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ABSTRACT: The cogwheel mechanism of helical self-organization, reported by us, generates columns with the alkyl chains of their
components parallel to the column axis. This mechanism disregards the enantiomeric purity of constituents and, under suitable
design, provides the fastest rate of helical self-organization. Here, we investigate the supramolecular structure of a thermodynamically
controlled helical self-organization system. Unexpectedly, we found that this system follows a cogwheel mechanism of helical self-
organization that does not contain the two key parameters of the cogwheel mechanism: the length of the alkyl group of the self-
assembling dendron identical to the helical half-pitch (hhp) of the column and the presence of chiral branches pointing toward the
column center. Unpredictably, we uncovered that the presence of chiral branching points and strict alkyl chain lengths is not a
requirement of the cogwheel mechanism. A self-repairing process provides access to a constant hhp via a shorter and longer alkyl
chain length than the originally exact demanded value, which together with the lack of branching point(s) demonstrates the
universality of the cogwheel mechanism of helical self-organization. Applications derived from this concept are envisioned.

elical self-organizations, including homochiral, have been

known in nature for billions of years." Natural helical self-
organizations, such as hurricanes, tornados, typhoons, tropical
cyclones, whirlpools, and many others, have inspired art,
architecture, and machines. As early as 234 BC, Archimedes
constructed the first helical machine used even today and known
as the Archimedes’ screw. In 1485, Leonardo da Vinci built the
aerial screw that follows the principles of today’s helicopters." It
took over 2000 years from Archimedes’ screw to the discovery of
helical self-organizations at the molecular level.” The a-helix of
peptides elaborated by Pauling et al.” and the helical diffraction
theory developed by Crick et al.,* which were followed by the
double helix of DNA,” the globular tertiary structure of proteins
assembled from helices,’ and helical viruses,” facilitated the
rapid development of synthetic helical macromolecules and
assemblies.” Five mechanisms of helical self-organization that
most frequently self-organize helical columns containing repeat
units equal to the cross-section of the column have been
elucidated by us by using oriented fiber X-ray diffraction (XRD).
Only these are discussed here.® Examples of such components
are planar disclike,” crownlike,"’ hatshaped,ll cogwheel,12 and
chiral supramolecular spherical helices'® (Figure 1). The
cogwheel mechanism places the alkyl groups of the self-
assembling elements in a parallel arrangement to the column
axis. This arrangement provides the smallest column diameter of
all assemblies from Figure 1. Under suitable design, the
cogwheel mechanism generates the fastest thermodynamically
controlled and the highest ordered helical self-organization
known.'”* The cogwheel mechanism demands that the alkyl
group length of constituents is equal to its helical half-pitch
(hhp), and a small stereocenter pointing toward the column
center determines the distance from the inner part of the column
to the cogwheel coat.'**® The cogwheel mechanism of helical
self-organization has been shown to disregard the chirality of the
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branching point located on the alkyl groups of its components
and, therefore, provides the same helical column regardless of its
enantiomeric purity.'** The deracemization mechanism during
cogwheel helical self-organization has not yet been elucidated.
However, if shown to be universal, the cogwheel mechanism of
helical self-organization could be employed to engineer
unprecedented helical functions and may provide an alternative
pathway to elucidate the origins of homochirality.'* In order to
elucidate the thermodynamically controlled self-organization
process reported previously,153 we determined the 3D structure
of dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide
(PBI), (3,4,5)nG1-1-PBI, with the number of carbons in their n-
alkyl groups ranging from n = 6 to 12 (Figure 2), which was
employed earlier to discover the transformation from kinetically
into thermodynamically controlled self-organization.">* Num-
ber 1 between generation-1 (G1) and PBI refers to a single
methylenic unit between the self-assembling dendron and PBL
The alkyl groups employed in these experiments are shorter,
equal, and longer than the hhp of the columns and do not
contain any branching point(s). Unexpectedly, the thermody-
namically controlled self-organization process of (3,4,5)nG1-1-
PBI was found to be induced by an unprecedented cogwheel
mechanism of helical self-organization that does not demand the
two key structural parameters required by this mechanism: (a)

the strict length of the alkyl groups equal to the hhp of the helical
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Figure 1. Selected helical self-organization mechanisms elucidated in our laboratory. (a) Helical supramolecular columns from disclike triphenylene-

based planar structures.” (b) Helical columns from the crown shape produced from dendronized c?'clotriveratrylene (CTv
from hat-shaped structures generated from dendronized CTV;'' (d) the cogwheel mechanism;'**

assembled from dendronized cyclotetraveratrylene (CTTV).'*

);*919 (¢) helical columns

and (e) helical columns from spherical helices
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Figure 2. Molecular structure of (3,4,5)nG1-1-PBI, with n = 6—12.

column and (b) the presence of branching points in alkyl tails
pointing toward the inner part of the column.'**

However, the structure of helical columns and of their
periodic arrays self-organized from (3,4,5)nG1-1-PBI was not
elucidated."** The synthesis of (3,4,5)nG1-1-PBI with n = 6—12,
outlined in Scheme S1, and phase transitions of the resulting
assemblies determined by differential scanning calorimetry with
heating and cooling rates ranging from 1 to 10 °C/min
combined with oriented fiber XRD experiments were
reported.”>® Table S1 summarizes the structural analysis of
helical columnar-centered orthorhombic crystalline (®_..) and
columnar hexagonal with intracolumnar-order liquid crystalline

(@) self-organizations (Figures 3h,I and S1) to be discussed
here. We inform that the ®_.* periodic array is pseudohex-
agonal, being a slightly distorted hexagonal crystal. For
simplicity, Figure 3 illustrates the helical cogwheel self-
organization mediated with dimethyloctyl (dm8*) groups.
The dm8* contains two methyl groups, which form the chiral
and achiral branching points. Figure 3b—e shows the formation
of the helical columns by the cogwheel mechanism of
(3,4,5)dm8*G1-1-PBL.'**? It is notable (Table S1) that
(3,4,5)nG1-1-PBI with n = 6 and 7 self-organizes helical
columns exhibiting only the @ * phase, while those with n = 8—
11 generate helical columns displaying both ®_ < and B,
arrays (Figures SI and S2). (3,4,5)12G1-1-PBI self-organizes
only the @, phases. The original discovery of the cogwheel
concept was made with chiral and racemic dm8*."** The side
view of the helical cogwheel column is shown in Figure 3e—g,
while the unit cells of ®_ X and @, are revealed in Figure 3 h,i.
As shown in Figure 3 f,g, in order to coat completely the helical
column, the hhp of column must be strictly equal to that of the
alkyl chain length attached to (3,4,5)dm8*G1-1-PBL
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(i) Key Elements of the Cogwheel Mechanism
@ Helical half-pitch (hhp) = alkyl chain length

@ Alkyl chains lie parallel to the column
@ Chiral groups points towards the column center

@ Two dimer containing 4 PBI units form the
helical half-pitch

Figure 3. Schematic of the cogwheel mechanism of helical self-organization of columnar-centered orthorhombic crystal (®,..5) and columnar
hexagonal with intracolumnar order (@) phases. (a) Molecular structure of (3,4,5)8G1-1-PBI; (b) conformation of (3,4,5)8G1-1-PBI forming
@ “and @, phases (side view); (c) dimer of (3,4,5)8G1-1-PBI (top view); (d) schematic of dimer; (e) schematic of helical column assembled from
dimers; (f) side view of helical column in ®_* phase; (h) top view of helical column in @ phase (CPK model); and (j) key requirements of

cogwheel model (hp = helical pitch, hhp = helical half-pitch).

A sequence-defined arrangement of two n-nonyl groups in the
3,5-positions combined with dm8* in the 4-position of the self-
assembling dendron, (3,4,5)dm8%9,dm8*G1-1-PBI, demon-
strated the fastest thermodynamically controlled self-organ-
ization process encountered in bulk for the cogwheel helix or for
any other self-organization.'*® This fast self-organization was
accomplished by a proper helical coat design. Figure 4a—e shows
in red the oriented fiber XRDs of the ®_* arrays of (3,4,5)nG1-
1-PBI with n = 6—10. The black parts in Figure 4 illustrate the
reconstructed oriented fiber XRDs of the same assemblies
generated by the periodicities constructed from the supra-
molecular columns shown in Figure 4k. Comparing the red and
black oriented fiber diffractograms from Figure 4a—e demon-
strates that the helical columns from Figure 4k validate the
cogwheel model of helical self-organization. This is in spite of
the absence of the two methyl branching points of dm8* and of
different lengths of their n-alkyl groups. The ideal length of the n-
alkyl group coating the helical column is n-nonyl for 3,5-
positions and n-octyl for the 4-position of the dendron.'*
Nevertheless, n-hexyl, n-heptyl, n-octyl, n-decyl, and n-undecyl
tolerate the cogwheel model, although they are shorter and
longer than the ideal value. Decreasing the length of n-nonyl and
n-octyl to n-heptyl and n-hexyl provides a shorter column coat
that uncovers the yellow aromatic part of the (3,4,5)nGl
dendron. Therefore, in @Y both the absence of the two
branched methyl groups of dm8* and shorter, as well as longer,
n-alkyl groups than ideal are sustained by the cogwheel model of
helical self-organization. The red parts of the oriented fiber
XRDs from Figure 4f—j show the experimental oriented fiber
XRDs obtained in the @, array. The black parts illustrate the
reconstructed XRDs obtained by using the molecular models
from Figure 4l. The agreement between experimental and
reconstructed oriented fiber XRDs supports the helical columns
self-organized by the cogwheel models illustrated in Figure 4l.
Since the ®,® periodic array is liquid crystalline, the n-alkyl
groups are partially disordered (Figure 41), although at shorter n-
alkyls for n = 6 and 7, they uncover parts of the yellow-colored
benzyl group of the dendron, just as in the case of the ®_*
columns (Figure 4k). In both @ and @ ® columns, hhp is not
strictly equal to the length of the n-alkyl chains. The ¢ parameters
of the columnar phases were calculated from the experimental
oriented fiber XRDs along the fiber z-axis. The bright diffraction
spot along the fiber axis (L = 4) shows the 7— stacking distance

(Table S1). The value of the ¢ parameter represents the hhp of
the column(s). Inspecting the trend of hhp of columns for
(3,4,5)nG1-1-PBI (n = 6—12) and comparing it with the hhp of
(3,4,5)6G1-1-PBI and (3,4,5)7G1-1-PBI, we observe that is
constant and equal to 14.7 A for the ®_* columns.
Unexpectedly, hhp values of (3,4,5)8G1-1-PBI, (3,4,5)9G1-1-
PBIL, (3,4,5)10G1-1-PBL, and (3,4,5)11G1-1-PBI assemblies
containing longer n-alkyl groups are shorter than (3,4,5)6G1-1-
PBI and (3,4,5)7G1-1-PBI columns showing values between
14.2 and 14.5 A. The higher hhp of (3,4,5)6G1-1-PBI and
(3,4,5)7G1-1-PBI is also unexpected since the helical coat is
constructed from a shorter n-alkyl chain length. Shorter chain
lengths of n = 6 and 7 cannot fulfill the required length for a
perfect cogwheel assembly. As a result, the packing of the
molecules is less compact compared with the perfect cogwheel
model observed for n = 8,9, and even for 10, and therefore, for n
= 6 and 7, we see a slightly longer hhp. This longer hhp induces
the small gap between the two consecutive hhp, which uncovers
the yellow benzyl parts of the dendron (Figure 4k), thereby
generating a less perfect coat. By contrast, an almost perfect coat
is observed in the case of (3,4,5)8G1-1-PBI, (3,4,5)9G1-1-PB],
and (3,4,5)10G1-1-PB], as the chain length of the alkyl groups
provides a more perfect coat. Therefore, in these cases, we
observe a tighter packing between two PBI and dendritic layers
and a slightly shorter hhp. These results demonstrate a self-
repairing process of the cogwheel helical coat that could not be
predicted during the discovery process of the helical cogwheel
self-organization.'”»>" It is remarkable that this self-repairing
helical cogwheel coat process occurs both in the crystal state of
the ®_* periodic array and in the liquid crystal state of ®y.
A brief inspection of the supramolecular helical columns from
Figure 41 displays a self-repairing process in the @' liquid
crystalline periodic array. In this case, the fluidity of the n-alkyl
groups facilitates a constant hhp of 14.0 A regardless of the
number of carbons in the n-alkyl group. All helical cogwheel
coats from Figure 4] exhibit the same hhp values for n = 6 to 11.
The last two columns in Table S1 summarize the length (L) of
the n-alkyl groups employed in these experiments and the
difference between the values of hhp and L (hhp-L).
Unexpectedly, they demonstrated that one of the two major
requirements of the original cogwheel model, i.e., hhp equal to
alkyl chain length, is not demanded since it is accomplished by
self-repairing of its helical coat. The self-repairing process relaxes
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Figure 4. Experimental and simulated oriented fiber XRDs of ® % (a—e) and @®,"° phases (f—j); side views of the cogwheel helical columns
assembling ®__,* phases from (3,4,5)6G1-1-PBI, (3,4,5)7G1-1-PBI, (3,4,5)8G1-1-PBI, (3,4,5)9G1-1-PBI, (3,4,5)10G1-1-PBI, and (3,4,5)11G1-1-
PBI (k); and @, phases of (3,4,5)8G1-1-PBI, (3,4,5)9G1-1-PBI, (3,4,5)10G1-1-PB, (3,4,5)11G1-1-PBI, and (3,4,5)12G1-1-PBI (1).

this strict requirement. Is the difference between various hhp
values observed in the ®__* phase (Figure 4 and Table S1) due
to the different temperatures at which the XRD was performed?
The plot of the hhp versus temperature in the ®_* phase
demonstrates that within experimental error, the hhp values
from Table S1 and Figures 4 and S3 are constant as they are in
the case of the @, array. In conclusion, no alkyls equal in length
with hhp of cogwheel helical column and branched alkyl groups
that must point toward the center of the column are demanded.
These relaxed structural requirements of the helical cogwheel
mechanism of thermodynamically controlled self-organization
explain why a perfluoroether containing only six atoms forms a
helical cogwheel.m’ This opens opportunities to functionalize
the helical coat of columns with a diversity of functions equipped
with unprecedented potential applications, including fast

molecular electronics'*" ™ and pathways to origins of biological

homochirality to be reported soon.
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