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Abstract

Undetected infections fuel the dissemination of many infectious agents. However, identifica-
tion of unobserved infectious individuals remains challenging due to limited observations of
infections and imperfect knowledge of key transmission parameters. Here, we use an
ensemble Bayesian inference method to infer unobserved infections using partial observa-
tions. The ensemble inference method can represent uncertainty in model parameters and
update model states using all ensemble members collectively. We perform extensive experi-
ments in both model-generated and real-world networks in which individuals have differen-
tial but unknown transmission rates. The ensemble method outperforms several alternative
approaches for a variety of network structures and observation rates, despite that the model
is mis-specified. Additionally, the computational complexity of this algorithm scales almost
linearly with the number of nodes in the network and the number of observations, respec-
tively, exhibiting the potential to apply to large-scale networks. The inference method may
support decision-making under uncertainty and be adapted for use for other dynamical mod-
els in networks.

Author summary

Mathematical models in networks can be used to infer unobserved infections and support
decision-making in outbreak control and management. However, a major challenge in
the operational use of these models is model misspecification-whether models can reliably
represent the real-world disease transmission process. As we can only observe part of the
transmission process, mathematical models are inherently misspecified due to the uncer-
tainty in the model structure and parameters. A reliable modeling method, therefore,
should be robust to such uncertainty and imperfect knowledge of the transmission
dynamics to support real-time decision-making. In this study, we used an ensemble infer-
ence method to infer unobserved infections using partial observations. We considered the
condition where individuals have differential but unknown transmission rates as an exam-
ple of model uncertainty mirroring the situation encountered in real-world settings. We
found the ensemble inference can robustly infer unobserved infections using partial
observations with uncertainty in model parameters, although the distribution of
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downloaded from publicly available repositories.
Links to these repositories are provided here: 1.
Social contact network (http://www.sociopatterns.
org/datasets/infectious-sociopatterns). 2.
Hamsterster friendship network (http://konect.cc/
networks/petster-hamster-household). 3. Scientific
collaboration network (https:/networks.skewed.de/
net/new_zealand_collab). 4. US power grid (http:/
konect.cc/networks/opsahl-powergrid). 5. Road
transportation network (http://konect.cc/networks/
tntp-ChicagoRegional). 6. Slashdot friend network
(https://www.aminer.cn/data-sna#Slashdot-small).
7. Digg reply network (http://konect.cc/networks/
munmun_digg_reply). 8. Twitter following network
(http://www.konect.cc/networks/ego-twitter). 9.
Internet P2P network (http://www.konect.cc/
networks/p2p-Gnutella31).
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parameters is mis-specified. The ensemble inference algorithm presents a general frame-
work for inference of spreading dynamics in networks and may contribute to the
toolbox supporting operational epidemic control in the face of model uncertainty and
limited observation.

Introduction

Emerging and recurrent infectious diseases are a perpetual threat to human society [1]. For
most human-to-human transmitted diseases, effective control requires timely isolation of
infectious individuals [2]. In reality, however, only partial infected individuals can be observed
due to limited surveillance resources or asymptomatic and pre-symptomatic shedding. For
instance, less than 10% of COVID-19 infections were reported in the US during the spring of
2020 [3-6]; in hospital settings, most patients carrying antimicrobial resistant bacteria cannot
be identified unless they develop clinical symptoms [7]. Unobserved infections play an essen-
tial role for the sustain, growth and persistence of several infectious diseases. Evidence indi-
cates that undocumented infections drove the early transmission of SARS-CoV-2 in China [8],
and undetected carriers of methicillin-resistant Staphylococcus aureus, a prevalence drug-
resistant pathogen, caused 75% of transmission events in two UK hospitals [9]. Modeling stud-
ies further demonstrate that intervention measures ignoring unobserved infections may not be
able to contain outbreaks due to extensive stealth transmission [10-13]. As a result, identifying
unobserved infections using sparsely observed data is critical for disease control.

Epidemic models in networks (or agent-based models) are frequently used to simulate
infectious disease transmission [14]. Compared to compartmental models based on the
assumption of homogeneous population mixing, agent-based models can capture the complex
and heterogeneous person-to-person contact pattern. However, calibration of agent-based
models to real-world data (i.e., inference of model parameters and states of individuals) is chal-
lenging [15]. Previous studies have addressed inference problems for epidemic models in net-
works. For example, given a snapshot of individual status at a time point, a centrality-based
method was developed to infer the origin of an epidemic [16-18]. Later, more accurate algo-
rithms based on message-passing and belief propagation were proposed to locate outbreak
sources [19,20]. More recently, inference algorithms were coupled with agent-based models to
assimilate multiple data streams to infer individual-level infection risk of COVID-19 [21,22]
and antimicrobial resistant pathogens [23-25]. To address the issue of incomplete observa-
tions, data augmentation technique was used to augment missing data ensuring that the aug-
mented data are consistent with observed data [26]. This technique has been coupled with
Bayesian methods (e.g., Markov chain Monte Carlo) to reconstruct transmission chains of
infectious diseases using epidemiologic, contact, and genomic data [27-30].

The problem of inferring missing infections has also been extensively studied in computer
science and physics literature. An important topic is to learn the propagation networks of a
spreading process using full or partial observations. Several studies developed inference meth-
ods based on likelihood maximization of the observed cascades depending on specific trans-
mission models and model parameters [31-34]. Another line of research is to use Steiner tree
sampling to reconstruct transmission networks under different observation models for node
infection times [35-38]. This approach does not require assumptions on the transmission
model and model parameters and can be used to estimate node infection probabilities. More
generally, a dynamical message passing framework was developed to infer parameters of
spreading models from partial observations [39]. Despite these efforts, inference of unobserved
infections using sparse observations is still challenging in real-world settings.
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Several challenges and practical considerations need to be addressed before putting inference
systems into operational use. Successful inference using methods based on epidemic models
requires a well-specified model that can reasonably represent the real-world disease transmis-
sion process. However, detailed information on the transmission process is typically not avail-
able in real-world applications. Models used in inference systems therefore do not necessarily
capture the full complexity of realistic disease transmission dynamics. For instance, most previ-
ous studies used epidemic models with a constant transmission rate (i.e., the probability of
infection for a contact between susceptible and infected individuals) to validate and compare
inference algorithms. In contrast, real-world transmission rate can be highly heterogeneous due
to a complex immunological landscape and other personal variations in susceptibility. For
instance, vaccinated individuals are less likely to be infected following exposures to persons
infected with influenza [40] and SARS-CoV-2 [41]. Ignoring this individual variation may lead
to strong model misspecification and undermine inference accuracy. Further, sparse observa-
tions impose additional challenges for identifying unobserved infections. For operational use, a
robust algorithm that can handle model misspecification and sparse observations is needed.

In this study, we use an ensemble Bayesian inference method to infer unobserved infections
in networks using partial observations. Ensemble approach can handle uncertainty in model
structure and was demonstrated to be able to support robust predictions in operational infec-
tious disease forecasting (e.g., influenza and COVID-19) [42-44]. To make use of limited
observations, we propagate information obtained from these observations to unobserved indi-
viduals in contact networks. We simulate epidemic outbreaks in networks using a modified
susceptible-infected-recovered (SIR) model with heterogeneous transmission rates, for which
the states of only part of individuals are observed. We evaluate the proposed inference algo-
rithm on both synthetic and real-world networks and compare it with several alternative meth-
ods. Results indicate that the ensemble inference algorithm can better identify unobserved
infections when the parameters of epidemic process are not perfectly known. This inference
algorithm does not require specific forms of transmission dynamics and may be flexibly gener-
alized to other epidemic models.

Materials and methods
Epidemic model

We used a modified SIR model in networks to simulate epidemic outbreaks. For an undirected
network G(V,E), where V is the set of vertices and E is the set of undirected edges, each node is
in one of three states: susceptible (S), infected (I) and recovered (R). A susceptible individual i
can be infected by an infected neighbor with a transmission rate j; on each day, independent
of the states of other neighbors. An infected individual recovers with a probability 1/D, where
D is the average infectious period. Individual transmission rates were randomly drawn from a
bimodal distribution, mimicking the situation where certain population are partially protected
(see Fig A in S1 Text). Outbreaks were initiated by a set of randomly chosen seeds. In this
study, we focus on the growth phase of epidemics, when timely inference can be used to
inform interventions. Specifically, we selected configurations of initial seeds, transmission rate
distribution, and simulation time so that the percentage of individuals ever infected is around
25-35% by the end of simulation (see Table A in S1 Text).

Observation model

To model the real-world observation process, individuals were tested with a probability on
each day depending on their states. We assume infected individuals are more likely to be tested
than susceptible and recovered persons as infected people may have symptoms. In model
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simulations, the percentage of total tested population ranged from 10% to 55%. Given the low
daily testing probability and the relative short simulation period (Table A in S1 Text), most
observed individuals were only tested once. These partial observations were used to support
inference to locate unobserved infections. We also tested another observation model based on
contact tracing. Contact tracing were widely used to find infections for epidemic control [45].
In this model, each node was tested with a daily testing probability, similar to the previous
observation model. However, once an individual was tested positive on day ¢, all neighbors of
infection in the contact network were tested on the next day ¢+1. As observing neighbors of
infections would increase the number of observations, we adjusted the daily testing probability
so that the percentage of tested individuals was between 10% to 50%.

Problem statement

Define P(X}) as the probability of individual i in the state X&(S,L,R) on day t. For a subset of
nodes in the network, their states on certain days were observed. Define the observation data
asD = {(i,, t,, O)}, where (i,t,,0) represents that individual i, was observed in the state Oc
(S,LR) on day ¢,. The objective is to estimate P(I}) for each node i given partial observations of
individuals’ states D: P(I'|D) for i = 1,- - ,N, where N is the total number of individuals in the
network. We are particularly interested in the estimates of P(I”) on the last day T, which can
be used to inform prospective interventions to control outbreaks.

Inference

We used an ensemble Bayesian inference method to infer unobserved infections using sparse
observations. The evolution of P(X!) is governed by a set of master equations:

@ = —P(S) [1 — Micoi(1 = ﬁiP(Ii[))]’ W

dpd(tlf) _ P(Sf) [1 _ HjE(’)i(l _ ﬁ,P(I;))} _ P(DI;F)’ (2)
dP(R) P(I))

(R, (3)

Here, f; is the transmission rate of node i, Ji is the set of neighbors of node i, and D is the
average infectious duration. Eqs (1-3) are accurate when the network has a tree structure. For
real-world networks without too many short loops, previous studies found Eqs (1-3) provide a
good approximation [46].

Depending on the initial conditions and model parameters, an infinite number of possible
configurations of P(X!) exist. The proposed method maintains an ensemble of P(X') configu-
rations, each of which represents one possible realization of P(X!). We initiated P(X!=") for
each ensemble member on the first day by randomly assigning a small infection probability to
each node. Within each ensemble member, the individual transmission rates 3; were drawn
from a uniform distribution over a plausible range. We use this ensemble to represent the
uncertainty in heterogeneous transmission rates given imperfect knowledge of individuals’
transmission rate. Note that the uniform distribution of f; in the inference system does not
match the actual bimodal distribution in outbreak simulations; nevertheless, as shown later,
the inference results are robust to this mis-specified setting.

We sequentially updated probabilities P(X!) in each ensemble member using sparse obser-
vations. On each day ¢, three procedures were performed.
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Fig 1. An illustration of the ensemble inference algorithm. (A). Model state at time ¢ and observations after time ¢. Two infected individuals are observed
after time #. The red color represents the probability of infection. We use an ensemble of model states to represent the distribution of transmission rates and the
distribution of infection probabilities. (B). We use Bayes’ rule and master equations to propagate information backward in time and estimate the infection
probability of observed individuals at time #: P(X!|X] = O) o< P(X!)P(X! = O|X!), where node i is observed to be in state O at time T. (C). We use cross-
ensemble covariability to adjust the infection probability of individuals connected to observed nodes. Denote the adjustment on observed node i as AP(X!) for
each ensemble member. The adjustement on node j, a neighbor of node i, is AP(X) = CAP(X]), where C = cov(P(X}), P(X]))/var(P(X])). Here

cov(P(X;), P(X)) is the covariance between P(X}) and P(X) and var(P(X])) is the variance of P(X), both computed using the ensemble members. Red arrows
mean that the information on infection probability is propagated to the neighbors of observed nodes. (D). We integrate the master equations to time f+1. Red
arrows show that information on infection probability is further propagated forward to neighbors. After these three procedures, information from the two
observations reaches six other individuals in the network.

https://doi.org/10.1371/journal.pcbi.1011355.9001

1. Backward temporal propagation: Assume individual i, is observed in state O on day ¢, > ¢
(Fig 1A). For each ensemble member, we estimate the probability of i, in each state X&{S,1,
R} on day ¢ given the future observation on day ¢, , P(X} |X:;“ = 0), using a Bayesian
approach and the master equations (Fig 1B) (see details in S1 Text). We perform this proce-
dure for all observations after day ¢. This procedure propagates information in future obser-
vations backward in time to the current day ¢.

2. Cross-ensemble covariability adjustment: We update the probabilities of i,’s neighbors using
cross-ensemble covariability between the probabilities for individual i, and neighbors (Fig
1C) (see S1 Text). The cross-ensemble covariability captures the dynamical coupling
between i, and neighbors in the transmission dynamics and is directly computed using all
ensemble members [36]. We perform this update for all observations after day . This proce-
dure propagates information from observed individuals to their neighbors on day .

3. Model integration: We integrate the master equations using the updated probabilities from
day t to day t+1, evolving P(X!) to P(X!*") for all individuals (Fig 1D). This procedure fur-
ther propagates information in space (i.e., neighbors of nodes) and time.
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We performed the above three procedures on each day sequentially until the most recent
day with observations. We anticipate the information from partial observations can eventually
reach the majority of individuals in the network. The mean estimate of P(X) is the average
value of all ensemble members. In this study, 100 ensemble members were used in the infer-
ence. Experiments with more ensemble members are reported in Results. The pseudo-code of
the algorithm is provided in S1 Text. Implementation details of the ensemble inference algo-
rithm are provided in S1 Text.

Competing methods

A number of existing methods were used to rank the infection probability of individuals. (1).
Degree. Nodes with more connections with other nodes are assumed to have a higher proba-
bility to be infected. (2). Contact. We rank nodes according to their number of connections to
observed infections. Nodes with more exposure to observed infections are assumed to have a
higher infection probability. (3). A modified dynamic message-passing (DMP) algorithm. The
DMP algorithm uses a set of message-passing equations to quantify the evolution of probabili-
ties of individuals’ states. Initially used to identify the origin of an epidemic [19], the DMP
algorithm was modified in this study to infer infection probability of each node. To represent
the uncertainty in transmission rate, we implemented two versions of modified DMP algo-
rithm. In the first, denoted as DMP1, transmission rates were set as a constant, the mean of a
uniform distribution; in the second, denoted as DMP2, transmission rates for all individuals
were randomly drawn from a uniform distribution, same as in the ensemble inference algo-
rithm. We found the performance of these two approaches is similar. Details of the modified
DMP algorithm are provided in S1 Text. We note that (1) Degree and (2) Contact have been
used as baselines in many previous studies; however, as these strategies are widely used and are
easy to implement in real-world settings, we decide to include them in experiments.

Results
Experiments in simulated networks

We first validated the ensemble inference algorithm using synthetic outbreaks on simulated
networks. We compared the performance of the ensemble inference with several alternative
methods to locate unobserved infections. These methods rank individuals’ infection probabil-
ity using the number of connections to other nodes (Degree), number of connections to
observed infections (Contact), and a modified dynamic message-passing approach [19]
(DMP1 and DMP2), respectively (see S1 Text). We applied each method to rank the infection
probability of all nodes at the end of the simulation and used the receiver operating character-
istic (ROC) curve to evaluate the performance [47]. Methods with a large area under the ROC
curve (AUC) have a superior ability to infer unobserved infections.

We first validated the inference algorithm on trees, for which the master Eqs (1-3) are accu-
rate. We ran an SIR model in a tree with 781 nodes and 780 edges. Each node has a maximum
of 5 children and the maximum depth of the tree is 4. Transmission rates were drawn from a
bimodal distribution (Fig A in S1 Text). The states of 18%, 36% and 55% individuals were
observed at different time points. We used the partial observations to inform the ensemble
inference algorithm to estimate the probability of each node to be infected on the last day of
simulation. The ensemble inference algorithm performed better than other methods (Fig 2).
In particular, the accuracy of top-ranking individuals was high, possibly due to the accurate
master equations in tree structure. The DMP algorithm was proved to provide exact inference
on trees to infer the origin of an epidemic [19]. For the inference task in this study, however,
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Fig 2. Performance of different methods in a tree graph. The tree has 781 nodes 780 edges. Five different methods, including the ensemble inference
(ENS-I), modified dynamic message-passing with a fixed transmission rate (DMP1), modified dynamic message-passing with uniformly distributed
transmission rates (DMP2), number of connections (Degree), and contact with observed infections (Contact), are compared. The ROC curves for
various observation rates 18.44% (A), 32.64% (B), and 55.95% (C) are shown. The corresponding AUC values are compared in (D, E, F). The numbers of
infections identified among high-risk individuals selected by different methods are shown in (G, H, I).

https://doi.org/10.1371/journal.pcbi.1011355.9002

the performance of the modified DMP algorithm degraded likely caused by the incompatible
observation model and the difficulty solving DMP equations using sparse observations (see a
detailed discussion on the performance of the modified DMP algorithm in S1 Text).

We then validated the inference algorithm on homogeneous network. Homogeneous ran-
dom networks were generated using the Erd§s-Rényi (ER) model [48]. We generated an ER
network with 1,000 nodes and an average degree of 2.6, ran an SIR model in the network for
one week, and observed the states of around 15%, 30% and 50% of individuals at various time
points. We estimate the infection probability of each node on the last day of simulation. Details
on model configurations are provided in Table A in SI Text.
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Fig 3. Performance of different methods in homogeneous networks. The ER network has 1,000 nodes with an average degree of 2.6. Five different
methods, including the ensemble inference (ENS-I), modified dynamic message-passing with a fixed transmission rate (DMP1), modified dynamic
message-passing with uniformly distributed transmission rates (DMP2), number of connections (Degree), and contact with observed infections
(Contact), are compared. The ROC curves for various observation rates 15.98% (A), 32.74% (B), and 49.72% (C) are shown. The corresponding AUC
values are compared in (D, E, F). The numbers of infections identified among high-risk individuals selected by different methods are shown in (G, H,

I).
https://doi.org/10.1371/journal.pcbi.1011355.9g003

The ensemble inference algorithm outperformed other methods for the ER network with
different observation rates (Fig 3A-3C). The modified DMP algorithm performed better than
Degree and Contact, indicating that methods incorporated evolving dynamics are potentially
more effective than metrics based purely on the network structure. The AUC for the ensemble
inference was higher than other approaches (Fig 3D-3F). The ensemble inference was able to
produce decent estimates of infection probabilities (AUC = 0.804) using observations from
only 15% of the total population, even though the distribution of transmission rate was mis-
specified. This experiment indicates that the ensemble inference algorithm is robust to the
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uncertainty and variation in individuals’ transmission rates. The accuracy of the ensemble
inference algorithm increased with more observations; however, in general, the marginal bene-
fit diminished with increasing observations (Fig 3A-3F). A possible reason for the diminishing
marginal benefit may be that additional observations can contain overlapping information
that already exists in current observations. For instance, observing a neighbor of an existing
observation may not provide much additional information. This idea was shown in a study
optimizing surveillance networks for respiratory diseases [49].

In real-world settings, typically, only a subset of individuals with higher infection probabilities are
prioritized for testing given limited resources. As a result, the inference performance for the top-
ranked individuals is more relevant for practical use. We compared the number of actual infections
among the high-risk individuals selected by different approaches (i.e., how many infections can be
found by screening the top-ranked individuals). The ensemble inference algorithm can identify more
infections than other methods for a given number of estimated high-risk individuals (Fig 3G-3I).

Several additional experiments were performed to establish the effectiveness of the ensem-
ble inference algorithm in homogeneous networks. The proposed algorithm outperformed
competing methods in ER networks with a larger number of nodes and a different mean
degree (Fig B in S1 Text), as well as when the transmission rate was drawn from a power-law
distribution, representing the heterogenous capability to transmit disease (Fig C in S1 Text).
The ensemble inference algorithm had a degraded performance in denser ER networks with a
mean degree of 8 and 10 (Fig D in S1 Text), likely due to the lower accuracy of the master
equations in dense networks. But the ensemble inference algorithm can still identify more
infections in the top 10% higher-risk nodes, especially with more observations (Fig D in S1
Text). We ran the ensemble inference algorithm using 50, 100, 300, 500, and 1,000 ensemble
members and found that the performance remained similar even if more ensemble members
were used (Fig E in S1 Text, see a discussion in the Discussion section). We also ran experi-
ments on a random regular graph in which all nodes have the same degree. The ensemble
inference showed a better performance compared to others (Fig B in S1 Text).

A potential approach to further improve the performance of the modified DMP algorithm
is to (1) estimate link-specific transmission rates using a dynamic message-passing algorithm
[39] and (2) use estimated parameters along with the standard DMP algorithm to obtain esti-
mates for the probability that a node is infected at a given time. However, inference of model
parameters needs partial information on the activation times of nodes [39]. Observing activa-
tion times of nodes is difficult for the observation model used in this study and is in general
challenging in real world due to the uncertain time period from infection to a positive test. To
circumvent this difficulty, we assigned the actual transmission rates (or the actual transmission
rates with a 10% random Gaussian noise) to the modified DMP algorithm. The performance
of the modified DMP algorithm was still not satisfactory (Fig F in S1 Text), likely due to the
observation model and issues solving the DMP equations using sparse observations.

We performed additional experiments in ER random networks using two other bimodal
distributions for transmission rates, assuming different levels of protection in the population.
In the first distribution, 20% individuals were randomly selected with lower transmission rates
drawn from a Gaussian distribution A/(0.18,0.012) while other individuals had higher trans-
mission rates drawn from (0.22,0.01). In the second distribution, 80% randomly chosen indi-
viduals had lower transmission rates (N(0.18,0.012)) and other individuals had higher
transmission rates (A(0.22,0.01)). The ensemble inference algorithm outperformed other
methods for both scenarios (Fig A in S1 Text).

We further tested another observation model based on contact tracing in ER random net-
works (see the Materials and Methods section). Contact tracing can discover infections among
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the neighbors of infected individuals. Therefore, observed infections are not independent
from each other. Nevertheless, the ensemble inference algorithm still achieved a satisfactory
performance (Fig E in S1 Text).
Lastly, we performed experiments in scale-free (SF) networks. The SF network was gener-
ated using the configuration model [50], with a power-law degree distributions P(k)~k ™7,
where the power-law exponent y = 2.5. The ensemble inference algorithm had a better perfor-
mance than other methods (Fig 4).

Experiments in real-world networks

Real-world networks have more complex structure than model-generated networks (e.g., com-
munity structure, clustering, assortative mixing, etc.). Such structural complexity can lead to
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Fig 4. Performance of different methods in scale-free networks. The scale-free network has 2,044 nodes with a power-law exponent of 2.5. Five different
methods, including the ensemble inference (ENS-I), modified dynamic message-passing with a fixed transmission rate (DMP1), modified dynamic message-
passing with uniformly distributed transmission rates (DMP2), number of connections (Degree), and contact with observed infections (Contact), are compared.
The ROC curves for various observation rates 14.48% (A), 29.01% (B), and 40.31% (C) are shown. The corresponding AUC values are compared in (D, E, F). The

numbers of infections identified among high-risk individuals selected by different methods are shown in (G, H, I).

https://doi.org/10.1371/journal.pcbi.1011355.9g004
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rich behaviors of transmission dynamics. To validate the performance of the ensemble infer-
ence, we ran outbreak simulations in nine real-world networks, downloaded from open-source
repositories [51-53]. These networks span a wide range of systems including contact and social
networks (social contact and collaborations), infrastructure (road and power grid), technologi-
cal systems (internet peer-to-peer (P2P) network), and online social networks (Hamsterster,
Twitter, Digg, and Slashdot). A detailed description of the networks and experiment settings is
provided in Table B in S1 Text.

The ensemble inference algorithm exhibited a robust performance across different net-
works-it outperformed other methods in most networks (Figs 5 and 6). The DMP algorithm
had comparable performance with the ensemble inference in several networks (Hamsterster,
P2P, Slashdot, and Digg), but the overall performance of the ensemble inference was better
among all considered networks. The Contact method did not perform well, possibly due to
limited observation of infections. Experiments with varying observation rates yielded similar
results (Figs G and H in S1 Text).
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Fig 5. Performance of different methods in real-world networks. ROC curves for different methods (the ensemble inference (ENS-I), modified dynamic
message-passing with a fixed transmission rate (DMP1), modified dynamic message-passing with uniformly distributed transmission rates (DMP2), number
of connections (Degree), and contact with observed infections (Contact)) in nine real-world networks. The observation rates range from 12.64% to 17.61% in
these networks. Details on the networks, model parameter setting, and observation rates are provided in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011355.g005
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Fig 6. Inference of high-risk individuals in real-world networks. The numbers of infections identified among high-risk individuals selected by different
methods are shown for nine real-world networks. Five different methods, including the ensemble inference (ENS-I), modified dynamic message-passing
with a fixed transmission rate (DMP1), modified dynamic message-passing with uniformly distributed transmission rates (DMP2), number of
connections (Degree), and contact with observed infections (Contact), are compared.

https://doi.org/10.1371/journal.pcbi.1011355.g006

Computational complexity

To examine the scalability of the ensemble inference, we ran the algorithm in ER networks
with varying numbers of nodes, edges and observations. When the number of observations N,
(N, =200) and the average degree (k) ((k) = 3.0) were fixed, the running time RT increased
almost linearly with the number of nodes in the network N: RT(N)~N 1144 (Fig 7A). For a fixed
number of nodes (N = 3,000) and average degree ((k) = 3.0), the computational time scaled lin-
early with the number of observations N, RT(N,)~N,0%7° (Fig 7B). For a fixed number of
nodes (N = 3,000) and observations (N, = 200), the computational time increased sub-linearly
with the average degree (k): RT((k))~(k)%'”? (Fig 7C). If the percentage of observed nodes was
fixed at 15% (i.e., N, = 0.15N, (k) = 3.0), the running time increased quadratically with the
number of nodes: RT(N)~N>"'® (Fig 7D). We also found that the computational time scaled
almost linearly with the number of ensemble members K: RT(K)~K**”® when other settings
remained the same (N = 3,000, (k) = 3.0, N, = 200) (Fig 7E). Given the polynomial computa-
tional complexity, it is possible to apply the ensemble inference algorithm to larger networks.
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Fig 7. Computational complexity of the ensemble inference algorithm. (A). Computation time for increasing number of nodes with a fixed number of
observations (N, = 200). Experiments were run on ER random networks with an average degree 3. Distributions of running time were obtained from 100 runs.
Boxes show the median and interquartile. Whiskers show 1.5 times the interquartile range away from the bottom or top of the boxes. The inset shows the fitting
of the computation time against the number of nodes (both log-transformed). (B). Computation time for a fix number of nodes 3,000 and a fix average degree 3
with increasing number of observations. (C). Computation time for a fix number of nodes 3,000 and a fix number of observations 200 with increasing average
degrees. (D). Computation time for increasing numbers of nodes with a fixed percentage of observations (15%). (E). Computation time for increasing number
of ensemble members in an ER random network with 3,000 nodes, an average degree of 3, and 200 observations.

https://doi.org/10.1371/journal.pchi.1011355.9007

In addition, the algorithm can be further expedited as the integration of master equations for
different ensemble members can be run independently and in parallel.

Discussion

The proposed inference method can be applied in several settings. For instance, during an out-
break of an emerging pathogen with a high rate of asymptomatic infection, partially observed
infections coupled with detailed contact information can be used to support the inference of
unobserved spreaders. In hospital settings, the inference method can be used to identify
asymptomatic carriers of antimicrobial-resistant organisms based on sparse observations of
clinical infections, limiting the nosocomial transmission of these pathogens.

The advantage of the ensemble inference under parameter uncertainty is possibly due to
the way in which information is propagated across the network. We used cross-ensemble cov-
ariability to adjust the colonization probabilities of nodes connected to observed individuals.
Such adjustment makes use of all ensemble members with various parameter settings [54-56]
(as we need all ensemble members to compute the covariability), which prevents adjustment
relying on only one parameter setting. In contrast, techniques such as message-passing propa-
gate information using one set of pre-defined parameters [57,58]. If these parameters are close
to the true values, message-passing-based methods can achieve very high accuracy as the evo-
lution of infection probability is accurately described by the message-passing equations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011355 August 7, 2023

13/18


https://doi.org/10.1371/journal.pcbi.1011355.g007
https://doi.org/10.1371/journal.pcbi.1011355

PLOS COMPUTATIONAL BIOLOGY Ensemble inference of unobserved infections in networks using partial observations

[19,39,57-60]. However, in the case of unknown parameters, adjustment may lead to large
errors if the pre-defined parameters are far from the truth. Moreover, such errors can be
potentially further amplified by the nonlinear dynamics over successive adjustments across
individuals in the network. The ensemble inference can avoid adjustments with extremely
large errors by using an ensemble of model states with varying parameters. While the adjust-
ment in ensemble inference may not be as accurate as in message-passing when the correct
parameters are known, it does provide more robust inference given unknown parameters. In a
recent study, ensemble inference methods were also found effective for models with noisy and
expensive likelihoods [61].

Given the high dimensionality of the epidemic model, it is surprising that a few hundred
ensemble members in the inference algorithm can yield a good performance. This could be
due to several potential reasons. First, the purpose of using an ensemble of transmission rates
for each edge is to avoid the large errors caused by using a single wrong parameter. As long as
the ensemble can cover a reasonable range of edge-specific transmission rates, estimation
errors will likely be limited and damped. In other words, the ensemble does not need to be a
representative sample of all possible combinations of edge-specific transmission rates. Second,
the ensemble of model states P(X}) for many individuals can be dynamically adjusted using
covariablity with their neighbors. This “nudge” procedure can provide partial correction of
model states so that the model can better fit observations. This phenomenon was also observed
in the comparison of particle filter (or sequential Monte Carlo) [62] and ensemble Kalman fil-
ter [54,55]. In particle filter, the distribution of model states is represented by a weighted aver-
age of a large number of particles, each representing a potential combination of model
parameters and variables. During model update, the weights of particles are adjusted but the
model states remain the same (unless particles degenerate, i.e., dominated by a small number
of particles, and needs to be re-sampled). In this case, it was found that the number of required
particles grows exponentially with the number of parameters and variables [63], which limits
its application to high-dimensional systems. In contrast, the ensemble Kalman filter, although
suboptimal for nonlinear models, can be applied to high-dimensional systems such as weather
models [54] and metapopulation epidemic models [64] using a relatively small number of
ensemble members. The key reason is that ensemble members can be nudged according to
observations, which creates more flexibility in model states. More studies are needed to explore
the impact of ensemble size on inference performance.

Observation model is key to inference problems. The computational complexity and the
nature of the inference problem change with the observation model. In fact, in many studies,
observation model often determines the specific technical approach to solve problems. Several
observation models were used in literature, including the infection times of all or partial nodes
[19,31,35] and the states of all or partial nodes at a given snapshot [20,65,66]. In this study, we
used a daily testing strategy to mimic tests among partial populations performed at various
time points, which agrees with most real-world testing scenarios. We note that the inputs of
the ensemble inference algorithm are the states of a fraction of population observed at different
times (i.e., D = {(i,, t,, O)}). As long as an observation model can provide such information,
the ensemble inference algorithm is applicable. This offers the flexibility of the inference algo-
rithm to work for different observation models.

There are a few limitations in this study. First, the master equations are accurate for tree-
like networks without too many short loops. The accuracy of the inference dropped for dense
networks with strong clustering. Further studied are needed to address this challenge. Second,
the inference requires a plausible range of transmission rate, which may not be readily avail-
able during emerging outbreaks. The prior range of the transmission rate can be updated as
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more epidemiological evidence is accumulated. Third, several practical obstacles need to be
addressed before applying the inference in real world. For instance, real-world contact net-
work data are difficult to collect except in certain settings (e.g., healthcare system where
patients’ movement is documented in electronic health records). A better representation of the
contact network may improve the performance of the inference. Testing sensitivity and speci-
ficity were not considered in the experiments (we assumed a perfect testing) but should be
incorporated into the inference system.
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