ARBOREAL MODELS AND THEIR STABILITY

DANIEL ALVAREZ-GAVELA, YAKOV ELIASHBERG, AND DAVID NADLER

ABSTRACT. The main result of this paper is the uniqueness of local arboreal models, defined
as the closure of the class of smooth germs of Lagrangian submanifolds under the operation
of taking iterated transverse Liouville cones. A parametric version implies that the space of
germs of symplectomorphisms that preserve the local model is weakly homotopy equivalent
to the space of automorphisms of the corresponding signed rooted tree. Hence the local
symplectic topology around a canonical model reduces to combinatorics, even parametrically.
This paper can be read independently, but it is part of a series of papers [AGEN19, AGEN20b,
AGEN22] by the authors on the arborealization program.
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1. INTRODUCTION

1.1. Main results.

1.1.1. Brief summary. This is part of a series of papers [AGEN19, AGEN20b, AGEN22] by
the authors on the arborealization program. Besides motivation, this paper can be read
independently from the other papers, and we begin here with an account of its main results.
Its relevance to the arborealization program is discussed in Section 1.2.

The class of arboreal singularities was introduced by the third author in the paper [N13].
The class was defined in [N13] as abstract stratified complexes, and also as stratified singular
Lagrangians and Legendrians via concrete embeddings. Subsequently in [St18] and [E18],
these constructions were further decorated by signs (one can view the class in [N13] as the
“positive definite” version of the “arbitrary index” generalization of [St18] and [E18]).

It is important to point out that the definition in [N13] fixes only the homeomorphism, and
not diffeomorphism type of the singularity. Likewise, the definitions in [St18] lead a priorito a
class of singularities for each combinatorial type, rather than unique local models. While this
is sufficient for many applications, for example for calculating many invariants, the homeomor-
phism type of an arboreal Lagrangian does not determine in general the symplectomorphism
type of the ambient manifold, even if the Lagrangian is smooth (e.g. see [Ab12]). In [E18] an
inductive definition for a concrete representative of each combinatorial type was given, but
no explicit formulae were provided, nor was it proved that this concrete representative was
diffeomorphic to other possible representatives of the same combinatorial type.

In brief, the main new innovations of the current paper are:

(i) Uniqueness Theorem 1.2: Signed arboreal Lagrangian and Legendrian singularities
are determined up to ambient symplectomorphism by their combinatorial type.
(ii) Canonical Model Definition 2.19: Each combinatorial type has a canonical local
model, described not only inductively but by simple polynomial equations.
(iii) Automorphism Theorem 1.3: Automorphisms of signed arboreal Lagrangian and
Legendrian singularities are encoded by automorphisms of their combinatorial data,

even parametrically.

The questions of uniqueness and automorphisms as established in (i) and (iii) were not even
considered in prior papers on the subject; the canonical local models of (ii) were also not known
prior to this paper. Given a canonical model as in (ii), if we take its Legendrian lift, apply
any contactomorphism taking it into generic position, and form its Liouville cone, then (i)
implies we once again obtain a canonical model. At its heart, the proof shows any sufficiently
small contact deformation of a canonical local model in generic position in a cosphere bundle
can be realized by lifting an isotopy of the base. The calculation of automorphisms in (iii)

follows from a parametric generalization of this argument.
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We find it surprising that canonical models with such good properties exist. Indeed, we
do not know of any other sufficiently large class of Lagrangian singularities which admit a

discrete classification up to ambient symplectomorphism.

1.1.2. Uniqueness Theorem. To explain the Uniqueness Theorem 1.2 in more detail, we first
introduce some auxiliary notions.

A closed subset of a symplectic or contact manifold is called isotropic if is stratified by
isotropic submanifolds (by stratified, we mean there is a locally finite partition into locally
closed submanifolds of the ambient manifold). It is called Lagrangian or Legendrian if it is
isotropic and purely of the maximal possible dimension (i.e if any stratum is in the closure of
the one of maximal dimension). The germ at the origin of a locally simply-connected isotropic
subset L. C T*R" of the cotangent bundle with its standard Liouville structure A = pdq admits
a unique lift to an isotropic germ at the origin L C JIR" = T*R" x R of the 1-jet bundle.
Given an isotropic subset A C S*R™ of the cosphere bundle, its Liouville cone C(A) C T*R",
i.e. the closure of its saturation by trajectories of the Liouville vector field Z = pa@p, is an
isotropic subset.

We will take the following inductive definition as our starting point; it captures how arboreal

singularities typically arise in nature.

Definition 1.1. Arboreal Lagrangian (resp. Legendrian) singularities form the smallest class
Arbf¥™P (resp. Arb®™) of germs of closed isotropic subsets in 2n-dimensional symplectic

(resp. (2n+1)-dimensional contact) manifolds such that the following properties are satisfied:

(i) (Invariance) Arbf¥™ is invariant with respect to symplectomorphisms and Arb™ is
invariant with respect to contactomorphisms.
(ii) (Base case) Arby?™ contains pt = R% C T*RY = pt.
(iii) (Stabilizations) If L C (X, w) is in Arb,™ then the product L x R C (X x T*"R,w+

dp A dq) is in Arb)2"P.

(iv) (Legendrian lifts) If L C T*R"™ is in Arb;Y"?, then its Legendrian lift L c J'R"is in
Arbgont,
(v) (Liouville cones) Let Aq,...,Ax C S*R"™ be a finite disjoint union of arboreal Legen-

cont centered at points z1,...,2, € S*R™. Let 7 : S*R" — R"

drian germs from Arb:’"

be the front projection. Suppose
- 7"'(21) = e = W(Zk);
- For any 4, and smooth submanifold Y C A;, the restriction 7|y : Y — R" is an
embedding (or equivalently, an immersion, since we only consider germs).
- For any distinct 41, ..., %, and any smooth submanifolds Y;, C A;,,...,Y;, CA;,,
the restriction 7|y, u..uy;, : Y5 U+ - UYj, — R" is self-transverse.
Then the union R" UC(A1)U---UC(Ag) of the Liouville cones with the zero-section

form an arboreal Lagrangian germ from Arb;¥"?.
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With the above classes defined, we can also allow boundary by additionally taking the
product L x R>g C (X x T*R,w + dp A dq) for any arboreal Lagrangian L C (X,w), and
similarly for arboreal Legendrians.

The main technical result of this paper is the Stability Theorem 3.5 for arboreal singularities
as inductively characterized by Definition 1.1. We will content ourselves in this introduction
with stating its main application, which is the Uniqueness Theorem 1.2. As will be shown,
to each member of the class Arb;Y™”, one can assign a signed rooted tree T = (T, p,e) with
at most n + 1 vertices; here T is a finite acyclic graph, p is a distinguished root vertex, and ¢
is a sign function on the edges of T' not adjacent to p. The Uniqueness Theorem states that

this discrete data completely determines the germ:

Theorem 1.2. If two arboreal Lagrangian singularities L C (X,w), L' C (X',’) of the class
ArbY™P have the same dimension and signed rooted tree .7, then there is (the germ of) a

symplectomorphism (X,w) ~ (X', ') identifying L and L'.

Similarly, each member of the class Arb%™ is determined by an associated signed rooted
tree 7 = (T, p,e) with at most n+1 vertices. Note that the Uniqueness Theorem in particular
implies, for fixed dimension n, that Definition 1.1 produces only finitely many local models
up to ambient symplectomorphism or contactomorphism.

1.1.3. Canonical Local Models. As a complement to the Uniqueness Theorem 1.2 (and as
called upon essentially in its proof), it turns out there is a canonical local model in each arbo-
real class. This is detailed in Section 2, beginning with explicit iterated quadratic equations
and culminating in Definition 2.19 (one can view arboreal singularities as what results from
going one step beyond locally linear Lagrangians to allow quadratic behavior.)

As a representative for each signed rooted tree 9\, we construct in Definition 2.19 a canon-
ical local model L 5 C T*R", where n = |n(§\)\ is one less than the number of vertices in the
tree. The model L 5 C T*R™ is presented as the positive conormal to a canonical local front
H 5 C R"™ defined by polynomial equations.

While this material naturally has some overlap with general constructions of [N13], [St18§]
and [E18], no such canonical local model was known prior to this paper. Indeed, their con-
struction begins in Section 2.1 with explicit equations that had not been written down before.
To keep track of their geometry, we use the same combinatorics developed in [N13], [St18]
and [E18]. But even so, we have found it necessary to reformulate the signs introduced in
[St18] and [E18] from scratch in order to match inductive arguments to come, so we give here

a warning that our sign conventions do not agree with prior conventions.

1.1.4. Parametric Stability. In Section 3, we also establish a Parametric Stability Theo-
rem 3.12 extending the scope of the Stability Theorem 3.5. In fact, the proofs of the two
are intertwined: we do not know a more elementary proof of the Stability Theorem 3.5
that does not inductively encounter the Parametric Stability Theorem 3.12. Moreover, the
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parametric version has additional consequences such as the following characterization of the
automorphisms of arboreal singularities:

Theorem 1.3. Fiz a signed rooted tree T = (T, p,e), set n = \n(é\)] and consider the
arboreal 7 -front H > C R". Let D(R", H7A) be the group of germs at 0 of diffeomorphisms of
R™ preserving H 5 as a front, i.e. as a subsel along with its coorientation.

o~

Then the fibers of the natural map D(R", H ) — Aut(7) are weakly contractible.

Hence, from Theorem 1.2 and Theorem 1.3, we conclude the local symplectic topology of
an arboreal singularity is completely encoded by the combinatorics of the underlying signed

rooted tree, even parametrically.

1.2. Arborealization program. We conclude this introduction by briefly explaining the
role of this paper within the broader arborealization program.

The initial goal of the arborealization program is to determine when a Weinstein manifold
can be deformed to have an arboreal skeleton, i.e. a skeleton which is a stratified Lagrangian
with arboreal singularities.

It was shown in [N15] that singularities of Whitney stratified Lagrangians can always be
locally deformed to arboreal Lagrangians in a non-characteristic fashion, i.e. without changing
their microlocal invariants. The question of whether a global theory exists at the level of
Weinstein structures is more subtle. In two dimensions the story is classical: generic ribbon
graphs provide arboreal skeleta. In four dimensions, Starkston proved in [St18] that arboreal
skeleta always exist in the Weinstein homotopy class of any Weinstein domain.

In the sequel [AGEN20b], we show any polarized Weinstein manifold, i.e. a Weinstein
manifold with a global field of Lagrangian planes in its tangent bundle, can be deformed to
have an arboreal skeleton. More specifically, the arboreal singularities that arise are positive
in the sense that they are indexed by signed rooted trees with all positive signs, and conversely,
any Weinstein manifold with a positive arboreal skeleton comes with a canonical (homotopy
class of) polarization.

The arguments of [AGEN20b] produce skeleta with singularities satisfying the character-
ization of Definition 1.1. Without the uniqueness of Theorem 1.2, we would still be faced
with the possible moduli of such singularities. It could happen that two arboreal skeleta built
from the same smooth pieces with the same combinatorial recipe do not have symplectomor-
phic, or even diffeomorphic neighborhoods. The uniqueness of Theorem 1.2 guarantees this
is not the case: there is no moduli of the singularities arising, and indeed their geometry is
unambiguously specified by the combinatorics.

With this in hand, one can still ask: is the symplectic or Weinstein thickening of an
arboreal skeleton unique? Using the results of the current paper we prove in [AGEN20b] that a
diffeomorphism between arboreal skeleta, preserving some additional discrete orientation data,
extends to a symplectomorphism of their symplectic thickenings. The existence of a Weinstein

thickening was first explained in [St18]. The uniqueness of a Weinstein thickening is proved in
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[AGEN20Db]: Weinstein thickenings of an arboreal skeleton that induce equivalent orientation
structures, a further combinatorial decoration on the skeleton, are Weinstein homotopic via
a homotopy fixing the skeleton. So not only can we unambiguously construct a Weinstein
manifold from a combinatorial recipe, but the one we construct is the unique one with those
combinatorics. In the present paper we will not consider Weinstein structures, and focus
instead on the problem of uniqueness up to symplectomorphism.

Thus pairing the results of the current paper with those of [AGEN20Db], one is able to ex-
press polarized Weinstein manifolds in purely combinatorial terms. In a forthcoming paper
[AGEN22], we plan to classify all bifurcations (i.e.“Reidemeister moves”) relating positive
arboreal skeleta of two polarized Weinstein manifolds related by a polarized Weinstein homo-
topy. This will reduce the classification of (polarized) Weinstein structures, up to deformation
equivalence, to the classification of positive arboreal complexes up to diffeomorphism and
Reidemeister moves. As it is discussed in [AGEN20b] the arborealization program cannot be
extended to all Weinstein manifolds, though it is likely can be extended to a larger class of

Weinstein manifolds beyond the polarized one.

1.3. Acknowledgements. We are very grateful to Laura Starkston who collaborated with
us on the initial stages of this project. We are also grateful to the referee for helpful comments
and suggestions. The first author is grateful for the great working environment he enjoyed at
Princeton University and the Institute for Advanced Study, as well as for the hospitality of
the Centre de recherches mathématiques of Montreal. The second author thanks RIMS Kyoto
and ITS ETH Zurich for their hospitality. The third author thanks MSRI for its hospitality.
Finally, we are very grateful for the support of the American Institute of Mathematics, which
hosted a workshop on the arborealization program in 2018 from which this project has greatly
benefited.

2. ARBOREAL MODELS

2.1. Quadratic fronts. Before we present the local models for arboreal singularities, we
introduce the quadratic fronts out of which the models will be built and discuss some of their

basic properties.
2.1.1. Basic constructions. For i > 0, define functions h; : R* — R by the inductive formula
ho =0 hi = hi(z1,..., 7)) =21 — hi_1(z2,. .., 1;)>
For example, for small ¢, we have
hi(xz1) =21 ho(z1,72) = 1 — 3 hs(x1,x9,23) = 21 — (X2 — x%)Q
Fix n > 0. For ¢ =0,...,n, define smooth graphical hypersurfaces

"T; = {zo = h?} C R*!
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equipped with the graphical coorientation, and consider their union

"= U?:o "I

Note the elementary identities

nFi:iFl'XRn_i 1=0,...,n

"Fiﬂ”FO:{O}x"”Fi_l 1=1,...,n
4
ML
L)
X4 4
To

FIGURE 2.1. The hypersurfaces T’y (green) and 'T'; (blue)

FIGURE 2.2. The hypersurfaces 2I'y (green), 2I'; (red) and 2T'y (blue).

Let T*R"™ denote the cotangent bundle with canonical 1-form pdxr = ! | pidz; where
p = (p1,...,pn) are dual coordinates to = (x1,...,7,). Let J'R® = R x T*R" denote the
1-jet bundle with contact form dzg + pdx = dxo + Y ;" pidz;.

Given a function f : R” — R with graph I'y = {29 = f(z)} C RxR", we have the conormal
Lagrangian of the graph Lr, = {zo = f(x), pi = —podf/0x;} C T*R™*! and the conormal
Legendrian of the graph Ar, = {zo = f(z), po = 1, p; = —0f/0z;} C J'R".
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For i = 0, let "Ly = R™ C T*R"™ denote the zero-section. For ¢ = 1,...,n, introduce the
conormal Lagrangian
"L; = Ln-p, , CT*R"

of the graph "~'I';_; C R”, and consider their union
"L=Ui—o"Li
Similarly, for ¢ = 0,...,n, introduce the conormal Legendrian
"A; = Anp, C JIR®
of the graph "I'; C R"*!, and consider their union
"A =i A

Note that the Liouville form vanishes on the conical Lagrangian " L; C T*R", hence its lift

to JIR™ = R x T*R"™ with zero primitive is a Legendrian. We have the following compatibility:

Lemma 2.1. The contactomorphism
S: JIRY —— JIR"

S(xﬂvxup) = (CUO _p%/4)xl +p1/275527 ey Ty Ply - 7pn)
takes the Legendrian ™A; isomorphically to the Legendrian {0} x ™L;, and thus the union ™A
isomorphically to the union {0} x "L.

Proof. Set h;1 = hi—1(x2,...,x;) so that h; = x1 — h?,r Observe "A; C JI'R™ is given by the
equations
Trog — hz2 pdl’ = —dh? = —thdhi = —2hi<d.%'1 — 2hi71dhi’1)

so in particular p; = —2h; and Z?:Q pidx; = 4h;h; 1dh; 1.
If we write (29, Z,p) = S(xo, z,p), for (zg,x,p) € "A;, then we have
&0 =z0 —p}/4=2(x0—h3) =0 Ty =214+ p1/2 =21 —hi =21 — (11— ;) = hi,
Now it remains to observe "L; C T*R" is given by the equations
T = hil Yoo pidr; = —pldhzl = —2p1hi1dhi

This completes the proof. O

2.1.2. Distinguished quadrants. We now specify some distinguished quadrants of the "I" which
we will use to define our arboreal models. Which of these quadrants are cut out by our sign
conventions will become clearer when the arboreal models are introduced.
For 0 < j <i < n, set
hij = hi—j(Tj41,...,%;)

so in particular h; o = hi(x1,...,2;) and h;;—1 = hi(z;) = ;.
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For fixed 0 < i < n, consider the collection of functions
hio, ..y hii1

Note the triangular nature of the linear terms of the collection: for all 0 < j < i — 1, the
subcollection
h@j — $j+1, hi,j—i—l, ey hi,i—l
is independent of ;1. Thus the level sets of the collection are mutually transverse.
Fix once and for all a list of signs 6 = (dg,01,...,0p), d; € {£1}. Define the domain
quadrant "Q? C R™ to be cut out by the inequalities

01hip <0,...,8h;;-1 <0

By the transversality noted above, ”Qf is a submanifold with corners diffeomorphic to
Rgo x R"7* Its codimension one boundary faces are given by the vanishing of one of the
fu;lctions hij.

Note "Qf only depends on the truncated list d1,...,d;. In particular, it is independent of
0o which will enter the constructions next.

Define the cooriented hypersurface "I';|s; C R"*! to be the restricted signed graph

"Tils = {zo = d0h}ngs

with the graphical coorientation.

Thus "T';|s is cut out by the equations
zo = dohZ, 01hio <0,...,6;hi;—1 <0

Since "T';|s is graphical over "Qf, it is also a submanifold with corners diffeomorphic to
Ri>0 x R"~¢. Likewise, its codimension one boundary faces are given by the vanishing of one
of the functions h; ;.

Consider as well the union
"T'ls = Uizo "Tils

Remark 2.2. Note that
"Iy = Us 5021 "Tils "T = Us 5921 "o

since € "I'; implies € "I';|s where for 1 < j < i, we set §; = —sgn (h;j(z)), when

hi j(z) # 0, and choose it arbitrarily otherwise.

Remark 2.3. Note if we set & = (d,...,0n_1,—0n), then the map R"t! — R+l
(o, .-y Tn—1,2Zn) — (To,...,Tn_1,—Tyn), takes "I'|s isomorphically to "I'|s as a cooriented

hypersurface. Thus we could always set J,, = 1 and not miss any new geometry.

Note "I'; N {xg < 0}, hence also "I';|s N {dpzo < 0}, is empty since "T; is the graph of
h? > 0.
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Lemma 2.4. Fiz § = (dg,...,0n), and set 0’ = (8pd1,02,...,0,). The homeomorphism
51 6oRs0 x R — > §)R5q x R"
s(xo, 21,22, ..., on) = (70,5001 (71 + 61/ 000), T2, . . ., Tp)
gives a cooriented identification
s("Ty]s N {dozo > 0}) = SR> x "~ T_1]s 0<i<n

Proof. Recall "T';|5 is defined by

zo = doh? d1hip <0,...,0ihii—1 <0
in particular
Trog = 50h12 51hi70 = 51]11 § 0
Note the functions h; 1, ..., h;;—1 are independent of the coordinates g, 1.

When dgzg > 0 and d1h; < 0, the equation xy = 5oh? is equivalent to \/dpxg = —d1h;.
Expanding this in terms of the definitions, we can rewrite this in the form

T+ 51 V 5()1' = hi_l(fEQ, vee 7$i)2

Thus since §) = dpd1, we see s takes "I';|s N {dozo > 0} into doR>p x {w1 = d4h? ,}.
Moreover, the additional functions h;1,. .., h;;—1 cutting out "~1I';_q|s C {x1 = §ph?_,
pull back to the same functions h; 1, ..., h;;—1 cutting out "I';|s.
Finally, the coorientations of "I';|5," 1T;_1|s are positive on respectively Oy, Ox,. Ob-
serve the 0 ,-component of s.0;, is in the direction of d,,, and hence s gives a cooriented
identification. O

2.1.3. Alternative presentation. For compatibility with inductive arguments, it is useful to
introduce an alternative sign convention and alternative presentation of the local models.

Fix signs ¢ = (eg,...,&n). Consider the involution o. : R"™ — R" defined by
oe(x1,.. . xn) = (6121, ..., EnTp).

Define the domain quadrant "R; C R" cut out by the inequalities
EoElhi,o oo, <0,... 7€i—1€ihi,i—1 oo <0
Define the cooriented hypersurface "I'{ C R"*1 to be the restricted signed graph
"5 = {wo = e0hi 0 oc}|nge
with the graphical coorientation. Thus "I'{ is cut out by the equations
zo = eoh? o o, eoethipoo:. <0,...,6i-18hi;—100: <0

Consider as well the union
nre — U?:O nrf
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Remark 2.5. A simple but important observation: "I'; in fact only depends on ey,...,e;—1
and not ¢;. This is because h; ;1 = x; and so €;_1€;h; ;—1 0 0. = €;_17;. In particular, the

union "I'® is independent of g,,.
We have the following adaption of Lemma 2.4.
Lemma 2.6. Fize = (g¢,...,ep), and set e’ = (e1,...,e,). The homeomorphism
5 :e0R>0 X R —— goR>¢ x R™
s(xo, 1, %2, ..., Tn) = (To, ¥1 + €04/E0%0, T2, . . ., Tp)
gives a cooriented identification
s("T'S N {egzg > 0}) = egR>p X ”‘Tf’_l 0<i<n

Proof. Recall "I'j is defined by

o = th? O O0¢ €0€1h7;70 O 0¢ < 0, e ,Ei_181h7;7i_1 O 0¢ < 0
in particular
zo = goh? o 0. goe1hig o o = gperhioo. <0
Note the functions h; 1, ..., h;;—1 are independent of the coordinates xg, 1.

When egxg > 0 and ege1h; o 0. < 0, the equation zg = €0h% o o, is equivalent to \/egxg =
—epe1h; o 0.. Expanding this in terms of the definitions, we can rewrite this in the form

1+ €0y/E0T0 = €1h1271,1 00

Thus we see s takes "T's N {goxg > 0} into egR>q % {1 = €1 | | 0 0ur}.

Moreover, the additional functions h; 1, ..., h;;—1 cutting out

n—1ye’ 2
I C{z1=¢e1hi_1 00}

pull back to the same functions h; 1, ..., h;;—1 cutting out "I';.
Finally, the coorientations of "Ff,"‘lFfl_l are positive on respectively 0,,, O;,. Observe the
0z, -component of 5,0, is in the direction of d,,, and hence s gives a cooriented identification.
O

Here is a useful corollary that “explains” the geometric meaning of the signs ¢.

Corollary 2.7. Fiz e = (gg,...,n).

Foriv=20,...,n—1, we have ¢; = *1 if and only if "I';41 is on the £-side of "I'; with
respect to the graphical dxg-coorientation.

Moreover, fori=1,...,n—1, we have ¢; = £1 if and only if "T'; 11 N"Tg is on the +-side

of "I'; Ny with respect to the graphical dx1-coorientation.

Proof. For i = 0, the first assertion is immediate from the definitions "I’y = {z¢ = 0} and

"Iy = {z0 = o(e171)? = €022, g0e1(e171) = go71 < 0}
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For ¢ > 0, both assertions follow by induction from Lemma 2.6. U
Fix signs € = (eq,...,ep—1). For i =0, let "L§ = R™ C T*R"™ denote the zero-section. For
1 =1,...,n, introduce the positive conormal bundles
"L =T) . R*CT*R"

-1
determined by the graphical coorientation, and consider their union
"LE = U:‘L:o "Ly
Fix signs € = (eq,...,&p). For i = 0,...,n, introduce the Legendrian
"AS C JIR®
projecting diffeomorphically to the front "I'¢ € R"*!, and consider their union
"AS = U?:o "AG

We have the following compatibility of the above Lagrangians and Legendrians analogous

to Lemma 2.1.

Lemma 2.8. Fix signs ¢ = (g9, ...,&n), and set €' = (e1,...,&yn). The contactomorphism

Se, : JIR? — = JIR®

Seo(@0, 2, p) = (w0 — copi /4, 21 + €0p1/2, %2, . .., Ty, Ly - - -, Pn)
takes the Legendrian ™A isomorphically to the Legendrian {0} x ”Lf/, and thus the union ™A

isomorphically to the union {0} x "L¢".

Proof. The proof is the same as that of Lemma 2.1 with the following observations. Consider

the additional equations

g0€101higoos <0,...,616h;;100: <0
First, over ege1h;poo. < 0, when p1 = —2ege1h; 90 0., we then have p; = —2ege1h;goo. > 0,
so we obtain the positive conormal direction. Second, the remaining functions h;1,...,h;;—1

are independent of xg, z1. Thus S;, indeed takes "A$ to {0} x "L:.

Remark 2.9. By the lemma, we see the Legendrian "A$ C J'R™ is independent of the initial

sign &g so only depends on &' = (e1,...,¢&,).
It is also useful to record the following relationship of "I'* with the extended model "T.

Lemma 2.10. Fiz signs € = (0,...,&n).
Given a contactomorphism J'R™ — JIR™ restricting to a closed embedding "A® C €y - "A
with "AS C eg - ™Ay, for all i, consider the front T = w("A®) C g9 - "I.

Then either the involution o. or its composition with x,, — +x, takes Y to "I'¢.
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Proof. Note we have "Aj = g9-"Ag = "Ay. Consider the intersection Y' = 7(("A\"Ag)N"Ap)
as a front inside of 7("Ag) = "I'y = {xo = 0}. By induction, either the involution o, or its
composition with z, — +z, takes Y’ to ""1I'¥ where &’ = (€1,...,6n). So we may assume
Y = "=11¢. Now observe "I is the unique way to extend n=17¢ within 0e(g0-"T") compatible

with coorientations. O

We also have the following observation about signs. See Section 3.1 for notation.

Lemma 2.11. Let vy be the vertical polarization of T*R™ — R™.

Then we have £(vy,"L3,"L§) = €p.

Proof. Recall "Lj is the positive conormal to the graph "~'T'§ = {zg = 0}, and "Lj is the
positive conormal to the graph ”_lFf = {x = eox%}. Since Eo:L’% is an gg-definite quadratic

form in x1, the assertion follows. O
2.2. Arboreal models. We now present the local models for arboreal singularities.
2.2.1. Signed rooted trees.

Definition 2.12. We will use the following terminology throughout:

(i) A tree T is a nonempty, finite, connected acyclic graph.
(ii) A rooted tree T = (T, p) is a pair of a tree T' and a distinguished vertex p called the
T00%.
(iii) A signed rooted tree T = (T, p,e) is a rooted tree (T, p) and a decoration ¢ of a sign

+1 on each edge of T not adjacent to the root p.

FIGURE 2.3. A signed rooted tree.

Given a signed rooted tree 7 = (T, p,e), we write v(T") for the set of vertices, e(T") for the
set of edges, and n(é\) =o(T) \ p for the set of non-root vertices. We regard v(T") as a poset
with unique minimum p, and in general o < 8 € v(T') when the shortest path connecting
and p contains a. We call a non-root vertex 3 a leaf if exactly one edge of T' is adjacent to 5,

—~

and write £(.7) C v(T) for the set of leaf vertices.
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Remark 2.13. Throughout what follows, for a finite set S, we write RS for the Euclidean
space of S-tuples of real numbers. One may always fix a bijection S ~ {1,2,...,n}, for some
n > 0, and hence an isomorphism R® ~ R”, but it will be convenient to avoid choosing
such identifications when awkward. We will most often consider S = n(;‘7\) the non-root
vertices for some rooted tree 7 = (T, p). Here if one prefers to fix a bijection b : n(</7\) =

{1,2,...,n(7)|}, we recommend choosing b to be order-preserving: if & < 3, then one should
ensure b(a) < b(f). This will allow for a clear translation of our constructions.

—

Definition 2.14. A signed rooted tree .7 = (T, p,¢) is called positive if the decoration &

consists of signs +1.

We will associate to any signed rooted tree T = (T, p, ), a multi-cooriented hypersurface,

conic Lagrangian, and Legendrian
Hz CR") L c T*RY7) Ay C JRMI)

where as usual we write n(é\) =v(T) \ p for the set of non-root vertices.
By definition, the latter two will be determined by the first as follows:
(i) L is the union of the zero-section R™7) and the positive conormal to H -
(ii) A 5 is the Legendrian lift of L » with zero primitive.
2.2.2. Type A trees. Let us first consider the distinguished case of A, 41-trees with extremal

root.

Definition 2.15. For n > 0, a linear signed A, +1-rooted tree is a signed rooted tree A,11 =
(An+1, p,a) with vertices v(Ap+1) = {0,1,...,n}, edges v(Any1) = {[i,i+1]|i=0,...,n—1},
and root p = 0.

By definition, the sign a is a length n — 1 list of signs (a[l,g], . ,a[n_ljn]). Let us set
€= (€0,--&n-1) = (a[1,2]s - - An—1,n]> 1) to be the length n list of signs where we pad a by
adding a single 1 at the end.

Definition 2.16. The models for A,-type arboreal singularities are given as follows:
(i) The arboreal A;-front is the empty set H4, = ) inside the point R?.
For n > 1, the arboreal A, 11-front is the cooriented hypersurface

Hy,,, ="' C R”

introduced in Section 2.1.3.
(ii) For n > 0, the arboreal A, ;-Lagrangian is the union of the zero-section and positive

conormal
La,,, =R"UT{,.Ha,,, C T*R"

(iii) For n > 0, the arboreal A,,11-Legendrian is the lift

AAn+1 = {O} X L.An+1 C Jan
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FIGURE 2.4. The two Az fronts with positive and negative sign.

FIGURE 2.5. Two A4 fronts with different choices of signs. The other two
fronts can be obtained from these two by reflections.

Remark 2.17. Following Remark 2.5, the arbitrary choice of the last sign €,_1 = 1 does not
affect the arboreal A,,11-models.

Recall the linear signed A,ii-rooted tree A,+1 = (Ap+1,p,a) has vertices v(Apy1) =
{0,1,...,n} with root p = 0, and so the non-root vertices form the set n(Ap+1) = {1,...,n}.
In the above definition, we should more invariantly view the ambient Euclidean space R" in
the form R™An+1) where the ordering of the coordinates matches that of n(A,41).
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With this viewpoint, we rename the smooth pieces of the A, i-front, indexing them by

non-root vertices
Hi="'PE CHapy  i€n(An)=1{1....n)

Likewise, we rename the smooth pieces of the of the A,,1-Lagrangian, indexing them by
vertices
Lo=R"C Ly,,,

Li:TH—{nHi CLa,,, ien(Ape1) =41,...,n}

and similarly, we rename the smooth pieces of the of the A,,+1-Legendrian, indexing them by

vertices

Ai:{O}XLAn+1,iCAAn+1 ’iGU(An+1):{O,1,...,TZ}

Lemma 2.18. Forn > 1, and n € v(An+1) = {0,1,...,n} the unique leaf vertez, and

ﬁn C Hy,,., the interior of the corresponding smooth piece, we have
HAn+1\Hn:HAn x R

inside of R™MAn+1) = R™An) » R,

Proof. Recall the other smooth pieces H; =""'Pf | fori=1,...,n — 1, are independent of

the last coordinate x,,. O

2.2.3. General trees. Now we consider a general signed rooted tree T = (T, p,e).

To each leaf g € E(é\), we associate the linear signed A, i-rooted tree Ag = (Ag,p,a)
where Ag is the full subtree of T' on the vertices v(Ag) = {a < B € v(T)}, and a is the
restricted sign decoration.

Consider the Euclidean space R™7). For each g € E(é\), the inclusion n(Ag) C n(i\)

induces a natural projection

s RUT) R™As)

Definition 2.19. Let 7 = (T, p,e) be a signed rooted tree.

(i) The arboreal model T -front is the multi-cooriented hypersurface given by the union
_ -1 7
Hz =Ugeyz) ™5 (Hay) C R™7)

where H, C R™A5) is the arboreal Ag-front.
(ii) The arboreal model .7-Lagrangian is the union of the zero-section and positive conor-
mal

_ n(9) + A *mn(F)
Ly =R UT! ~HzC TR

NS
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(iii) The arboreal model iLegendrian is the the lift
As={0} x L5 C J'R™T)

Arboreal models H 5, L > and A 5 corresponding to positive T are called positive.

N

Y

F1GURE 2.6. Two non A,-type fronts with different choices of signs.

Remark 2.20. When § = A,11, the above definition recovers Definition 2.16 verbatim.

Transporting from the case of A,+1, we may naturally index the smooth pieces of the
T -front by non-root vertices

—

Ha:wgl(HAﬂﬁa) C H; aen(T)

—

where 3 € £(.7) is any leaf with o < 8, and H4, o C H4, is the corresponding smooth piece.
Likewise, we may index the smooth pieces of the .7-Lagrangian by vertices
_ 7
L,=R"7) CLs

—

La:TH'gn(ﬁHaCLyA aen(T)
and the smooth pieces of the :?\—Legendrian by vertices
Ao ={0} x Ly C A5 aev(T)
Let us record a basic compatibility of the above Lagrangians and Legendrians.
Fix a signed rooted tree .7 = (T, p,e). Let us first consider the situation when there is a
single vertex p/ € 7 adjacent to p. Let J’ = 7 \ p be the signed rooted tree with root p’

and restricted signs.



18 DANIEL ALVAREZ-GAVELA, YAKOV ELIASHBERG, AND DAVID NADLER

Let ay,...,af € 7" be the vertices adjacent to p', and €1, ..., & the signs of ?assigned
to the respectlve edges from p’ to ai,...,q.
Let LOo c S*R™7) be the 1dea1 Legendrlan boundary of L5 C T*R™7). Note that L‘;

lies in the open subspace JR™7") ~ {py =1} C S*RMI).

Lemma 2.21. The contactomorphism
S JIRMT) o JIRHT)

S(@y,,p) = (xy — S0y €ips,/4.%,p)

oy,

= To, +€iP1/2, fori=1,...,k, g = wp else
takes the Legendrian L"?S isomorphically to the Legendrian {0} X L5,
Thus L°/79 itself is a model arboreal Legendrian of type T = :7\\ p.

Proof. For each leaf vertex of é\, we have a linear signed type A subtree of T given by the
vertices running from p to the leaf. By Definition 2.19, L 5 is the union of the corresponding
linear signed type A subcomplexes L 4. Each such subcomplex is independent of the coor-
dinate zg indexed by vertices 8 not in the subtree, hence lies in the zero locus of the dual
coordinate pg. Thus transport of each L% under the contactomorphism of the lemma reduces
to that of Lemma 2.8. Il

More generally, suppose p1,...,pe are the vertices adjacent to p. Observe that T \ pis
a disjoint union of signed rooted subtrees 9; cT \ p, for j =1,...,¢, with p; as root and
restricted signs. Let 9]\* = 93\ Up C 7 be the signed rooted subtree with p readjoined as
root and with restricted signs. Set ¢; = n(é\) \n(éj\)

Let L°° c S*R™?) be the ideal Legendrian boundary of L 5 C T*R™7). We similarly

have L°§+ C S*]R"(y ) the ideal Legendrian boundary of L 5+ C T*R"(’z ),
J 75

Since p; is the unique vertex adjacent to p within 9]\*, observe that L 5+ is connected and
7

in fact lies in ~ R
TR = {p, =1} ¢ SR

Moreover, observe that Log is the disjoint union of the connected components
Ay = L°°+ x RS  JIR™Z) x T*R% = {py, =1} ¢ SR

By Lemma 2.21, L°9+ C JlR”(ij) is a model arboreal Legendrian of type 9;, so Aj =

LO; +xRY9 CJ IR”(7 ) x T*R% is a stabilized model arboreal Legendrian of type 9]\ . This

proves

Lemma 2.22. Fiz a signed rooted tree T = (T, p,e).
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Let p1,...,pr be the vertices adjacent to p. Let 9 cT \ p be the signed rooted subtree
with p; as root and restricted signs, and 9+ 9 Up C T the signed rooted subtree with p
readjoined as root and with restricted signs. Set c; = n(@ \n(i/%\)

Then the ideal Legendrian boundary L°O C S*R™T) of the model arboreal Lagrangian Ls;C

TR of type T is the disjoint union of the Legendrians

Aj = L°°+ « R% ¢ SR,

which are stabilized model arboreal Legendrians of type éj\ .
By Lemma 2.18, we also have the following.

Corollary 2.23. For § € E(@ a leaf vertex, and f]g C H 5 the interior of the corresponding
smooth piece, we have

Hz\Hy=Hz , xR

T\B
inside of R™7) = RM(I\B) x RS,

2.2.4. Extended arboreal models. It will be useful for us also define extended arboreal models
associated with rooted, but not signed trees .7 = (T, p).
For the unsigned rooted tree 7,11 = (An+1,p) we define

Hy,,, :==""'T C R,
Ly, =R"UT§.H,,  C TR,
Ay =0x Ly, C JIR™.
Similarly, for a general rooted tree .7 = (T, p) we define

H7 =Ugesz) 75 (Hepy) C R

where H, C R™5) is the arboreal /g-front. Furthermore, we define

Ly =Ry H 5 c T*R"7)

]Rn(g)
and
Ay = {0} x Ay C JIRMT)
Clearly, for any signed version T of the tree 7 we have H; CHy,LzC Ly, Ay CAg.

Lemma 2.24. Given a closed embedding A? C AR with A?a C Af37°7a, for all «, the front
7r(A°)79) C Hgz is an embedding of H .

Proof. For each leaf vertex of 9\, we have a linear signed type A subtree of T given by
the vertices running from p to the leaf. By construction, A? and A% are the union of the
corresponding type A subcomplexes Ly and L$9. Each such subcomplex is independent of
the coordinates x5 indexed by vertices 3 not in the subtree. Now Lemma 2.10 confirms (L)
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is the standard embedding of H 4 after a change of coordinates x, indexed by vertices « in
the subtree. Moreover, the change of coordinates agrees for x, indexed by vertices « in the
intersection of such subtrees. By definition, H 5 is the union of the H 4. O

3. THE STABILITY THEOREM

In this section we define arboreal Lagrangian and Legendrian subsets and prove their sta-

bility under symplectic reduction and Liouville cone operations.
3.1. Arboreal Lagrangians and Legendrians.

Definition 3.1. Arboreal Lagrangians and Legendrians are defined as follows:

(a) A closed subset L C X of a 2m-dimensional symplectic manifold (X,w) is called an
arboreal Lagrangian if the germ of (X, L) at any point A € L is symplectomorphic to
the germ of the pair (T*R" x T*R™~" L » x R™~") at the origin, for a signed rooted
tree 7 with n = n(</7\) <m.

(b) A closed subset A C Y of a (2m + 1)-dimensional contact manifold (Y,¢&) is called
am arboreal Legendrian if the germ of (Y, A) at any point A € A is contactomorphic
to the germ of (J!(R™ x R™™™) = JIR" x T*R™™"™, A 5 x R™"") at the origin, for a
signed rooted tree T with n = n(é\) <m.

(c) A closed subset H C M of an (m + 1)-dimensional manifold M is called an arboreal
front if the germ of (M, H) at any point m € M is diffeomorphic to the germ of
(R x R™™" H 7 x R™™™") at the origin, for a signed rooted tree 7 with n =
n(é\) < m.

The pair (9\, m) is called the arboreal type of the germ of L, A, or H at the given point.

We say L, A, or H is positive if it is locally modeled on positive arboreal models at all points.

Remark 3.2. Later we will also allow arboreal Lagrangians to have boundary and even corners,
but throughout the present discussion we restrict to the above definition for simplicity.

Given an arboreal Lagrangian we call sup)\eL{n(é\()\))} the mazimal order of L, where
é\()\) is a the signed rooted tree describing the germ of L at the point A. Similarly, we define
the maximal order of arboreal Legendrians and fronts.

Every arboreal Lagrangian or Legendrian is naturally stratified by isotropic strata indexed
by the corresponding tree type. A Lagrangian distribution n in X is called transverse to
an arboreal Lagrangian L if it is transverse to all top-dimensional strata of L. Similarly a
Legendrian distribution n C & in a contact (Y, ) is called transverse to an arboreal Legendrian

A if it has trivial intersection with tangent planes to all top-dimensional strata of A.
Definition 3.3. A polarization of L or A is a transverse Lagrangian distribution.

Remark 3.4. We emphasize the transversality to an arboreal Lagrangian means transversality

to its closed smooth pieces, and not just to open strata.
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Before we continue we introduce some auxiliary notions. Let V be a symplectic vector
space and £1,£s,f3 C V linear Lagrangian subspaces which are pairwise transverse. We write
{1 < ly < (3 if ¢35 corresponds to a positive definite quadratic form with respect to the
polarization (¢1,¢3) of V. Let C C V be a coisotropic subspace. For any linear Lagrangian
subspace £ C V we denote by [(]¢ the symplectic reduction of ¢ with respect to C.

Let L be an arboreal Lagrangian whose germ at a point A € L has the type (9\ =
(T,p,e),m). Let L, C ThX the tangent plane to the root Lagrangian corresponding to
the root p. For each vertex o connected by an edge with p let L, C T\X denote the La-
grangian plane tangent to the Lagrangian corresponding to the vertex a. We recall that L,
and L, cleanly intersect along a codimension 1 subspace. Consider a coistropic subspace
Cq = Span(L,, L) C ThX. Let n be a Lagrangian distribution in X transverse to L. Define
the sign

+1,if [Lp]% < [La]% <[]

(1) e L o) = ~1, if [Ly)% <[] < [La]%.

L«

Lp
e(plix)=+4  el,L)=-1

F1cURE 3.1. The notion of sign for the Ay singularity.

Similarly, if A is an arboreal Legendrian in a contact manifold (Y, &), and n a Legendrian
distribution transverse to A, then for any point A € A of type T = (T, p,e) we assign a sign
e(n, A, a) for every vertex a adjacent to the root p as equal to =1 depending on the <-order
of the triple [L,,]Ca, [La]Ca, [n]Ca in [Q}Ca.

3.2. Stability of arboreal Lagrangians and Legendrians. The following is the main
result of Section 3. We use below the notation t*M for the germ of the cotangent bundle
T*M along M.

Theorem 3.5. Let 7 be a signed rooted tree. Let p1,...,pr be vertices adjacent to the root

p and f%\ be subtrees with roots p; (where we removed the decoration of edges [pja]). Let
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¢;  t'R™ — JIR™, m > n = n(T), be germs of Weinstein hypersurface embeddings with
disjoint images. Denote z; := ¢;(0), AJ = ¢;i(L 5 x R™=™7)), j=1,... k. Suppose that
)
() () = 0; |
(ii) the arboreal Legendrian A := U§:1 N projects transversely under the front projection
J'R" — R x R";

(iii) for each edge [pja] we have e(v, A, a) = Elpja]-
Then R™ U C(A), where C(A) is the Liouville cone of A, is an arboreal Lagrangian of type
(7,m) or equivalently, the germ of the front w(A) is diffeomorphic to H » x Rm=T),

Theorem 3.5 is a corollary of its unsigned version which is the content of the following

proposition.

Proposition 3.6. Let . be a rooted tree. Let p1, ..., px be vertices adjacent to the root p and
J; be subtrees with roots pj. Let ¢ : t*R™ — JIR™, m >n =n(7), be germs of Weinstein
hypersurface embeddings. Denote z; := ¢;(0), AV = ¢; (L, xR =1,... k. Suppose
that

() (=) = 0; |

(ii) the extended arboreal Legendrian A := U§:1 N projects transversely under the front

projection J'R™ — R x R";

Then R™UC(A) is an extended arboreal Lagrangian of type (<7, m), or equivalently, the germ
of the front w(A) is diffeomorphic to Hz x R™~™7),

Proof of Theorem 3.5 using Proposition 3.6. Consider the arboreal Legendrian as a closed
subcomplex of the extended model. Apply Proposition 3.6 to assume the extended front
is in canonical form. Then Lemma 2.24 implies the front of the original arboreal Legendrian

is a canonical model. O

Proposition 3.6 will be proven below in this section (see Section 3.6 ) below, but first we

discuss some corollaries of Theorem 3.5.

Corollary 3.7. Let A C 0,T*M be an arboreal Legendrian. Suppose that the front projection

7w : A — M is a transverse immersion. Then L := C(A)U M is an arboreal Lagrangian.

Proof. The intersection H := M N C(A) is the front of the Legendrian A. Each point a € H
has finitely many pre-images 21,...,2z; € A. The germs AJ of A at z; by our assumption
are images of arboreal Lagrangian models under Weinstein embeddings of their symplectic
neighborhoods. Hence, by Theorem 3.5 the germ of L at z is of arboreal type. O

It is not a priori clear that even the standard Lagrangian (resp. Legendrian) arboreal
models are arboreal Lagrangians (resp. Legendrians). However, the following corollary shows
that they are.
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PRV Y/
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FIGURE 3.2. In particular, the zero section union the Liouville cone on a
regular Legendrian is arboreal with As singularities along its front.

Corollary 3.8. Consider a model Lagrangian L 5 C T*R",n = n(é\) Then for any point
A€ L5 the germ of L 5 at A is a (é\’,n)-Lagmngian for a signed rooted tree T

Proof. We argue by induction in n. The base of the induction is trivial. Assuming the claim
for n — 1 we recall that L 5> can be presented as L, U C(A), where L, is the smooth piece
corresponding to the root p of 7 and A is a union of model Legendrians of dimension n — 1
in 0 T*(R™). By the induction hypothesis A is an arboreal Legendrian, and hence applying

Corollary 3.7 we conclude that L 5 is an arboreal Lagrangian. 0

Remark 3.9. We will not need it in what follows, so only briefly comment here that it is
possible to specify precisely the type (9\’ ,n) of the germ of L 7 at each point A € L.
Following [N13] the underlying tree 7" is a canonically defined subquotient of T, in other
words, a diagram 17" <— S — T, where S — T is a full subtree, and S — T’ contracts some
edges; conversely, any such subquotient can occur. Furthermore, if we partially order T" with
the root p € T as minimum, then the root p’ € T” is the unique minimum of the natural
induced partial order on 7”. Finally, to equip 7" with signs, we restrict the signs of T to the
subtree S, then push them forward to 7" using that each edge of T” is the image of a unique
edge of S.

Corollary 3.10. Let Lz C T*R"™ be a model Lagrangian associated with a signed rooted tree
(T, p,e). Let no,m be two polarizations transverse to L 5. Suppose that for any vertex a of T'
adjacent to p we have

e(no, L, a) = e(m, L, ).
Then there is a (germ at the origin of) a symplectomorphism v : T*R™ — T*R"™ such that
W(L) =L and di(no) = m1 along L.

Proof. Since 19 and 7; are transverse polarizations we may choose embeddings hg, hy
T*R™ — J'R"™ as Weinstein hypersurfaces such that hj(n;) = w, j = 0,1, where vy is the
canonical Legendrian foliation of J'R™ by fibers of the front projection to R™ x R. Consider
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the arboreal Lagrangians L; := C(h;(L 5)) U (R" x R), j = 0,1, and note that their arboreal
types are described by the same signed rooted tree 7 obtained from 7 by adding a new root,
connecting it by an edge to the old one, and assigning to edges [pa] of TcT adjacent to
the old root p the sign e(no, L, @) = e(n1, L, ). Applying Theorem 3.5 we find the required
symplectomorphism . O

Corollary 3.11. Let H C M be an arboreal front. Then for any submanifold ¥ C M

transverse to (all strata of) H the intersection ¥ N H is an arboreal front in X.

Proof. We can assume that H is an arboreal front germ at a point x € H, and hence the
germ of (M, H) at z is diffeomorphic to the germ of (]R"(ﬁ )+ RE, H 5 X R*) for some rooted
signed arboreal tree T and k =n— n(é\) Note that the transversality of ¥ to H implies
that codimX® < k and that the projection of p : ¥ C R x RE 5 RUIHL o the first
factor is a submersion, and because we are dealing with germs, it is a trivial fibration. On
the other hand, the projection p|sng : XN H — H 5 is the restriction of this fibration to
Hz C RV, O

%
H
T 0H
<\

F1GURE 3.3. Illustration that > N H is an arboreal front in X.

3.3. Parametric version. The following is the parametric version of Theorem 3.5.

Theorem 3.12. Let 7 be a stgned rooted tree. Let p1,...,pr be vertices adjacent to the
root p and jz\ be subtrees with roots p; (where we removed the decoration of edges [pjc]).
Let qﬁg St R™ = JIR™ m > n = n(T), be families of germs of Weinstein hypersurface
embeddings with disjoint images, parametrized by a manifold Y. Denote 2} := ¢%(0), Ay =

¢§(L 5 x R™=™7)), j=1,...,k. Suppose that
J

(i) 7(=!) = 0;
(ii) the arboreal Legendrian A, = U?Zl A{, projects transversely under the front projection
J'R” = R x R";
(iii) for each edge [pja] we have e(v, A, o) = Elp;al-
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Then there exists a family of diffeomorphisms ¢y between H 5 X R™7) and the front w(Ay).
If K CY 1is a closed subset and the (15? are the standard embeddings of the local model for
y € Op (K), then we may further assume ¢, = Id for y € Op (K).

The parametric version of Proposition 3.6 is formulated similarly. As a consequence of
Theorem 3.12 we get the following result:

Corollary 3.13. Fiz a signed rooted tree 7 = (T, p,e), set n = |n(§\)] and consider the
arboreal 7 -front H > C R"™. Let D(R", H 5) be the group of germs at 0 of diffeomorphisms of
R™ preserving H 5 as a front, i.e. as a subset along with its coorientation.

—

Then the fibers of the natural map D(R", H 5) — Aut(7) are weakly contractible.

Proof. We deduce Corollary 3.13 from Theorem 3.12. We will argue for 7 = A1 when
Hyu, ., =""'T; the case of general 7 is similar.

Since Aut(A, 1) is trivial, we seek to show D(R™,"~'T") is weakly contractible. Note any
¢ € D(R™,"~IT") preserves 0, and moreover, preserves the canonical flag in TyR" given by the
n-1p..

Let D(R™) denote the group of germs at 0 of diffeomorphisms of R™. Consider a k-sphere
of maps f; € D(R","7'I'), t € S*. Since all f; preserve 0 and the canonical flag in TyR",
there exists a k + 1-ball of diffeomorphisms g; € D(R"), t € B¥t! extending f;. Applying

tangents to the intersections ﬂi<i0

Theorem 3.12 to the Weinstein hypersurface embeddings induced by g;, we can find diffeo-
morphisms h; such that h; takes g;(" 'I') back to "~'T" and such that h; is the identity for
t € S*. Then hy o g; € D(R",""'T"), t € B**1, gives an extension of f; to the k + 1-ball. [

We also formulate the parametric version of Corollary 3.10.

Corollary 3.14. Let Lz C T*R"™ be a model Lagrangian associated with a signed rooted
tree (T, p,e). Let ng,n} be two families of polarizations transverse to L 5 parametrized by a

manifold Y. Suppose that for any vertex a of T' adjacent to p we have
e(my, L,a) = e(n{, L, ).

Then there is a family of (germ at the origin of) symplectomorphisms ¢¥ : T*R™ — T*R"™
such that ¥(L) = L and dy¥(n§) = n} along L. Moreover, if n§ = ni for y € Op (K) for
K CY a closed subset, then we can take 1Y = Id for y € Op (K).

The proof is just like in the non-parametric case, but applying Theorem 3.12 instead of
Theorem 3.5.

3.4. Tangency loci. Before proving Proposition 3.6 and its parametric analogue we need to
analyze more closely the geometry of hypersurfaces forming arboreal fronts.

Definition 3.15. Given smooth hypersurfaces X1, X € R"™!, we denote by T(X1, X2) C
Rt their tangency locus, i.e. the subset of points = € X1 N X5 such that T, X = T, Xo.
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Remark 3.16. Given smooth Legendrians L1, Ly C J'R™ whose fronts X1 = m(L1), X2 =
7(Lsy) C R™! are smooth hypersurfaces, note that T'(X7, Xs) = (L1 N La).

For 0 < j < i < n, recall the notation
hij = hi—j(Tj41,...,%;)
so in particular h; o = hi(x1,...,2;) and h;;—1 = hi(z;) = ;. Set
T;; = {h;j; = 0} C R**!
Note h; ; is independent of zo,...,z;, and we have

_ j+1 n—j—1
Ty =R X"

Lemma 3.17. For 0 < j < i < n, the tangency locus T("T;,"T';) C R"™! is the intersection

of either "I'; or "I'; with the union
j—1 Jj-1
{hij =0}U U {hix =hjr =0} =Ti; U U (Tir N Tjx)
k=0 k=0

Proof. Since "I';,"T'; are the graphs of h?, hjz», the projection of T'("T';, "I'j) to the domain R"
is cut out by

2 _p2 2 _ 2
h? = h3 dh? = dh?

Note h; = hjo = x1 — ]%2,17 hj = hjo = 1 — hil. By examining the dzi-component of
dh? = dh?, we see it implies h; = hj. Thus the projection of T'("I';, "I';) is cut out by the
single equation dh% = dh? which in turn implies h; = h;.

To satisfy dh? = dh?, so in particular h; = h;, there are two possibilities: (i) h; = h; = 0; or
(ii) h; = h; # 0. In case (i), we find the subset {h; o = hjo = 0} appearing in the union of the
assertion of the lemma. In case (ii), we observe dh? = dh? is then equivalent to dhﬁ1 = dhj%1
which in turn implies h; 1 = hj 1.

Now we repeat the argument. To satisfy dhi1 = dh?’l, so in particular h;; = hj1, there
are two possibilities: (i) ki1 = hj1 = 0; or (ii) ki1 = hj1 # 0. In case (i), we find the subset
{hi,1 = hj1 = 0} appearing in the union of the assertion of the lemma. In case (ii), we observe
dh%’1 = dhi1 is then equivalent to dh%2 = dhi2 Which in turn implies h; 2 = hjo.

Iterating this argument, we obtain the subset Ui;%){hi,k = hjr = 0}, and arrive at the
final equation dh% ; = 0. By examining the dz;i1-term, we see dhg ; = 0 holds if and only if
h; j = 0, which gives the remaining subset of the assertion of the lemma. O

Remark 3.18. The only evident redundancy in the description of the lemma is T; j_1NT} ;1 C

: _ 2
TZ‘J’ since hi,j—l =Tj — h

i.j» Ijj—1 = xj, so their vanishing implies the vanishing of h; ;.

We will be particularly interested in the locus T; ; C T'("I';,"I';) and formalize its structure

in the following definition.
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Definition 3.19. Given smooth hypersurfaces X1, Xo € R™*! we denote by 7°(X1, Xs) C
T(X1, X2) the subset of points © € X; N X2 where in some local coordinates we have X; =
{xg = 0}, Xo = {xg = 2?}. We write 7(X1, X2) C T(X1, X2) for the closure of 7°(X1, Xa),
and refer to it as the primary tangency of X1, Xo.

Remark 3.20. Given smooth Legendrians L1, Ly C J'R™ whose fronts X; = m(L1), X2 =
7(Ly) C R™ ! are smooth hypersurfaces, note that 7°(Xy, X») is the front projection of

where L, Lo intersect cleanly in codimension one.
We have the following consequence of Lemma 3.17.

Corollary 3.21. For 0 < j < i < n, the primary tangency 7("I';,"T;) C R s the

intersection of either "I'; or "I'; with T ;.
Before continuing, let us record the following for future use.

Lemma 3.22. Fiz 0 <k<j<n-1.
We have
T(T(an an)a T(nFja nrk)) = T(nrna nrj) N T(nrjv nrk)
where the primary tangency of T(I'y,"I'y), 7("I';,"T'k) of the left hand side is calculated in
nr, ~ R

< C z‘\—"l ]ZTIO>

FiGURE 3.4. Verification of the conclusion of Lemma 3.22 for n =
2, in this case both the right and left hand sides of the equality
7(7(?Tg, 2T), 7(*T1, 2Tp)) = 7(*T2, 2T'1) N 7(*T1, %Ty) consist of the origin.

Proof. By the preceding corollary, the left hand side is the intersection "I'y N 7 (T k, T} k)-
Note "I', N Tj,k = T("Fj, "Fk) = ”Fj N Tj,k- Hence

"Te N T(Toks Tjk) = "L 07 (Toks Thk)
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since y € "I'g ﬂT(Tnvk,Tij) — y € "' ﬂfz—']"k, Yy € T(ka,j—']"k) — Yy € ”Fj QTM,
(NS T(Tn,kyTj,k) <~ y € nFj M T(ka, Tng).
Next, recall

Tn,k — RkJrl % "’k’ll“n,k,l Tjj,k — Rk+1 % ”’kflfj,k,l
Hence by the preceding corollary, we have
(T Tik) = Tk O {hn g = 0}

Thus the left hand side is given by "I'; N7} N1, ;.
On the other hand, by the preceding corollary, the right hand side is also given by "I'; N
Tn; NI O

3.4.1. More on distinguished quadrants.
Corollary 3.23. For 0 < j <i<n, we have
"TENTrs =T, "T5) = 7("T5,"15)
and they coincide with the closed boundary face of "I'; cut out by h;j = 0.
Proof. For j = 0, we have "I'§ = "'y = {xo = 0}. From the definitions, we have
"IE N =T("IF,"To) = 7("I5,"To)

which is cut out of "P¢ by h;o = h; = 0.

For j > 0, the assertions follow from Lemma 2.4 by induction on n. O
Remark 3.24. Note for any 0 < j < i < n, we have
7("I';,"T';) = U, T("I‘?,”F?)

To see this, consider z € 7("I';,"I';), so that h; j(x) = 0 by Corollary 3.21. Choose ¢ so that
z € "I';. Then by Corollary 3.23, we have z € 7("I';,"I'5).

For ¢ = 0, let "L = R™ C T*R" denote the zero-section. For i = 1,...,n, consider the
conormal bundles
"Li =Ty . R*"CT*R"

i—1
and their union
Similarly, for ¢ = 0,...,n, consider the smooth Legendrian

nAS C JIRT

that maps diffeomorphically to "I'; C R"™*! under the front projection 7 : JIR® — R**1 and

their union

nAe — U?:O nAf
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Note the contactomorphism of Lemma 2.1 takes "A¢ C J'R™ isomorphically to {0} x "L$ C
{0} x T*R", and thus "A® C J'R™ isomorphically to {0} x "L¢ C {0} x T*R".
We have the following topological consequence of Lemma 2.4.

Corollary 3.25. As a union of smooth manifolds with corners, "I'* C R*"*1 is given by the

gluing

"TE = ("I X Rao) [n-1pe oy, (R™ x {0})
where ' = (eoe1,€2,...,6n). The front projection takes "L C J'R™ homeomorphically to
nre ¢ R

Before continuing, let us record the following for future use.

Corollary 3.26. For 0 < j < i < mn, the closure of the codimension one clean intersection of
"L;,"Lj is precisely "Ly N"L5.

Proof. The closure of the codimension one clean intersection of " L§,"™A; is conic and projects
to the primary tangency of "_1F;?71,"_1Fj,1. By Corollary 3.21, the primary tangency of
[Cad WER ”_1Fj_1 is cut out by h;—1 j—1 = 0. By Corollary 3.23, this is precisely the tangency
T(”_lfil, "_11“3-,1) and hence lifts precisely to the conic intersection "L7 N" LS. U

3.5. The case of 47, 1-tree. The following Theorem 3.27 will play a key role in proving
Proposition 3.6.

Theorem 3.27. Let o : T*R™ — J'R"™ be an embedding as a Weinstein hypersurface. Assume
that the image of "L under ¢ is transverse to the fibers of the projection J'R™ — R™. Let
T =n(e("L)) C R x R™ be (the germ of) the front at the central point.

Then there exists a diffeomorphism R x R™ — R x R"™ taking T to the germ at the origin
of "I' C R x R™.

The proof of Theorem 3.27 will proceed by induction on the dimension n. At each stage,

we will prove the fully parametric version:

Theorem 3.28. Let ¢¥ : T*R™ — J'R"™ be a family of Weinstein hypersurface embeddings
parametrized by a manifold Y. Assume that the image of "L under ©Y is transverse to the
fibers of the projection J'R™ — R™. Let TY = n(p¥Y("L)) C R x R™ be (the germs of) the
fronts at the central points.

Then there exists a family of diffeomorphisms Y : R x R™ — R x R" taking YY to the germ
at the origin of "I' C R x R™. If ¢¥ = Id for y € Op (K), where K CY is a closed subset,
then we may assume V¥ = Id for y € Op (K).

As usual the case of general pairs (Y, K) follows from the case Y = DF and K = S¥~1.
To simplify notation we set "® = ¢("L), so that T = 7("®) and similarly with parameter
superscripts. We also denote "®,, = ¢("L,) and Y,, = 7("®,,).
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3.5.1. Base case n = 0. The k-parametric version states: the germ of any graphical hyper-
surface T C R x R is diffeomorphic to the germ of the zero-graph °T' x R* = {0} x R*. This
can be achieved by an isotopy generated by a time-dependent vector field of the form h.0,,.

This vector field is zero at infinity if T is standard at infinity.

3.5.2. Casen = 1. The next case of the induction n = 1 is elementary but slightly different
from the others, so it is more convenient to treat separately.

With the setup of the theorem, consider the front T = 7(*®) C R2, and assume without
loss of generality that the origin is the central point. By induction, we may assume, the front
takes the form T = I'o U Y1 C R? where I'g = {zg = 0}. Near the origin, the intersection
o N Yy and tangency locus T'(I'g, T1) coincide and consist of the origin alone. Moreover, by
construction, the origin is a simple tangency, and so Y1 = {zo = ax?} with a(0) # 0. Now it
is elementary to find a time-dependent vector field of the form h;z¢0s,, hence vanishing on I'y,
generating an isotopy taking Y to either I'y = {zg = 23} or —I'; = {xg = —z}}. In the former
case, we are done; in the latter case, we may apply the diffeomorphism (zg,z1) — (—z9, 1)
to arrive at the configuration I'g U I'y. Finally, it is evident the prior constructions can be

performed parametrically, with the vector field zero at infinity if T is standard at infinity.

3.5.3. Inductive step. The inductive step takes the following form. Suppose the fully para-
metric assertion has been established for dimension n — 1. Starting from "® C T*R", re-
move the last smooth piece to obtain "® = "® \ "®,, and consider the corresponding front
Y’ = 7("®'). Note that "®' =""1® x R C T*(R" ! x R), and so by an inductive application
of the 1-parametric version of the theorem, we may assume

T ="1T xR

We will find a diffeomorphism R"*! — R"*! that preserves Y’ (as a subset, not pointwise),
and takes Y, to "I',,. Moreover, it will be evident the diffecomorphism can be constructed
in parametric form, including the relative parametric form. This will complete the inductive

step and prove the theorem.

3.5.4. Two propositions. The proof of the inductive step is based on the following 2 proposi-

tions.

Proposition 3.29. Fixzn > 2.
With the setup of Theorem 3.27, suppose T = U:‘L:_ol "T;UY, where we recall T,, = w("®,,).

Suppose in addition Y, has primary tangency loci satisfying
T(T’n7n]-_"b) DT(nannFi) 7::0,...,7’7/— ]_

Then YTy, = {xo = ah2} where

n—1
a=1+8T[hl;=1+ph% ---h2,
j=1
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Moreover, the same holds in parametric form.

Proof. We have Y,, = {z¢g = g} for some g. Since 7(Y,,"To) D 7("T'y,"To) = {hn = 0},
we must have g is divisible by h2, hence g = ah2, for some a. Next, for any j # 0,n, by
Lemma 3.17, 7("I',,"T;) is cut out by hy, ; = 0. Since 7(1,,"I';) D 7("I',,"I';), and h, # 0
along a dense subset of {h,, ; = 0}, taking the ratio g/h2 shows that we must have o = 1+ 4,
where 0 is divisible by hfw-. Repeating this argument, and using the transversality of the

level-sets of the collection A, ;, we conclude that § = 5’112%1 - h? O

nn—1*
Proposition 3.30. Fiz n > 2.

With the setup of Theorem 3.27, suppose T = U?:_ol "7, U, where we recall T,, = w("®,).
Suppose in addition T, = {xg = ah?} where

n—1
a=1+81] h?L,j = 1+6h37,,1”'h721,n—1
j=1

Consider the family Tyt = {xo = (1 —t + ta)h2} so that Tpo="Ty, Tn1 = Th.
Then there exist functions g; : R™™1 — R such that the vector fields

n—1

JtUn—1 = Gt Zizo xZ%axz = 1700z, + %gtxlam +eee %gtxn—laﬂcnfl

generate an isotopy ¢ : R™ — R such that o1(Yn0) = Lo

In addition, the functions h:, hence vector fields hiyv,_1, are divisible by the product
n—1

H]:l hTL,j‘
Moreover, all of the above holds in parametric form.

The following lemmas are needed for the proof of Proposition 3.30.
Lemma 3.31. For all 0 < i < n, the vector field
v =)0 0 xj%azj = 200z + 5210z, + - + %xﬁzz
preserves each "I'; C R forj=0,...,i.

Proof. Since "T'; C R™*! is independent of zj11, ..., 2n, it suffices to prove the case i = j = n.
Recall "I, is the zero-locus of f = 29 — h2. We will show v(h,) = 3h, and so v(f) = f.
Recall hn — hn,o = xr1 — h’?%,,l’ and ln general h‘TL,j — I'JJ,»:[ - h%,j‘i’
Va(hom—1) = Q%hn,n—lv and by induction, v(h, ;) = #hw’, so in particular v(hy,o) =
v(hy) = Shn. -

1 with Ay, -1 = x,. Thus

Remark 3.32. In the context of the inductive step outlined above, we will use Lemma 3.31 in

particular the vector field
Un—-1 = Z?;()l xz%a:cz = $03x0 + %xlaxl + -+ Qn%lxn—laxn_l

to move Y,, to "I",,. The lemma confirms we will preserve Y =""'I' x R = U?;ol T,
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Lemma 3.33. For any 0 < j<i<mn, and 1 <k <1, we have

on?
8xk N

k-1
—(-2)* H hij = —(=2)"hiohi1 - hip
=0

Proof. Recall h; = h;p and the inductive formulas h; ; = xj41 — h%jﬂ with h;;—1 = ;. Thus

we have o2 o2 o2
W o, R VU A
856j+1 7 ox 7 Oz >J+
and the assertion follows. O

Proof of Proposition 3.30. Suppose T = U?:_()l "T; UY,, where T, is the graph of
Hg = (148 [ by j)hi = (1+ Bhy -+ b7 B3
1

Our aim is to find a normalizing isotopy, generated by a time-dependent vector field vy,
taking the graph Y,, = {x¢g = Hpg} to the standard graph "I',, = {z¢ = h2}, i.e. to the graph
where 8 = 0, while preserving U?:_ol "T;. Thus for any infinitesimal deformation in the class of
functions Hg, we seek a vector field v realizing the deformation and preserving the functions

ho,...,hn_1, i.e. we seek to solve the system
hi=0, i=0,....,n—1

(2) : nil 2 2 2
HB =7 H hn,j = fyhn,O T hn,nfl
j=0

where H g denotes the derivative of Hg with respect to v, and « is any given smooth function.
Let ®5 C T*R"! denote the conormal to the graph of Hg. Any vector field v =
>0 vj0/0x; on R™1 extends to a Hamiltonian vector field vy on T*R™ with Hamil-
tonian H = Z?:o pjvj. We will find v deforming the graph of Hg by finding H so that vy
deforms the conormal to the graph ®g.
In general, for a function f : R" — R, with graph I'y = {xg = f} C R""!, denote the
conormal to the graph by Tf“f C T*R™!. With respect to the contact form pidzi+. . . pnda, —

2odpg, the conormal Tlff is given by the generating function F(x1,...,2,) = —pof(x1,...,ZTn),
i.e. it is cut out by the equations
of .
pi:—poaxi, i1=1,...,n
xo = f(x1,...,2p)

Hence given a Hamiltonian H = Z?:o Pjvj, its restriction to the conormal Tfkf is given by

n
of
Hz = povolao—s — Po > ajcjvj!zo:f
j=1



ARBOREAL MODELS AND THEIR STABILITY 33

and so further restricting to pp = 1, we find the Hamilton-Jacobi equation

H

n
of .
Tlffm{pozl} = UO‘a:o=f - ; %Uﬂxo:f = UO‘xozf —f

Let us apply the above to Hg and h;, for ¢ = 0,...,n — 1. It allows us to transform
system (2) into the system

’Uo(l'l, e ,.’L‘n,hi) —
7j=1

(3)

n n—1
0H
’U()(l‘l,...,xn,Hg)— ) évj:'YHh?l,j
—1 9% =0

Note we can reformulate Lemma 3.31 from this viewpoint: when § = v = 0, given any

function h = h(zxy,...,x,), the functions
(4) vozxoh,vl:%h,vgz%h,...,vn:;—:h

satisfy system (3).

Now let us choose vg,v1,...v,—1 as in (4) but set v, = 0. This will satisfy the first n
equations of system (3), independently of 3,~. From hereon, we will restrict to this class of
vector fields and focus on the last equation of system (3).

Let us first set § = 0, so that Hg = h2 and solve system (3) in this case. Using Lemma 3.33,

we can then rewrite the left-hand side of the last equation of system (3) in the form

n—1 6h2 n—1 8h2 2 n—1 7j—1
2 2 n¥i | _ 2 Y
vo(Z1y ...y Ty, hy) — 2 ba, —vj=h|h; Z 92, 2 =h hn—i—Z( 1) x]th,k
j=1 j=1 J=1 k=0
Here we recall the notation h;; = hi—j(zj+1,...,2;), so that using the relations h,, = hy, 0,
P — Thy1 = _hi,k—o—l we have

83:] S=YTyT thk
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Further, we can inductively simplify the term in parentheses

n—1 Jj—1 n—1 j—1
hi+2(_1)jxj th,k =hp | hn — 21 +Z(_1)jxthn,k
g=1 k=0 j=2 k=1

n—1 Jj—1
=hy | —h21 + Z(—l)J% H hn
=2 k=1
n—1 Jj—1
= Bt | —hog 22+ 3 (=175 [] b
j=3 k=2

n—1
= (_1)n71hnhn,lhn,2 T hn,n—l = (_1)7171 H th
j=0

Thus for § = 0, the last equation of system (3) reduces to

n—1 n—1
D" B ] g =~ ] P25
j=0 j=0
and hence can be solved by
n—1
h=(=)""y ] tns
§=0

Now for general 5, we will similarly calculate the left-hand side of the last equation of

system (3). To simplify the formulas, set

F= nnl B j 0 = BF?
j=0
Thus we have Hg = (1 +6)h2, and our prior calculation showed when 3 = 0, the last equation
of system (3) took the form

(—=1)" 'hF = yF?
so was solved by h = (—1)" "1~ F.

For general 3, we just need to consider the extra term obtained from the 6 part of the
factor (1 + @) which multiplies h2. It therefore follows formally from the previous equation
that, after factoring out the function h to be solved for, the left-hand side of the last equation
of system (3) takes the form

n—1
_qyn-t SNl
(- N1+ 0)F hnz2jamjx]

J=1
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Thus the equation itself takes the form

1 06
. n—1 — 2 . = 2
(5) (=D)" 1 +0)F —hy, jE % 0z, | h=~F
Since 6 = SF?2, we have

0 F?
0 72 op 58 72 op Lop 57
8333 (9qJ oq; 8(]] 0q;
and hence 5979]_ is divisible by F'. Thus we can divide equation (5) by F', and after renaming

7, write equation (5) in the form

(1+O(x))h = ~F

where O(z) vanishes at the origin. We conclude we can solve the equation by h = (1 +
O(x)) "'y F.
This completes the proof of Proposition 3.30. 0

3.5.5. Proof of Theorem 3.27. In this section, we use Propositions 3.29 and Proposition 3.30
to complete the inductive step outlined in 3.5.3, and thus, complete the proof of Theorem
3.27. Let us assume n > 2. Recall the notation "® = p("L), "®, = ¢("L,), T = n("®) and
T, =n("d,).

Then T = YUY, where Y/ = [J!) "I} is already standard. We will implement the
following strategy. Suppose for some 0 < k < n — 1, we have moved Y,,, while preserving Y,
so that we have the relation of primary tangencies

(Y, "T';) D 7("T'y,"Ty) j>k

Then using Proposition 3.29 and Proposition 3.30, or alternatively, the cases n = 0,1 when
respectively k = n — 1,n — 2, we will move T,,, while preserving Y’, so that we have the

relation of primary tangencies
7(Yy,"T;) D ("', "T;) j>k

Proceeding in this way, we will arrive at £k = 0, where all primary tangencies have been
normalized. Then a final application of Proposition 3.29 and Proposition 3.30 will complete
the proof.

To pursue this argument, we need the following control over primary tangencies.

Lemma 3.34. Fizr 0 <k <j<n-—1.
We have
T(1(Y0,"Tk), 7("T;,"T')) D 7(YTy, ") N7 ("I';,"T')
Moreover, when k = n — 2, the tangency of 7(Tp,"T'n—2) and 7("T'y—1,"T'yn—2) is nonde-

generate.

Proof. We will assume k& > 0 and leave the case kK = 0 as an exercise.
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Y,

F1GURE 3.5. The strategy of the proof: inductively normalize tangencies.

Fix a point
Y € T(Tn,”Fj) N T(”Fj,"l“k)
In particular y € T, and so y = 7(g) for some § € "®,,. Recall "A,, = [J."A;,. Hence after
applying ¢ we may also write "®,, = (J."®;, and so § € "®7, for some «.

Note y € 7(Y,,,"T;) implies ¢ is in the closure of the clean codimension one intersection of
P, "A;.

By applying ¢ to Corollary 3.26, this locus intersects "®;, precisely along "®5 N "Aj and
so gy € "AS.

Similarly, note y € 7("I';,"I'y) implies 7 is in the closure of the clean codimension one
intersection of "Aj;, "Ay. By Corollary 3.26, this locus intersects " A5 precisely along "ASN™Aj
and so § € "AJ.

Thus altogether § € "®; N"AS N"A7 = ("5 N"A7) N (MAF N TAL).

By Corollary 3.26, the intersections "®7 N"Aj and "AS N "A§ are closures of clean codi-
mension one intersections, hence their projections lie in the primary tangencies 7(Y,,"T'y)
and 7("I';,"T'y) (for the first intersection one applies ¢ to the conclusion of Corollary 3.26).
Moreover, "®7 N"™A} and "ASN"™Af intersect along their primary tangency. Since m restricted
to ™A has no critical points, the projection of this primary tangency is again a primary
tangency. Hence y € 7(7(1p,"I'y), 7("I'j,"I'y)), proving the asserted containment.

We leave the nondegeneracy of the case k = n — 2 to the reader. O

Now we are ready to inductively normalize the primary tangencies.

Lemma 3.35. Fiz0<k<n-—1.
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Suppose
7(YTy,"I';) = 7("I',, ") i>k
Then there exists a diffeomorphism @ : R"T1 — R preserving Y/ = U?:_ol "T'; such that
T(¥(Tn),"Tj) = 7("I'n, "Ty) Jj=>k

Moreover, when k # n — 2, the diffeomorphism is an isotopy.

Proof. We will assume k£ < n — 3. We leave the elementary cases k = n — 2,n — 3 to the
reader. They can be deduced from the parametric versions of the cases n = 0,1 presented in
3.5.1, 3.5.2 respectively.
Throughout what follows, we use the projection R"*! — R” to identify "I';, = R".
On the one hand, we have
7("T;,"Ty) = RE x n=F=1T, k<j<n
On the other hand, by Lemma 3.34 and assumption, we have
T(T(Tn,nrk), T(nFj,an)) = T(Tn,”I‘j) M ”Fk = T("Fn,”l“j) N an k< ] <n
Hence within "T'y, = R™, the loci 7(Y,,,"T'x) and 7("T',,"T'x) have the same tangencies with
7("T;,"Tg) = RE x n=*k=1D, 4 k<j<n

Thus Proposition 3.29 and Proposition 3.30 provide a time-dependent vector field of the

form

n—1
1
ve="hy Y 570,
i=kt1

generating an isotopy ¢ : R"7% — R"~F satisfying
o(7(Tn,"Tk)) = 7("T'n, "I'k)

In addition, the function h;, hence vector field vy, is divisible by the product H;l:_,i 11 hnj, and
thus ¢ preserves its zero-locus.
Let us complete v; to the vector field

n—1 1
i=0
and consider the isotopy 1 : R**1 — R"*+! generated by V;.
Then 1 satisfies
Y(T(Tn,"Tk)) = 7("T'n, ")
It also preserves "T';, for 0 < i < n —1, as well as 7(Y,,,"T';) = 7("I',,"T), for j > k. In
addition, it preserves

7("T,"Ty) = RE x n=h=1T, kE<j<n



38 DANIEL ALVAREZ-GAVELA, YAKOV ELIASHBERG, AND DAVID NADLER
since this is the zero-locus of h,, ;. O

Finally, let us use the lemma to complete the inductive step of the proof of Theorem 3.27
as outlined above. Suppose for some 0 < k < n — 1, we have moved Y,,, while preserving Y,

so that we have the sought-after primary tangencies
T(Tn,”l“j) = T(”Pn,”l‘j) 7> k

Then using Lemma 3.35, we can move Y,, while preserving Y’, so that we have the sought-

after primary tangencies
7(Yp,"I'y) = 7("T'y,"T) j>k

Proceeding in this way, we arrive at k = 0, where all primary tangencies have been normalized.
Now a final application of Proposition 3.29 and Proposition 3.30 move Y, to "I',, while

preserving Y’, and thus complete the proof of Theorem 3.27.

3.6. Conclusion of the proof. We are now ready to prove Proposition 3.6. As a consequence
we establish Theorem 3.5, and since all the above also holds parametrically this also establishes

the parametric version Theorem 3.12.

Proof of Proposition 5.6. Take any point A in the front H := m(A) and let 7—1(\) =
{AM,o Ak} Let Aq,...,Ar be germs of A at these points of arboreal types (7},n),
n(7;) = nj. We need to show that the germ of the front H at X is diffeomorphic to the
germ of a model front H 5, where .7 is a signed rooted tree obtained from | | T} by adding the
root p and adjoining it to the roots p; of the trees T by edges [pp;]. The signs of all edges of
the trees Tj are preserved, while previously unsigned edges p;ja get a sign e(v, L, «), see (1).

We proceed by induction on the number of vertices in the signed rooted tree .7 = (T, p, €).

The base case of a (o, m)-front H C R™ is the same geometry as appearing in 3.5.1: any
graphical hypersurface H C R x R™~! is isotopic to the germ of the zero-graph {0} x R™~1.

For the inductive step, fix a rooted tree J = (T,p,¢), and as usual set n = |n(.7)]|.
Consider a (7, m)-front H C R™, with by necessity m > n.

Fix a leaf vertex 8 € ¢(.7), which always exists as long as .7 # . Consider the smaller
signed rooted tree .7’ = 7 \ f3, and the corresponding (.7, m)-front H' = H \ H[8] C R™,
where H [B] C H is the interior of the smooth piece indexed by 8. By induction, we may
assume

H' = Hy x R+l c R™

Thus it remains to normalize the smooth piece H|[5].

Let @3 = (Ag,p,e3) be the linear signed rooted subtree of .7 = (T, p,e) with vertices
v(Ag) ={a€v(T)|a < p}. Set d =v(T)\v(es) = n(T)\n(a) to be the complementary
vertices.

Consider the (73, m)-front K C H given by the union K = Uaen(m/ﬁ) K[a] of the smooth
pieces of H C R™ indexed by o € n(#/). Note for @73 = o3 N 7', and K' = K N H', we
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ah‘eady ha\/e
K/ - H 7 X R 1 C R
%

and seek to normalize the smooth piece K[| = H[S].

Now we can apply Theorem 3.27 to normalize K[3] viewed as the final smooth piece of
K. More specifically, we can apply Theorem 3.27 to normalize K [3] while preserving K’ and
viewing the complementary directions R™ "1+ a5 parameters, see Figure 3.6. This insures
we preserve H' and hence do not disturb its already arranged normalization.

This concludes the proof of Proposition 3.6. U

. e}

Hor 8 R
y
)

H o * P\m»m*«d
(4

FI1GURE 3.6. Treating the complementary directions as parameters.
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