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Abstract. The main result of this paper is the uniqueness of local arboreal models, defined
as the closure of the class of smooth germs of Lagrangian submanifolds under the operation
of taking iterated transverse Liouville cones. A parametric version implies that the space of
germs of symplectomorphisms that preserve the local model is weakly homotopy equivalent
to the space of automorphisms of the corresponding signed rooted tree. Hence the local
symplectic topology around a canonical model reduces to combinatorics, even parametrically.
This paper can be read independently, but it is part of a series of papers [AGEN19, AGEN20b,
AGEN22] by the authors on the arborealization program.
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1. Introduction

1.1. Main results.

1.1.1. Brief summary. This is part of a series of papers [AGEN19, AGEN20b, AGEN22] by

the authors on the arborealization program. Besides motivation, this paper can be read

independently from the other papers, and we begin here with an account of its main results.

Its relevance to the arborealization program is discussed in Section 1.2.

The class of arboreal singularities was introduced by the third author in the paper [N13].

The class was defined in [N13] as abstract stratified complexes, and also as stratified singular

Lagrangians and Legendrians via concrete embeddings. Subsequently in [St18] and [E18],

these constructions were further decorated by signs (one can view the class in [N13] as the

“positive definite” version of the “arbitrary index” generalization of [St18] and [E18]).

It is important to point out that the definition in [N13] fixes only the homeomorphism, and

not di↵eomorphism type of the singularity. Likewise, the definitions in [St18] lead a priori to a

class of singularities for each combinatorial type, rather than unique local models. While this

is su�cient for many applications, for example for calculating many invariants, the homeomor-

phism type of an arboreal Lagrangian does not determine in general the symplectomorphism

type of the ambient manifold, even if the Lagrangian is smooth (e.g. see [Ab12]). In [E18] an

inductive definition for a concrete representative of each combinatorial type was given, but

no explicit formulae were provided, nor was it proved that this concrete representative was

di↵eomorphic to other possible representatives of the same combinatorial type.

In brief, the main new innovations of the current paper are:

(i) Uniqueness Theorem 1.2: Signed arboreal Lagrangian and Legendrian singularities

are determined up to ambient symplectomorphism by their combinatorial type.

(ii) Canonical Model Definition 2.19: Each combinatorial type has a canonical local

model, described not only inductively but by simple polynomial equations.

(iii) Automorphism Theorem 1.3: Automorphisms of signed arboreal Lagrangian and

Legendrian singularities are encoded by automorphisms of their combinatorial data,

even parametrically.

The questions of uniqueness and automorphisms as established in (i) and (iii) were not even

considered in prior papers on the subject; the canonical local models of (ii) were also not known

prior to this paper. Given a canonical model as in (ii), if we take its Legendrian lift, apply

any contactomorphism taking it into generic position, and form its Liouville cone, then (i)

implies we once again obtain a canonical model. At its heart, the proof shows any su�ciently

small contact deformation of a canonical local model in generic position in a cosphere bundle

can be realized by lifting an isotopy of the base. The calculation of automorphisms in (iii)

follows from a parametric generalization of this argument.
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We find it surprising that canonical models with such good properties exist. Indeed, we

do not know of any other su�ciently large class of Lagrangian singularities which admit a

discrete classification up to ambient symplectomorphism.

1.1.2. Uniqueness Theorem. To explain the Uniqueness Theorem 1.2 in more detail, we first

introduce some auxiliary notions.

A closed subset of a symplectic or contact manifold is called isotropic if is stratified by

isotropic submanifolds (by stratified, we mean there is a locally finite partition into locally

closed submanifolds of the ambient manifold). It is called Lagrangian or Legendrian if it is

isotropic and purely of the maximal possible dimension (i.e if any stratum is in the closure of

the one of maximal dimension). The germ at the origin of a locally simply-connected isotropic

subset L ⇢ T ⇤Rn of the cotangent bundle with its standard Liouville structure � = pdq admits

a unique lift to an isotropic germ at the origin bL ⇢ J1Rn = T ⇤Rn
⇥ R of the 1-jet bundle.

Given an isotropic subset ⇤ ⇢ S⇤Rn of the cosphere bundle, its Liouville cone C(⇤) ⇢ T ⇤Rn,

i.e. the closure of its saturation by trajectories of the Liouville vector field Z = p @

@p
, is an

isotropic subset.

We will take the following inductive definition as our starting point; it captures how arboreal

singularities typically arise in nature.

Definition 1.1. Arboreal Lagrangian (resp. Legendrian) singularities form the smallest class

Arbsymp
n (resp. Arbcontn ) of germs of closed isotropic subsets in 2n-dimensional symplectic

(resp. (2n+1)-dimensional contact) manifolds such that the following properties are satisfied:

(i) (Invariance) Arbsymp
n is invariant with respect to symplectomorphisms and Arbcontn is

invariant with respect to contactomorphisms.

(ii) (Base case) Arbsymp
0 contains pt = R0

⇢ T ⇤R0 = pt.

(iii) (Stabilizations) If L ⇢ (X,!) is in Arbsymp
n , then the product L⇥R ⇢ (X⇥T ⇤R,!+

dp ^ dq) is in Arbsymp
n+1 .

(iv) (Legendrian lifts) If L ⇢ T ⇤Rn is in Arbsymp
n , then its Legendrian lift bL ⇢ J1Rn is in

Arbcontn .

(v) (Liouville cones) Let ⇤1, . . . ,⇤k ⇢ S⇤Rn be a finite disjoint union of arboreal Legen-

drian germs from Arbcont
n�1 centered at points z1, . . . , zk 2 S⇤Rn. Let ⇡ : S⇤Rn

! Rn

be the front projection. Suppose

- ⇡(z1) = · · · = ⇡(zk);

- For any i, and smooth submanifold Y ⇢ ⇤i, the restriction ⇡|Y : Y ! Rn is an

embedding (or equivalently, an immersion, since we only consider germs).

- For any distinct i1, . . . , i`, and any smooth submanifolds Yi1 ⇢ ⇤i1 , . . . , Yi` ⇢ ⇤i` ,

the restriction ⇡|Yi1[···[Yi`
: Yi1 [ · · · [ Yi` ! Rn is self-transverse.

Then the union Rn
[C(⇤1)[ · · ·[C(⇤k) of the Liouville cones with the zero-section

form an arboreal Lagrangian germ from Arbsymp
n .
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With the above classes defined, we can also allow boundary by additionally taking the

product L ⇥ R�0 ⇢ (X ⇥ T ⇤R,! + dp ^ dq) for any arboreal Lagrangian L ⇢ (X,!), and

similarly for arboreal Legendrians.

The main technical result of this paper is the Stability Theorem 3.5 for arboreal singularities

as inductively characterized by Definition 1.1. We will content ourselves in this introduction

with stating its main application, which is the Uniqueness Theorem 1.2. As will be shown,

to each member of the class Arbsymp
n , one can assign a signed rooted tree cT = (T, ⇢, ") with

at most n+ 1 vertices; here T is a finite acyclic graph, ⇢ is a distinguished root vertex, and "

is a sign function on the edges of T not adjacent to ⇢. The Uniqueness Theorem states that

this discrete data completely determines the germ:

Theorem 1.2. If two arboreal Lagrangian singularities L ⇢ (X,!), L0
⇢ (X 0,!0) of the class

Arbsymp
n have the same dimension and signed rooted tree cT , then there is (the germ of) a

symplectomorphism (X,!) ' (X 0,!0) identifying L and L0.

Similarly, each member of the class Arbcontn is determined by an associated signed rooted

tree cT = (T, ⇢, ") with at most n+1 vertices. Note that the Uniqueness Theorem in particular

implies, for fixed dimension n, that Definition 1.1 produces only finitely many local models

up to ambient symplectomorphism or contactomorphism.

1.1.3. Canonical Local Models. As a complement to the Uniqueness Theorem 1.2 (and as

called upon essentially in its proof), it turns out there is a canonical local model in each arbo-

real class. This is detailed in Section 2, beginning with explicit iterated quadratic equations

and culminating in Definition 2.19 (one can view arboreal singularities as what results from

going one step beyond locally linear Lagrangians to allow quadratic behavior.)

As a representative for each signed rooted tree cT , we construct in Definition 2.19 a canon-

ical local model L bT ⇢ T ⇤Rn, where n = |n(cT )| is one less than the number of vertices in the

tree. The model L bT ⇢ T ⇤Rn is presented as the positive conormal to a canonical local front

H bT ⇢ Rn defined by polynomial equations.

While this material naturally has some overlap with general constructions of [N13], [St18]

and [E18], no such canonical local model was known prior to this paper. Indeed, their con-

struction begins in Section 2.1 with explicit equations that had not been written down before.

To keep track of their geometry, we use the same combinatorics developed in [N13], [St18]

and [E18]. But even so, we have found it necessary to reformulate the signs introduced in

[St18] and [E18] from scratch in order to match inductive arguments to come, so we give here

a warning that our sign conventions do not agree with prior conventions.

1.1.4. Parametric Stability. In Section 3, we also establish a Parametric Stability Theo-

rem 3.12 extending the scope of the Stability Theorem 3.5. In fact, the proofs of the two

are intertwined: we do not know a more elementary proof of the Stability Theorem 3.5

that does not inductively encounter the Parametric Stability Theorem 3.12. Moreover, the
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parametric version has additional consequences such as the following characterization of the

automorphisms of arboreal singularities:

Theorem 1.3. Fix a signed rooted tree cT = (T, ⇢, "), set n = |n(cT )| and consider the

arboreal cT -front H bT ⇢ Rn. Let D(Rn, H bT ) be the group of germs at 0 of di↵eomorphisms of

Rn preserving H bT as a front, i.e. as a subset along with its coorientation.

Then the fibers of the natural map D(Rn, H bT )! Aut(cT ) are weakly contractible.

Hence, from Theorem 1.2 and Theorem 1.3, we conclude the local symplectic topology of

an arboreal singularity is completely encoded by the combinatorics of the underlying signed

rooted tree, even parametrically.

1.2. Arborealization program. We conclude this introduction by briefly explaining the

role of this paper within the broader arborealization program.

The initial goal of the arborealization program is to determine when a Weinstein manifold

can be deformed to have an arboreal skeleton, i.e. a skeleton which is a stratified Lagrangian

with arboreal singularities.

It was shown in [N15] that singularities of Whitney stratified Lagrangians can always be

locally deformed to arboreal Lagrangians in a non-characteristic fashion, i.e. without changing

their microlocal invariants. The question of whether a global theory exists at the level of

Weinstein structures is more subtle. In two dimensions the story is classical: generic ribbon

graphs provide arboreal skeleta. In four dimensions, Starkston proved in [St18] that arboreal

skeleta always exist in the Weinstein homotopy class of any Weinstein domain.

In the sequel [AGEN20b], we show any polarized Weinstein manifold, i.e. a Weinstein

manifold with a global field of Lagrangian planes in its tangent bundle, can be deformed to

have an arboreal skeleton. More specifically, the arboreal singularities that arise are positive

in the sense that they are indexed by signed rooted trees with all positive signs, and conversely,

any Weinstein manifold with a positive arboreal skeleton comes with a canonical (homotopy

class of) polarization.

The arguments of [AGEN20b] produce skeleta with singularities satisfying the character-

ization of Definition 1.1. Without the uniqueness of Theorem 1.2, we would still be faced

with the possible moduli of such singularities. It could happen that two arboreal skeleta built

from the same smooth pieces with the same combinatorial recipe do not have symplectomor-

phic, or even di↵eomorphic neighborhoods. The uniqueness of Theorem 1.2 guarantees this

is not the case: there is no moduli of the singularities arising, and indeed their geometry is

unambiguously specified by the combinatorics.

With this in hand, one can still ask: is the symplectic or Weinstein thickening of an

arboreal skeleton unique? Using the results of the current paper we prove in [AGEN20b] that a

di↵eomorphism between arboreal skeleta, preserving some additional discrete orientation data,

extends to a symplectomorphism of their symplectic thickenings. The existence of a Weinstein

thickening was first explained in [St18]. The uniqueness of a Weinstein thickening is proved in
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[AGEN20b]: Weinstein thickenings of an arboreal skeleton that induce equivalent orientation

structures, a further combinatorial decoration on the skeleton, are Weinstein homotopic via

a homotopy fixing the skeleton. So not only can we unambiguously construct a Weinstein

manifold from a combinatorial recipe, but the one we construct is the unique one with those

combinatorics. In the present paper we will not consider Weinstein structures, and focus

instead on the problem of uniqueness up to symplectomorphism.

Thus pairing the results of the current paper with those of [AGEN20b], one is able to ex-

press polarized Weinstein manifolds in purely combinatorial terms. In a forthcoming paper

[AGEN22], we plan to classify all bifurcations (i.e.“Reidemeister moves”) relating positive

arboreal skeleta of two polarized Weinstein manifolds related by a polarized Weinstein homo-

topy. This will reduce the classification of (polarized) Weinstein structures, up to deformation

equivalence, to the classification of positive arboreal complexes up to di↵eomorphism and

Reidemeister moves. As it is discussed in [AGEN20b] the arborealization program cannot be

extended to all Weinstein manifolds, though it is likely can be extended to a larger class of

Weinstein manifolds beyond the polarized one.

1.3. Acknowledgements. We are very grateful to Laura Starkston who collaborated with

us on the initial stages of this project. We are also grateful to the referee for helpful comments

and suggestions. The first author is grateful for the great working environment he enjoyed at

Princeton University and the Institute for Advanced Study, as well as for the hospitality of

the Centre de recherches mathématiques of Montreal. The second author thanks RIMS Kyoto

and ITS ETH Zurich for their hospitality. The third author thanks MSRI for its hospitality.

Finally, we are very grateful for the support of the American Institute of Mathematics, which

hosted a workshop on the arborealization program in 2018 from which this project has greatly

benefited.

2. Arboreal models

2.1. Quadratic fronts. Before we present the local models for arboreal singularities, we

introduce the quadratic fronts out of which the models will be built and discuss some of their

basic properties.

2.1.1. Basic constructions. For i � 0, define functions hi : Ri
! R by the inductive formula

h0 = 0 hi = hi(x1, . . . , xi) = x1 � hi�1(x2, . . . , xi)2

For example, for small i, we have

h1(x1) = x1 h2(x1, x2) = x1 � x22 h3(x1, x2, x3) = x1 � (x2 � x23)
2

Fix n � 0. For i = 0, . . . , n, define smooth graphical hypersurfaces

n�i = {x0 = h2
i
} ⇢ Rn+1
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equipped with the graphical coorientation, and consider their union

n� =
S

n

i=0
n�i

Note the elementary identities

n�i = i�i ⇥ Rn�i i = 0, . . . , n

n�i \
n�0 = {0}⇥ n�1�i�1 i = 1, . . . , n

Figure 2.1. The hypersurfaces 1�0 (green) and 1�1 (blue)

Figure 2.2. The hypersurfaces 2�0 (green), 2�1 (red) and 2�2 (blue).

Let T ⇤Rn denote the cotangent bundle with canonical 1-form pdx =
P

n

i=1 pidxi where

p = (p1, . . . , pn) are dual coordinates to x = (x1, . . . , xn). Let J1Rn = R ⇥ T ⇤Rn denote the

1-jet bundle with contact form dx0 + pdx = dx0 +
P

n

i=1 pidxi.

Given a function f : Rn
! R with graph �f = {x0 = f(x)} ⇢ R⇥Rn, we have the conormal

Lagrangian of the graph L�f = {x0 = f(x), pi = �p0@f/@xi} ⇢ T ⇤Rn+1, and the conormal

Legendrian of the graph ⇤�f = {x0 = f(x), p0 = 1, pi = �@f/@xi} ⇢ J1Rn.
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For i = 0, let nL0 = Rn
⇢ T ⇤Rn denote the zero-section. For i = 1, . . . , n, introduce the

conormal Lagrangian
nLi = Ln�1�i�1

⇢ T ⇤Rn

of the graph n�1�i�1 ⇢ Rn, and consider their union

nL =
S

n

i=0
nLi

Similarly, for i = 0, . . . , n, introduce the conormal Legendrian

n⇤i = ⇤n�i ⇢ J1Rn

of the graph n�i ⇢ Rn+1, and consider their union

n⇤ =
S

n

i=0
n⇤i

Note that the Liouville form vanishes on the conical Lagrangian nLi ⇢ T ⇤Rn, hence its lift

to J1Rn = R⇥T ⇤Rn with zero primitive is a Legendrian. We have the following compatibility:

Lemma 2.1. The contactomorphism

S : J1Rn // J1Rn

S(x0, x, p) = (x0 � p21/4, x1 + p1/2, x2, . . . , xn, p1, . . . , pn)

takes the Legendrian n⇤i isomorphically to the Legendrian {0}⇥ nLi, and thus the union n⇤

isomorphically to the union {0}⇥ nL.

Proof. Set hi,1 = hi�1(x2, . . . , xi) so that hi = x1 � h2
i,1. Observe n⇤i ⇢ J1Rn is given by the

equations

x0 = h2
i

pdx = �dh2
i
= �2hidhi = �2hi(dx1 � 2hi,1dhi,1)

so in particular p1 = �2hi and
P

n

i=2 pidxi = 4hihi,1dhi,1.

If we write (x̂0, x̂, p) = S(x0, x, p), for (x0, x, p) 2 n⇤i, then we have

x̂0 = x0 � p21/4 = ±(x0 � h2
i
) = 0 x̂1 = x1 + p1/2 = x1 � hi = x1 � (x1 � h2

i,1) = h2
i,1

Now it remains to observe nLi ⇢ T ⇤Rn is given by the equations

x1 = h2
i,1

P
n

i=2 pidxi = �p1dh
2
i,1 = �2p1hi,1dhi,1

This completes the proof. ⇤

2.1.2. Distinguished quadrants. We now specify some distinguished quadrants of the n� which

we will use to define our arboreal models. Which of these quadrants are cut out by our sign

conventions will become clearer when the arboreal models are introduced.

For 0  j < i  n, set

hi,j := hi�j(xj+1, . . . , xi)

so in particular hi,0 = hi(x1, . . . , xi) and hi,i�1 = h1(xi) = xi.
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For fixed 0  i  n, consider the collection of functions

hi,0, . . . , hi,i�1

Note the triangular nature of the linear terms of the collection: for all 0  j  i � 1, the

subcollection

hi,j � xj+1, hi,j+1, . . . , hi,i�1

is independent of xj+1. Thus the level sets of the collection are mutually transverse.

Fix once and for all a list of signs � = (�0, �1, . . . , �n), �i 2 {±1}. Define the domain

quadrant nQ�

i
⇢ Rn to be cut out by the inequalities

�1hi,0  0, . . . , �ihi,i�1  0

By the transversality noted above, nQ�

i
is a submanifold with corners di↵eomorphic to

Ri

�0 ⇥ Rn�i. Its codimension one boundary faces are given by the vanishing of one of the

functions hi,j .

Note nQ�

i
only depends on the truncated list �1, . . . , �i. In particular, it is independent of

�0 which will enter the constructions next.

Define the cooriented hypersurface n�i|� ⇢ Rn+1 to be the restricted signed graph

n�i|� = {x0 = �0h2i }|nQ�
i

with the graphical coorientation.

Thus n�i|� is cut out by the equations

x0 = �0h2i , �1hi,0  0, . . . , �ihi,i�1  0

Since n�i|� is graphical over nQ�

i
, it is also a submanifold with corners di↵eomorphic to

Ri

�0 ⇥ Rn�i. Likewise, its codimension one boundary faces are given by the vanishing of one

of the functions hi,j .

Consider as well the union
n�|� =

S
n

i=0
n�i|�

Remark 2.2. Note that

n�i =
S

�,�0=1
n�i|�

n� =
S

�,�0=1
n�|�

since x 2 n�i implies x 2 n�i|� where for 1  j  i, we set �j = �sgn (hi,j(x)), when

hi,j(x) 6= 0, and choose it arbitrarily otherwise.

Remark 2.3. Note if we set �0 = (�0, . . . , �n�1,��n), then the map Rn+1
! Rn+1,

(x0, . . . , xn�1, xn) 7! (x0, . . . , xn�1,�xn), takes n�|� isomorphically to n�|�0 as a cooriented

hypersurface. Thus we could always set �n = 1 and not miss any new geometry.

Note n�i \ {x0 < 0}, hence also n�i|� \ {�0x0 < 0}, is empty since n�i is the graph of

h2
i
� 0.
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Lemma 2.4. Fix � = (�0, . . . , �n), and set �0 = (�0�1, �2, . . . , �n). The homeomorphism

s : �0R�0 ⇥ Rn // �0R�0 ⇥ Rn

s(x0, x1, x2, . . . , xn) = (x0, �0�1(x1 + �1
p
�0x0), x2, . . . , xn)

gives a cooriented identification

s(n�i|� \ {�0x0 � 0}) = �0R�0 ⇥
n�1�i�1|�0 0 < i  n

Proof. Recall n�i|� is defined by

x0 = �0h2i �1hi,0  0, . . . , �ihi,i�1  0

in particular

x0 = �0h2i �1hi,0 = �1hi  0

Note the functions hi,1, . . . , hi,i�1 are independent of the coordinates x0, x1.

When �0x0 � 0 and �1hi  0, the equation x0 = �0h2i is equivalent to
p
�0x0 = ��1hi.

Expanding this in terms of the definitions, we can rewrite this in the form

x1 + �1
p
�0x0 = hi�1(x2, . . . , xi)2

Thus since �00 = �0�1, we see s takes n�i|� \ {�0x0 � 0} into �0R�0 ⇥ {x1 = �00h
2
i�1}.

Moreover, the additional functions hi,1, . . . , hi,i�1 cutting out n�1�i�1|�0 ⇢ {x1 = �00h
2
i�1}

pull back to the same functions hi,1, . . . , hi,i�1 cutting out n�i|�.

Finally, the coorientations of n�i|�,n�1�i�1|�0 are positive on respectively @x0 , @x1 . Ob-

serve the @x1-component of s⇤@x0 is in the direction of @x1 , and hence s gives a cooriented

identification. ⇤

2.1.3. Alternative presentation. For compatibility with inductive arguments, it is useful to

introduce an alternative sign convention and alternative presentation of the local models.

Fix signs " = ("0, . . . , "n). Consider the involution �" : Rn
! Rn defined by

�"(x1, . . . , xn) = ("1x1, . . . , "nxn).

Define the domain quadrant nR"

i
⇢ Rn cut out by the inequalities

"0"1hi,0 � �"  0, . . . , "i�1"ihi,i�1 � �"  0

Define the cooriented hypersurface n�"

i
⇢ Rn+1 to be the restricted signed graph

n�"

i
= {x0 = "0h2i � �"}|nR"

i

with the graphical coorientation. Thus n�"

i
is cut out by the equations

x0 = "0h2i � �" "0"1hi,0 � �"  0, . . . , "i�1"ihi,i�1 � �"  0

Consider as well the union
n�" =

S
n

i=0
n�"

i
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Remark 2.5. A simple but important observation: n�"

i
in fact only depends on "0, . . . , "i�1

and not "i. This is because hi,i�1 = xi and so "i�1"ihi,i�1 � �" = "i�1xi. In particular, the

union n�" is independent of "n.

We have the following adaption of Lemma 2.4.

Lemma 2.6. Fix " = ("0, . . . , "n), and set "0 = ("1, . . . , "n). The homeomorphism

s : "0R�0 ⇥ Rn // "0R�0 ⇥ Rn

s(x0, x1, x2, . . . , xn) = (x0, x1 + "0
p
"0x0, x2, . . . , xn)

gives a cooriented identification

s(n�"

i
\ {"0x0 � 0}) = "0R�0 ⇥

n�1�"
0
i�1 0 < i  n

Proof. Recall n�"

i
is defined by

x0 = "0h2i � �" "0"1hi,0 � �"  0, . . . , "i�1"ihi,i�1 � �"  0

in particular

x0 = "0h2i � �" "0"1hi,0 � �" = "0"1hi � �"  0

Note the functions hi,1, . . . , hi,i�1 are independent of the coordinates x0, x1.

When "0x0 � 0 and "0"1hi � �"  0, the equation x0 = "0h2i � �" is equivalent to
p
"0x0 =

�"0"1hi � �". Expanding this in terms of the definitions, we can rewrite this in the form

x1 + "0
p
"0x0 = "1h2i�1,1 � �"0

Thus we see s takes n�"

i
\ {"0x0 � 0} into "0R�0 ⇥ {x1 = "1h2i�1,1 � �"0}.

Moreover, the additional functions hi,1, . . . , hi,i�1 cutting out

n�1�"
0
i�1 ⇢ {x1 = "1h

2
i�1,1 � �"0}

pull back to the same functions hi,1, . . . , hi,i�1 cutting out n�"

i
.

Finally, the coorientations of n�"

i
,n�1�"

0
i�1 are positive on respectively @x0 , @x1 . Observe the

@x1-component of s⇤@x0 is in the direction of @x1 , and hence s gives a cooriented identification.

⇤

Here is a useful corollary that “explains” the geometric meaning of the signs ".

Corollary 2.7. Fix " = ("0, . . . , "n).

For i = 0, . . . , n � 1, we have "i = ±1 if and only if n�i+1 is on the ±-side of n�i with

respect to the graphical dx0-coorientation.

Moreover, for i = 1, . . . , n� 1, we have "i = ±1 if and only if n�i+1 \
n�0 is on the ±-side

of n�i \
n�0 with respect to the graphical dx1-coorientation.

Proof. For i = 0, the first assertion is immediate from the definitions n�0 = {x0 = 0} and
n�1 = {x0 = "0("1x1)2 = "0x21, "0"1("1x1) = "0x1  0}.



12 DANIEL ÁLVAREZ-GAVELA, YAKOV ELIASHBERG, AND DAVID NADLER

For i > 0, both assertions follow by induction from Lemma 2.6. ⇤

Fix signs " = ("0, . . . , "n�1). For i = 0, let nL"

0 = Rn
⇢ T ⇤Rn denote the zero-section. For

i = 1, . . . , n, introduce the positive conormal bundles

nL"

i
= T+

n�1�"
i�1

Rn
⇢ T ⇤Rn

determined by the graphical coorientation, and consider their union

nL" =
S

n

i=0
nL"

i

Fix signs " = ("0, . . . , "n). For i = 0, . . . , n, introduce the Legendrian

n⇤"

i
⇢ J1Rn

projecting di↵eomorphically to the front n�"

i
⇢ Rn+1, and consider their union

n⇤" =
S

n

i=0
n⇤"

i

We have the following compatibility of the above Lagrangians and Legendrians analogous

to Lemma 2.1.

Lemma 2.8. Fix signs " = ("0, . . . , "n), and set "0 = ("1, . . . , "n). The contactomorphism

S"0 : J1Rn // J1Rn

S"0(x0, x, p) = (x0 � "0p21/4, x1 + "0p1/2, x2, . . . , xn, p1, . . . , pn)

takes the Legendrian n⇤"

i
isomorphically to the Legendrian {0}⇥nL"

0
i
, and thus the union n⇤"

isomorphically to the union {0}⇥ nL"
0
.

Proof. The proof is the same as that of Lemma 2.1 with the following observations. Consider

the additional equations

"0"1�1hi,0 � ��  0, . . . , "i�1"ihi,i�1 � �"  0

First, over "0"1hi,0 ��"  0, when p1 = �2"0"1hi,0 ��", we then have p1 = �2"0"1hi,0 ��" � 0,

so we obtain the positive conormal direction. Second, the remaining functions hi,1, . . . , hi,i�1

are independent of x0, x1. Thus S"0 indeed takes n⇤"

i
to {0}⇥ nL"

i
. ⇤

Remark 2.9. By the lemma, we see the Legendrian n⇤"

i
⇢ J1Rn is independent of the initial

sign "0 so only depends on "0 = ("1, . . . , "n).

It is also useful to record the following relationship of n�" with the extended model n�.

Lemma 2.10. Fix signs " = ("0, . . . , "n).

Given a contactomorphism J1Rn
! J1Rn restricting to a closed embedding n⇤"

⇢ "0 · n⇤

with n⇤"

i
⇢ "0 · n⇤i, for all i, consider the front ⌥ = ⇡(n⇤") ⇢ "0 · n�.

Then either the involution �" or its composition with xn 7! ±xn takes ⌥ to n�".
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Proof. Note we have n⇤"

0 = "0 ·n⇤0 = n⇤0. Consider the intersection ⌥0 = ⇡((n⇤"
\
n⇤0)\n⇤0)

as a front inside of ⇡(n⇤0) = n�0 = {x0 = 0}. By induction, either the involution �" or its

composition with xn 7! ±xn takes ⌥0 to n�1�"
0
where "0 = ("1, . . . , "n). So we may assume

⌥0 = n�1�"
0
. Now observe n�" is the unique way to extend n�1�"

0
within �"("0 ·n�) compatible

with coorientations. ⇤

We also have the following observation about signs. See Section 3.1 for notation.

Lemma 2.11. Let ⌫0 be the vertical polarization of T ⇤Rn
! Rn.

Then we have "(⌫0, nL"

1,
nL"

2) = "0.

Proof. Recall nL"

1 is the positive conormal to the graph n�1�"

0 = {x0 = 0}, and nL"

1 is the

positive conormal to the graph n�1�"

1 = {x0 = ✏0x21}. Since "0x21 is an "0-definite quadratic

form in x1, the assertion follows. ⇤

2.2. Arboreal models. We now present the local models for arboreal singularities.

2.2.1. Signed rooted trees.

Definition 2.12. We will use the following terminology throughout:

(i) A tree T is a nonempty, finite, connected acyclic graph.

(ii) A rooted tree T = (T, ⇢) is a pair of a tree T and a distinguished vertex ⇢ called the

root.

(iii) A signed rooted tree cT = (T, ⇢, ") is a rooted tree (T, ⇢) and a decoration " of a sign

±1 on each edge of T not adjacent to the root ⇢.
 

Figure 2.3. A signed rooted tree.

Given a signed rooted tree cT = (T, ⇢, "), we write v(T ) for the set of vertices, e(T ) for the

set of edges, and n(cT ) = v(T ) \ ⇢ for the set of non-root vertices. We regard v(T ) as a poset

with unique minimum ⇢, and in general ↵  � 2 v(T ) when the shortest path connecting �

and ⇢ contains ↵. We call a non-root vertex � a leaf if exactly one edge of T is adjacent to �,

and write `(cT ) ⇢ v(T ) for the set of leaf vertices.
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Remark 2.13. Throughout what follows, for a finite set S, we write RS for the Euclidean

space of S-tuples of real numbers. One may always fix a bijection S ' {1, 2, . . . , n}, for some

n � 0, and hence an isomorphism RS
' Rn, but it will be convenient to avoid choosing

such identifications when awkward. We will most often consider S = n(cT ) the non-root

vertices for some rooted tree cT = (T, ⇢). Here if one prefers to fix a bijection b : n(cT )
⇠
!

{1, 2, . . . , |n(cT )|}, we recommend choosing b to be order-preserving: if ↵  �, then one should

ensure b(↵)  b(�). This will allow for a clear translation of our constructions.

Definition 2.14. A signed rooted tree cT = (T, ⇢, ") is called positive if the decoration "

consists of signs +1.

We will associate to any signed rooted tree cT = (T, ⇢, "), a multi-cooriented hypersurface,

conic Lagrangian, and Legendrian

H bT ⇢ Rn( bT ) L bT ⇢ T ⇤Rn( bT ) ⇤ bT ⇢ J1Rn( bT )

where as usual we write n(cT ) = v(T ) \ ⇢ for the set of non-root vertices.

By definition, the latter two will be determined by the first as follows:

(i) L bT is the union of the zero-section Rn( bT ) and the positive conormal to H bT .

(ii) ⇤ bT is the Legendrian lift of L bT with zero primitive.

2.2.2. Type A trees. Let us first consider the distinguished case of An+1-trees with extremal

root.

Definition 2.15. For n � 0, a linear signed An+1-rooted tree is a signed rooted tree An+1 =

(An+1, ⇢, a) with vertices v(An+1) = {0, 1, . . . , n}, edges v(An+1) = {[i, i+1] | i = 0, . . . , n�1},

and root ⇢ = 0.

By definition, the sign a is a length n � 1 list of signs (a[1,2], . . . , a[n�1,n]). Let us set

" = ("0, . . . , "n�1) = (a[1,2], . . . , a[n�1,n], 1) to be the length n list of signs where we pad a by

adding a single 1 at the end.

Definition 2.16. The models for An-type arboreal singularities are given as follows:

(i) The arboreal A1-front is the empty set HA1 = ; inside the point R0.

For n � 1, the arboreal An+1-front is the cooriented hypersurface

HAn+1 = n�1�"
⇢ Rn

introduced in Section 2.1.3.

(ii) For n � 0, the arboreal An+1-Lagrangian is the union of the zero-section and positive

conormal

LAn+1 = Rn
[ T+

RnHAn+1 ⇢ T ⇤Rn

(iii) For n � 0, the arboreal An+1-Legendrian is the lift

⇤An+1 = {0}⇥ LAn+1 ⇢ J1Rn
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Figure 2.4. The two A3 fronts with positive and negative sign.

 

Figure 2.5. Two A4 fronts with di↵erent choices of signs. The other two
fronts can be obtained from these two by reflections.

Remark 2.17. Following Remark 2.5, the arbitrary choice of the last sign "n�1 = 1 does not

a↵ect the arboreal An+1-models.

Recall the linear signed An+1-rooted tree An+1 = (An+1, ⇢, a) has vertices v(An+1) =

{0, 1, . . . , n} with root ⇢ = 0, and so the non-root vertices form the set n(An+1) = {1, . . . , n}.

In the above definition, we should more invariantly view the ambient Euclidean space Rn in

the form Rn(An+1) where the ordering of the coordinates matches that of n(An+1).
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With this viewpoint, we rename the smooth pieces of the An+1-front, indexing them by

non-root vertices

Hi = n�1P "

i�1 ⇢ HAn+1 i 2 n(An+1) = {1, . . . , n}

Likewise, we rename the smooth pieces of the of the An+1-Lagrangian, indexing them by

vertices

L0 = Rn
⇢ LAn+1

Li = T+
RnHi ⇢ LAn+1 i 2 n(An+1) = {1, . . . , n}

and similarly, we rename the smooth pieces of the of the An+1-Legendrian, indexing them by

vertices

⇤i = {0}⇥ LAn+1,i ⇢ ⇤An+1 i 2 v(An+1) = {0, 1, . . . , n}

Lemma 2.18. For n � 1, and n 2 v(An+1) = {0, 1, . . . , n} the unique leaf vertex, and

H̊n ⇢ HAn+1 the interior of the corresponding smooth piece, we have

HAn+1 \ H̊n = HAn ⇥ R

inside of Rn(An+1) = Rn(An) ⇥ R.

Proof. Recall the other smooth pieces Hi = n�1P "

i�1, for i = 1, . . . , n� 1, are independent of

the last coordinate xn. ⇤

2.2.3. General trees. Now we consider a general signed rooted tree cT = (T, ⇢, ").

To each leaf � 2 `(cT ), we associate the linear signed An+1-rooted tree A� = (A� , ⇢, a)

where A� is the full subtree of T on the vertices v(A�) = {↵  � 2 v(T )}, and a is the

restricted sign decoration.

Consider the Euclidean space Rn( bT ). For each � 2 `(cT ), the inclusion n(A�) ⇢ n(cT )

induces a natural projection

⇡� : Rn( bT ) // Rn(A�)

Definition 2.19. Let cT = (T, ⇢, ") be a signed rooted tree.

(i) The arboreal model cT -front is the multi-cooriented hypersurface given by the union

H bT =
S

�2`( bT ) ⇡
�1
�

(HA� ) ⇢ Rn( bT )

where HA� ⇢ Rn(A�) is the arboreal A�-front.

(ii) The arboreal model cT -Lagrangian is the union of the zero-section and positive conor-

mal

L bT = Rn( bT )
[ T+

Rn( cT )
H bT ⇢ T ⇤Rn( bT )
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(iii) The arboreal model cT -Legendrian is the the lift

⇤ bT = {0}⇥ L bT ⇢ J1Rn( bT )

Arboreal models H bT , L bT and ⇤ bT corresponding to positive cT are called positive.

 

Figure 2.6. Two non An-type fronts with di↵erent choices of signs.

Remark 2.20. When cT = An+1, the above definition recovers Definition 2.16 verbatim.

Transporting from the case of An+1, we may naturally index the smooth pieces of the
cT -front by non-root vertices

H↵ = ⇡�1
�

(HA� ,↵) ⇢ H bT ↵ 2 n(cT )

where � 2 `(cT ) is any leaf with ↵  �, and HA� ,↵ ⇢ HA� is the corresponding smooth piece.

Likewise, we may index the smooth pieces of the cT -Lagrangian by vertices

L⇢ = Rn( bT )
⇢ L bT

L↵ = T+

Rn( cT )
H↵ ⇢ L bT ↵ 2 n(cT )

and the smooth pieces of the cT -Legendrian by vertices

⇤↵ = {0}⇥ L↵ ⇢ ⇤ bT ↵ 2 v(cT )

Let us record a basic compatibility of the above Lagrangians and Legendrians.

Fix a signed rooted tree cT = (T, ⇢, "). Let us first consider the situation when there is a

single vertex ⇢0 2 cT adjacent to ⇢. Let cT 0 = cT \ ⇢ be the signed rooted tree with root ⇢0

and restricted signs.
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Let ↵1, . . . ,↵k 2
cT 0 be the vertices adjacent to ⇢0, and "1, . . . , "k the signs of cT assigned

to the respective edges from ⇢0 to ↵1, . . . ,↵k.

Let L1
bT
⇢ S⇤Rn( bT ) be the ideal Legendrian boundary of L bT ⇢ T ⇤Rn( bT ). Note that L1

bT
lies in the open subspace J1Rn( bT 0)

' {p⇢0 = 1} ⇢ S⇤Rn( bT ).

Lemma 2.21. The contactomorphism

S : J1Rn( bT 0) // J1Rn( bT 0)

S(x⇢0 , x, p) = (x⇢0 �
P

k

i=1 "ip2↵i
/4, x̂, p)

x̂↵i = x↵i + "ip1/2, for i = 1, . . . , k, x̂� = x� else

takes the Legendrian L1
bT
isomorphically to the Legendrian {0}⇥ L bT 0.

Thus L1
bT
itself is a model arboreal Legendrian of type cT 0 = cT \ ⇢.

Proof. For each leaf vertex of cT , we have a linear signed type A subtree of cT given by the

vertices running from ⇢ to the leaf. By Definition 2.19, L bT is the union of the corresponding

linear signed type A subcomplexes LA. Each such subcomplex is independent of the coor-

dinate x� indexed by vertices � not in the subtree, hence lies in the zero locus of the dual

coordinate p� . Thus transport of each L1
A under the contactomorphism of the lemma reduces

to that of Lemma 2.8. ⇤

More generally, suppose ⇢1, . . . , ⇢` are the vertices adjacent to ⇢. Observe that cT \ ⇢ is

a disjoint union of signed rooted subtrees cTj ⇢
cT \ ⇢, for j = 1, . . . , `, with ⇢j as root and

restricted signs. Let cT +
j

= cTj [ ⇢ ⇢ cT be the signed rooted subtree with ⇢ readjoined as

root and with restricted signs. Set cj = n(cT ) \ n(cTj).

Let L1
bT
⇢ S⇤Rn( bT ) be the ideal Legendrian boundary of L bT ⇢ T ⇤Rn( bT ). We similarly

have L1
bT +
j

⇢ S⇤Rn( bT +
j ) the ideal Legendrian boundary of L bT +

j
⇢ T ⇤Rn( bT +

j ).

Since ⇢j is the unique vertex adjacent to ⇢ within cT +
j
, observe that L bT +

j
is connected and

in fact lies in

J1Rn( bTj) = {p⇢j = 1} ⇢ S⇤Rn( bT +
j ).

Moreover, observe that L1
bT
is the disjoint union of the connected components

⇤j = L1
bT +
j
⇥ Rcj ⇢ J1Rn( bTj) ⇥ T ⇤Rcj = {p⇢j = 1} ⇢ S⇤Rn( bT )

By Lemma 2.21, L1
bT +
j

⇢ J1Rn( bTj) is a model arboreal Legendrian of type cTj , so ⇤j =

L1
bT +
j

⇥ Rcj ⇢ J1Rn( bTj) ⇥ T ⇤Rcj is a stabilized model arboreal Legendrian of type cTj . This

proves:

Lemma 2.22. Fix a signed rooted tree cT = (T, ⇢, ").
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Let ⇢1, . . . , ⇢k be the vertices adjacent to ⇢. Let cTj ⇢
cT \ ⇢ be the signed rooted subtree

with ⇢j as root and restricted signs, and cT +
j

= cTj [ ⇢ ⇢ cT the signed rooted subtree with ⇢

readjoined as root and with restricted signs. Set cj = n(cT ) \ n(cTj).

Then the ideal Legendrian boundary L1
bT
⇢ S⇤Rn( bT ) of the model arboreal Lagrangian L bT ⇢

T ⇤Rn( bT ) of type cT is the disjoint union of the Legendrians

⇤j = L1
bT +
j
⇥ Rcj ⇢ S⇤Rn( bT ),

which are stabilized model arboreal Legendrians of type cTj.

By Lemma 2.18, we also have the following.

Corollary 2.23. For � 2 `(cT ) a leaf vertex, and H̊� ⇢ H bT the interior of the corresponding

smooth piece, we have

H bT \ H̊� = H bT \� ⇥ R�

inside of Rn( bT ) = Rn( bT \�)
⇥ R�.

2.2.4. Extended arboreal models. It will be useful for us also define extended arboreal models

associated with rooted, but not signed trees T = (T, ⇢).

For the unsigned rooted tree An+1 = (An+1, ⇢) we define

HAn+1 := n�1� ⇢ Rn,

LAn+1 := Rn
[ T ⇤

RnHAn+1 ⇢ T ⇤Rn,

⇤An+1 := 0⇥ LAn+1 ⇢ J1Rn.

Similarly, for a general rooted tree T = (T, ⇢) we define

HT =
S

�2`(T ) ⇡
�1
�

(HA�
) ⇢ Rn( bT )

where HA�
⇢ Rn(A�) is the arboreal A�-front. Furthermore, we define

LT = Rn(T )
[ T+

Rn(T )H bT ⇢ T ⇤Rn(T )

and

⇤T = {0}⇥ ⇤T ⇢ J1Rn(T )

Clearly, for any signed version cT of the tree T we have H bT ⇢ HT , L bT ⇢ LT ,⇤ bT ⇢ ⇤T .

Lemma 2.24. Given a closed embedding ⇤1
bT
⇢ ⇤1

T with ⇤1
bT ,↵
⇢ ⇤1

T ,↵
, for all ↵, the front

⇡(⇤1
bT
) ⇢ HT is an embedding of H bT .

Proof. For each leaf vertex of cT , we have a linear signed type A subtree of cT given by

the vertices running from ⇢ to the leaf. By construction, ⇤1
bT
and ⇤1

T are the union of the

corresponding type A subcomplexes L1
A and L1

A . Each such subcomplex is independent of

the coordinates x� indexed by vertices � not in the subtree. Now Lemma 2.10 confirms ⇡(L1
A )
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is the standard embedding of HA after a change of coordinates x↵ indexed by vertices ↵ in

the subtree. Moreover, the change of coordinates agrees for x↵ indexed by vertices ↵ in the

intersection of such subtrees. By definition, H bT is the union of the HA. ⇤

3. The stability theorem

In this section we define arboreal Lagrangian and Legendrian subsets and prove their sta-

bility under symplectic reduction and Liouville cone operations.

3.1. Arboreal Lagrangians and Legendrians.

Definition 3.1. Arboreal Lagrangians and Legendrians are defined as follows:

(a) A closed subset L ⇢ X of a 2m-dimensional symplectic manifold (X,!) is called an

arboreal Lagrangian if the germ of (X,L) at any point � 2 L is symplectomorphic to

the germ of the pair (T ⇤Rn
⇥T ⇤Rm�n, L bT ⇥Rm�n) at the origin, for a signed rooted

tree cT with n := n(cT )  m.

(b) A closed subset ⇤ ⇢ Y of a (2m + 1)-dimensional contact manifold (Y, ⇠) is called

am arboreal Legendrian if the germ of (Y,⇤) at any point � 2 ⇤ is contactomorphic

to the germ of (J1(Rn
⇥Rm�n) = J1Rn

⇥ T ⇤Rm�n,⇤ bT ⇥Rm�n) at the origin, for a

signed rooted tree cT with n := n(cT )  m.

(c) A closed subset H ⇢ M of an (m+ 1)-dimensional manifold M is called an arboreal

front if the germ of (M,H) at any point m 2 M is di↵eomorphic to the germ of

(Rn+1
⇥ Rm�n, H bT ⇥ Rm�n) at the origin, for a signed rooted tree cT with n :=

n(cT )  m.

The pair (cT ,m) is called the arboreal type of the germ of L, ⇤, or H at the given point.

We say L, ⇤, or H is positive if it is locally modeled on positive arboreal models at all points.

Remark 3.2. Later we will also allow arboreal Lagrangians to have boundary and even corners,

but throughout the present discussion we restrict to the above definition for simplicity.

Given an arboreal Lagrangian we call sup�2L{n(cT (�))} the maximal order of L, where
cT (�) is a the signed rooted tree describing the germ of L at the point �. Similarly, we define

the maximal order of arboreal Legendrians and fronts.

Every arboreal Lagrangian or Legendrian is naturally stratified by isotropic strata indexed

by the corresponding tree type. A Lagrangian distribution ⌘ in X is called transverse to

an arboreal Lagrangian L if it is transverse to all top-dimensional strata of L. Similarly a

Legendrian distribution ⌘ ⇢ ⇠ in a contact (Y, ⇠) is called transverse to an arboreal Legendrian

⇤ if it has trivial intersection with tangent planes to all top-dimensional strata of ⇤.

Definition 3.3. A polarization of L or ⇤ is a transverse Lagrangian distribution.

Remark 3.4. We emphasize the transversality to an arboreal Lagrangian means transversality

to its closed smooth pieces, and not just to open strata.
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Before we continue we introduce some auxiliary notions. Let V be a symplectic vector

space and `1, `2, `3 ⇢ V linear Lagrangian subspaces which are pairwise transverse. We write

`1 � `2 � `3 if `3 corresponds to a positive definite quadratic form with respect to the

polarization (`1, `2) of V . Let C ⇢ V be a coisotropic subspace. For any linear Lagrangian

subspace ` ⇢ V we denote by [`]C the symplectic reduction of ` with respect to C.

Let L be an arboreal Lagrangian whose germ at a point � 2 L has the type (cT =

(T, ⇢, "),m). Let L⇢ ⇢ T�X the tangent plane to the root Lagrangian corresponding to

the root ⇢. For each vertex ↵ connected by an edge with ⇢ let L↵ ⇢ T�X denote the La-

grangian plane tangent to the Lagrangian corresponding to the vertex a. We recall that L⇢

and L↵ cleanly intersect along a codimension 1 subspace. Consider a coistropic subspace

C↵ := Span(L⇢, L↵) ⇢ T�X. Let ⌘ be a Lagrangian distribution in X transverse to L. Define

the sign

(1) "(⌘, L,↵) =

8
<

:
+1, if [L⇢]C↵ � [L↵]C↵ � [⌘]C↵ ;

�1, if [L⇢]C↵ � [⌘]C↵ � [L↵]C↵ .

 

Figure 3.1. The notion of sign for the A2 singularity.

Similarly, if ⇤ is an arboreal Legendrian in a contact manifold (Y, ⇠), and ⌘ a Legendrian

distribution transverse to ⇤, then for any point � 2 ⇤ of type cT = (T, ⇢, ") we assign a sign

"(⌘,⇤,↵) for every vertex ↵ adjacent to the root ⇢ as equal to ±1 depending on the �-order

of the triple [L⇢]C↵ , [L↵]C↵ , [⌘]C↵ in [⇠�]C↵ .

3.2. Stability of arboreal Lagrangians and Legendrians. The following is the main

result of Section 3. We use below the notation t⇤M for the germ of the cotangent bundle

T ⇤M along M .

Theorem 3.5. Let cT be a signed rooted tree. Let ⇢1, . . . , ⇢k be vertices adjacent to the root

⇢ and cTj be subtrees with roots ⇢j (where we removed the decoration of edges [⇢j↵]). Let
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�j : t⇤Rm
! J1Rm, m � n = n(T ), be germs of Weinstein hypersurface embeddings with

disjoint images. Denote zj := �j(0), ⇤j = �j(L bTj
⇥ Rm�n( bTj)), j = 1, . . . , k. Suppose that

(i) ⇡(zj) = 0;

(ii) the arboreal Legendrian ⇤ :=
S

k

j=1 ⇤
j projects transversely under the front projection

J1Rn
! R⇥ Rn;

(iii) for each edge [⇢j↵] we have "(⌫,⇤j ,↵) = "[⇢j↵].

Then Rm
[ C(⇤), where C(⇤) is the Liouville cone of ⇤, is an arboreal Lagrangian of type

(cT ,m) or equivalently, the germ of the front ⇡(⇤) is di↵eomorphic to H bT ⇥ Rm�n( bT ).

Theorem 3.5 is a corollary of its unsigned version which is the content of the following

proposition.

Proposition 3.6. Let T be a rooted tree. Let ⇢1, . . . , ⇢k be vertices adjacent to the root ⇢ and

Tj be subtrees with roots ⇢j. Let �j : t⇤Rm
! J1Rm, m � n = n(T ), be germs of Weinstein

hypersurface embeddings. Denote zj := �j(0), ⇤j = �j(LTj⇥Rm�n(Tj)), j = 1, . . . , k. Suppose

that

(i) ⇡(zj) = 0;

(ii) the extended arboreal Legendrian ⇤ :=
S

k

j=1 ⇤
j projects transversely under the front

projection J1Rn
! R⇥ Rn;

Then Rm
[C(⇤) is an extended arboreal Lagrangian of type (T ,m), or equivalently, the germ

of the front ⇡(⇤) is di↵eomorphic to HT ⇥ Rm�n(T ).

Proof of Theorem 3.5 using Proposition 3.6. Consider the arboreal Legendrian as a closed

subcomplex of the extended model. Apply Proposition 3.6 to assume the extended front

is in canonical form. Then Lemma 2.24 implies the front of the original arboreal Legendrian

is a canonical model. ⇤

Proposition 3.6 will be proven below in this section (see Section 3.6 ) below, but first we

discuss some corollaries of Theorem 3.5.

Corollary 3.7. Let ⇤ ⇢ @1T ⇤M be an arboreal Legendrian. Suppose that the front projection

⇡ : ⇤!M is a transverse immersion. Then L := C(⇤) [M is an arboreal Lagrangian.

Proof. The intersection H := M \ C(⇤) is the front of the Legendrian ⇤. Each point a 2 H

has finitely many pre-images z1, . . . , zk 2 ⇤. The germs ⇤j of ⇤ at zj by our assumption

are images of arboreal Lagrangian models under Weinstein embeddings of their symplectic

neighborhoods. Hence, by Theorem 3.5 the germ of L at z is of arboreal type. ⇤

It is not a priori clear that even the standard Lagrangian (resp. Legendrian) arboreal

models are arboreal Lagrangians (resp. Legendrians). However, the following corollary shows

that they are.
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Figure 3.2. In particular, the zero section union the Liouville cone on a
regular Legendrian is arboreal with A2 singularities along its front.

Corollary 3.8. Consider a model Lagrangian L bT ⇢ T ⇤Rn, n = n(cT ). Then for any point

� 2 L bT the germ of L bT at � is a (cT 0, n)-Lagrangian for a signed rooted tree cT 0.

Proof. We argue by induction in n. The base of the induction is trivial. Assuming the claim

for n � 1 we recall that L bT can be presented as L⇢ [ C(⇤), where L⇢ is the smooth piece

corresponding to the root ⇢ of cT and ⇤ is a union of model Legendrians of dimension n� 1

in @1T ⇤(Rn). By the induction hypothesis ⇤ is an arboreal Legendrian, and hence applying

Corollary 3.7 we conclude that L bT is an arboreal Lagrangian. ⇤

Remark 3.9. We will not need it in what follows, so only briefly comment here that it is

possible to specify precisely the type (cT 0, n) of the germ of L bT at each point � 2 L bT .

Following [N13] the underlying tree T 0 is a canonically defined subquotient of T , in other

words, a diagram T 0
 S ! T , where S ! T is a full subtree, and S ! T 0 contracts some

edges; conversely, any such subquotient can occur. Furthermore, if we partially order T with

the root ⇢ 2 T as minimum, then the root ⇢0 2 T 0 is the unique minimum of the natural

induced partial order on T 0. Finally, to equip T 0 with signs, we restrict the signs of T to the

subtree S, then push them forward to T 0 using that each edge of T 0 is the image of a unique

edge of S.

Corollary 3.10. Let L bT ⇢ T ⇤Rn be a model Lagrangian associated with a signed rooted tree

(T, ⇢, "). Let ⌘0, ⌘1 be two polarizations transverse to L bT . Suppose that for any vertex ↵ of T

adjacent to ⇢ we have

"(⌘0, L,↵) = "(⌘1, L,↵).

Then there is a (germ at the origin of) a symplectomorphism  : T ⇤Rn
! T ⇤Rn such that

 (L) = L and d (⌘0) = ⌘1 along L.

Proof. Since ⌘0 and ⌘1 are transverse polarizations we may choose embeddings h0, h1 :

T ⇤Rn
! J1Rn as Weinstein hypersurfaces such that hj(⌘j) = ⌫0, j = 0, 1, where ⌫0 is the

canonical Legendrian foliation of J1Rn by fibers of the front projection to Rn
⇥ R. Consider
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the arboreal Lagrangians Lj := C(hj(L bT )) [ (Rn
⇥R), j = 0, 1, and note that their arboreal

types are described by the same signed rooted tree cT obtained from cT by adding a new root,

connecting it by an edge to the old one, and assigning to edges [⇢↵] of cT ⇢ cT adjacent to

the old root ⇢ the sign "(⌘0, L,↵) = "(⌘1, L,↵). Applying Theorem 3.5 we find the required

symplectomorphism  . ⇤

Corollary 3.11. Let H ⇢ M be an arboreal front. Then for any submanifold ⌃ ⇢ M

transverse to (all strata of) H the intersection ⌃ \H is an arboreal front in ⌃.

Proof. We can assume that H is an arboreal front germ at a point x 2 H, and hence the

germ of (M,H) at x is di↵eomorphic to the germ of (Rn( bT )+1
⇥Rk, H bT ⇥Rk) for some rooted

signed arboreal tree cT and k = n � n(cT ). Note that the transversality of ⌃ to H implies

that codim⌃  k and that the projection of p : ⌃ ⇢ Rn( bT )+1
⇥ Rk

! Rn( bT )+1 to the first

factor is a submersion, and because we are dealing with germs, it is a trivial fibration. On

the other hand, the projection p|⌃\H : ⌃ \ H ! H bT is the restriction of this fibration to

H bT ⇢ RN( bT ). ⇤

 

Figure 3.3. Illustration that ⌃ \H is an arboreal front in ⌃.

3.3. Parametric version. The following is the parametric version of Theorem 3.5.

Theorem 3.12. Let cT be a signed rooted tree. Let ⇢1, . . . , ⇢k be vertices adjacent to the

root ⇢ and cTj be subtrees with roots ⇢j (where we removed the decoration of edges [⇢j↵]).

Let �y
j
: t⇤Rm

! J1Rm, m � n = n(T ), be families of germs of Weinstein hypersurface

embeddings with disjoint images, parametrized by a manifold Y . Denote zy
j
:= �y

j
(0), ⇤j

y =

�y
j
(L bTj

⇥ Rm�n( bTj)), j = 1, . . . , k. Suppose that

(i) ⇡(zy
j
) = 0;

(ii) the arboreal Legendrian ⇤y :=
S

k

j=1 ⇤
j
y projects transversely under the front projection

J1Rn
! R⇥ Rn;

(iii) for each edge [⇢j↵] we have "(⌫,⇤j
y,↵) = "[⇢j↵].
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Then there exists a family of di↵eomorphisms �y between H bT ⇥Rm�n( bT ) and the front ⇡(⇤y).

If K ⇢ Y is a closed subset and the �y
j
are the standard embeddings of the local model for

y 2 Op (K), then we may further assume �y = Id for y 2 Op (K).

The parametric version of Proposition 3.6 is formulated similarly. As a consequence of

Theorem 3.12 we get the following result:

Corollary 3.13. Fix a signed rooted tree cT = (T, ⇢, "), set n = |n(cT )| and consider the

arboreal cT -front H bT ⇢ Rn. Let D(Rn, H bT ) be the group of germs at 0 of di↵eomorphisms of

Rn preserving H bT as a front, i.e. as a subset along with its coorientation.

Then the fibers of the natural map D(Rn, H bT )! Aut(cT ) are weakly contractible.

Proof. We deduce Corollary 3.13 from Theorem 3.12. We will argue for cT = An+1 when

HAn+1 = n�1�; the case of general cT is similar.

Since Aut(An+1) is trivial, we seek to show D(Rn, n�1�) is weakly contractible. Note any

' 2 D(Rn, n�1�) preserves 0, and moreover, preserves the canonical flag in T0Rn given by the

tangents to the intersections
T

i<i0

n�1�i.

Let D(Rn) denote the group of germs at 0 of di↵eomorphisms of Rn. Consider a k-sphere

of maps ft 2 D(Rn, n�1�), t 2 Sk. Since all ft preserve 0 and the canonical flag in T0Rn,

there exists a k + 1-ball of di↵eomorphisms gt 2 D(Rn), t 2 Bk+1, extending ft. Applying

Theorem 3.12 to the Weinstein hypersurface embeddings induced by gt, we can find di↵eo-

morphisms ht such that ht takes gt(n�1�) back to n�1� and such that ht is the identity for

t 2 Sk. Then ht � gt 2 D(Rn, n�1�), t 2 Bk+1, gives an extension of ft to the k + 1-ball. ⇤

We also formulate the parametric version of Corollary 3.10.

Corollary 3.14. Let L bT ⇢ T ⇤Rn be a model Lagrangian associated with a signed rooted

tree (T, ⇢, "). Let ⌘y0 , ⌘
y

1 be two families of polarizations transverse to L bT parametrized by a

manifold Y . Suppose that for any vertex ↵ of T adjacent to ⇢ we have

"(⌘y0 , L,↵) = "(⌘y1 , L,↵).

Then there is a family of (germ at the origin of) symplectomorphisms  y : T ⇤Rn
! T ⇤Rn

such that  y(L) = L and d y(⌘y0) = ⌘y1 along L. Moreover, if ⌘y0 = ⌘y1 for y 2 Op (K) for

K ⇢ Y a closed subset, then we can take  y = Id for y 2 Op (K).

The proof is just like in the non-parametric case, but applying Theorem 3.12 instead of

Theorem 3.5.

3.4. Tangency loci. Before proving Proposition 3.6 and its parametric analogue we need to

analyze more closely the geometry of hypersurfaces forming arboreal fronts.

Definition 3.15. Given smooth hypersurfaces X1, X2 ⇢ Rn+1, we denote by T (X1, X2) ⇢

Rn+1 their tangency locus, i.e. the subset of points x 2 X1 \X2 such that TxX1 = TxX2.
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Remark 3.16. Given smooth Legendrians L1, L2 ⇢ J1Rn whose fronts X1 = ⇡(L1), X2 =

⇡(L2) ⇢ Rn+1 are smooth hypersurfaces, note that T (X1, X2) = ⇡(L1 \ L2).

For 0  j < i  n, recall the notation

hi,j := hi�j(xj+1, . . . , xi)

so in particular hi,0 = hi(x1, . . . , xi) and hi,i�1 = h1(xi) = xi. Set

Ti,j = {hi,j = 0} ⇢ Rn+1

Note hi,j is independent of x0, . . . , xj , and we have

Ti,j = Rj+1
⇥

n�j�1�i�j�1

Lemma 3.17. For 0  j < i  n, the tangency locus T (n�i, n�j) ⇢ Rn+1 is the intersection

of either n�i or n�j with the union

{hi,j = 0} [
j�1S
k=0

{hi,k = hj,k = 0} = Ti,j [

j�1S
k=0

(Ti,k \ Tj,k)

Proof. Since n�i, n�j are the graphs of h2i , h
2
j
, the projection of T (n�i, n�j) to the domain Rn

is cut out by

h2
i
= h2

j
dh2

i
= dh2

j

Note hi = hi,0 = x1 � h2
i,1, hj = hj,0 = x1 � h2

j,1. By examining the dx1-component of

dh2
i
= dh2

j
, we see it implies hi = hj . Thus the projection of T (n�i, n�j) is cut out by the

single equation dh2
i
= dh2

j
which in turn implies hi = hj .

To satisfy dh2
i
= dh2

j
, so in particular hi = hj , there are two possibilities: (i) hi = hj = 0; or

(ii) hi = hj 6= 0. In case (i), we find the subset {hi,0 = hj,0 = 0} appearing in the union of the

assertion of the lemma. In case (ii), we observe dh2
i
= dh2

j
is then equivalent to dh2

i,1 = dh2
j,1

which in turn implies hi,1 = hj,1.

Now we repeat the argument. To satisfy dh2
i,1 = dh2

j,1, so in particular hi,1 = hj,1, there

are two possibilities: (i) hi,1 = hj,1 = 0; or (ii) hi,1 = hj,1 6= 0. In case (i), we find the subset

{hi,1 = hj,1 = 0} appearing in the union of the assertion of the lemma. In case (ii), we observe

dh2
i,1 = dh2

j,1 is then equivalent to dh2
i,2 = dh2

j,2 which in turn implies hi,2 = hj,2.

Iterating this argument, we obtain the subset
S

j�1
k=0{hi,k = hj,k = 0}, and arrive at the

final equation dh2
i,j

= 0. By examining the dxj+1-term, we see dh2
i,j

= 0 holds if and only if

hi,j = 0, which gives the remaining subset of the assertion of the lemma. ⇤

Remark 3.18. The only evident redundancy in the description of the lemma is Ti,j�1\Tj,j�1 ⇢

Ti,j since hi,j�1 = xj � h2
i,j
, hj,j�1 = xj , so their vanishing implies the vanishing of hi,j .

We will be particularly interested in the locus Ti,j ⇢ T (n�i, n�j) and formalize its structure

in the following definition.
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Definition 3.19. Given smooth hypersurfaces X1, X2 ⇢ Rn+1, we denote by ⌧�(X1, X2) ⇢

T (X1, X2) the subset of points x 2 X1 \X2 where in some local coordinates we have X1 =

{x0 = 0}, X2 = {x0 = x21}. We write ⌧(X1, X2) ⇢ T (X1, X2) for the closure of ⌧�(X1, X2),

and refer to it as the primary tangency of X1, X2.

Remark 3.20. Given smooth Legendrians L1, L2 ⇢ J1Rn whose fronts X1 = ⇡(L1), X2 =

⇡(L2) ⇢ Rn+1 are smooth hypersurfaces, note that ⌧�(X1, X2) is the front projection of

where L1, L2 intersect cleanly in codimension one.

We have the following consequence of Lemma 3.17.

Corollary 3.21. For 0  j < i  n, the primary tangency ⌧(n�i, n�j) ⇢ Rn+1 is the

intersection of either n�i or n�j with Ti,j.

Before continuing, let us record the following for future use.

Lemma 3.22. Fix 0  k < j  n� 1.

We have

⌧(⌧(�n, n�k), ⌧(n�j , n�k)) = ⌧(n�n, n�j) \ ⌧(n�j , n�k)

where the primary tangency of ⌧(�n, n�k), ⌧(n�j , n�k) of the left hand side is calculated in
n�k ' Rn.

 

Figure 3.4. Verification of the conclusion of Lemma 3.22 for n =
2, in this case both the right and left hand sides of the equality
⌧(⌧(2�2, 2�0), ⌧(2�1, 2�0)) = ⌧(2�2, 2�1) \ ⌧(2�1, 2�0) consist of the origin.

Proof. By the preceding corollary, the left hand side is the intersection n�k \ ⌧(Tn,k, Tj,k).

Note n�k \ Tj,k = ⌧(n�j , n�k) = n�j \ Tj,k. Hence

n�k \ ⌧(Tn,k, Tj,k) =
n�j \ ⌧(Tn,k, Tj,k)
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since y 2 n�k \ ⌧(Tn,k, Tj,k) () y 2 n�k \ Tj,k, y 2 ⌧(Tn,k, Tj,k) () y 2 n�j \ Tj,k,

y 2 ⌧(Tn,k, Tj,k) () y 2 n�j \ ⌧(Tn,k, Tj,k).

Next, recall

Tn,k = Rk+1
⇥

n�k�1�n�k�1 Tj,k = Rk+1
⇥

n�k�1�j�k�1

Hence by the preceding corollary, we have

⌧(Tn,k, Tj,k) = Tj,k \ {hn,j = 0}

Thus the left hand side is given by n�j \ Tj,k \ Tn,j .

On the other hand, by the preceding corollary, the right hand side is also given by n�j \

Tn,j \ Tj,k. ⇤

3.4.1. More on distinguished quadrants.

Corollary 3.23. For 0  j < i  n, we have

n�"

i
\

n�"

j
= T (n�"

i
, n�"

j
) = ⌧(n�"

i
, n�"

j
)

and they coincide with the closed boundary face of n�"

i
cut out by hi,j = 0.

Proof. For j = 0, we have n�"

0 =
n�0 = {x0 = 0}. From the definitions, we have

n�"

i
\

n�0 = T (n�"

i
, n�0) = ⌧(n�"

i
, n�0)

which is cut out of nP "

i
by hi,0 = hi = 0.

For j > 0, the assertions follow from Lemma 2.4 by induction on n. ⇤

Remark 3.24. Note for any 0  j < i  n, we have

⌧(n�i, n�j) =
S

"
⌧(n�"

i
, n�"

j
)

To see this, consider x 2 ⌧(n�i, n�j), so that hi,j(x) = 0 by Corollary 3.21. Choose " so that

x 2 n�"

i
. Then by Corollary 3.23, we have x 2 ⌧(n�"

i
, n�"

j
).

For i = 0, let nL"

0 = Rn
⇢ T ⇤Rn denote the zero-section. For i = 1, . . . , n, consider the

conormal bundles
nL"

i
= T ⇤

n�1�"
i�1

Rn
⇢ T ⇤Rn

and their union
nL" =

S
n

i=0
nL"

i

Similarly, for i = 0, . . . , n, consider the smooth Legendrian

n⇤"

i
⇢ J1Rn

that maps di↵eomorphically to n�"

i
⇢ Rn+1 under the front projection ⇡ : J1Rn

! Rn+1, and

their union
n⇤" =

S
n

i=0
n⇤"

i
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Note the contactomorphism of Lemma 2.1 takes n⇤"

i
⇢ J1Rn isomorphically to {0}⇥nL"

i
⇢

{0}⇥ T ⇤Rn, and thus n⇤"
⇢ J1Rn isomorphically to {0}⇥ nL"

⇢ {0}⇥ T ⇤Rn.

We have the following topological consequence of Lemma 2.4.

Corollary 3.25. As a union of smooth manifolds with corners, n�"
⇢ Rn+1 is given by the

gluing
n�" = (n�1�"

0
⇥ R�0)

`
(n�1�"0⇥{0})(Rn

⇥ {0})

where "0 = ("0"1, "2, . . . , "n). The front projection takes nL"
⇢ J1Rn homeomorphically to

n�"
⇢ Rn+1.

Before continuing, let us record the following for future use.

Corollary 3.26. For 0 < j < i  n, the closure of the codimension one clean intersection of
nL"

i
, nLj is precisely nL"

i
\

nL"

j
.

Proof. The closure of the codimension one clean intersection of nL"

i
, n⇤j is conic and projects

to the primary tangency of n�1�"

i�1,
n�1�j�1. By Corollary 3.21, the primary tangency of

n�1�i�1, n�1�j�1 is cut out by hi�1,j�1 = 0. By Corollary 3.23, this is precisely the tangency

T (n�1�"

i�1,
n�1�j�1) and hence lifts precisely to the conic intersection nL"

i
\

nL"

j
. ⇤

3.5. The case of An+1-tree. The following Theorem 3.27 will play a key role in proving

Proposition 3.6.

Theorem 3.27. Let ' : T ⇤Rn
! J1Rn be an embedding as a Weinstein hypersurface. Assume

that the image of nL under ' is transverse to the fibers of the projection J1Rn
! Rn. Let

⌥ = ⇡('(nL)) ⇢ R⇥ Rn be (the germ of) the front at the central point.

Then there exists a di↵eomorphism R ⇥ Rn
! R ⇥ Rn taking ⌥ to the germ at the origin

of n� ⇢ R⇥ Rn.

The proof of Theorem 3.27 will proceed by induction on the dimension n. At each stage,

we will prove the fully parametric version:

Theorem 3.28. Let 'y : T ⇤Rn
! J1Rn be a family of Weinstein hypersurface embeddings

parametrized by a manifold Y . Assume that the image of nL under 'y is transverse to the

fibers of the projection J1Rn
! Rn. Let ⌥y = ⇡('y(nL)) ⇢ R ⇥ Rn be (the germs of) the

fronts at the central points.

Then there exists a family of di↵eomorphisms  y : R⇥Rn
! R⇥Rn taking ⌥y to the germ

at the origin of n� ⇢ R ⇥ Rn. If 'y = Id for y 2 Op (K), where K ⇢ Y is a closed subset,

then we may assume  y = Id for y 2 Op (K).

As usual the case of general pairs (Y,K) follows from the case Y = Dk and K = Sk�1.

To simplify notation we set n� = '(nL), so that ⌥ = ⇡(n�) and similarly with parameter

superscripts. We also denote n�n = '(nLn) and ⌥n = ⇡(n�n).
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3.5.1. Base case n = 0. The k-parametric version states: the germ of any graphical hyper-

surface ⌥ ⇢ R⇥Rk is di↵eomorphic to the germ of the zero-graph 0�⇥Rk = {0}⇥Rk. This

can be achieved by an isotopy generated by a time-dependent vector field of the form ht@x0 .

This vector field is zero at infinity if ⌥ is standard at infinity.

3.5.2. Case n = 1. The next case of the induction n = 1 is elementary but slightly di↵erent

from the others, so it is more convenient to treat separately.

With the setup of the theorem, consider the front ⌥ = ⇡(1�) ⇢ R2, and assume without

loss of generality that the origin is the central point. By induction, we may assume, the front

takes the form ⌥ = �0 [ ⌥1 ⇢ R2 where �0 = {x0 = 0}. Near the origin, the intersection

�0 \⌥1 and tangency locus T (�0,⌥1) coincide and consist of the origin alone. Moreover, by

construction, the origin is a simple tangency, and so ⌥1 = {x0 = ↵x21} with ↵(0) 6= 0. Now it

is elementary to find a time-dependent vector field of the form htx0@x0 , hence vanishing on �0,

generating an isotopy taking ⌥1 to either �1 = {x0 = x21} or ��1 = {x0 = �x21}. In the former

case, we are done; in the latter case, we may apply the di↵eomorphism (x0, x1) 7! (�x0, x1)

to arrive at the configuration �0 [ �1. Finally, it is evident the prior constructions can be

performed parametrically, with the vector field zero at infinity if ⌥ is standard at infinity.

3.5.3. Inductive step. The inductive step takes the following form. Suppose the fully para-

metric assertion has been established for dimension n � 1. Starting from n� ⇢ T ⇤Rn, re-

move the last smooth piece to obtain n�0 = n� \
n�n, and consider the corresponding front

⌥0 = ⇡(n�0). Note that n�0 = n�1�⇥R ⇢ T ⇤(Rn�1
⇥R), and so by an inductive application

of the 1-parametric version of the theorem, we may assume

⌥0 = n�1�⇥ R

We will find a di↵eomorphism Rn+1
! Rn+1 that preserves ⌥0 (as a subset, not pointwise),

and takes ⌥n to n�n. Moreover, it will be evident the di↵eomorphism can be constructed

in parametric form, including the relative parametric form. This will complete the inductive

step and prove the theorem.

3.5.4. Two propositions. The proof of the inductive step is based on the following 2 proposi-

tions.

Proposition 3.29. Fix n � 2.

With the setup of Theorem 3.27, suppose ⌥ =
S

n�1
i=0

n�i[⌥n where we recall ⌥n = ⇡(n�n).

Suppose in addition ⌥n has primary tangency loci satisfying

⌧(⌥n, n�i) � ⌧(n�n, n�i) i = 0, . . . , n� 1

Then ⌥n = {x0 = ↵h2n} where

↵ = 1 + �
n�1Q
j=1

h2
n,j

= 1 + �h2
n,1 · · ·h

2
n,n�1
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Moreover, the same holds in parametric form.

Proof. We have ⌥n = {x0 = g} for some g. Since ⌧(⌥n, n�0) � ⌧(n�n, n�0) = {hn = 0},

we must have g is divisible by h2n, hence g = ↵h2n, for some ↵. Next, for any j 6= 0, n, by

Lemma 3.17, ⌧(n�n, n�j) is cut out by hn,j = 0. Since ⌧(⌥n, n�j) � ⌧(n�n, n�j), and hn 6= 0

along a dense subset of {hn,j = 0}, taking the ratio g/h2n shows that we must have ↵ = 1+ �,

where � is divisible by h2
n,j

. Repeating this argument, and using the transversality of the

level-sets of the collection hn,j , we conclude that � = �h2
n,1 · · ·h

2
n,n�1. ⇤

Proposition 3.30. Fix n � 2.

With the setup of Theorem 3.27, suppose ⌥ =
S

n�1
i=0

n�i[⌥n where we recall ⌥n = ⇡(n�n).

Suppose in addition ⌥n = {x0 = ↵h2n} where

↵ = 1 + �
n�1Q
j=1

h2
n,j

= 1 + �h2
n,1 · · ·h

2
n,n�1

Consider the family ⌥n,t = {x0 = (1� t+ t↵)h2n} so that ⌥n,0 = n�n, ⌥n,1 = ⌥n.

Then there exist functions gt : Rn+1
! R such that the vector fields

gtvn�1 = gt
P

n�1
i=0 xi

1
2i@xi = gtx0@x0 +

1
2gtx1@x1 + · · ·+ 1

2n�1 gtxn�1@xn�1

generate an isotopy 't : Rn+1
! Rn+1 such that 't(⌥n,0) = ⌥n,t.

In addition, the functions ht, hence vector fields htvn�1, are divisible by the product
Q

n�1
j=1 hn,j .

Moreover, all of the above holds in parametric form.

The following lemmas are needed for the proof of Proposition 3.30.

Lemma 3.31. For all 0  i  n, the vector field

vi =
P

n

j=0 xj
1
2j @xj = x0@x0 +

1
2x1@x1 + · · ·+ 1

2ixi@xi

preserves each n�j ⇢ Rn+1, for j = 0, . . . , i.

Proof. Since n�j ⇢ Rn+1 is independent of xj+1, . . . , xn, it su�ces to prove the case i = j = n.

Recall n�n is the zero-locus of f = x0 � h2n. We will show v(hn) = 1
2hn and so v(f) = f .

Recall hn = hn,0 = x1 � h2
n,1, and in general hn,j = xj+1 � h2

n,j+1 with hn,n�1 = xn. Thus

vn(hn,n�1) = 1
2nhn,n�1, and by induction, v(hn,j) = 1

2j+1hn,j , so in particular v(hn,0) =

v(hn) =
1
2hn. ⇤

Remark 3.32. In the context of the inductive step outlined above, we will use Lemma 3.31 in

particular the vector field

vn�1 =
P

n�1
i=0 xi

1
2i@xi = x0@x0 +

1
2x1@x1 + · · ·+ 1

2n�1xn�1@xn�1

to move ⌥n to n�n. The lemma confirms we will preserve ⌥0 = n�1�⇥ R =
S

n�1
i=0

n�i.
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Lemma 3.33. For any 0  j < i  n, and 1  k  i, we have

@h2
i

@xk
= �(�2)k

k�1Y

j=0

hi,j = �(�2)
khi,0hi,1 · · ·hi,k�1

Proof. Recall hi = hi,0 and the inductive formulas hi,j = xj+1� h2
i,j+1 with hi,i�1 = xi. Thus

we have
@h2

i,j

@xj+1
= 2hi,j

@h2
i,j

@xk
= �2hi,j

@h2
i,j+1

@xk
k > j + 1

and the assertion follows. ⇤

Proof of Proposition 3.30. Suppose ⌥ =
S

n�1
i=0

n�i [⌥n where ⌥n is the graph of

H� = (1 + �
n�1Q
j=1

h2
n,j

)h2n = (1 + �h2
n,1 · · ·h

2
n,n�1)h

2
n

Our aim is to find a normalizing isotopy, generated by a time-dependent vector field vt,

taking the graph ⌥n = {x0 = H�} to the standard graph n�n = {x0 = h2n}, i.e. to the graph

where � = 0, while preserving
S

n�1
i=0

n�i. Thus for any infinitesimal deformation in the class of

functions H� , we seek a vector field v realizing the deformation and preserving the functions

h0, . . . , hn�1, i.e. we seek to solve the system

ḣi = 0, i = 0, . . . , n� 1

Ḣ� = �
n�1Y

j=0

h2n,j = �h2n,0 · · ·h
2
n,n�1

(2)

where Ḣ� denotes the derivative of H� with respect to v, and � is any given smooth function.

Let �� ⇢ T ⇤Rn+1 denote the conormal to the graph of H� . Any vector field v =
P

n

j=0 vj@/@xj on Rn+1 extends to a Hamiltonian vector field vH on T ⇤Rn+1 with Hamil-

tonian H =
P

n

j=0 pjvj . We will find v deforming the graph of H� by finding H so that vH
deforms the conormal to the graph �� .

In general, for a function f : Rn
! R, with graph �f = {x0 = f} ⇢ Rn+1, denote the

conormal to the graph by T ⇤
�f
⇢ T ⇤Rn+1. With respect to the contact form p1dx1+. . . pndxn�

x0dp0, the conormal T ⇤
�f

is given by the generating function F (x1, . . . , xn) = �p0f(x1, . . . , xn),

i.e. it is cut out by the equations

pi = �p0
@f

@xi
, i = 1, . . . , n

x0 = f(x1, . . . , xn)

Hence given a Hamiltonian H =
P

n

j=0 pjvj , its restriction to the conormal T ⇤
�f

is given by

H|T ⇤
�f

= p0v0|x0=f � p0

nX

j=1

@f

@xj
vj |x0=f
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and so further restricting to p0 = 1, we find the Hamilton-Jacobi equation

H|T ⇤
�f

\{p0=1} = v0|x0=f �

nX

i=1

@f

@xi
vi|x0=f = v0|x0=f � ḟ

Let us apply the above to H� and hi, for i = 0, . . . , n � 1. It allows us to transform

system (2) into the system

v0(x1, . . . , xn, hi)�
nX

j=1

@hi
@xj

vj = 0, i = 0, . . . , n� 1

v0(x1, . . . , xn, H�)�
nX

j=1

@H�

@xj
vj = �

n�1Y

j=0

h2n,j

(3)

Note we can reformulate Lemma 3.31 from this viewpoint: when � = � = 0, given any

function h = h(x1, . . . , xn), the functions

v0 = x0h, v1 =
x1
2
h, v2 =

x2
4
h, . . . , vn =

xn
2n

h(4)

satisfy system (3).

Now let us choose v0, v1, . . . vn�1 as in (4) but set vn = 0. This will satisfy the first n

equations of system (3), independently of �, �. From hereon, we will restrict to this class of

vector fields and focus on the last equation of system (3).

Let us first set � = 0, so thatH� = h2n, and solve system (3) in this case. Using Lemma 3.33,

we can then rewrite the left-hand side of the last equation of system (3) in the form

v0(x1, . . . , xn, h
2
n)�

n�1X

j=1

@h2n
@xj

vj = h

0

@h2n �
n�1X

j=1

@h2n
@xj

xj
2j

1

A = h

0

@h2n +
n�1X

j=1

(�1)jxj

j�1Y

k=0

hn,k

1

A

Here we recall the notation hi,j = hi�j(xj+1, . . . , xi), so that using the relations hn = hn,0,

hn,k � xk+1 = �h2n,k+1 we have

@hn
@xj

= 2j�1(�1)j�1
j�1Y

k=1

hn,k.
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Further, we can inductively simplify the term in parentheses

h2n +
n�1X

j=1

(�1)jxj

j�1Y

k=0

hn,k = hn

0

@hn � x1 +
n�1X

j=2

(�1)jxj

j�1Y

k=1

hn,k

1

A

= hn

0

@�h2n,1 +
n�1X

j=2

(�1)jxj

j�1Y

k=1

hn,k

1

A

= hnhn,1

0

@�hn,1 + x2 +
n�1X

j=3

(�1)jxj

j�1Y

k=2

hn,k

1

A

· · ·

= (�1)n�1hnhn,1hn,2 · · ·hn,n�1 = (�1)n�1
n�1Y

j=0

hn,j

Thus for � = 0, the last equation of system (3) reduces to

(�1)n�1h
n�1Y

j=0

hn,j = �
n�1Y

j=0

h2n,j

and hence can be solved by

h = (�1)n�1�
n�1Y

j=0

hn,j

Now for general �, we will similarly calculate the left-hand side of the last equation of

system (3). To simplify the formulas, set

F =
n�1Q
j=0

hn,j ✓ = �F 2

Thus we have H� = (1+✓)h2n, and our prior calculation showed when � = 0, the last equation

of system (3) took the form

(�1)n�1hF = �F 2

so was solved by h = (�1)n�1�F .

For general �, we just need to consider the extra term obtained from the ✓ part of the

factor (1 + ✓) which multiplies h2n. It therefore follows formally from the previous equation

that, after factoring out the function h to be solved for, the left-hand side of the last equation

of system (3) takes the form

(�1)n�1(1 + ✓)F � h2n

n�1X

j=1

1

2j
@✓

@xj
xj
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Thus the equation itself takes the form

(5)

0

@(�1)n�1(1 + ✓)F � h2n

n�1X

j=1

1

2j
@✓

@xj
xj

1

Ah = �F 2

Since ✓ = �F 2, we have

@✓

@xj
= F 2 @�

@qj
+ �

@F 2

@qj
= F 2 @�

@qj
+ 2F�

@F

@qj

and hence @✓

@xj
is divisible by F . Thus we can divide equation (5) by F , and after renaming

�, write equation (5) in the form

(1 +O(x))h = �F

where O(x) vanishes at the origin. We conclude we can solve the equation by h = (1 +

O(x))�1�F .

This completes the proof of Proposition 3.30. ⇤

3.5.5. Proof of Theorem 3.27. In this section, we use Propositions 3.29 and Proposition 3.30

to complete the inductive step outlined in 3.5.3, and thus, complete the proof of Theorem

3.27. Let us assume n � 2. Recall the notation n� = '(nL), n�n = '(nLn), ⌥ = ⇡(n�) and

⌥n = ⇡(n�n).

Then ⌥ = ⌥0
[ ⌥n where ⌥0 =

S
n�1
i=0

n�i is already standard. We will implement the

following strategy. Suppose for some 0 < k  n� 1, we have moved ⌥n, while preserving ⌥0,

so that we have the relation of primary tangencies

⌧(⌥n, n�j) � ⌧(n�n, n�j) j > k

Then using Proposition 3.29 and Proposition 3.30, or alternatively, the cases n = 0, 1 when

respectively k = n � 1, n � 2, we will move ⌥n, while preserving ⌥0, so that we have the

relation of primary tangencies

⌧(⌥n, n�j) � ⌧(n�n, n�j) j � k

Proceeding in this way, we will arrive at k = 0, where all primary tangencies have been

normalized. Then a final application of Proposition 3.29 and Proposition 3.30 will complete

the proof.

To pursue this argument, we need the following control over primary tangencies.

Lemma 3.34. Fix 0  k < j  n� 1.

We have

⌧(⌧(⌥n, n�k), ⌧(n�j , n�k)) � ⌧(⌥n, n�j) \ ⌧(n�j , n�k)

Moreover, when k = n � 2, the tangency of ⌧(⌥n, n�n�2) and ⌧(n�n�1, n�n�2) is nonde-

generate.

Proof. We will assume k > 0 and leave the case k = 0 as an exercise.
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Figure 3.5. The strategy of the proof: inductively normalize tangencies.

Fix a point

y 2 ⌧(⌥n, n�j) \ ⌧(n�j , n�k)

In particular y 2 ⌥n and so y = ⇡(ỹ) for some ỹ 2 n�n. Recall n⇤n =
S

"

n⇤"
n. Hence after

applying ' we may also write n�n =
S

"

n�"
n and so ỹ 2 n�"

n, for some ".

Note y 2 ⌧(⌥n, n�j) implies ỹ is in the closure of the clean codimension one intersection of
n�n, n⇤j .

By applying ' to Corollary 3.26, this locus intersects n�"
n precisely along n�"

n \
n⇤"

j
and

so ỹ 2 n⇤"

j
.

Similarly, note y 2 ⌧(n�j , n�k) implies ỹ is in the closure of the clean codimension one

intersection of n⇤j , n⇤k. By Corollary 3.26, this locus intersects n⇤"

j
precisely along n⇤"

j
\

n⇤"

k

and so ỹ 2 n⇤"

k
.

Thus altogether ỹ 2 n�"
n \

n⇤"

j
\

n⇤"

k
= (n�"

n \
n⇤"

k
) \ (n⇤"

j
\

n⇤"

k
).

By Corollary 3.26, the intersections n�"
n \

n⇤"

k
and n⇤"

j
\

n⇤"

k
are closures of clean codi-

mension one intersections, hence their projections lie in the primary tangencies ⌧(⌥n, n�k)

and ⌧(n�j , n�k) (for the first intersection one applies ' to the conclusion of Corollary 3.26).

Moreover, n�"
n\

n⇤"

k
and n⇤"

j
\

n⇤"

k
intersect along their primary tangency. Since ⇡ restricted

to n⇤k has no critical points, the projection of this primary tangency is again a primary

tangency. Hence y 2 ⌧(⌧(⌥n, n�k), ⌧(n�j , n�k)), proving the asserted containment.

We leave the nondegeneracy of the case k = n� 2 to the reader. ⇤

Now we are ready to inductively normalize the primary tangencies.

Lemma 3.35. Fix 0  k < n� 1.
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Suppose

⌧(⌥n, n�j) = ⌧(n�n, n�j) j > k

Then there exists a di↵eomorphism  : Rn+1
! Rn+1 preserving ⌥0 =

S
n�1
i=0

n�i such that

⌧( (⌥n), n�j) = ⌧(n�n, n�j) j � k

Moreover, when k 6= n� 2, the di↵eomorphism is an isotopy.

Proof. We will assume k < n � 3. We leave the elementary cases k = n � 2, n � 3 to the

reader. They can be deduced from the parametric versions of the cases n = 0, 1 presented in

3.5.1, 3.5.2 respectively.

Throughout what follows, we use the projection Rn+1
! Rn to identify n�k = Rn.

On the one hand, we have

⌧(n�j , n�k) = Rk
⇥

n�k�1�j�k�1 k < j < n

On the other hand, by Lemma 3.34 and assumption, we have

⌧(⌧(⌥n, n�k), ⌧(n�j , n�k)) = ⌧(⌥n, n�j) \ n�k = ⌧(n�n, n�j) \ n�k k < j < n

Hence within n�k = Rn, the loci ⌧(⌥n, n�k) and ⌧(n�n, n�k) have the same tangencies with

⌧(n�j , n�k) = Rk
⇥

n�k�1�j�k�1 k < j < n

Thus Proposition 3.29 and Proposition 3.30 provide a time-dependent vector field of the

form

vt = ht
n�1P

i=k+1

1
2ixi@xi

generating an isotopy ' : Rn�k
! Rn�k satisfying

'(⌧(⌥n, n�k)) = ⌧(n�n, n�k)

In addition, the function ht, hence vector field vt, is divisible by the product
Q

n�1
j=k+1 hn,j , and

thus ' preserves its zero-locus.

Let us complete vt to the vector field

Vt = ht
n�1P
i=0

1
2ixi@xi

and consider the isotopy  : Rn+1
! Rn+1 generated by Vt.

Then  satisfies

 (⌧(⌥n, n�k)) = ⌧(n�n, n�k)

It also preserves n�i, for 0  i  n � 1, as well as ⌧(⌥n, n�j) = ⌧(n�n, n�j), for j > k. In

addition, it preserves

⌧(n�j , n�k) = Rk
⇥

n�k�1�j�k�1 k < j < n
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since this is the zero-locus of hn,j . ⇤

Finally, let us use the lemma to complete the inductive step of the proof of Theorem 3.27

as outlined above. Suppose for some 0 < k  n� 1, we have moved ⌥n, while preserving ⌥0,

so that we have the sought-after primary tangencies

⌧(⌥n, n�j) = ⌧(n�n, n�j) j > k

Then using Lemma 3.35, we can move ⌥n, while preserving ⌥0, so that we have the sought-

after primary tangencies

⌧(⌥n, n�j) = ⌧(n�n, n�j) j � k

Proceeding in this way, we arrive at k = 0, where all primary tangencies have been normalized.

Now a final application of Proposition 3.29 and Proposition 3.30 move ⌥n to n�n, while

preserving ⌥0, and thus complete the proof of Theorem 3.27.

3.6. Conclusion of the proof. We are now ready to prove Proposition 3.6. As a consequence

we establish Theorem 3.5, and since all the above also holds parametrically this also establishes

the parametric version Theorem 3.12.

Proof of Proposition 3.6. Take any point � in the front H := ⇡(⇤) and let ⇡�1(�) =

{�1, . . . ,�k}. Let ⇤1, . . . ,⇤k be germs of ⇤ at these points of arboreal types (Tj , n),

n(Tj) = nj . We need to show that the germ of the front H at � is di↵eomorphic to the

germ of a model front HT , where T is a signed rooted tree obtained from
F
Tj by adding the

root ⇢ and adjoining it to the roots ⇢j of the trees Tj by edges [⇢⇢j ]. The signs of all edges of

the trees Tj are preserved, while previously unsigned edges ⇢j↵ get a sign "(⌫, L,↵), see (1).

We proceed by induction on the number of vertices in the signed rooted tree T = (T, ⇢, ").

The base case of a (A1,m)-front H ⇢ Rm is the same geometry as appearing in 3.5.1: any

graphical hypersurface H ⇢ R⇥ Rm�1 is isotopic to the germ of the zero-graph {0}⇥ Rm�1.

For the inductive step, fix a rooted tree T = (T, ⇢, "), and as usual set n = |n(T )|.

Consider a (T ,m)-front H ⇢ Rm, with by necessity m � n.

Fix a leaf vertex � 2 `(T ), which always exists as long as T 6= A1. Consider the smaller

signed rooted tree T 0 = T \ �, and the corresponding (T 0,m)-front H 0 = H \ H̊[�] ⇢ Rm,

where H̊[�] ⇢ H is the interior of the smooth piece indexed by �. By induction, we may

assume

H 0 = HT 0 ⇥ Rm�n+1
⇢ Rm

Thus it remains to normalize the smooth piece H[�].

Let A� = (A� , ⇢, "�) be the linear signed rooted subtree of T = (T, ⇢, ") with vertices

v(A�) = {↵ 2 v(T ) |↵  �}. Set d = v(T ) \ v(A�) = n(T ) \n(A�) to be the complementary

vertices.

Consider the (A� ,m)-front K ⇢ H given by the union K =
S

↵2n(A�)
K[↵] of the smooth

pieces of H ⇢ Rm indexed by ↵ 2 n(A�). Note for A 0
�
= A� \ T 0, and K 0 = K \ H 0, we
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already have

K 0 = HA 0
�
⇥ Rm�n+1+d

⇢ Rm

and seek to normalize the smooth piece K[�] = H[�].

Now we can apply Theorem 3.27 to normalize K[�] viewed as the final smooth piece of

K. More specifically, we can apply Theorem 3.27 to normalize K[�] while preserving K 0 and

viewing the complementary directions Rm�n+1+d as parameters, see Figure 3.6. This insures

we preserve H 0 and hence do not disturb its already arranged normalization.

This concludes the proof of Proposition 3.6. ⇤

 

Figure 3.6. Treating the complementary directions as parameters.
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