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The majority of Americans fail to achieve recommended levels of physi-
cal activity, which leads to numerous preventable health problems, such as di-
abetes, hypertension, and heart diseases. This has generated substantial inter-
est in monitoring human activity to gear interventions toward environmental
features that may relate to higher physical activity. Wearable devices, such as
wrist-worn sensors that monitor gross motor activity (actigraph units) contin-
uously record the activity levels of a subject, producing massive amounts of
high-resolution measurements. Analyzing actigraph data needs to account for
spatial and temporal information on trajectories or paths traversed by subjects
wearing such devices. Inferential objectives include estimating a subject’s
physical activity levels along a given trajectory, identifying trajectories that
are more likely to produce higher levels of physical activity for a given sub-
ject, and predicting expected levels of physical activity in any proposed new
trajectory for a given set of health attributes. Here, we devise a Bayesian hier-
archical modeling framework for spatial-temporal actigraphy data to deliver
fully model-based inference on trajectories while accounting for subject-level
health attributes and spatial-temporal dependencies. We undertake a compre-
hensive analysis of an original dataset from the Physical Activity through
Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to as-
certain spatial zones and trajectories exhibiting significantly higher levels of
physical activity while accounting for various sources of heterogeneity.

1. Introduction. Promoting a healthy lifestyle continues to stoke substantial research
activities in public health. The “Physical Activity Guidelines for Americans” (second edi-
tion) suggests that most individuals, depending on age and body composition, receive 150–
300 minutes of moderate to vigorous physical activity (MVPA) weekly (Piercy et al. (2018)).
In general, the scientific community agrees that regular physical activity (PA) can have im-
mediate and long-term health benefits (Reiner et al. (2013), Bull et al. (2020)). Despite these
well-known benefits, most Americans fail to meet recommended requirements (Piercy et al.
(2018)). Specifically, only one in five high-school adolescents and one in four adults meet
recommended levels of physical activity. Given the well-established relationships between
lack of PA and several obesity-related chronic conditions, such as heart disease, type 2 dia-
betes, and cancer as well as many physical and mental health benefits, an urgent need exists
to improve monitoring of PA and to establish public health programs that promote more PA.1

Technologies for monitoring spatial energetics James et al. (2016), Drewnowski et al.
(2020) and promoting physical activity continue to emerge. Among others, actigraphy
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1More details at https://www.cdc.gov/chronicdisease/resources/publications/factsheets/physical-activity.htm.
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broadly refers to the monitoring of human rest and activity cycles using wearable devices.
Actigraphy data are gathered directly from wearable sensors or indirectly through smart-
phone mobile applications and record repeated measurements at very high resolutions. In par-
ticular, accelerometers are motion sensors that measure acceleration along different axes and
are able to collect large amounts of data (Plasqui and Westerterp (2007), Sikka et al. (2019)).
They are increasingly conspicuous because of their affordability, accuracy, and availability in
smart-phones, smart-watches, and other wearable devices. Many devices also include Global
Positioning System (GPS) sensors that reference measurements with location tracking along
trajectories, or paths, traversed by the subject. Collected data can be quickly downloaded and
promptly analyzed to obtain insights into their pattern and structure.

We pursue a comprehensive analysis of an original actigraphy data set from the Physi-
cal Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study.
Actigraphy and GPS data analysis customarily involve idle records that occur if a charged
device does not detect acceleration over a specified time interval (e.g., 10 seconds). While
idle records may correspond to periods of a subject’s inactivity, they can also arise from other
factors, including technical malfunctions or the subject not wearing the device. On the other
hand, eliminating idle records does not exclude all inactive periods because the accelerometer
still records minor movements from where it is worn while a subject may be mostly inactive.
Attempting to account for idle records as representative of inactive periods are likely to con-
found assessments of a subject’s activity levels with current technological capabilities. Hence,
we do not consider idle records and focus on the following specific data analytic aims: (i) es-
timating a subject’s physical activity levels along trajectories, (ii) identifying trajectories that
are more likely to produce higher levels of physical activity for a given subject, and (iii) pre-
dicting expected levels of physical activity in any proposed new trajectory for a given set of
health attributes. Researchers find actigraph tracking especially attractive, as it allows for a
better understanding of what behavioral and environmental factors influence population and
individual health and hence aid in public health recommendation and policy.

Actigraphs generate data evolving over space and time, which suggests rich classes of
space-time models for analysis (Gelfand et al. (2010), Cressie and Wikle (2011)). In particu-
lar, actigraph analysis presents some notable challenges (Kestens et al. (2017)): the data sets
are large, or even massive, as they are recorded at very high frequencies; they exhibit depen-
dence along trajectories, which should be accounted for both explanation and prediction (Bai
et al. (2018), Ray et al. (2018)). We argue against a customary spatial-temporal process over
R2 × R+ and propose disentangling spatial effects from temporal dependence along trajec-
tories. The balance of the paper is organized as follows. Section 2 introduces the PASTA-LA
dataset with insights into accelerometry data. The model for the temporal correlation is intro-
duced in Section 3, while spatial effects are discussed in Section 3.4. An extensive simulation
study validating our model is proposed in Section 3.5. Data analysis, model assessment, and
comparisons are presented in Section 4. Finally, we conclude with a discussion in Section 5.

2. Data. Our data set is compiled from the original Physical Activity through
Sustainable Transport Approaches in Los Angeles (PASTA-LA) study conducted on a co-
hort of 460 individuals monitored between May 2017 and June 2018. Data were collected
through different sources: online questionnaires, a smartphone app named MOVES, a GPS
device (GlobalSat DG-500), and a wearable actigraph unit (Actigraph GT3X+). Data col-
lected through the MOVES app, whose reliability must still be verified and discussed, are
not considered in this paper. While 460 is the sample size of the complete study, the GPS
and actigraph devices were deployed only on a nested sample of 134 individuals due to cost
considerations. We analyze data collected through these two devices that were supposed to
be worn by the participants in the nested sample for two one-week periods (one in 2017 and
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one in 2018). Study protocols for safeguarding participant information received necessary
institutional review board (IRB) approval. The data were stored on a secure computer, and a
redacted version was created for purposes of data sharing.

2.1. Questionnaires. The online questionnaires included two baseline and four follow-up
surveys, i.e. one baseline and two follow-ups for each collection period of the actigraph and
GPS data. Each survey consisted of responses pertaining to the participant’s demographics
and transportation habits. Here, we consider the first baseline questionnaire, which is the
only one available for all the participants in the nested sample. Personal information and
other socioeconomic factors have been encoded as follows for subsequent analysis:

• Sex: Female or Male;
• Ethnicity: Asian, Black/African/Caribbean, Latin-American, White, or Other (mixed mul-

tiple ethnic groups or prefer not to answer);
• Age (years) class: (0,18], (18,25], (25,34], (34,45], (45,70];
• BMI (kg/m2) class2: underweight if BMI ∈ (15,18.5], normal if BMI ∈ (18.5,24.5], over-

weight if BMI ∈ (24.5,30], and obese if BMI > 30;
• Yearly Income Level (in thousands $): (0,10], (10,25], (25,50], (50,75], (75,100],

(100,150], (150,+∞], and Don’t know/Prefer not to answer;
• Educational attainment: High-school diploma, College graduate, Associate degree, Grad-

uate.

We filtered unreasonable values of the BMI, that is, BMI < 10, which was observed just
for one individual, leaving 133 out of 134 individuals in the nested sample. A user ID was
assigned to each survey response data, and a redacted master key was generated using all ID
types for joining with other study data.

2.2. Actigraph. The Actigraph unit is an accelerometer roughly the same size and weight
of the average wrist-watch. It can be worn on the wrist, hip, and thigh and measure the di-
rectional acceleration at a specified time frequency (up to 100Hz). The Actigraph GT3X+

model used for the PASTA-LA study can detect accelerations measured in gravitational units
(G) with a sensitivity of ±3 milligravity (mG) in the three orthogonal planes (anteropos-
terior, mediolateral, and vertical). Data are stored in an internal memory and can be down-
loaded to other hardware for analysis through a proprietary software. The participants were
asked to start wearing the accelerometer on their dominant wrist as soon as it was handed
to them, as the devices could have been properly calibrated at that time. The study protocol
demanded that participants wear the Actigraph unit at all times other than during bathing
and sleeping (awake time was assumed approximately from 7 a.m. to 11 p.m.). The sam-
pling frequency has been set to 30Hz, and the idle sleep mode has been activated in order to
save battery and memory. With this mode on, the device would go idle every time it records
no acceleration (< ±40mG) for 10 consecutive seconds. The Actigraph GT3X+ grants ac-
cess to the a .gt3x file with the raw acceleration measurements. It can be loaded in R,
using the read.gt3x package, and contains the raw accelerations at each timestamp. Such
accelerations comprise the basic ingredients to get a proxy for body movement from an ac-
celerometer (Mathie et al. (2003), Migueles et al. (2019), Bammann et al. (2021)). There are
substantial investigations into its statistical relationships with PA measures, such as energy

expenditure measures (EE) (Crouter, Clowers and Bassett Jr (2006), Freedson et al. (2012),
Taraldsen et al. (2012)) and the Metabolic Equivalent of Task (MET) (Lyden et al. (2014),

2According to standard guidelines of the Center of Disease Control and Prevention https://www.cdc.gov/
obesity/basics/adult-defining.html.
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Staudenmayer et al. (2015), Migueles et al. (2017), van Loo et al. (2018)). Among various
metrics, we take the instantaneous body vector Magnitude of Acceleration (MAG) as the pri-
mary endpoint of our analysis (van Hees et al. (2011), White et al. (2016), Doherty et al.
(2017)). Further discussion about the conversion of MAG into energy expenditure measures
is reported in Section 2 of the Supplementary Material (Alaimo Di Loro et al. (2023)).

We were able to retrieve the Actigraph raw data only on K = 97 out of the 133 original
individuals. Let x, y and z be the dynamic acceleration of the body of the kth individual. The
pointwise MAG is defined as

(1) MAGkt =

√
x2
kt + y2

kt + z2
kt , k = 1, . . . ,K.

However, the raw accelerations recorded by the accelerometer must be appropriately pro-
cessed to assess body movement (Doherty et al. (2017)). Indeed, the raw acceleration
recorded by each axle is the sum of both the static and the dynamic acceleration, but only
the second is the effect of actual body movement. First, we remove idle records, that is, all
the occasions in which the accelerometer recorded zero acceleration for longer than 15 sec-
onds and the device went idle. It is very unlikely that these idle records with zero acceleration
coincide with a subject’s inactive periods because the accelerometer still records positive, al-
beit small, magnitudes of accelerations over inactive periods due to movements in the wrists,
hips, and thighs. Idle records, on the other hand, are likely to arise from technical malfunc-
tions or from a subject violating protocol and not wearing the device in the experimental time
window.

Second, the raw accelerations, recorded by single axles, must be disentangled from un-
wanted static or nonstatic components: the effect of the earth’s gravitational force and other
external accelerations (e.g., car, bus, elevators) at low frequencies, machine noise, and vibra-
tions at high frequencies. To address this issue, we adopted a Band-Pass Butterworth digital
filter of order 4 with frequency window (0.25,10) to clean the signals from these long and
short waves (Mathie et al. (2003)). Indeed, most human activities result in signals with a fre-
quency between 0.25Hz and 10Hz (Khusainov et al. (2013)). An example of how the raw
signal is modified through this process is provided in Figure 1 of the Supplementary Mate-
rial (Alaimo Di Loro et al. (2023)). We subsequently evaluate the pointwise MAGkt using
the filtered accelerations (x̃kt , ỹkt , z̃kt). However, the instantaneous MAG, evaluated at the
original 30Hz frequency, is extremely erratic, and the single value may not represent well the
PA intensity of the participant at that time. For this reason it is usually averaged over 5 to
10 second epochs to acquire a more suitable measure of PA intensity (Migueles et al. (2017),
Doherty et al. (2017)). Here, we perform a kernel smoothing of the 30Hz measurements, in
order to be representative of the single time-point, and get a one second time resolution. The
resulting vector magnitude is

(2) M̃AGkt =
∑

j

kb(t − tj ) · MAGktj ,

where kb(·) is a Gaussian kernel with bandwidth b = 5 seconds. This ensures that the impact
of the neighboring points becomes negligible for |t − tj | > 10 seconds; see Figure 2 of the
Supplementary Material (Alaimo Di Loro et al. (2023)) as an example. Finally, we removed
all the observations recorded outside of the prespecified daily time window, that is, from 7
a.m. to 11 p.m.

2.3. GPS. The GPS device GlobalSat DG-500 recorded the subject’s location (latitude
and longitude) roughly every 5 seconds, together with date, time, and speed (km/h, measured
as distance over time through linear interpolation). This work restricts the attention to 93 out
of 97 subjects living and working in the Westwood neighborhood of Los Angeles in order
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to avoid a geographical imbalance that could bias and invalidate the model estimates. This
area hosts the university campus of UCLA, and it includes the largest part of all the available
observations. Westwood is a walk-friendly neighborhood with a lot of green areas, parks, and
major roads with shops and amenities. People were free to move inside and between buildings
(e.g., people at the gym, office, etc), and we are interested in quantifying their movement in
all these settings.

However, GPS measurements can be affected by possible inaccuracies, especially around
buildings, that may cause unreasonable jumps in a very small time span. We note that most
of these issues are already mitigated by an automatic filtering process of the GPS device
that would drop records for which the signal is not strong enough. Nevertheless, to further
enhance the cleaning process of GPS measurements, we removed all data points for which
the computed average speed between two subsequent points was larger than 100 km/h. We
picked such a high threshold, as we do not want to drop observations related to individuals
standing or sitting in a bus or car.

2.4. External covariates. PA levels are not only affected by individual characteristics but
also can be fostered by specific features of the surrounding area they are navigating. There-
fore, we included three external covariates to account for some of the built-in environment
features of the Westwood area. In particular, we used the following:

(i) The weighted overlay distance to parks (in km) with a spatial resolution of 23 × 23,
which can be downloaded from https://egis2.lacounty.gov/arcgis. It represents a weighted
distance of each point from officially recognized parks, and it can be seen as a proxy of the
green area density (see Figure 1(a); darker shades indicate proximity to parks).

(ii) The Normalized Difference Vegetation Index (NDVI), which is available with a spa-
tial resolution of 30 × 30, can be downloaded from https://earthexplorer.usgs.gov/ and pro-
vides a measure of the greeness of the patch itself (see Figure 1(b); darker shades depict more
greenness).

(iii) The slope (azimuth), with a spatial resolution of 23 × 23, is computed from the digi-
tal elevation model (DEM) downloaded from http://www.webgis.com/terr_pages/CA/dem1/
losangeles.html. It represents the average angular inclination of the ground patch with respect
to the horizon line (see Figure 1(c); darker shades depict higher slopes).

While previous studies (e.g., Maddison et al. (2009)) have reported on these variables af-
fecting PA levels, they usually consider the environmental impact on the average PA level
through a buffer around the home location of the participant and not on its instantaneous PA
level. With our current work, we want to discover and establish direct associations between
PA levels of a subject and these spatially-indexed covariates along trajectories.

2.5. Joining. GPS and accelerometer data were all assigned a participant ID aligned with
the questionnaires’ master key to facilitate joining across all ID types (including email) while
redacting and encrypting user data. The first baseline questionnaire, Actigraph, and GPS were
available for the aforementioned group of K = 93 individuals. Henceforth, we refer to this
specific group of units. The joining of different data sources follows these steps:

1. Actigraph data are joined to the first baseline questionnaire using the individual master-
key. The resulting data set includes the physical activity endpoint, recorded by the Actigraph
at the different timestamps, and all the available individual information but no spatial infor-
mation.

2. GPS data are joined to the dataset obtained in (1) using the individual master-key and
the timestamp. Following the processing in Section 2.2, the Actigraph data are available
at the same time resolution of GPS data as long as the subject wore them simultaneously.
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FIG. 1. Spatial-varying covariates: (a) distance to parks, (b) NDVI, and (c) slope.

Therefore, we decided to use the GPS as the leading table in the joining process. This avoids
use of artificial data (e.g., interpolating GPS locations).

3. Spatial covariates are joined to the data set obtained in (2) through the minimum dis-

tance criteria; that is, each location is assigned the value of the closest point on the grid for
each spatial-varying covariate.

The temporal coverage is not balanced across individuals because: (i) subjects move around
Westwood in different segments of the overall time window, and (ii) some participants vio-
lated the study protocol. Indeed, not all the participants were available for both of the one-
week surveillance periods in 2017 and 2018. In fact, only 58 out of the 93 participants have
data for the first week only and missed the follow-up survey. In the end we go from the least
represented individuals, having ≈ 5 × 102 observations (≈ 2 hours of data), to the most rep-
resented ones with more than ≈ 5 × 105 observations (≈ 14 days of data). Considering all
the five second time segments between the first and last observed point of each individual in
each day as the potential observation window, the proportion of missing measurements ranges
between ≈ 31% and ≈ 97%. The overall proportion of missing measurements in the entire
database (based upon aggregated five-second time segments for all individuals) is ≈ 83%.
Figure 2 shows the number of observations for each individual k = 1, . . . ,K in each hour
h = 7, . . . ,22, where the y-axis has been ordered in ascending order according to proportion
of missing measurements for each subject. Overall, we can state that all hours are well repre-
sented, but only a few individuals have data for the whole daily time window. Summing up,
all subsequent analysis will refer to the final data set consisting of N � 7×105 measurements
across K = 93 individuals, scattered over Westwood (see Figure 3).

3. The model. The outcomes corresponding to the K = 93 subjects are referenced with
respect to the time at which they are recorded and the position in the trajectory. While it is
tempting to work with a spatiotemporal process, dependence introduced by such processes
may not be appropriate. An individual can visit the same location numerous times in his/her
trajectory. These revisits need not occur at regular intervals and can be at distant time points.
This suggests that proximity of two spatial locations in a trajectory need not result in strongly
dependent MAGs recorded there. It appears more reasonable to model dependence among
MAG measurements through a temporal process. In fact, such temporal processes can be
motivated by the position vectors defining the trajectories, as we describe below.

Let Zk(·) : R2 → R be a spatial process corresponding to individual k. The domain of
Zk(·) is restricted to the trajectories γk(t) = (γ x

k (t), γ
y
k (t)), where k = 1, . . . ,K and t ∈ R+,

which defines the movements of the kth individual along time. As shown in Figure 4, the
process actually belongs to a one-dimensional space for which we define a proper distance
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FIG. 2. Missing data pattern by hour of the day and individual.

measure d(tki, tkj ) = ‖γk(tkj ) − γk(tki)‖, where tki is the ith recorded time point from in-
dividual k. We approximate such distances as the elapsed time between the two points
d(tki, tkj ) = |tkj − tki |, which would result in a good approximation of the spatial distance
(especially if the subject is moving at constant speed). More generally, the elapsed sep-
aration across time will reflect dependence better than the spatial distance. The faster an
individual is moving from one point to the other, the shorter the time elapsed, and higher
the correlation between the two measurements. Hence, we model our measurements as
Yk(·) ≡ Zk ◦ γk(·) : R+ →R, which, by construction, is a valid stochastic process.

This will form the edifice of the model in Section 3.1, where we are modeling the depen-
dence by solely considering stochastic evolution through time. How should spatial informa-
tion be introduced in the model? Two individuals at the same spatial coordinate experience
the same spatial effect but different temporal effects because their physical activities are a
function of their trajectory’s temporal evolution. An added complication is that trajectories

FIG. 3. Observed locations over the Westwood area.
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FIG. 4. Example of observed points (a) and trajectory (b): black dots are realizations, grey line is the domain of

the process.

intersect and overlap and, in practice, can have multiple observations at the same location.
Even more flexible spatiotemporal covariance kernels (e.g., nonseparable or nonstationarity)
will struggle to recognize the above features. Hence, we introduce the spatial effect in the
mean using spline regression (see Section 3.4).

3.1. Temporal model. Let T =
⋃K

k=1 Tk , where Tk = {tki}
Tk

i=1 and tki ∈ R+ be the set of

the n =
∑K

k=1 TK observed time points. We model Y (T ) as the finite realization of a K-
variate process Y (·) over R+,

(3) Y (t) = X
(
t,γ (t)

)

β + w(t) + ε(t), t ∈R+,

where Y (t) = (Y1(t), Y2(t), . . . , YK(t))
 is a K × 1 vector of measurements at time t on
the K individuals, X(t,γ (t)) is a p × K matrix, each row being the values of a covariate
for the K individuals, w(t) = (w1(t),w2(t), . . . ,wK(t))
 is a K × 1 vector comprising a
temporal process for each individual, and ε(t) ∼ NK(0, τ 2IK), τ 2 ∈ R+ is a white noise

process for measurement error. Each element of w(t) is specified as wk(t)
ind
∼ GP(0, cθ (·, ·)),

where cθ (·, ·) is a covariance function with parameters θ ∈ �.
Let yki and xki be the outcome and covariates for individual k at time point tki , respec-

tively, so {(yki,xki) : k = 1, . . . ,K, i = 1, . . . Tk} is the observed data. Let yk and wk be
Tk × 1 vectors comprising all measurements and random effects on patient k, respectively.
Forming the n × 1 vectors y = [ y


1· y

2· ··· y


K· ]

 and w = [w


1· w

2· ··· w


K· ]

 and the n × p ma-

trix X = [X

1· X


2· ... X

K· ]


, where Xk is the Tk × p matrix of predictors corresponding to yk ,
we extend (3) to a hierarchical model with posterior distribution

(4) p
(
β,w, θ, τ 2|y

)
∝ p

(
θ , τ 2)

× N(β|μβ,V β) × N(w|0,Cθ ) × N
(
y|Xβ + w, τ 2In

)
.

The covariance matrix Cθ = diag(Cθ1,1,Cθ2,2, . . . ,CθK ,K) is n × n block-diagonal with
Cθk,k = [cθ (tki, tkj )] as the Tk × Tk temporal covariance matrix corresponding to individual
k. Each individual is allowed its own covariance parameters, θk , and θ = {θ1, θ2, . . . , θK}

in (4) is the collection of all the covariance kernel parameters. Applying (4) involves the
determinant and inverse of Cθ , which require O(n2) storage space and O(n3) floating point
operations (flops). The block-diagonal structure of Cθ considerably alleviates this burden
since det(C) =

∏K
k=1 det(Cθk,k) and C−1 = diag(C−1

θ1,1
,C−1

θ2,2
, . . . ,C−1

θK ,K). This reduces the

flop count from O(n3) = O((
∑K

k=1 Tk)
3) to O(K

∑K
k=1(Tk)

3) with a significant saving of
calculations, especially when the Tk’s are reasonably small (< 104). Furthermore, each Cθk,k

can be computed in parallel rendering further scalability to the algorithm.
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However, analyzing the Actigraph data in Section 2 will involve Tk > 105 measurements
from some individuals. Full inference will be impractical without any exploitable structure for
each Cθk,k . Analyzing massive spatiotemporal data has witnessed burgeoning interest, and a
comprehensive review is beyond the scope of this work (see, e.g., Banerjee (2017), Heaton
et al. (2019), and references therein). We will pursue an approximation, due to Vecchia
(Vecchia (1988)), that has generated substantial recent interest (Datta et al. (2016a, 2016b),
Katzfuss et al. (2020), Katzfuss and Guinness (2021), Peruzzi, Banerjee and Finley (2022))
in scalable Bayesian modeling.

3.2. Independent DAG models over individuals. We adapt Vecchia’s likelihood approxi-
mation (Vecchia (1988)) to the random effects wk for each k = 1,2, . . . ,K . Beginning with
the observed time points {tk1 < tk2 < · · · < tkTk

} for individual k and the directed acyclic

graphical (DAG) representation p(wk) = p(wk1)
∏Tk

i=2 p(wki |wk1, . . . ,wk(i−1)), we define

(5) p(wk) ≈ p̃(wk) = p(wk1)

Tk∏

i=2

p(wki |wk,N(i)),

where p̃(·) is the joint density derived from p(wk) by restricting the parents (conditional sets)
of each wki in the DAG to a set wkN(i) = {wkj : j ∈ N(i)}, where N(i) is a set of prefixed
size m comprising the m nearest neighbors of tki from the past. Thus, N(i) = {tk(i−m), . . . ,<

tk(i−1)} for i > m and N(i) = {tk1, . . . , tk(i−1)} for i ≤ m. Such approximations yield valid
probability likelihoods (Lauritzen (1996), Stein, Chi and Welty (2004), Murphy (2012)) and
can be extended to stochastic processes (Datta et al. (2016a)) for inference on arbitrary time
points.

The connection between sparsity and conditional independence follows by writing (5) as
a linear model wk = Akwk + ηk , where Ak is a Tk × Tk strictly lower triangular matrix, ηk ∼

NTk
(0,Dk) and Dk is the Tk ×Tk diagonal matrix such that [Dk]ii = dii = Var(wki |{wkj , j <

i}) for i = 1, . . . , Tk . The DAG imposes the lower-triangular structure on Ak , and its (i, j)th
entry is allowed to be nonzero only for j ∈ N(i). Therefore, each row of Ak has at most

m nonzero entries so that C̃
−1
k = (ITk

− Ak)

D−1

k (ITk
− Ak) is sparse, where C̃

−1
k is the

precision matrix corresponding to p̃(wk). Replacing C with C̃ in (4) yields a computationally
efficient hierarchical model with N(

∏K
k=1 N(wk|0, C̃k) as the prior on w.

The key observation is that the nonzero elements of the ith row of Ak is the solution
ak of the m × m linear system Cθ ,k[N(i),N(i)]ak = Cθ ,k[N(i), i], where [·, ·] indicates
submatrices defined by the given row and column index sets. Obtaining the nonzero elements
of Ak and Dk costs O(Tkm

3) (scales linearly with Tk), instead of O(T 3
k ), as would have

been without sparsity. This cheaply delivers the quadratic form w

k C̃

−1
k wk in terms of Ak

and Dk and the determinant det(C̃k) =
∏Tk

i=1 dii at almost no additional cost. The lower
triangular matrix Ak is not just sparse but also banded and with a lower bandwidth equal to

m. Consequently, C̃
−1
k is also banded with lower and upper bandwidth equal to m. This leads

to further accrual of computational benefits. The overall cost is O(
∑K

k=1 Tkm
3) = O(nm3)

(linear in n) for computing the posterior for any given values of the parameters.

3.3. Implementation using collapsed models. The Bayesian hierarchical model in (4),
either with Cθ or with C̃θ in the prior for w, allows full posterior inference for {β,w, θ, τ 2}

using Markov chain Monte Carlo (MCMC). Gibbs sampling with random walk Metropolis
steps provide full conditional distributions in closed form for {β,w} and also for τ 2 with an
IG(aτ , bτ ) prior. However, this convenience is nullified, in practice, by strong autocorrelation
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and poor mixing of the chains (Liu, Wong and Kong (1994)). Samplers based on spatial DAG-
based models have been devised, explored, and compared in Finley et al. (2019). Instead of
(4), we sample from

(6) p
(
β, θ, τ 2|y

)
∝ p

(
θ , τ 2)

× N(β|μβ,V β) × N
(
y|Xβ, C̃θ + τ 2In

)
,

which is derived from (4) by integrating out w, thereby “collapsing” the parameter space to
a much smaller domain without w. This considerably improves mixing and convergence.

We will need to compute the inverse and determinant of �̃ = C̃θ + τ 2In, which is n × n.

While �̃
−1

does not share the same convenient factorization of C̃
−1

and is also not guaran-
teed to be sparse, the Sherman–Woodbury–Morrison formulas reveal

(7) �̃
−1

= τ−2I − τ−4�−1 with � = C̃
−1

+ τ−2I ,

where � enjoys the same sparsity as C−1. Moreover, det(�̃) = τ 2ndet(C̃)det(�). The core

of the algorithm is, therefore, to compute �̃
−1

through �. In our application the random
effect is assumed to be the realization of K independent temporal processes. As discussed
in Section 3.2, this implies a block-diagonal structure for C̃ that can be shown to be shared
also by � (see equation (7)). Each block �k of � can be computed independently for each
individual, and the same holds for its inverse and its determinant. This means that the body
of the algorithm will consist of a loop over all the individuals, which allows for straight-
forward parallelization; see Algorithm 1 in the Supplementary Material (Alaimo Di Loro et
al. (2023)). Unlike in spatial DAGs (Datta et al. (2016a), Finley et al. (2019)), we do not
need fill-reducing permutation methods since neighbors sets for temporal processes consist
of contiguous observations and {�k}

K
k=1 are banded matrices with no gaps.

We devised a Gibbs sampler with Metropolis random walk updates for (6), where β is
updated from its full conditional distribution, while {θ , τ 2} are updated using an adaptive
Metropolis step based on Haario, Saksman and Tamminen (2001). Here, after the first few it-
erations, a new proposal covariance matrix is regularly computed on the run according to the
empirical covariance of the current chain. Subsequently, a mixture of the original and adap-
tive proposal is used as the new proposal. Convergence toward the desired acceptance rate is
assured for an appropriate choice of the variance terms and of the adaptation rule (Roberts
and Rosenthal (2009)). The algorithm has been coded using the R 4.0.5 statistical en-
vironment. All expensive computations are managed by the Eigen library (version 3.3.7),
which provides efficient routines for numerical linear algebra with an emphasis on sparse
matrices. Our implementation of (6) outperforms the algorithms that update w in terms of
computational speed, as it is implemented in the spNNGP package (Finley, Datta and Baner-
jee (2017)). We present these comparisons in the Supplementary Material (Alaimo Di Loro et
al. (2023)), including a link to the GitHub repository hosting codes to implement the models.

3.4. Including spatial effects. Accounting for spatial information in our Actigraph
dataset presents some new considerations. As mentioned in Section 1, spatial information
is available to us in terms of the physical location along the trajectory as well as through
covariates that are functions of space. Considering the discussion in Section 3, the ana-
lytical goals of this dataset suggest accounting for spatial heterogeneity. Here, as argued
earlier, modeling w(·) in (3) as a spatiotemporal process, including scalable versions, has
challenges, given that: (i) the trajectory’s domain does not have a positive area; and (ii)
associations among the measurements are more amenable to the temporal scale. There-
fore, we introduce spatial effects into the mean employing a smooth function of space,
fS(·) : R2 → R, approximated by a spline basis representation (see, e.g., Goodman and
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Hardin (2006), Ramsay and Silverman (2007)). For instance, if Jx and Jy are the dimen-
sions of independently defined B-spline basis expansions on the x and y coordinates, re-
spectively, then fS((x, y)) ≈ f̃S((x, y)) =

∑JX

jX=1

∑JY

jY =1 βS,(jX,jY )Bx,jx (x)By,jy (y), where
Bx,jX

= [Bx]jx and By,jY
= [By]jy are the jx th and jy th element of the B-spline basis along

the two axis. For any location (x, y) ∈ R2, the elements of the previous sum can be more
compactly expressed through the tensor product basis BS(x, y) = (Bx ⊗By)(x, y). The size
of this basis is JS = Jx · Jy and depends on the size of the two original spline basis, which, in
turn, depends on the chosen number of knots knotsx,knotsy and degree degx,degy (namely,
Jc = knotsc + degc for c = x, y). We now modify (3) to include the spline,

(8) Y (t) = X
(
t,γ (t)

)
β + BS

(
γ (t)

)
βS + w(t) + ε(t), t ∈ R

+,

where γ (t) = {γ 1(t),γ 2(t), . . . ,γ K(t)}, γ k(t) = (γk,x(t), γk,y(t)) : R+ → R2 is the trajec-
tory function mapping time t for individual k to its position and BS(γ (t)) is the K × JS

matrix with row k corresponding to the JS basis elements for the coordinates at time point t

for individual k. A proper choice of JS (i.e., knots and degree) is required to fit a spline surface
flexible enough to describe the spatial variations at the scale of interest without incurring over-
fitting. Let B = BS(γ (T )) be the n × JS matrix containing the B-spline basis elements eval-
uated at the observed location of each individual γ (T ) = {γ1(t11), γ1(t12), . . . , γK(tKTk

)}.
Following equation (6), we sample from

p
(
β,βS, θ, τ 2|y

)

∝ p
(
θ , τ 2) × pS(βS) × N(β|μβ,V β) × N

(
y|Xβ + BβS, C̃θ + τ 2In

)
,

(9)

where the prior pS(·) needs to be specified. The Actigraph data includes millions of observa-
tions in a limited study area of which some assume different values in the same location (or
in its immediate vicinity), so over-fitting will not be an issue. However, some areas present
sparsely observed points (trajectories are not uniformly distributed, as shown in Figure 3).
This may cause coefficients corresponding to those regions to be weakly identified. To con-
trol for the balance of all these components, we may assign ad hoc priors to the spatial spline
regression coefficients (Eilers and Marx (1996)) for penalizing deviation from a certain de-
gree of smoothness and favoring identifiability. This behavior suggests the Bayesian P-Spline
(Hastie and Tibshirani (2000), Lang and Brezger (2004)). While keeping the Gaussian priors,
we effectuate shrinkage by choosing a suitable precision matrix P and introducing a shrink-
age parameter λ at a deeper level of the hierarchy. To be precise, βS |λ ∝ exp{−λ

2 · βSPβ

S }

and λ ∼ G(αλ, βλ). We consider two possible forms for P , which imply different penalization
for the coefficients:

• Ridge-like prior, which is to say P = P RL = I JS
;

• First-order random walk prior, which is to say,

P = P RW : [P RW ]ij =

⎧
⎪⎪⎨
⎪⎪⎩

ni i = j,

−1 i ∼ j,

0 otherwise,

where ni is the number of neighbors of knot i and i ∼ j denotes a neighboring relationship
between the knots.

Both precision matrices provide a multivariate Gaussian prior distribution on the coefficients.
However, the latter is improper since rank(P RW ) < JS . Nevertheless, if we collect the B-
Spline basis elements with the other covariates, as X∗ = [X,B], and stack the corresponding
coefficients into the joint vector ψ = [β,βS], then the posterior distribution of the latter is
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a proper multivariate Gaussian with full conditional distribution ψ |· ∝ NJ (ψ |G−1g,G−1),

where G = X∗
�̃
−1

X∗ + V −1
ψ and g = X∗
�̃

−1
y + V −1

ψ μψ with V −1
ψ = diag(V −1

β , λ ·

P ) and g = [μβ,μβS
]
 = 0
. Moreover, the Gamma prior on λ implies a Gamma full-

conditional distribution λ|· ∝ G(λ|αλ + 1/2, βλ + β

S PβS).

Estimating the model in (8) is achieved through a straightforward extension of Algorithm
1. We jointly update ψ and λ from their full conditional distributions. In particular, the Gibbs’
sampling step of Algorithm 1 can be modified to get full inference also on the spline coef-
ficients βS and the shrinkage parameter λ; see Algorithm 2 in the Supplementary Material
Alaimo Di Loro et al. (2023). In practical terms this requires JS additional linear coefficients
to be estimated, whose size p∗ = p + JS may undermine the efficiency of the algorithm.
For example, calculations in Step 1b are quadratic w.r.t. p∗ → O(np∗2). Steps 1a and 1b
(i.e., the most expensive in p∗) are executed in the first iteration and, subsequently, only in
those iterations where new values of θ are accepted. When θ is rejected, we retain in memory
the previously computed value (which would stay unchanged). Thus, if we attain an optimal
acceptance rate of ≈ 20% − 30% in the Metropolis–Hastings step on θ , the computation is
avoided in the majority of cases with a sensible improvement in computation time and speed.

3.5. Simulations. We conducted simulation experiments to evaluate the model described
in Section 3.4 and compared the performance of our algorithm in terms of fitting, predic-
tion error, and computational speed with other routines available from the spNNGP package
(Finley, Datta and Banerjee (2017)). Additional comparative experiments are provided in
the Supplementary Material (Alaimo Di Loro et al. (2023)). We executed our MCMC algo-
rithms on a computing environment equipped with 12 modern computational nodes with 32
cores each, roughly equivalent to three TeraFlop/sec and 256 Gb of RAM. Each of the pre-
sented applications have been executed on a single node exploiting the computational power
of all cores. The results presented are based upon posterior samples that were retained after
diagnosing convergence using visual tools (e.g., traceplots, autocorrelation), effective sam-
ple sizes, Monte Carlo standard errors (MCSE), and other diagnostics offered by the coda,
mcse and bayesplot packages in the R computing environment; the Supplementary Ma-
terial (Alaimo Di Loro et al. (2023)) includes specific details.

We first generated Tk = 2 × 105 time points for K = 5 individuals, where each time point
tki followed exponential waiting times between observations, that is, tki =

∑i−1
h=1 δh, and

δh
iid
∼ Exp(5). Given the time points, we constructed spatial trajectories γ k(·), k = 1, . . . ,K ,

by simulating sk = [γk(tk1), . . . , γk(tkTk
)]
, where subsequent components were independent

Gaussian random walks over the square S = (1,10) × (1,10) with the variance of each step
along the horizontal and vertical axis proportional to the elapsed time between two subse-
quent observations. If the trajectory left the square, it was projected onto the border, and the
next step would resume from there. The simulated trajectories are shown in Figure 5(a).

Given the time points and positions (Figure 5(b)), we generated the latent temporal Gaus-

sian processes wk(·)
ind
∼ GP(0, cθ (·, ·)) with an exponential covariance cθ (t, t

′) = σ 2 exp{−φ ·

|t − t ′|}, where σ 2 > 0 represents the variance of the process, φ > 0 is the decay in temporal
correlation (range), and τ 2 > 0 the residual variance (nugget). The spatial effects are then
introduced through fS(·) : S → R by considering a tensor product spline basis of degree 2
and with nine knots over the square domain (including boundary knots), where the spline co-
efficients βS have been fixed to randomly generated values from N81(0, λI 81) with λ = 0.5.
The model also included individual-specific intercepts {β0k}

5
k=1 and the effect of three covari-

ates with random values drawn independently at each location from a N (0,1) distribution,

leading to covariate vectors {xki}
Tk

i=1, k = 1, . . . ,K . The effect of the covariates is assumed
common across individuals and set to be determined by slopes β = [β1, β2, β3]


.
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FIG. 5. Observed trajectories (a) and observed points (b) for the simulated dataset.

We generated values of the outcome for individual k at time tki and location ski = γk(tki),
according to the generative process, defined by (8), with parameters fixed as above. This
yielded a simulated dataset Dsim = {(Indj , tj , sj , yj ,x



j )}nj=1 with n = 105 observations,

where Indj denotes the individual corresponding to row j . Then we fit the model in (9)
on 70% of the total observations in Dsim. The remaining 30% were held out to assess out-
of-sample predictive performances in terms of Relative and Root Mean Squared Prediction

Error (RMSPE), Coverage, and Predictive Interval Width (PIW). Intercept and slope regres-
sion parameters were assigned N (0,106) priors; the variance components, σ 2 and τ 2, were
both assigned inverse Gamma IG(2,2) priors, and the decay parameter φ received a Gamma
prior G(1,1). For the spline coefficients, we considered both the penalized versions in Sec-
tion 3.4. The first is referred to as an S-Spline (shrinking splines) and the second as P-Spline
(penalized splines).

Table 1 presents the posterior estimates. We also included the deviance information cri-
terion (DIC) for both models. Performances in the two settings are almost identical, but the
DIC favors the S-Spline model. This is not surprising, as the data were generated using an
analogous shrinkage prior for the βS ’s. Further details, including the estimates of the spline
coefficients, are provided in the Supplementary Material (Alaimo Di Loro et al. (2023)). Fig-
ure 6 presents the posterior estimate of the spatial surface. We compare the true latent surface
with just the S-Splines, as it performs slightly better with respect to the DIC, but notice that
P-Splines provides practically identical estimates.

4. Application. We apply the proposed model in (8) to estimate the MAG (measured in
G) for participants in the study, accounting for subject-specific features and spatial effects
on the mean while modeling the latent temporal dependence, as described in Section 3.1.
We split the data into training (70%) and testing (30%) subsets, where the records have been
allocated to each subset according to a random sample stratified by individual. The testing
set is used to assess the out-of-sample predictive performances in terms of relative mean

squared prediction error (RMSPE), root mean squared prediction error (rMSPE), coverage

(Cov), and predictive interval width (PIW). Posterior inferences are based on 5,000 samples
retained after diagnosed convergence from 10,000 MCMC iterations.

4.1. Model specification. Spatial effects are introduced by considering the tensor prod-
uct of two analogous univariate B-spline basis on each spatial axis. After a preliminary val-
idation through the DIC (see Figure 6 of the Appendix), we choose two bases of degree
3 with 12 equally spaced knots over a square encompassing Westwood. This sums up to
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TABLE 1
Parameter estimates, predictive validation, and fitting times (hours) on the simulated dataset for all of the

considered models

S-Spline P-Spline

Param. (True) Point Interval Point Interval

β01(−3.76) −3.799 (−3.846,−3.752) −3.797 (−3.844,−3.75)

β02(0.65) 0.572 (0.523,0.62) 0.575 (0.526,0.623)

β03(−0.60) −0.649 (−0.697,−0.6) −0.646 (−0.693,−0.598)

β04(2.36) 2.326 (2.277,2.374) 2.328 (2.28,2.376)

β05(−0.33) −0.359 (−0.408,−0.31) −0.356 (−0.404,−0.308)

β1(2.59) 2.599 (2.59,2.608) 2.599 (2.59,2.608)

β2(2.70) 2.691 (2.683,2.7) 2.691 (2.683,2.7)

β3(−0.58) −0.586 (−0.595,−0.577) −0.586 (−0.595,−0.577)

σ 2(1) 1.001 (0.973,1.032) 0.993 (0.965,1.023)

φ(1) 0.994 (0.948,1.04) 1.01 (0.964,1.063)

τ2(1) 1.001 (0.984,1.018) 1.001 (0.984,1.018)

Metric Out-of-sample In-sample Out-of-sample In-sample

Coverage 0.95 0.99 0.95 0.99
RMSPE (r) 0.07 (1.18) 0.03 (0.84) 0.07 (1.19) 0.03 (0.84)
PIW 4.66 4.44 4.66 4.44
DIC 115’543 115’556

Fitting time (h) 2.18 2.2

JS = (9 + 3) × (9 + 3) = 144 terms for our complete spline basis, including the boundary
knots. All numerical variables in X(·, ·) have been standardized for improving the efficiency
of the MCMC sampling (Gilks and Roberts (1996)). The presence of temporal dependence
in individual trajectories was investigated through an individual-specific exploratory analysis
on the residuals from a standard linear regression, and an Ornstein–Uhlenbeck process (GP
with an exponential covariance function) was specified to capture temporal dependence as a
parsimonious and effective model for the behavior of the underlying residual process.

FIG. 6. True and estimated spline surfaces using S-Splines.
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Finally, the outcome is log-transformed in order to comply with the Gaussianity assump-
tion of the model. We denote the parameter associated with variable “varname” as βvarname

and the levels of each categorical covariate as varname(j) for j = 1, . . . , Jvarname. Hence,

E
[
log

(
MAGk(t)

)]

= β0 +

JBMI∑

j=2

βBMI,j · I(BMIk = BMI(j)) +

JSex∑

j=2

βSex,j · I(Sexk = Sex(j))

+

JAge∑

j=2

βAge,j · I(Agek = Age(j)) +

JEth∑

j=2

βEth,j · I(Ethk = Eth(j))

(10)
+ βdistHome · distHomek

(
γk(t)

)
+ βNDVI · NDVI

(
γk(t)

)

+ βdistParks · distParks
(
γk(t)

)
+ βSlope · Slope

(
γk(t)

)

+

JS∑

j=1

βS,jBS,j

(
γk(t)

)
,

where I(·) denotes the indicator function, wk(·) is the DAG-based approximation (Sec-

tion 3.2) for GP(0, cθ (·, ·)), and εk(t)
iid
∼ N (0, τ 2). The baseline subject represents an under-

weight Asian female less than 18 years of age. Other socioeconomic factors (e.g., education
and income level) have been excluded from the analysis, as they are strongly associated with
ethnicity and age.

4.2. Prior distributions. The prior choices for each set of parameters and/or coeffi-
cients followed ad hoc strategies. We incorporated priors, such as β ∼ NJ (0,106 · I J ),
σ 2 ∼ IG(2,2), and τ 2 ∼ IG(2,2) with J being the total number of β coefficients. The high
spatial density of observations in several areas of the map enables robust estimation of the
spatial effects. However, overfitting may emerge from the the high dimension of the spline
basis. Furthermore, there are areas in Westwood that present sparsely observed data points,
and the model could struggle to identify the spline coefficients referred to those areas and
jeopardize convergence of the MCMC algorithm. Hence, we consider the S-Spline (Ridge-
like prior), described in Section 3.4, to mitigate these potential issues, where the shrinkage
parameter λ has been assigned a G(1,1) prior.

4.3. Results. Fitting the model required ≈ 7 hours on a computer equipped with two
processors AMD EPYC 7452, each one having 32 cores for a maximum of 256 Gb of RAM.
The acceptance rate obtained is ≈ 28%, supporting the consistency of our adaptive strategy.
Table 2 presents parameter estimates and performance metrics for the model in (8) with the
explanatory variables, specified in (10), alongside estimates from a Bayesian linear regression
model that includes the spatial spline terms but neglects the temporal dependence structure.

The estimates from the two models are largely consistent with each other, although ac-
counting for temporal dependence tends to somewhat mitigate the effects of some predictors.
We anticipate the temporal process to absorb the impact of certain predictors, especially when
their relationship with the dependent variable is complex and nonlinear; this appears to be the
case with “Slope”, which loses its significant positive impact on MAG once the temporal pro-
cess is incorporated. All other variables seem to retain the nature of their impact on MAG.
These coefficients are interpreted with respect to the baseline measure of an underweight
18-year-old Asian female.
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The intercept represents the natural logarithm of the MAG for the baseline subject and
reckons with both active as well as inactive time points for the high-resolution digitally fil-
tered data. Since we model continuously over time, the resulting value of the MAG, which is
about exp(−2.9) ≈ 0.06, corresponds to the low region of moderate physical activity level;
see the Supplementary Material, Alaimo Di Loro et al. (2023). Other gleanings from Table 2
indicate that MAGs vary by ethnicity in the study cohort, as Whites tend to record lower
MAGs while Latin Americans and African Americans tend to register larger MAGs com-
pared to Asians. Impact of Age groups on MAGs also tend to vary with the groups of 25–34
and 45–70-year-old subjects tending to register lower MAGs than the baseline (young), while
the middle-aged group tends to be higher than the baseline. This is not entirely surprising be-
cause subjects in the 25–34-year-old group tend to exercise less than the younger (baseline)
and middle-aged groups with 25–34-year-old subjects having less time as they embark on
their careers (less free time), while those in the 45–70 range also tend to follow a less vig-
orous lifestyle regimen due to their age. The effect of Body Mass Index (BMI) is also seen
to vary based upon the categories of weight. While all three categories indicate a signifi-
cantly higher MAG, compared to the baseline, the impact of the overweight, but not obese,
category seems higher than the other two. We do not fully know the extent to which larger
body weights affect accelerometer readings, but this variation must also account for the fact
that higher BMI may also correspond to muscular (not unfit) individuals engaging in more
vigorous lifestyle regiments. The spatially-indexed predictors indicated the expected positive
impact of NDVI (more greenness encourages more outdoor activities and exercise) while it
is also expected, especially in Westwood, that subjects tend to exercise along paths closer to
their home thereby explaining the negative coefficient for the weighted distance to home.

The estimate of the temporal decay parameter φ implies that the temporal correlation drops
to 0.05 in about 3/φ̂ ≈ 4.3 minutes, where φ̂ ≈ 0.7 is the posterior median of φ. Unsurpris-
ingly, including the spatial effect and the temporal process improves predictive performances
(RMSPE or PIW in Table 2) over a model including only spatial effects (excluding the tem-
poral process). The model incorporating the temporal process delivers satisfactory coverage
and outperforms its competitor in all of the other indices for the training and testing data.

Figure 7(a) shows the estimated spatial surface, while Figure 7(b) presents the width of
the posterior predictive intervals. The map clearly evinces zones (darker shades of red high-
lighted with white contours) that tend to depict high levels of physical activity. For example,
the largest dark red blob in the north center-left almost perfectly tracks the UCLA campus
boundary, reflecting a campus environment with active mobility (walking, running, biking).
Other zones of high activity identify with locations where more participants in the study live,
including those residing in student dorms (northwest corner) and residential areas immedi-
ately around and in the predefined Westwood/UCLA study area (such as the south central
zone) or Century City shopping center (to the east). Lighter shades (orange) correspond to
areas that are less developed (open space), such as the areas in the north east, or they are
areas with a high degree of transportation infrastructure and traffic (e.g., toward the west-
ern boundary). These correspond to highways (such as the Interstate 405 highway or other
vehicular transportation corridors) that often have lower levels of activity because they in-
hibit outdoor physical activities due to noise, pollution, safety, etc. Our analysis reveals three
additional high-activity areas that are not gleaned from nonspatial models: the Los Angeles
National Veteran Park; the Century City shopping center, and the Stone Canyon Park. The
color gradient closely follows the spatial characteristics of the Westwood neighborhood and
reveal how spatial patterns can impact physical activity behavior after accounting for varia-
tion attributable to known explanatory variables.

Figure 8 shows two examples of observed (left) and reconstructed (right) MAGs along
trajectories carved out by two subjects. We find a good degree of agreement between the two
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TABLE 2
Parameter estimates and model performance metrics for model (8) with and without the temporal process

Model (8) without temporal process Model (8) with temporal process

Param. Point Interval Point Interval

Intercept −2.750 (−2.754,−2.746) −2.92 (−2.94,−2.91)

Eth. White −0.128 (−0.146,−0.111) −0.190 (−0.258,−0.125)

Eth. Other 0.122 (0.110,0.134) 0.128 (0.077,0.178)

Eth. Latin-American 0.259 (0.247,0.271) 0.314 (0.264,0.362)

Eth. Black/African/Caribbean 0.263 (0.248,0.278) 0.400 (0.340,0.461)

Sex Male −0.348 (−0.358,−0.338) −0.298 (−0.338,−0.258)

Normal weight 0.121 (0.110,0.132) 0.297 (0.252,0.343)

Over weight 0.351 (0.330,0.372) 0.482 (0.398,0.566)

Obese 0.220 (0.181,0.258) 0.401 (0.241,0.560)

Age (25–34] −0.387 (−0.398,−0.377) −0.320 (−0.362,−0.279)

Age (34–45] 0.080 (0.064,0.097) 0.125 (0.057,0.191)

Age (45–70] −0.105 (−0.132,−0.079) −0.091 (−0.192,0.006)

Dist. from home −0.135 (−0.142,−0.128) −0.074 (−0.102,−0.046)

Slope 0.052 (0.047,0.0.56) −0.003 (−0.12,0.005)

Dist. to parks −0.221 (−0.227,−0.214) −0.066 (−0.089,−0.043)

NDVI 0.226 (0.221,0.231) 0.010 (0.004,0.015)

σ 2 2.266 (2.237,2.297)

φ 0.718 (0.704,0.731)

τ2 2.10 (2.08,2.13) 0.050 (0.048,0.053)

Metric Out-of-sample In-sample Out-of-sample In-sample

DIC 17’588’058 973’329
Coverage 0.95 0.95 0.93 0.99
RMSPE (r) 1.44 (0.68) 1.44 (0.68) 0.55 (0.09) 0.1 (0.003)
PIW 5.69 5.69 2 1.18

FIG. 7. (a) Spatially smoothed estimates from a shrinkage spline over Westwood, Los Angeles; (b) Standard

deviation for the shrinkage spline.
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FIG. 8. Estimated log (MAG) for two randomly selected individuals: (a) estimated log(MAG) (red points) and

95% prediction intervals (red dashed line) for each point within the observed time-windows; (b) including the

location.

plots, and the ability of our model to recover the log(MAG) in locations where it has not been
observed. The reliability of the predictions can be demonstrated through different metrics and,
unsurprisingly, accommodating spatial effects and the temporal process improves predictive
performances, as measured by MSPE or PIW. We deliver these personalized trajectory plots
for every subject in the study and also predict personalized MAGs for each subject along
any new trajectory. This enables personalized recommendations based upon an individual’s
health attributes, including suggestions for more effective paths to follow for optimal physical
activities, while also informing community level interventions in the built environment.

5. Discussion. We have devised a Bayesian modeling framework to conduct fully
model-based inference for high-resolution accelerometer data over trajectories compiled from
the PASTA-LA study. Our key data analytic developments included: (i) modeling dependence
over trajectories, (ii) accounting for subject-specific spatial-temporal variation for daily mo-
bility, (iii) predicting or interpolating PA levels across trajectories and (iv) identifying zones
of high physical activity in Westwood, Los Angeles. Our spatiotemporal analysis offers richer
inference and reveals relationships between physical activity levels and a variety of factors,
both at the subject level (e.g., personal attributes) and as a function of space and time. The
temporal process was able to effectively extract the features of the data at finer resolutions,
while the spatial splines accounted for residual spatial heterogeneity. Accommodating both
temporal dependence and spatial heterogeneity demonstrably improved predictive ability and
enabled us to effectively delineate zones of high physical activity. Furthermore, the ability of
the model to pool information across individuals at all time points allows us to infer about
those who present sparsely observed space-time points (due to technical issues or protocol
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violation). In particular, we can interpolate and infer about PA levels with full uncertainty
quantification and ensure the desired coverage by our prediction intervals. The methods we
develop can be adapted to model animal tracking and be compared to existing spatial models
(see, e.g., Hedley and Buckland (2004)).

Recent public health reviews call for interdisciplinary technological advances to more ef-
fectively measure spatiotemporal energetics of activity spaces in obesity and chronic disease
research (James et al. (2016), Kestens et al. (2017), Drewnowski et al. (2020)). Individual-
level data, at aggregate, can be used to identify anchor points for physical activity and reveal
causal pathways between built environment exposures and health. Our work is a novel con-
tribution demonstrating methodologies to answer these pressing research questions.

Our analysis also resolves practical difficulties in using actigraph data. It is not cost-
effective to deploy research-grade GlobalSat GPS and Actigraph units, as they are very ex-
pensive and continued usage requires heavy staff involvement. Our methods can be applied to
analogous, but less complete, data derived from smart phones and smart watches, then such
devices could be deployed in much larger studies with much larger sample sizes at a fraction
of the cost. Given the spatiotemporal nature of outdoor PA research, our ability to predict in
areas of data missingness drastically improve inference related to the impacts of the built and
natural environments on physical activity and active mobility.

We recognize that there are several avenues for further research. Substantive investiga-
tions pertaining to the PASTA-LA study will focus on the impact of intervention schemes
designed to promote physical activities and ask questions related to controlling for weather
while estimating the impact of the intervention. Our DAG-based approach for scalable tem-
poral processes can be further enriched with recent developments (Katzfuss and Guinness
(2021), Peruzzi, Banerjee and Finley (2022)), although any of the methods reviewed and
evaluated by Heaton et al. (2019) can be incorporated into our framework. We also recognize
a wealth of future research surrounding wearable devices and actigraphy data. Examples in-
clude methodological advancements in clustering of trajectories, according to different levels
of physical activity, and creating personalized health recommendation systems for patients
with regard to trajectories (e.g., walking, running, or biking routes) that will be most appro-
priate for them. Related to the clustering of trajectories, one can also pursue model-based
learning about individual effects from the extent of (appropriately quantifies) spatial over-
lap in trajectories and discerning them from spatial effects Finally, there is possible merit in
modeling both the nonidle and idle times with a more comprehensive hierarchical specifica-
tion (Bai et al. (2018)). The joint modeling could be achieved using Mixture Models, Hidden
Markov Models, or the modeling of multivariate Gaussian censored outcomes (De Oliveira
(2005), Molstad, Hsu and Sun (2021)). Combining such approaches with efficient estimation
strategies is the major challenge, which will be tackled in future developments of this work.
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SUPPLEMENTARY MATERIAL

Algorithms, simulations and data analysis (DOI: 10.1214/23-AOAS1742SUPPA; .pdf).
Supplementary Material is available in Alaimo Di Loro et al. (2023). It includes further in-
formation about data processing, relationships between vector magnitude of acceleration and
metabolic equivalent of task, technical details on some of the algorithms using the temporal
NNGP, additional simulation experiments and some further analysis of the actigraph data.

Computer programs (DOI: 10.1214/23-AOAS1742SUPPB; .zip). Computer programs
developed for implementing the models in the paper for the R statistical computing en-
vironment are available as Supplementary Material in the form of a compressed folder
EfficientTNNGPforActigraph-main.zip. This can also be downloaded from a GitHub reposi-
tory https://github.com/minmar94/EfficientTNNGPforActigraph.
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