has shown that as
language models scale up, new capabilities could be unlocked such as in-context learning (Brown
et al., 2020), where the language model is prompted with a few in-context demonstrations and learns
to perform a certain task in a sample-efficient way. However, several works have studied the in-
context learning ability more closely and found that the task performance can be highly sensitive to
how the in-context prompt is written. For example, Lu et al. (2022) found that the prompt order can
have a large effect on the final task performance; Zhao et al. (2021) show that the choice of prompt
format, training examples, and prompt order can cause the performance to vary quite significantly.

Automatic prompt generation and search. To address such sensitivity in language models, mul-
tiple approaches have been proposed for better prompt generation. In the continuous space, Lester
et al. (2021) propose prompt-tuning to add tunable tokens for each task during the fine-tuning stage
to improve task performance. Zhong et al. (2021) propose OptiPrompt that optimizes the prompts
in the input embedding space directly for factual probing. More recently, Wu et al. (2022) found
performing instance-independent prompt-tuning can further boost the performance. In the discrete
space, Gao et al. (2020a) propose prompt-based fine-tuning and utilize pre-trained models to au-
tomatically generate prompt templates. Schick & Schiitze (2021) and Schick et al. (2020) use a
small amount of training data to automatically identify the best label words to use for few-shot clas-
sification. Shin et al. (2020a) propose AutoPrompt to perform gradient-guided search to find the
best tokens in the prompt, although the best prompts found are usually not interpretable by humans.
Jiang et al. (2020) propose mining-based and paraphrasing-based methods to generate meaningful
and diverse prompts for factual knowledge probing. Related to our work, Deng et al. (2022) propose
an RL-based framework to directly generate better prompts via black-box optimization. Different
from existing work, our approach frames the problem as test-time prompt editing with an RL-based
framework to perform efficient search in the editing space.
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Figure 2: Test-Time Editing via RL: The RL agent is trained to optimize the performance of a
downstream task. At test-time, given a query, the agent adopts an attention-based policy to edit the
instructions, in-context exemplars and verbalizers for 7" rounds.

Efficient training exemplar retrieval as prompts. In addition, existing work has shown the
choice of the exemplars can also be critical to the final performance. For example, Liu et al. (2022)
propose to retrieve exemplars from a training pool that are semantically similar to a test example,
and show it can significantly boost the performance. Rubin et al. (2022) trained a dense retriever
to efficiently retrieve good training examples as prompts during test time. In this work, we show
that an attention-based exemplar selection process over the embedding space can effectively choose
performant training examples within our RL framework.

3 TEST-TIME PROMPT EDITING

We formulate the task of test-time editing in this section. We give some background on the few-
shot text classification and how to use prompts for downstream NLP tasks. Then we formalize a
new setting called tesz-time editing where users are allowed to perform editing over a given prompt,
depending on the given input and task during test time.

3.1 BACKGROUND

Few-Shot Text Classification. Following the standard few-shot language model classification set-
ting (Brown et al., 2020), we assume that we are given a pretrained language model £ and wish to
perform classification on dataset D with label space ). Assume we are given K samples per class

from the training set, the new few-shot training set is given as Diyain = {24, yz}fixl m. In addition,
there is a hold-out test dataset D, that we use for evaluation on downstream NLP tasks.

Optimizing Discrete Prompts. Prompt-based few-shot learning considers the following prob-
lem: given a piece of text p as a prompt, we use the generative distribution of the language model
Pr(y|p,x) to perform various NLP tasks without fine-tuning the model. In particular, for a given
objective R, we propose to perform the desired optimization over the prompt by finding an optimal
p* = argmin, .y, R(P(y|p,x)). In this paper, we focus on restricting the prompt p as a piece
of text instead of letting p to be any vector in the latent space. This not only provides more inter-
pretability of the prompt, but also allows us to use existing natural language tools (e.g., NLTK (Bird

et al., 2009)) to perform a discrete search for constructing better prompts.

Different Forms of Discrete Prompts. We consider three popular forms of discrete prompts: (1)
Instructions, which provide a segment of text describing how the task is performed, usually put at the
beginning. (2) In-Context Demonstrations {eg, e1, ..., ex }, which selects several examples and their
corresponding labels, usually placed before the query. (3) Verbalization, which aims to design how
the task is asked and which keywords to select as labels. See Figure 2 for an example of different
transformations that we perform when editing in our RL-based framework.

3.2 TEST-TIME EDITING
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Algorithm 1 Test-Time Prompt Editing with TEMPERA

1: Input: Language Model £, Initial Prompt pg, Training set Dy, i, Evaluation set Dy, [teration
N, Fix rounds T’

2: Initialize 7y (- | s) to be uniform;

3: for episoden=1,--- | N do

4: Random sample batch B ~ Di,ain, Set pg

5 forstept=1,---,7T do

6: Get St = ﬁ(B,pf)

7.

8

Run editing policy a; = g (s¢), Get new prompt ps11
Get new state s;11 = L(B, pr+1)

9: Add transition (s¢, at, s¢+1) to replay buffer
10: end for
11: Update policy parameter 6 of gy with the PPO loss
12: end for

13: Evaluate policy 7y on evaluation dataset Deyq)

Prior works have often attempted to identify a query-agnostic prompt (Deng et al., 2022; Sun et al.,
2022) or attempted to directly generate a query-dependent prompt via hyper-networks learning (He
et al., 2022). However, query-agnostic prompting fails to incorporate any query-related information
into the prompts and directly generating prompts for each individual query is challenging (due to its
difficulty to incorporate human prior knowledge or feedback). In addition, by permuting the order
of in-context exemplars {eg, e1, ..., ex } (Lu et al., 2022) or searching for the k nearest neighbors of
the current test instance (Liu et al., 2022) as in-context exemplars yields better performance. These
reveal the importance of constructing query-dependent prompts.

Unlike prior methods, we perform prompt editing at test-time. The procedure works as follows: at
test time, one is given an initial prompt pg. We want to learn a function f that takes the initial prompt
Po, query x and a pool of examples/verbalizers p’, and outputs a final prompt: ps = f(po, X, p/)-
The overall framework of our algorithm is shown in Fig. 2. We allow f to make edits (e.g., editing
verbalizers and/or swapping examples) over the original prompt to make it more suitable for the
downstream task and query x. Since the editing function f can depend on the query x, we call it the
test-time editing function. Note that we train the function f in a fixed training dataset and directly
deploy it at test time without any addition training. This is different from the test-time optimization
since we don’t have access to the ground truth label or a surrogate objective. Plese see Algorithm.1
for details.

4 TEST-TIME EDITING VIA REINFORCEMENT LEARNING

In order to learn the test-time editing function f, we present a novel RL-based framework that
naturally maps the editing process to an MDP. We will present our framework and discuss how we
design the state space, action space and reward in this section.

Reinforcement Learning Formulation. We formulate test-time editing as a Markov Decision
Process (MDP). Given an initial state, s = (po,x), consisting of an initial prompt and a query, at
each time step ¢, the RL agent selects one of the editing methods from the action space A. We can
then define the transition function 7 : S x A — S to be the state of prompt before and after editing
(Pt,X) X ay — (pPt+1,%). That is, the transition dynamics are deterministic given the editing
action. We can either define a fixed horizon H or design a termination function to stop editing
and get the final prompt. The goal is to maximize the expected reward R = E[Z;‘::O v*r4] where
r¢ is the reward and ~y is the discount factor. We introduce in detail each component of the state
representation, action space and rewards in the following subsections.

State Representation. The RL framework is general and flexible about the representation of
states. The only requirement is that such representation contains text information. Instead of di-
rectly using the raw text representation, we use the last hidden states of the pretrained language
model sy = L(pt, X) as the state representation and feed it into the policy network.
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Table 1: Effect of different editing techniques. For instruction, we tokenize it into phrases and
perform swapping, addition or deletion. We also allow swapping in-context exemplars or changing
different verbalizers.

Before Editing After Editing
Swap “Given text, classify whether it is good or bad.” “Classify whether it is good or bad, given text.”
Instruction Add “Given text, classify whether it is good or bad.” “Given text, given text, Classify whether it is good or bad.”
Delete  “Given text, classify whether it is good or bad.” “Classify whether it is good or bad.”
Example Permute {Example 1, Example 2, ..., Example k } {Example k, Example 3, ..., Example 1 }
P Swap {Example 1, Example 2, ..., Example k } {Example k + 1, Example n, ..., Example 1 }
Verbalizer ~Change { “positive”, “negative”} {“great”, “terrible” }

Action Space Design. We include most of the editing actions in our action space. At each stage,
the RL agent can choose the editing objects from instruction, in-context exemplars or verbalizer.
For editing the instruction, we provide the initial instruction from natural instructions (Wang et al.,
2022). Then we tokenize the instruction into phrase level using NLTK (Bird et al., 2009) and perform
swapping, deletion or addition of different phrases. Suppose we have [ phrases, the action space size
will become (I x (I —1))/2 + 2.

For the in-context exemplars, we keep an example pool of NN, initialize our prompt by randomly
choose n of them as the initial prompt. We then allow the agent to directly perform swapping
one example from the current prompt with either another one from the current prompt or from the
pool of examples that are not currently used. This results in an action space for the RL agent of
nx N —(nx (n—1))/2 since we do not allow swapping with the same example.

For the verbalizer, we allow the RL agent to freely choose which verbalizer to use for each in-
context example from PromptSource (Bach et al., 2022). We also will enable the agent to freely
choose which verbalizer to use for each query x. Interestingly we found that this helps boost the
performance of our algorithm. We provide some examples of the editing process in Tab. 1.

Reward Design. We adopt the step reward proposed in RLPrompt (Deng et al., 2022). For each
query x, we get the log probability of the output label from the language model log Pr(3|x, pt)
given the proposed prompt p¢ with the correct label ¢, and we define the score difference s(c) as:

s(c,x, pt) = A1 log Pr(dc|x, pt) — A2 arg max log Pz (e |X, Pt) (1)
c'#c

where we have introduceed the two balancing hyperparameters A\; > 0 and Ao > 0 for the positive
and negative terms respectively. Intuitively, this score gives a negative reward when the prediction
is not correct and a positive reward otherwise. The goal is to optimize the score for the final prompt.

However, RL aims to optimize the accumulated reward during the MDP process while prompt design
only cares about the performance of the final prompt. Thus, we propose to use the score difference
between successive edits as the immediate reward:

Tt = S(C, X, pt) - 8(C7 X, ptfl) (2)

Ignoring the discounting factor ~y, this makes the accumulated reward from time 0 to " correspond
to the score difference between the final and the initial prompt s(c, x, pt) — s(¢, X, po). Now the
objective of RL is to maximize the score difference.

Attention-Based Policy Architecture. We adopt an attention-based policy architecture for the
reinforcement learning agent. We put attention over a graph of possible candidates and let the agent
choose which editing technique to perform. We find that the attention-based architecture helps the
agent to emphasize the important examples (e.g., examples that are more semantically similar to the
test instance).

We use the PPO (Schulman et al., 2017) algorithm in our experiments. The detailed hyperparameter
used can be found in Appendix. A. We list here a couple of very important techniques we used in
our experiments. We found these techniques are crucial to the success of our RL-based framework.

Observation Normalization: Since we take the last hidden states of the language model as ob-
servation, it might have very small variances between different samples. We keep a running mean
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and standard deviation for the observation and normalize it before feeding it to the policy and value
network. This is commonly used in RL and we found this boosts the performance of our method.

Reward Normalization: For different training samples, performing editing over prompts may result
in significantly different reward scales. For some of the samples, different prompts might have very
marginal effects on the final prediction, either due to the fact that the model is already confident
about the prediction since it is too easy, or the task sample is too hard to predict and the model is
confused regardless of what prompt it is fed. On the other hand, for other training samples, editing
prompts might bring a huge difference in terms of the accuracy. Thus, we perform sample-wise
reward normalization to ensure that the reward scale between samples is relatively consistent.

Conditioning Policy on Action History: Directly taking the observation from the language model
can be inefficient since the policy has no clue about how it has reached the current state. This will
bring a loop that the policy will edit prompts py — pp and then pg — p4. To mitigate this
effect, we build a policy that not only takes in the current hidden state, but also conditioned on the
action history on how it gets to the current state. Thus, we break the loop between two prompts by
considering how each state is reached.

5 EXPERIMENTS

Our experiments first reveal the effectiveness of TEMPERA in the few-shot setting. We compare
TEMPERA with prior baselines like Finetuning (Devlin et al., 2019), Soft Prompt Tuning (Lester
etal., 2021), Black-Box Tuning (Sun et al., 2022), RLPrompt (Deng et al., 2022) and other manually
tuned prompt methods. On various tasks from GLUE (Wang et al., 2018) and SuperGLUE (Wang
etal., 2019), our method achieves impressive performance comparing to prior baselines. This shows
that only using a small amount of training examples is sufficient for RL and TEMPERA is sample
efficient. We also illustrate the data efficiency of our method compared to finetuning, showing that
TEMPERA can achieve same performance with 5.33x less data.

In addition to the performance gains, we aim to understand our method from different aspects. In
Sec. 5.2, we study how much test-time editing helps compared to query-agnostic prompts. Our
experiments demonstrate the importance of test-time editing and the necessity of query-dependent
prompts. In Sec. 5.4, we show that how different editing techniques (e.g, instruction, in-context
demonstration and verbalization) affect the final performance of the downstream task. We also
ablate the number of in-context demonstrations used and the size of the example pool in Sec. 5.6
and Sec. 5.7. Finally, we show some example prompts after editing to illustrate the editing policy.

Tasks. We conduct our experiments from different categories including single-sentence tasks (e.g.,
sentiment analysis including SST-2, Yelp reviews, MR, CR, topic classification including AG News).
For one-sentence tasks, the goal is to make a prediction based on the sentence. We also include tasks
from different types like NLI (e.g., SST-2) and multiple choices (e.g., AG News). Most of the tasks
are from the standard GLUE (Wang et al., 2018).

Task Settings. To ensure a fair comparison, we follow the same setting from LM-BFF (Gao et al.,
2020b) and RLPrompt (Deng et al., 2022), we test TEMPERA on few-shot text classification tasks.
The setting is devised as follows: We randomly sample 16 training samples per class from the
training dataset of each task and use them as the few-shot dataset. This will result in a total of
16 x |)| training samples (please refer to Appendix. E for the number of classes in each task).
We also randomly sample 16 samples per class as the validation dataset. For reporting the final
performance, we use the standard test set and the detailed information can be found at Appendix E.
In addition to the common setup, we also randomly select n examples from the training dataset
as the in-context exemplar pool. We average our runs for 4 random seeds and report the average
performance and corresponding standard deviation. For the language model, we use £ = RoBERTa-
large (Liu et al., 2019). For the details of these settings and tasks, please refer to Appendix. E. The
initial instruction is taken from the Natural Instructions (Mishra et al., 2021). The initial in context
demonstrations are randomly sampled from a fixed example pool of size 16 and the example pool
is also randomly sampled from the training dataset, different from the few-shot dataset that used for
training the RL policy.
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Baselines. We compare TEMPERA with several SoTA prompt tuning and discrete prompt opti-
mization baselines (including finetuning).

* Finetuning: it finetunes the entire language model with a classification head using the few-shot
dataset.

e Manual Prompt: we take the handcrafted prompt from (Bach et al., 2022).

* Black-Box Tuning: it is a mixture of discrete and soft prompt. The soft part is trained using
gradient descent and the discrete part is optimized using gradient-free tuner.

* AutoPrompt: it adds the discrete trigger token and updates the prompts by iterative gradient
search.

* In-Context Demonstration: it randomly selects one training example and concatenates them
with the input query.

¢ Instructions: Following Natural Instructions (Wang et al., 2022), prompts are manually created
instruction for each task. Each prompt is concatenated with inputs. Details are in Appendix. D.

e GrIPS: it performs phrase level editing on the instructions and selects the best one.

* RLPrompt: it generates discrete prompts using RL framework.

5.1 FEW-SHOT TEXT CLASSIFICATION

Following the settings in existing work, we evaluate our model on some few-shot text classification
tasks. In Tab. 2, We compare our method with various baselines including RLPrompt. We can
see that on most tasks we tested, TEMPERA outperforms previous baselines by a large margin.
For example, we have a 1.8% absolute gain on the SST-2 task (over RLPrompt), 3.9% gain on the
CR task and the performance is almost comparable to finetuning the language model on the AG
News task. We also see that our method results in a much smaller variance between runs than Soft
Prompt Tuning and AutoPrompt, indicating that it is more stable across different few-shot datasets.
Comparing to search-based methods (e.g., Black-Box Tuning or GrIPS), our method avoids the
expensive run-time search if one wants to perform test-time editing using one of the black-box
optimization methods with a surrogate reward. Note since the original Black-Box Tuning or GrIPS
paper didn’t perform query-dependent search, this is our conjecture. Thus, out method achieves both
test-time efficiency and good performances on downstream tasks.

Table 2: Few-shot classification results. We compare against different baselines in this setting.
Results show that TEMPERA surpasses various baselines including finetuning, prompt tuning and
discrete prompt search. The standard deviations are shown in brackets.

SST-2 Yelp P. MR CR AG News
Finetuning Finetuning (few-shot) 80.6 (3.9) 88.7(4.7) 67.4(9.7) 73.3(7.5) 84.9(3.6)

Soft Prompt Tuning ~ 73.8 (10.9) 88.6 (2.1) 74.1(14.6) 75.9 (11.8) 82.6 (0.9)
Continuous Prompt Black-Box Tuning 89.1(0.9) 93.2(0.5) 86.6(1.3) 87.4(1.0) 83.5(0.9)

AutoPrompt 75.0(7.6) 79.8(8.3) 62.0(0.8) 57.5(5.8) 65.7(1.9)
Manual Prompt 82.8 83.0 80.9 79.6 76.9
In-Context Demo. 85.9(0.7) 89.6(0.4) 80.6(1.4) 855(1.5) 74.9(0.8)
Discrete Prompt Instructions 89.0 84.4 85.2 80.8 54.8
GrIPS 87.1(1.5) 88.2(0.1) 86.1(0.3) 80.0(2.5) 65.4(9.8)
RLPrompt 90.1(1.8) 93.9(1.8) 86.7(24) 87.2(1.7) 77.2(2.0)

Discrete Prompt TEMPERA (ours) 919 (2.0) 92.6(1.7) 88.0(1.1) 91.1(1.6) 85.5(1.5)

5.2 IMPORTANCE OF TEST-TIME PROMPT EDITING

To illustrate the importance of test-time prompt editing, we compare our method with various base-
lines that do not perform test-time editing. In addition, we also construct another baseline where we



Published as a conference paper at ICLR 2023

Data Efficiency for TEMPERA (SST2) Data Efficiency for TEMPERA (AG_News) Data Efficiency for TEMPERA (Yelp)
A 0.90 A 4] 0950 A
Soo 3 g u A
S 5085 5 0.925
g ¥ § £
- . i i 0.900 i i
L 08 —A— Finetuning £ 0.80 —A— Finetuning g —A— Finetuning
2% TEMPERA 2™ TEMPERA 2 0.875 . TEMPERA
H - RLPrompt H u - RLPrompt s . - RLPrompt
Bos -@ GriPs g07 -@ GriPs %5 0.850 -@ GriPs
= <~ Black-Box Tuning =4 -~ Black-Box Tuning = »~ Black-Box Tuning
,_mu - Soft Prompt Tuning ﬁ 0.70 @ Soft Prompt Tuning E 0.825 @ Soft Prompt Tuning
] ] o]
0.6 AutoPrompt 065 @ AutoPrompt 0.800 AutoPrompt
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Number of Training Examples Number of Training Examples Number of Training Examples

Figure 3: Data Efficiency for TEMPERA: We compare data efficiency between TEMPERA and
few-shot finetuning. Results show that we can achieve a good performance with significantly less
data (varying from 4x to 8x).

create a RL based method where the policy is not dependent on the input query x, denoted as “TEM-
PERA (No TTE)”. Results in Tab. 3 show that TEMPERA even without test-time editing can find
better query-agnostic prompts comparing to manually construct prompts, in-context demonstration
and GrIPS. However, adding test-time editing can further improve the performance when the task is
harder: we got 0.8% improvement on MR task and 3.0% improvement at AG News task. On SST-2,
the effect of test-time editing is not significant as we suspect that the task is too easy. We found on
harder tasks like AG News, the gain of test-time editing is huge.

Table 3;1 V(;’e C(I)I{nia(;e our mi;hOd again'st difffr— Table 4: Ablation on different editing techniques.

ent methods which do not perform test-time edit- g ¢ 15 show that adding verbalizer-edits helps

ing. Results show that test-time editing is mostly ;1" tasks (especially MR and AG News)

helpful in harder tasks like AG News. Adding instruction-edits marginally helps the
SST-2 MR AG News  performance in SST-2 and MR.

Manual Prompt 82.8 809 769 SST-2 MR AG News
In-Context Demo. 85.9 80.6 74.9 TEMPERA (No Inst & Verb) 91.2 87.2 82.2
Instructions 80.0 852 54.8 TEMPERA (No Inst) 919 882 843
TEMPERA (No TTE) 92.0 874  81.3

TEMPERA 919 88.2 843

5.3 DATA EFFICIENCY FOR TEMPERA

To illustrate the data efficiency of our method, we compare the performance of TEMPERA with
some few-shot standard finetuning results in Fig. 3. We see that in SST-2, we achieve similar perfor-
mance using almost 8x fewer training data. In tasks like Yelp, the gain is about 4x. We see that with
fewer examples, TEMPERA strictly dominates fine-tuning methods. This is critical when applying
TEMPERA in the real-world application since labeled data is expensive to get.

5.4 QUALITATIVE ANALYSIS OF THE EDITS

We also visualize our policy by taking a few examples from the final prompts after editing in Tab. 5.
We see that our method mostly does example selection, verbalizer swapping and phrase-level in-
struction editing. Our editing techniques are flexible and the final prompt may take different combi-
nations for each query. In addition, the resulting final prompt is still interpretable by human, showing
that our method achieves flexibility and interpretability at the same time. Note that in the examples
provided in Tab. 1, our policy choose to modify the example selection and verbalization.

5.5 ABLATION: DIFFERENT EDITING TECHNIQUES

We ablate on the different editing techniques and study how adding or removing them can affect
the performance. The results are shown in Tab. 4. We can see that adding each component (e.g.,
verbalizer, instruction) is helpful in terms of the final performance. We also find that verbalizer is es-
pecially helpful in some tasks like AG News, resulting in a 1.2% difference in the final performance.
This indicates that adding more flexibility to some extent can help the performance.
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Table 5: Qualitative results on the effect of the learned policy. We see that our method both enables
the flexibility of various edits and interpretability of the final results. On the contrary, many prior
methods produce non-readable prompts. Red text is prior to editing and blue text are the changes.

Before Edit  “In this task, you are given sentences from movie reviews. The task is to classify a sentence as “positive” if the

SST-2 sentiment of the sentence is positive or as “negative” if the sentiment of the sentence is negative. Review: of
saucy. Sentiment: positive. Review: cold movie. Sentiment: negative. Review: heroes. Sentiment: <mask>."
After Edit “In this task, you are given sentences from movie reviews. The task is to classify a sentence as “great” if the
(better sentiment of the sentence is positive or as “terrible” if the sentiment of the sentence is negative. Review: of
verbalizer)  saucy. Sentiment: great. Review: cold movie. Sentiment: terrible. Review: heroes. Sentiment: <mask>.”
AG News Before Edit  “Classify the news articles into the categories of World, Sports, Business, and Technology. Article: What’s

in a Name? Well, Matt Is Sexier Than Paul (Reuters) Reuters - As Shakespeare said, a rose by any other
name would smell as sweet. Right? Answer: Technology. Article: Wall St. Bears Claw Back Into the Black
(Reuters) Reuters - Short-sellers, Wall Street’s dwindling band of ultra-cynics, are seeing green again. Answer:

<mask>.
After Edit “Classify the news articles into the categories of World, Sports, Business, and Technology. Article: Expansion
(better slows in Japan Economic growth in Japan slows down as the country experiences a drop in domestic and
exemplar corporate spending. Answer: Business. Article: Wall St. Bears Claw Back Into the Black (Reuters) Reuters -

selection) Short-sellers, Wall Street’s dwindling band of ultra-cynics, are seeing green again. Answer: <mask>.”

Table 6: Ablation on the number of in-context Table 7: Ablation on the size of the prompt pool
exemplars. Results show that increasing the to select from. We see that the performance does
number of examples results in a consistent in- not change too much when changing the size of
crease of performance except for AG News the pool, indicating that the performance is rela-

(which is due to the length limit). tively stable.
SST-2 MR  AG News SST-2 MR  AG News
TEMPERA (2 Examples) 91.6  87.9 84.0 TEMPERA (Pool Size 8) 916 879 84.1
TEMPERA (4 Examples) 919  88.2 84.3 TEMPERA (Pool Size 16) 919  88.2 84.3
TEMPERA (8 Examples) 924  88.4 82.2 TEMPERA (Pool Size 32) 92.2 88.4 84.7

5.6 ABLATION: NUMBER OF SHOTS

We also ablate on the number of examples used in the in-context demonstration part of our algorithm.
We choose the size of 2, 4 and 8 for the analysis. We see that from Tab. 6, in all the tasks we
tested (SST-2, MR and AG News), increasing the number of examples consistently improves the
performance. However, the performance improvement is relatively limited. In addition, due to the
input length limit constraint by the language model (512 for RoBERTa), longer sequences of input
will be truncated. This results in the performance decrease when increasing the number of examples
from 4 to 8 for AG News, where the input length is longer than 512.

5.7 ABLATION: SIZE OF THE PROMPT POoOL

We also ablate on the example size of the prompt pool where we keep the number of examplers of 4.
Intuitively, allowing our method to choose in-context demonstrations from a large range of example
pool can provide better prompts. From Table. 7, we can see that increasing the example pool size
gives the algorithm more flexibility to choose in-context demonstrations, resulting in a slightly better
final performance.

6 CONCLUSION

In this paper we present TEMPERA, a test-time prompt editing method for large language models
via reinforcement learning. We found that perform test-time editing can greatly improve the perfor-
mance of downstream tasks for a pretrained language model. The proposed method only requires
little guidance on high-level search space design and can easily incorporate prior human knowledge.
It achieves SoTA performance on multiple benchmarks including those from GLUE. This intersec-
tion area of research between NLP and RL can inspire future research on designing better test-time
editing algorithms for practical usage.
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A TRAINING DETAIL

We provide the training details here. We use standard PPO algorithm to do online policy optimiza-
tion with GAE. We provide all the hyperparameters here for a reference. We’ll specify our neural
network architecture in the following section. Note that we perform additional observation normal-
ization (i.e., keeping a running mean and std) and reward normalization. We also adopt the same
number of parallel environment as the few-shot setting (e.g., 32 in our few-shot experiments). We
found a large size of parallel environment helps boost the performance.

Table 8: Hyperparameters used for TEMPERA in all the tasks.

Hyperparameter Value
Steps per training 8
Time limit 8
Number Parallel Processes 256
Learning rate 0.00005
Entropy Coefficient 0.005
Value loss Coefficient 0.5
Mini Batch Size 32
Gamma 0.99
GAE Lambda 0.95
Number of in-context Exemplars 4
Number of example pool 16
Positive lambda coefficient (A1) 2.0
Negative lambda coefficient (\2) 1.8

B NETWORK ARCHITECTURE

We follow the GPT (Brown et al., 2020) architecture and use the encoder layer for our policy net-
work. Note that our policy and baseline network shares the same attention-based encoder. The
attention is flat over all the possible candidate examples. We use a 3-layer encoder block with 3
heads and 48 latent dimension. We build two different head with 2-layer MLP for each as the policy
head and baseline head. We also don’t use dropout for the policy learning part. We found this boost
up the performance.

C ADDITIONAL EXPERIMENTS

We perform additional experiments on some more tasks like RTE, QNLI, SNLI, MNLI and MRPC.
Results show that we are consistently better than most of the discrete prompt optimization methods
and continuous prompt tuning methods. On several tasks, we are also better than finetuning the
entire model.

D NATURAL INSTRUCTIONS AND PROMPTSOURCE

We provide all the instructions we used in our experiments from Natural Instructions. Here we just
provide a few examples. Please refer to the github for all the instruction they provided. We also
provide all the verbalizers we used in our experiments from Promptsource. Here we only provide a
few examples. Please also refer to their github for the full verbalization.

E DATASET DETAIL

For the Finetuning, we use standard finetuning of the RoOBERTa model from huggingface for 100
epochs, a learning rate of 0.0003 and the optimizer of Adam.
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Table 9: Few-shot classification results. We compare against different baselines in this setting.
Results show that TEMPERA surpasses various baselines including finetuning, prompt tuning and
discrete prompt search. The standard deviations are shown in brackets.

RTE QNLI SNLI MNLI MRPC
Finetuning Finetuning (few-shot)  58.6(3.9) 60.2(4.7) 54.64(9.7) 47.8(7.5) 77.4(3.6)
Soft Prompt Tuning 54.7(10.9) 49.7(0.2) 36.13(14.6) 33.2(0.0) 51.6(0.9)
Continuous Prompt ~ Black-Box Tuning 52.6(09) 48.8(0.6) 46.58(1.3) 429(2.0) 61.6(0.9)
Discrete Prompt Manual Prompt 51.6 50.8 31.11 51.7 67.4
P In-Context Demo. 60.4(0.7) 53.8(0.4) 47.11(1.4) 534(.5) 458(0.8)
Discrete Prompt TEMPERA (ours) 60.3(2.2) 574 (1.5) 56.4 (3.2) 452 (2.0) 74.0(1.0)
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Figure 4: Data Efficiency for TEMPERA: We plot all the finetuning performance for 8 tasks we
tested. We see that TEMPERA often achieves the better few-shot performance except for MRPC
and QNLI.

F COMPARISON OF DIFFERENT METHOD

We compare the different property of different prompting methods in this section in order to give a
better understanding of different algorithms.
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Table 10: Natural instructions used for TEMPERA in all the tasks.

Task Natural Instructions

SST-2 “In this task, you are given sentences from movie reviews. The task is to clas-
sify a sentence as “great” if the sentiment of the sentence is positive or as
“terrible” if the sentiment of the sentence is negative.”

AG News “Classify the news articles into the categories of World, Sports, Business, and
Technology.”

CR “In this task, you are given sentences from customer reviews. The task is to
classify a sentence as “great” if the sentiment of the sentence is positive or as
“terrible” if the sentiment of the sentence is negative.”

MR “In this task, you are given sentences from movie reviews. The task is to clas-
sify a sentence as “great” if the sentiment of the sentence is positive or as
“terrible” if the sentiment of the sentence is negative.”

Yelp “In this task, you are given sentences from Yelp reviews. The task is to classify
a sentence as “great” if the sentiment of the sentence is positive or as “terrible”
if the sentiment of the sentence is negative.”

RTE N/A

SNLI “In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your
job is to choose whether the two sentences clearly agree (entailment)/disagree
(contradiction) with each other, or if this cannot be determined (neutral). Your
answer must be in the form of the letters Yes, Maybe, and No respectively.”

QNLI “You are given two sentences(Sentencel and Sentence2). Answer “yes” if
these sentences are a paraphrase of one another, otherwise answer “no”.”

MNLI “In this task, you’re given a pair of sentences, sentence 1 and sentence 2. Your
job is to choose whether the two sentences clearly agree (entailment)/disagree
(contradiction) with each other, or if this cannot be determined (neutral). Your
answer must be in the form of the letters Yes, Maybe, and No respectively.”

Table 11: Verbalizers used for TEMPERA in all the tasks.

Task Natural Instructions

SST-2 ‘Someone just said to me “{{sentence}}”. Do you think they are {{*“sad”}} or
{{*happy”}}? {{ answer_choices[label]}}’

AG News “What label best describes this news article? {{text}}
{{answer_choices[label]} }

CR ‘Someone just said to me “{{sentence}}”. Do you think they are {{“sad”}} or
{{“happy”}}? {{ answer_choices[label]}}

MR ‘{{text}} Did the reviewer find this movie {{“good or bad”}}? {{ an-
swer_choices[label] }}’

Yelp ‘{{ text }} Overall, the experience is {{ answer_choices[label] }}’

RTE ‘Does the claim “{{sentence2}}” follow from the fact that “{{sentencel}}”?
Please answer either {{“yes”}} or {{*no”}}. {{answer_choices[label]}}’

SNLI ‘Suppose {{premise}} Can we infer that “{{hypothesis}}”? Yes, no, or
maybe? {{ answer_choices[label] }}’

QNLI ‘{{sentence}} Does that sentence have all you need to answer the question
“{{question}}”? {{answer_choices[label]} }’

MNLI ‘Suppose {{premise}} Can we infer that ”{{hypothesis}}”? Yes, no, or
maybe? {{ answer_choices[label] }}

MRPC ‘Does the sentence {{sentencel } } paraphrase (that is, mean the same thing as)

this sentence? {{sentence2}} {{ answer_choices[label] }}’
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Table 12: Scaling results for TEMPERA in 512 training data per class. Results show that TEMPERA
also scales and achieves better results comparing to finetuning.

SST2 MR AGNews RTE
Finetuning Finetuning (few-shot) 934  87.0 89.5 67.9
Discrete Prompt TEMPERA (ours) 93.8 88.6 88.6 714

Table 13: Details for the dataset including the type, size of training, evaluation and test. Note that
here all the sizes are few-shot dataset.

Dataset Type |C| |Train| = |Dev]| | Test|

SST2 Sentiment 2 32 1.8k

AG News topic 4 64 7.6k

CR Sentiment 2 32 2k

MR Sentiment 2 32 2k

Yelp Sentiment 2 32 38k

RTE NLI 2 32 0.3k

SNLI NLI 3 48 10k

QNLI NLI 3 48 9.8k

MNLI NLI 3 48 9.8k

Frozen LM Gradient-Free Guided-Optimization | Interpretable Query-Dependent
Fine-Tuning x X \/ V x
Manual Prompt V V x V x
Instructions \/ \/ x V X
gé(r:n?)r::t):;tion \/ V x V x
Soft Prompt Tuning V x ‘/ x X
S P v v X v X
AutoPrompt V V x x
RLPrompt v v v X X
v v v v v

Tempera (ours)

Figure 5: Comparison of Different Prompting Methods: We compare the different property of
different algorithms. We can see that TEMPERA is gradient-free, the resulting prompt is inter-
pretable and query-dependent.
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