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Fast and slow microphysics regimes in a minimalist model of cloudy Rayleigh-Bénard convection
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A minimalist model of microphysical properties in cloudy Rayleigh-Bénard convection is developed based
on mass and number balances for cloud droplets growing by vapor condensation. The model is relevant to a
turbulent mixed-layer in which a steady forcing of supersaturation can be defined, e.g., a model of the cloudy
boundary layer or a convection-cloud chamber. The model assumes steady injection of aerosol particles that
are activated to form cloud droplets, and the removal of cloud droplets through sedimentation. Simplifying
assumptions include the consideration of mean properties in steady state, neglect of coalescence growth, and no
detailed representation of the droplet size distribution. Closed-form expressions for cloud droplet radius, number
concentration, and liquid water content are derived. Limits of fast and slow microphysics, compared to the
turbulent mixing time scale, are explored, and resulting expressions for the scaling of microphysical properties
in fast and slow regimes are obtained. Scaling of microphysics with layer thickness is also explored, suggesting
that liquid water content and cloud droplet number concentration increase, and mean droplet radius decreases
with increasing layer thickness. Finally, the analytical model is shown to compare favorably to solutions of the
fully-coupled set of governing ordinary differential equations that describe the system, and the predicted power
law for liquid water mixing ratio versus droplet activation rate is observed to be consistent with measurements
from the Pi convection-cloud chamber.
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I. INTRODUCTION

For over 50 years the turbulent mixed layer has been the
predominant paradigm for our understanding of stratocumulus
clouds [1–10]. The microphysical properties of these exten-
sive decks of low clouds are crucial to our understanding of
climate [11]. Furthermore, microphysical processes influence
the optical properties and persistence of stratocumulus clouds
[12–14], as well as other related systems like mixed-phase
layer clouds [15] and fog [16].

Distilled to its essence, the physics of a shallow layer cloud
in steady state includes (1) a constant driving force for wa-
ter supersaturation, for example, resulting from the updrafts
of the turbulent circulation within the boundary layer; (2) a
steady source of aerosol particles that can act as cloud con-
densation nuclei (CCN); (3) cloud microphysical processes,
including activation to form cloud droplets, and growth of
cloud droplets by condensation and possibly by collision
and coalescence; (4) a steady loss of particles, for example
through sedimentation [14]. The purpose of this paper is to
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develop a minimalist, mean-field (zero-dimensional) model
that will allow us to demonstrate the existence of and explore
the properties of fast and slow microphysical regimes that
result from these essential elements. We take moist Rayleigh-
Bénard convection with a fixed temperature gradient as an
idealized framework, thereby not allowing the microphysics
to feed back to the dynamics. The work will be framed in the
context of turbulent clouds formed in a laboratory convection-
cloud chamber, which can be related to atmospheric systems
by using dimensionless variables for the microphysics [17].
Indeed, the Damkoehler number emerges from the analysis
as the central dimensionless quantity governing the boundary
between fast and slow microphysical regimes. The exact de-
tails of the forcing and the particle-loss terms may be different
for a particular cloud system, but fast and slow regimes with
corresponding scaling laws for microphysical properties will
still exist.

A convection-cloud chamber allows for the formation of a
steady-state cloud, with a balance between aerosol injection,
their activation as cloud droplets, growth by condensation, and
eventually their loss by sedimentation [18]. The microphysical
properties of the cloud within the chamber, including even
“bulk” quantities like liquid water content, depend on the
properties of the injected aerosols [19]. We develop a simple
model to calculate the liquid water content and other mi-
crophysical properties (e.g., cloud droplet concentration and
mean radius, and water vapor supersaturation) corresponding
to a given aerosol injection rate and imposed supersaturation
forcing. The number-mass approach is inspired by that of
Krueger [20], and the mean-field approach has been shown
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to compare favorably with more complex, three-dimensional
models [21,22]. The paper proceeds as follows. First, an an-
alytical model is developed for the steady-state properties,
and it is interpreted in the limits of fast and slow cloud
microphysics relative to the turbulent mixing in the mixed
layer. Analytical scaling relationships between microphysical
variables are obtained, and in particular we investigate depen-
dence on the depth of the mixed layer. Second, the analytical
results are shown to match results from a time-dependent
model based on a coupled set of ordinary differential equa-
tions. Third, we compare the predicted scaling of liquid water
content to measurements in the Pi convection-cloud chamber
[23]. Finally, we conclude with a discussion of the relevant
dimensionless variables, the connection to bulk microphysics
with saturation adjustment, and aspects for future work.

II. THERMODYNAMIC MODEL FOR MOIST
RAYLEIGH-BÉNARD CONVECTION

The thermodynamics state within a turbulent convective
layer, such as that occurs in a convection chamber, is obtained
using the mean-field approach described by Thomas et al.
[21]. It is assumed that the fluid in the turbulent convection
layer is well mixed at temperature T . With no condensation,
the time rate of change of the temperature of the well-mixed
air can simplify to

dT

dt
= 1

τt
(T0 − T ) (1)

where T0 is the steady-state temperature that the fluid attempts
to reach and τt is the characteristic time. For example, if
we consider Rayleigh-Bénard convection with a bottom tem-
perature of Tb and a top temperature of Tt , T0 = (Tb + Tt )/2
and τt = Hλ/2α, where H is the height of the layer, λ is
the thickness of the viscous boundary layer, and α is the
thermal diffusivity of air (see Appendix A for a more detailed
development). The solution to Eq. (1) is

T = Tie
−t/τt + T0(1 − e−t/τt ). (2)

Thus, the temperature evolves from the initial value Ti to
the steady-state value T0 at a characteristic time τt . We can
interpret τt as the turbulent-flux replenishment time of the
system.

A similar equation can be written for the water vapor
mixing ratio qv in well-mixed air. The evolution equation for
water vapor mixing ratio is

dqv

dt
= 1

τt
(qv0 − qv ), (3)

where qv0 is the steady-sate water vapor mixing ratio with
no condensation. Similarly, in moist Rayleigh-Bénard con-
vection, qv0 = (qs,b + qs,t )/2, where qs,b and qs,t represent
saturated water vapor pressure at bottom and top surfaces,
respectively. Strictly speaking, the time scale in this case is
equal to 2D/Hλ, where D is the diffusion coefficient of water
vapor in air, but practically speaking this can be taken as equal
to τt because D ≈ α.

By analogy, a water vapor supersaturation equation, with
no condensation, can be written as

ds

dt
= 1

τt
(s0 − s), (4)

where s0 is the cloud-free value of the supersaturation cor-
responding to qv0 and T0. A justification of Eq. (4) is given
in Appendix B; and the adequacy of Eq. (4) will be checked
later both computationally and experimentally (see Sec. V). In
moist Rayleigh-Bénard convection, an approximation of s0, as
detailed in Appendix A, is given by

s0 = 1

2

(
L�T

2RvT 2
0

)2

, (5)

where �T = Tb − Tt , L is the latent heat of vaporization, and
Rv is the gas constant for water vapor.

Equation (4) is fundamental to the microphysics within the
turbulent layer, so it is worth noting several points now. First,
when a cloud is present, such that s is small, the right-hand
side of Eq. (4) can be considered as a forcing term, equiva-
lent to an updraft strength or radiative cooling, namely, the
term that forces the development of supersaturation and the
formation of a cloud. Second, when condensation occurs in
the chamber the steady-state water vapor mixing field will be
slightly depleted and the mean temperature will be slightly
increased due to release of latent heat of vaporization. Those
shifts are δqv = qv − qv0 and δT = T − T0, and expressions
for these differences are given later. This can be included in
Eq. (4) as a loss term due to cloud droplet growth. The full
system is developed in Sec. III.

III. MEAN-FIELD MODEL OF CLOUD
MICROPHYSICAL PROPERTIES

We now consider cloud formation in the convective layer.
The well-mixed, bulk fluid contains a cloud of droplets with
radius r and number density n. The cloud is maintained in
steady state by injecting a constant flow of cloud condensation
nuclei (CCN), such that the cloud droplet activation rate is
equal to the rate at which droplets are removed by sedimenta-
tion. In the following subsections we consider a liquid-water
mass budget and a cloud droplet number budget. The resulting
equations are then combined to solve for r, n, and the liquid
water content m.

A. Liquid water mass budget

In steady state the rate of condensation is balanced by the
rate of loss of mass due to sedimentation, ṁcond = ṁsed. The
rate of change of liquid water mass per unit volume due to
condensation, assuming fixed n, is given by

ṁcond = nρl4πrξs. (6)

The parameter ξ is a weak function of temperature [24]. The
rate of change of liquid water mass per unit volume due to the
precipitation flux is

ṁsed = m/τres = nρl
4

3
πr3 vT

H
, (7)

where vT is the terminal speed of cloud droplets. Here we
have assumed that the residence time of a cloud droplet is
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τres = H/vT . The terminal speed is assumed to follow Stokes
drag law, such that vT = 2ρl gr2/(9μ), where μ is the dynamic
viscosity of air and g is the gravitational acceleration. This
simple assumption for the removal time scale τres is valid in
the “stirred-settling” limit, and may need to be revised for
drops with large inertia, etc. [25].

We observe that ṁcond = ccondnrs and ṁsed = csednr5, so
we expect it should be possible to obtain an expression for
n as a function of r. As anticipated in the previous section,
however, supersaturation depends on the condensation rate
and therefore is also a function of n and r. The supersaturation
must be obtained by Eq. (4), but including a term accounting
for depletion due to droplet growth [26]

ds

dt
= 1

τt
(s0 − s) − s

τc
, (8)

where τc is the phase relaxation time. It is given by

τc = (4πD′nr)−1, (9)

where D′ = ρlξQ2/ρv,s. Here, Q2 accounts for the decrease
in supersaturation due to depletion of the water vapor mixing
ratio due to droplet growth [26]. It follows then, that in steady
state the supersaturation can be written as

s = s0

(
1 + τt

τc

)−1

. (10)

By equating Eqs. (6) and (7) the expression for cloud
droplet number density then becomes

n =
(
ccond

csed

s0

r4
− 1

)
1

τt4πD′r
. (11)

Alternately, this can be expressed as

n =
(
ṁcond,0

ṁsed
− 1

)
1

τt4πD′r
, (12)

where ṁcond,0 is the condensation rate that would exist at the
cloud-free supersaturation of s0.

B. Cloud droplet number budget

Again, steady state is assumed, such that the rate of CCN
injection and activation is balanced by the rate of loss by
sedimentation, ṅin = ṅsed. The rate of injection per unit vol-
ume ṅin is a constant that is externally controlled. The rate of
loss through sedimentation is assumed to be proportional to
n/τres, with the residence time defined in the previous section,
such that

ṅsed = n
vT

H
= n

2ρl gr2

9μH
. (13)

Equating these rates and solving for n results in

n = ṅin
9μH

2ρl g

1

r2
. (14)

C. Solutions for microphysical properties

Equations (11) and (14) allow us to obtain a quartic equa-
tion for radius,

r4 +
(

18πμHD′τt ṅin

ρl g

)
r3 − 27ξμHs0

2ρl g
= 0. (15)

For a quartic of the form x4 + a3x3 + a0 = 0 the discriminant
is � = 256a3

0 − 27a4
3a

2
0. Realistic values of the coefficients

lead to � < 0, ensuring that there are two distinct, real roots.
In our case only one is positive, and therefore is the allowable
solution.

Once a value for r is obtained, it can be substituted into
Eq. (14) or (11) to obtain the corresponding n. Then other
microphysical properties can be calculated, such as super-
saturation via Eqs. (9) and (10), and liquid water content
m = nρl4πr3/3.

Figure 1 shows the microphysical state of the system as
a function of ṅin, as obtained from the expressions derived
in this section. The results correspond to T0 = 284.16 K,
�T = 20 K, and H = 1 m. The supersaturation decreases
with increasing ṅin, approaching zero at high injection rate.
The droplet number concentration increases and the droplet
radius decreases with ṅin in such a way that the liquid water
content increases monotonically. A distinct shift in the be-
havior of the system is observed between log ṅin of −2 and
−1, and these two microphysical regimes will be explored in
Sec. IV.

D. Maximum achievable n and m: Threshold values
for critical supersaturation

In practice there is a limit to the number concentration
of cloud droplets that can be activated for a given set of pa-
rameters �T and H . This can be understood by assuming all
injected CCN are identical and have a critical supersaturation
of sc. Then the injection rate will have a peak value at which
the ambient supersaturation in the chamber is equal to sc, and
r, n and m reach maximum values. In that case we can write
the mass condensation rate from Eq. (6) as

ṁcond = nρl4πrξsc. (16)

Setting that equal to the sedimentation rate in Eq. (7)
results in

nρl4πrξsc = nρl
4

3
πr3 vT

H
, (17)

and we see that n cancels and we can solve for the radius
corresponding to the critical supersaturation,

rc =
(

27ξμHsc
2ρl g

)1/4

. (18)

This radius is the minimum value of cloud droplet radius that
can be achieved in the chamber, when fluctuations in supersat-
uration are neglected. (When fluctuations exist, it is possible
for CCN to be activated even when the mean supersaturation
is below the critical value [19], but that case is not considered
here.) The minimum radius, in turn, allows for maximum
values of n and m to be obtained,

nc = 1

4πD′τt rc

(
s0

sc
− 1

)
(19)

and

mc = ρl

3D′τt

(
s0

sc
− 1

)
r2
c . (20)
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FIG. 1. The steady-state supersaturation, cloud droplet number concentration, mean droplet radius, and liquid water content are plotted
against aerosol injection rate ṅin. The parameters τt = 10 s and s0 = 21.32% are held constant. As the injection rate is increased the cloud
droplet number concentration increases, consequently, mean supersaturation and mean radius of cloud droplets decrease.

These are the upper bounds on droplet number concentration
and liquid water content in a turbulent convective layer, again
neglecting fluctuations. Considering Fig. 1 for illustration,
the first panel shows that s approaches zero monotonically
with increasing ṅin. The second and fourth panels show the
increasing n and m, and the third panel shows the steadily
decreasing r. In practice, the curves should end at the ṅin at
which sc is reached.

IV. FAST AND SLOWMICROPHYSICS REGIMES

A. Fast-microphysics limit

Limiting microphysical scaling regimes are achieved for
high and low CCN injection rates. We first consider the limit
of fast microphysics (i.e., high CCN injection rate) compared
to turbulent mixing, i.e., τt � τc. In that regime Eq. (10)
becomes s ≈ s0τc/τt . Then the mass condensation rate sim-
plifies to

ṁcond = nρl4πrξ
τc

τt
s0 = ρlξs0

D′τt
, (21)

where Eq. (9) was used to obtain the last equality. This result
is striking because it is independent of microphysical prop-
erties, in other words, it contains no dependence on n or r.
In the fast-microphysics limit, therefore, the mass conden-
sation rate is a constant that depends only on the maximum
possible supersaturation s0 and the turbulence intensity
through τt . The quantity s0/τt can be considered the rate of
replenishment of supersaturation in the chamber, which is the
limit on condensation growth in this regime.

Equating ṁcond = ṁsed using Eq. (7), we can obtain an
expression for the cloud droplet number concentration,

n = 27ξs0μH

8πD′τtρl gr5
. (22)

The n ∝ r−5 scaling can be observed in Fig. 2(a), where the
plateau at large ṅin indicates the range over which the scaling
holds (due to the compensated y axis). Alternately, we can
solve for cloud liquid water content,

m = 9μξs0H

2gD′τt
r−2, (23)

which confirms that m increases with decreasing r and there-
fore with increasing CCN injection rate. Note that these
expressions combine to give m ∝ n2/5. That scaling is ob-
served in Fig. 2(b), where again the y axis is compensated
so that the plateau shows the range over which the scaling
holds. Recognizing that this is a direct result of the quadratic
dependence of cloud droplet removal rate on r, we can make
the result more general by writing

m = ρlξs0

D′
τres

τt
. (24)

Thus, in the polluted cloud, fast-microphysics limit, the ob-
served liquid water content is essentially controlled by the
ratio of the residence time of droplets to the flux replenish-
ment time. Along with the Damkoehler number τt/τc, the
dimensionless particle removal rate τt/τres can therefore be
considered one of the key parameters governing the micro-
physical state of the system.

Unique expressions for the microphysical state of the sys-
tem can be obtained by combining the above results from
the mass balance with the number balance given by Eq. (14).
Eliminating n or r from Eq. (22) results in

r =
(

3ξs0

4πD′ṅinτt

)1/3

(25)

and

n = 9μH

2ρl g

(
4πD′τt

3ξs0

)2/3

ṅ5/3
in , (26)

and from Eq. (23)

m = 6πμH

g

(
3ξs0

4πD′τt

)1/3

ṅ2/3
in . (27)

The power-law dependence on ṅin can be seen in the second
and fourth panels of Fig. 1, where the number concentration
curve has a slope of 5/3 and the liquid water content curve
has a slope of 2/3 in log-log coordinates. Given that under a
wide range of cloud conditions the fast-microphysics limit is
valid, these remarkably simple expressions provide a conve-
nient description of how the microphysical state of the system
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FIG. 2. Left panel illustrates n ∝ r−5 and right panel illustrates m ∝ n2/5 in the fast-microphysics limit (τt � τc). In this illustration, the
fast microphysics regime is attained by increasing the injection rate of number of droplets. The parameters τt = 10 s and s0 = 21.32% are held
constant.

depends on external parameters. This will be further explored
in Sec. IV E.

B. Slow-microphysics limit

We now consider the limit of slow microphysics (i.e., low
CCN injection rate) compared to turbulent mixing, i.e., τt �
τc. In that regime Eq. (10) can be expanded to first order so
that s ≈ s0(1 − τt/τc). Then the mass condensation rate is

ṁcond = nρl4πrξs0(1 − τt4πD′nr), (28)

and equating ṁcond = ṁsed results in

nρl4πrξs0(1 − τt4πD′nr) = m

τres
. (29)

Using τres = H/vT and the Stokes drag law, this can be solved
for cloud droplet number concentration

n = 1

4πD′rτt

(
1 − 2ρl gr4

27μHξs0

)
. (30)

Solving instead for cloud liquid water content, the result is

m = ρl r2

3D′τt

(
1 − 2ρl gr4

27μHξs0

)
. (31)

The clean cloud, slow-microphysics limit, when taken to
the extreme of τt/τc → 0 leads to an expression for droplet
radius that is independent of number concentration,

r =
(

27μHξs0

2ρl g

)1/4

. (32)

Effectively, this is the mean radius of isolated droplets grow-
ing in an environment with supersaturation s0 during lifetime
τres. The third panel of Fig. 1 shows a plateau at small ṅin,
confirming that this indeed is an upper limit to the droplet
size achievable in a convection-cloud chamber. This leads to
the interesting possibility that a measurement of mean droplet

diameter in a convection-cloud chamber, operating with ex-
tremely low CCN injection rates, could provide an indirect
measure of the maximum supersaturation s0. Or, alternately,
if the thermodynamic state is known, it could be used to
explore the physics of droplet removal, i.e., to what extent
the simple Stokes settling through the full chamber height H
quantitatively describes the particle lifetime.

Finally, bringing in the number budget Eq. (14) and using
the maximum radius given by Eq. (32), it follows that in
the extreme slow-microphysics limit both the cloud droplet
number concentration and the liquid water content are directly
proportional to the CCN injection rate, n ∝ ṅin and m ∝ ṅin.
These power-law relations (slope of 1) are observed in the
low-ṅin ranges of the second and fourth panels of Fig. 1.

Figure 3 provides an alternate perspective on fast- and
slow-microphysical regimes. Here, the microphysical state of
the system is altered by varying the turbulent flux time scale
τt . The CCN injection rate is fixed, so the system changes
from the slow microphysics τt � τc to the fast microphysics
τt � τc regimes. The fourth panel shows τc, and confirms that
the transition from one regime to the other occurs near τt ≈ τc.
The droplet radius is observed to reach a maximum value as
anticipated by Eq. (32).

C. Energetic aspects of condensation

Here we consider the heating of the air in the cloud
chamber as a result of cloud formation and associated latent
heating. The temperature evolution equation is

dT

dt
= −T − T0

τt
+ L

cp
q̇l,cond , (33)

where ql = m/ρa is the liquid water mixing ratio. The addi-
tional subscript makes clear that only changes in liquid water
mixing ratio resulting from condensation or evaporation are
included. In steady state the time derivative is zero, so we can
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FIG. 3. The turbulence time scale τt is varied, with ṅin = 1 cm−3 s−1 and H = 1 m held constant. Increase in τt results in a decrease in the
rate of replenishment of the temperature and water vapor scalar fields. For the same droplet injection rate and H , the supersaturation decreases
as τt increases.

solve for δT = T − T0 as

δT = L

ρacp
ṁcondτt . (34)

The dependence of δT on CCN injection rate ṅin is shown
in Fig. 4, where it is clearly seen that a transition occurs
between very clean versus polluted conditions. Using the fast-
microphysics limit given by Eq. (21) we obtain

δT = L

ρacp

ρlξs0

D′ . (35)

It is interesting to note here that the temperature offset in this
limit is independent of τt ; in other words, it is independent
of the boundary fluxes. In contrast, in the slow-microphysics
limit given by Eq. (28) we obtain

δT = L

ρacp
τt nρl4πrξs0(1 − τt4πD′nr). (36)

FIG. 4. Steady-state δT vs droplet injection rate. The parameters
are the same as in Fig. 1.

In the extreme limit of τc → ∞ this simplifies to

δT = L

ρacp
τt nρl4πrξs0, (37)

with the result that δT ∝ τt . It follows, because this result
holds for small τt , that δT becomes vanishingly small as the
microphysics becomes slower. In essence, the microphysics
are sufficiently sluggish that the boundary fluxes are able to
maintain the temperature near T0 in spite of the latent heat
release associated with cloud formation.

D. Optical properties and the Twomey effect

The optical properties of a cloud scale with the op-
tical depth τ ≈ 2πnr2. The susceptibility is defined as
d ln τ/d ln n, and can be compared to the value of 1/3 for
the Twomey effect [27]. In the fast-microphysics limit we can
rearrange Eq. (22) to obtain an expression with r ∼n−1/5. The
resulting susceptibility is

d ln τ

d ln n
= 3

5
, (38)

which is significantly stronger than the classic Twomey value.
In the slow-microphysics limit the radius is independent of n,
as shown by Eq. (32). Therefore, the susceptibility is simply

d ln τ

d ln n
= 1. (39)

It must be kept in mind that the susceptibility only takes
on these values within the range of variation of n safely
within the assumed limits. In either case, however, we see
that for this analytical model, the aerosol-indirect effect is
quite strong. The enhancement above the Twomey value of
1/3 can be understood as resulting from the change in liquid
water content. Specifically, the optical depth can be written
as τ ∝ m2/3n1/3k1/3h, where k is a dispersion coefficient and
h is the cloud thickness. In this case, the size distribution is
simplified as monodisperse, so there is no effect of k, and
the cloud thickness is fixed. The susceptibility then takes the
form [28]

d ln τ

d ln n
= 1

3
+ 2d lnm

3d ln n
. (40)
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FIG. 5. The free parameter H is changed with ṅin = 10 cm−3 s−1, λ = 5 × 10−3 m, and δ = H m are held constant. For a given scalar
flux, increase in H results in longer time for replenishment of scalar. Larger H results in longer residence time of the droplets, therefore more
droplets are sustained in the system resulting in smaller supersaturation and droplet radius.

In the convection-cloud system, therefore, we see that the
change in liquid water content m with droplet concentration
n makes a significant contribution to the optical properties.

E. Scaling with convective-layer height

In the context of Rayleigh-Bénard convection or a
convection-cloud chamber, it is of interest to consider how
cloud microphysical properties scale with system parameters.
Externally controlled parameters are the imposed temperature
difference �T , which determines s0, the aerosol injection rate
ṅin, and the system height H . We are interested in how the
droplet radius r, droplet concentration n, and liquid water
content m vary. In this section we explore the dependence on
convective-layer depth H .

Recall that the coefficients of the quartic equation given
by Eq. (15) depend on H , which enters through the droplet
residence time τres = vT /H . It should also be noted that there
is a further H dependence in τt . This turbulent transport time
entered through the supersaturation equation (10), which can
be written to show the dependence on H ,

s = s0

(
1 + 2πHλD′nr

α

)−1

. (41)

Solutions for the microphysical state of the system as a func-
tion of H are illustrated in Fig. 5, showing s, n, r, and m. Three
decades of variation in H is depicted in order to demonstrate
the behavior of the system. The trends are consistent with
those observed in more detailed large eddy simulation of
convection-cloud chambers with varying height [29].

More insight into the behavior of the system can be gained
by noting the distinct power laws observed in Fig. 5. Because
τt scales linearly as H , most of the range shown satisfies
the condition τc � τt . In this fast-microphysics limit we can
obtain scaling relations from Eqs. (25)–(27). We simplify the
expressions so that they only depend on parameters that can
be externally controlled, including the height of a chamber H ,
the maximum supersaturation s0, which is determined by the
imposed temperature difference �T , and the aerosol injection
rate ṅin. We replace τt here with H , and where particle removal

rate enters, we write the linear scaling with H . The resulting
scaling relations are

r ∼
(

s0

ṅinH

)1/3

, (42)

n ∼ (Hṅin )5/3

s2/3
0

, (43)

and

m ∼ (Hṅin )2/3s1/3
0 . (44)

These power-law relations on H are observed in the right three
panels of Fig. 5. The droplet concentration n and liquid water
content m are observed to increase monotonically with power-
law exponents of 5/3 and 2/3 as predicted for the limit of fast
microphysics. Of course these scaling relations assume fixed
boundary forcing �T and intensive aerosol injection rate ṅin.

V. VALIDATIONWITH SIMULATION
AND MEASUREMENTS

In this section we make two assessments of the theory
and scaling laws developed thus far. First, we compare the
theory to a computational solution to the governing equations.
Second, we compare one of the key scaling laws with the
measurements from the Pi chamber.

A. Comparison with full ODE solutions

The simple model can be expressed as a set of coupled or-
dinary differential equations, without using the first-order ap-
proximation for supersaturation fluctuations used in Eqs. (B2)
and (B3). In addition, numerical solution of the coupled set
allows transient behavior to be investigated, and provides
an opportunity to check consistency with the steady-state
solutions obtained thus far. For cloudy Rayleigh-Bénard con-
vection the time evolution equations for temperature, water
vapor, liquid water content, and number concentration are
given by

∂T

∂t
= T0 − T

τt
+ L

cp
q̇l c, (45)
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∂qv

∂t
= qv0 − qv

τt
− q̇l c, (46)

∂ql
∂t

= q̇l t − ql
τres

, (47)

∂n

∂t
= ṅinH(s(t ) − sc) − n

τres
, (48)

with

q̇l c = 4πn(t )r(t )ξs(t ), (49)

q̇l t = 4πn(t )r(t )ξs(t ) + 4
3πr(t )3ρl ṅin, (50)

and

s(t ) = qv (t )

qsat (t,T )
, (51)

r(t ) =
(

3ql (t )

4πρl n(t )

)1/3

, (52)

where s(t ) is the time-dependent supersaturation, r(t ) is the
mean cloud droplet radius at time t , and H is the Heaviside
step function. The first term in Eqs. (45) and (46) is the source
term due to the turbulent flux transfer from the boundaries
and subsequent mixing. This term tends to reduce the quasi-
steady temperature and increase the quasi-steady water vapor
in the bulk. The increase in bulk temperature due to latent heat
release and a consequent reduction in bulk water vapor due
to condensation is captured in the second term of Eqs. (45)
and (46).

The ṅin in Eq. (48) represents the injection of cloud
droplets when instantaneous supersaturation exceeds critical
supersaturation (sc). In a physical system, there is a finite time
between the activation of droplets and growth to size r(t ), but
here the cloud droplet population is represented only by the
mean size in order to stay close to the idealized model derived
previously. Because liquid water mixing ratio is ql ∝ nr3, its
rate of change has two contributions, q̇l ∝ ṅr3 + 3nr2ṙ. Thus,
in the set of ODEs, changes in liquid water content can arise
from condensation/evaporation of existing droplets q̇l c and
from injection ṅin of droplets of size r(t ). These combined ef-
fects are represented by the first term q̇l t in Eq. (47), which is
defined in Eq. (50). Only the condensation component q̇l c con-
tributes to the temperature and water vapor fields described
by Eqs. (45) and (46). This condensation term accounts for
integrated growth over the full size distribution, which is rep-
resented just by the mean size. The sink term for both number
and liquid water content is due to the droplet removal, with
a characteristic time scale of τres. This exponential removal is
captured by the second term in Eqs. (47) and (48).

In the system of ODEs, the direct coupling between the
scalar fields T and qv [Eqs. (45) and (46)], and microphysics
[Eqs. (47) and (48)] is through the changes in temperature
via latent heat release and in water vapor via condensation
growth. A feedback to microphysics is established via changes
in supersaturation and radius. The system of ODEs is solved
with temperature and water vapor initialized with the no-cloud
conditions qv0 and T0 for the convective system with �T ,
and with liquid water content and number concentration both
having initial conditions set to near zero (10−18). The model

parameters are ṅin, τt , and H (which determines τres). An
example of the transient response of the coupled system is
given in Fig. 6, which shows the time evolution of supersat-
uration, liquid water content, droplet number concentration,
and droplet mean radius. The system is initialized at the steady
conditions that exist in the chamber when no aerosol particles
are present, i.e., supersaturation of approximately 20%, corre-
sponding to a mean temperature of 283.77 K and �T = 20 K.
The results displayed are for ṅin = 100 cm−3 s−1, τt = 10 s,
and H = 1 m. Aerosol injection starts at t = 0 and the system
is observed to reach steady state within approximately 10 s,
and the observed values of s, ql , n, and r match the values
given by the analytical, steady-state model [shown as red
dashed lines, obtained using Eqs. (10), (14), and (15)]. When
the system is in steady state, between approximately 20 and
60 s, the radius of 5.7 µm corresponds to a terminal speed of
3.6 mm s−1, and therefore a residence time of approximately
276 s. At t = 60 s the aerosol injection is switched off and the
liquid water content and droplet number concentration drop
off, the supersaturation relaxes back to the no-cloud steady
state, and the radius of remaining cloud droplets grows to
to the maximum size predicted by the analytical theory [see
Eq. (32), shown as the green dotted line].

B. Comparison to measurements

Although the emphasis of this paper is on the theoretical
development, we make an initial comparison of the theory to
measurements performed in a convection-cloud chamber. The
fast-microphysics regime is most readily achieved in the ex-
periments, so we compare to the liquid-water scaling derived
in Sec. IV A, specifically the dependence on aerosol injection
rate given by Eqs. (27) and (44). We were able to vary the
aerosol injection rate over a factor of approximately 100 in
order to obtain a rigorous assessment of the power-law predic-
tion. The slow-microphysics regime is challenging to access
because of limitations in the ability to measure the droplet
size distribution (i.e., due to the upper size limit imposed by
the sampling tube of the droplet sizing instrument, the Welas
2000 by Palas GmbH).

Experiments were carried out in the Pi convection-cloud
chamber [23]. A turbulent, supersaturated environment was
created by setting up an unstable temperature difference
across the top and bottom plates. The bottom plate was set
to 30 ◦C and the top plate was set to 11 ◦C. The sidewall
temperature was set to 20 ◦C, close to the average value of the
top and bottom plates. Additionally, 20 ◦C, a value close to
the room temperature was chosen as the sidewall temperature
to minimize the heat leakage from the room to the sidewall
cylinder. All boundaries were maintained at near saturated
conditions. The chamber was seeded with sodium chloride
aerosols, injected at a controlled rate to create the turbulent
cloud environment. The cloud system reaches steady state
when the injection rate of aerosols is balanced by the removal
of cloud droplets by sedimentation. In order to achieve a broad
range of injection rates, monodisperse, size-selected aerosols
were used in the low range and polydisperse aerosols were
used in the high range. The system reaches steady state in
less than 30 minutes for all injection rates. The droplet size
distribution was measured at intervals of 10 minutes starting
from 30 minutes after injection. A total of seven samples were
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FIG. 6. Comparison of the ODE solutions (blue) with analytical solution (red dashed line). (a) Supersaturation, (b) liquid water content,
(c) number concentration, and (d) radius are compared. The system is initialized at the steady-state conditions that exist in the chamber with
no cloud droplets present and with aerosol injection starting at t = 0 s. At t = 60 s the injection is turned off and the cloud collapses. During
the cloud collapse, the mean supersaturation increases and the droplet diameter increases, and consequently the droplet removal flux increases.
The maximum droplet size obtained analytically (green dotted line) is reached as the droplet concentration becomes very small.

measured for all but three cases. The measurement was carried
out using a WELAS 2000 digital optical particle counter in the
size range of 0.6 to 40 µm. Each measurement was averaged
over 100 seconds at a sampling rate of 5 liters per minute.

Figure 7 shows the liquid water content measured in the
Pi chamber as a function of the activation rate. The activation
rate was obtained from the interstitial/droplet concentration
(na/nd ) budget. The interstitial concentration budget is writ-
ten as

dna
dt

= I − A − D, (53)

where I is the injection rate of aerosols, A is the activation rate
of the aerosols, and D is the diffusive/sedimentation losses of
the interstitials to the walls. The wall losses are represented
as na/τa. Solving Eq. (53) gives a solution na(t ) = τa(I −
A)(1 − exp(−t/τa)). The time series of the interstitial number
concentration evolution is obtained using a TSI scanning mo-
bility particle sizer (SMPS). This data is used for obtaining the
interstitial decay time constant τa. Once τa is known we use
Eq. (53) under steady-state conditions to obtain the activation
rate A = I − na/τa.

To evaluate the liquid water scaling in the fast-
microphysics limit, as given by Eq. (44), we fit the data to
a power law with exponent 2/3. The result is shown by the
dotted line in Fig. 7. We use nonlinear least-square fitting
with data points weighted by the measured uncertainties. The
fit results in an acceptable R2 value of 0.94. We note that
a linear-least-square fit performed on the logarithm of the
data points yields similarly encouraging results. We intend to

conduct further evaluation of the theory against measurements
in future work.
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FIG. 7. Liquid water content versus CCN activation rate, mea-
sured in the Pi convection-cloud chamber. Low injection rates use
size-selected CCN (red circles) and high injection rates are based on
polydisperse CCN (blue circles). The uncertainty was determined by
choosing the minimum and maximum value from all the samples for
each case. The dotted line is a best-fit power law with exponent of
2/3, corresponding to Eq. (44).
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VI. DISCUSSION AND CONCLUDING REMARKS

We have developed a mean-field model of cloud micro-
physical properties in a steady-state turbulent mixed layer.
The specific context is moist Rayleigh-Bénard convection
inspired by the Pi convection-cloud chamber. The equa-
tions account for the adjustment of supersaturation to the
steady aerosol injection rate. By considering number and mass
balances, a quartic equation is obtained for mean droplet ra-
dius. Analytical expressions for cloud droplet radius, number
concentration, and liquid water content are obtained for two
limits of fast and slow microphysics compared to the turbu-
lence flux time scale. The fast microphysics expressions are
shown to compare favorably to measurements of liquid water
content versus aerosol injection rate in the Pi convection-
cloud chamber.

One insight to be taken from this paper is the value of de-
veloping idealized microphysical models that explicitly allow
for finite supersaturation. This is in the spirit of the study
by Porz et al. [30] in developing a sub-grid-scale model for
cloud microphysical properties without saturation adjustment.
Our mean-field approach was motivated by the findings of
Krueger [20], who obtained closed-form expressions for the
droplet size distribution shape by considering a balance be-
tween condensation growth and sedimentation. That model
requires supersaturation to be specified; we expect that the
approach taken here, using first and third moments, would
allow the Krueger model to be closed, thereby enabling the
supersaturation to be determined for a given aerosol injection
rate.

Prior work has pointed toward the existence of fast- ver-
sus slow-microphysics regimes, based on the magnitudes of
phase relaxation and turbulence time scales [18,31]. Nat-
urally occurring clouds seem to reside primarily in the
fast-microphysics regime, but in situ measurements with the
holographic detector for clouds (HOLODEC) have shown that
in the transition to open cellular convection characteristic of
very clean, drizzling stratocumulus, the slow-microphysics
regime can be approached [32]. Observations of liquid clouds
in the pristine Arctic boundary layer by Mauritsen et al. [33]
also show that large droplets can be produced without growth
by collision–coalescence, which we consider as indicative of
the slow-microphysics regime. We speculate that this growth
limit is important to consider in clean regions, and may be
lacking in current cloud parametrizations because in the slow
regime the saturation adjustment assumption breaks down.

In the remainder of this section we first consider the
relevant dimensionless quantities that appear in the quartic
equation derived for droplet radius. We then make additional
comments on connections to a bulk microphysics perspective,
and on the central role played by the droplet removal rate.
Finally, we conclude with a brief discussion of possibilities
for extending this study.

A. Generalization through dimensionless variables

To extend these results to different contexts we consider
the dimensionless variables that contribute to the two limiting
microphysical regimes. The natural radius for nondimen-
sionalizing the problem is the size of an isolated droplet

growing at maximum supersaturation s0, given by Eq. (32).
We will refer to this as r0, and the dimensionless radius is
denoted r̃ ≡ r/r0. We see that the last (constant) term in the
governing quartic equation [Eq. (15)] is simply −r4

0 . Upon
nondimensionalization, the coefficient of the r3 term can be
interpreted by recognizing the residence time of a droplet
of radius r0, namely τres,0 = H/vT (r0) = 9μH/(2ρl gr2

0 ). This
leads naturally to an estimate of a reference droplet concen-
tration via n0 = ṅinτres,0. The r3 coefficient then appears as
a ratio of the turbulent mixing time scale τt and a phase
relaxation time [cf. Eq. (9)] τc,0 = (4πD′n0r0)−1. It follows
that the dimensionless form of Eq. (15), the governing quartic,
is

r̃4 + τt

τc,0
r̃3 − 1 = 0. (54)

Alternatively, defining a Damkoehler number based on the
phase relaxation time for the slow-microphysics limit Da0 =
τt/τc,0, the equation becomes

r̃4 + Da0r̃
3 − 1 = 0. (55)

This is refreshingly simple and emphasizes the role of the
Damkoehler number in the microphysical state of a cloudy
mixed layer. It needs to be recognized, however, that this
form of the equation masks the fundamental role of the
droplet residence time, which in this case is embedded in
Da0 through the reference number concentration n0. It also
is crucial to note that the reference radius r0 depends on the
maximum supersaturation s0, which in turn depends on �T
or, more generally, the convective-layer forcing. Thus, the
primary dimensionless variables governing the microphysical
properties in this convective-layer model are the maximum su-
persaturation s0 representing the “forcing” for droplet growth,
the sedimentation parameter depending on the droplet resi-
dence time (sometimes referred to as Rouse number), and the
Damkoehler number depending on the cloud phase relaxation
time. This set is similar to that outlined by Thomas et al. [17].
Finally, it is intriguing to note that the reference radius r0 is
proportional to the fourth-root of the product Hξs0, which
is similar to the dependence of the radius parameter for the
gamma distribution derived by Krueger [20].

B. Bulk microphysics perspective

The fast-microphysics limit of the mean-field model, e.g.,
Sec. IV, has a connection to the concept of saturation ad-
justment. In the analytical model, supersaturation is given by
Eq. (10). In bulk microphysics models, however, saturation
adjustment ensures that any supersaturation present is fully
consumed by droplets present in a grid box [34]. This con-
nection is outlined here, and will be further explored in future
work.

The in-cloud steady-state temperature and water vapor
mixing ratio are given by

Ts = T0 + τt
L

cp
q̇l (56)

and

qvs = qv0 − τt q̇l . (57)
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FIG. 8. The boundary conditions of the top and bottom plates
lie on the Clausius-Clapeyron line (blue) and are connected by the
mixing line (dashed orange). The initial excess water vapor (green)
undergoes condensation (purple) until supersaturation goes to zero.
The total mass of liquid water thus formed is equal to the mass water
vapor removed (red).

With saturation adjustment, Eq. (57) reduces to

qvsat (Ts) = qv0 − τt q̇l . (58)

Adding Eq. (56) and L/cp × Eq. (58) we have

Ts + L

cp
qvsat (Ts) = T0 + L

cp
qv0. (59)

This equation can be solved for Ts graphically as shown in
Fig. 8, or numerically. For a saturation-adjusted system in
steady state, the total condensed water and consequently the
precipitated liquid water is given by the quantity τt q̇l c. Thus
by specifying the final steady-state equilibrium condition for
the dynamical system to be saturated irrespective of the num-
ber of droplets, obviates the need of an equation for the
number droplets.

The total liquid water content depends on both production
via condensation and removal via settling. Assuming droplets
are removed with a velocity of vT ,

ql = q̇l
H

vT
. (60)

For droplets with low Reynolds number in the absence of
turbulence coupling, the Stokes removal approximation for
liquid water content is reasonable. We then obtain ql ∼
n2/5, which is the same scaling as we obtained for the fast-
microphysics regime discussed in Sec. IV. Fast microphysics
implies that the droplets consume any supersaturation faster
than the supersaturation generation process, which is consis-
tent with the concept of saturation adjustment.

C. Consideration of droplet removal rate

Removal of droplets through sedimentation at the Stokes
terminal speed, while turbulence thoroughly mixes the bulk
volume, leads to the stirred settling approximation with τres =
H/vt [35]. This removal time scale has been used throughout

this paper, and is fundamental in determining the steady-
state microphysical conditions. Especially for large particles,
where inertial effects are significant, this model may need to
be refined [36]. Furthermore, when large droplets are present,
the droplet fall speeds may approach or even exceed root-
mean-square turbulence velocities. For example, in the Pi
chamber, typical turbulence velocities are of order 1–10 cm/s,
so droplets with radii exceeding ≈10 µm may not be well
mixed within the turbulent layer.

To illustrate the critical role of this assumption, we con-
sider a plausible alternate model: Assume that large droplets
are only transported efficiently by turbulence over depth δ

within the chamber, and from which they are removed by
Stokes settling. For example, very large droplets that have a
settling speed large compared to the characteristic turbulent
velocity (i.e., large Rouse number) may reside primarily in
the bottom part of the mixed layer. In this case, if we speculate
that the residence time can be written as τres = δ/vT , it follows
that Eq. (15) becomes

r4 +
(

18πμδD′τt ṅin

ρl g

)
r3 − 27ξμδs0

2ρl g
= 0. (61)

This, in turn, would lead to modification of the subsequent
equations, and in particular the H dependencies explored in
Sec. IV E would need to be modified. For this δ model in
which there is no dependence on H for the droplet removal
time scale, the fast-microphysics scaling laws change to the
following very different forms:

r ∼
(

s0

ṅinτt

)1/3

, (62)

n ∼ δ

(
H

s0

)2/3

ṅ5/3
in , (63)

and

m ∼ δ
( s0

H

)1/3
ṅ2/3

in . (64)

This simple model is speculative for very large radius, and
is discussed here simply to underscore the importance of
properly representing droplet-removal physics in order to ob-
tain a proper representation of microphysical properties in a
turbulent mixed layer.

D. Future efforts

This paper opens the way to several interesting lines of
continued investigation. Logical ways to expand on the results
are to account for the full droplet size distribution, either
through a more sophisticated treatment of moments, or by
linking to the treatment of Krueger [20]. Another line of
investigation is to make a more rigorous link to sub-grid-scale
representations of supersaturation forcing, such as in eddy-
diffusivity approaches [37,38]. Perhaps more challenging is
to extend the model to include growth by collision and co-
alescence. The approach of Porz et al. [30] might be one
possibility. It is likely, however, that inclusion of collision
coalescence will make analytical solutions more challenging
to obtain. These are some of the challenges that remain for
adapting the minimalist model presented here to the atmo-
spheric context. Nevertheless, as stated in Introduction, the
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essential elements for a steady-state, mean-field model re-
main the same, regardless of context: supersaturation forcing
term, steady source of aerosol, physics of droplet growth (by
condensation, etc.), and physics of removal, e.g., by sedimen-
tation. The size dependence of droplet growth and removal
will alter details of the scaling laws obtained here, but slow-
and fast-microphysics regimes will still exist.

We conclude by briefly discussing implications of this
paper for research using convection-cloud chambers. One
possible topic of interest for future experiments is to
achieve droplet growth by collision–coalescence in addition
to condensation. It is widely understood that the collision–
coalescence process is favored when liquid water content is
large, and when droplet diameters are large [26]. Of course
the theoretical results in the main part of the paper, and
the measurements presented in Sec. V B all demonstrate that
liquid water content increases with aerosol injection rate, at
least until the critical supersaturation discussed in Sec. III D
is reached. This increase in m is accomplished at the expense
of decreasing r, however. The scaling laws derived for the
fast-microphysics regime suggest that, for a given aerosol
injection rate, liquid water content can be increased by in-
creasing s0, e.g., by increasing �T in a convection-cloud
chamber, as well as by increasing H . A quantitative evalua-
tion of when collision–coalescence becomes significant, and
how it depends on these three variables, will be an intriguing
possibility for future research.
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APPENDIX A: SUPERSATURATION
IN A CONVECTION-CLOUD CHAMBER

Here we consider a volume of the cylindrical convection
chamber with a volume of V = AH , where A and H are the
cross-sectional area and height of the chamber, respectively.
Assuming T is the air temperature of air in the well-mixed
chamber, Tb and Tt are bottom and top surface temperatures.
Based on energy conservation,

ρacpV
dT

dt
= (�b + �t )A�, (A1)

where ρa is the mass density of air and cp is the specific
heat of air at constant pressure. The energy fluxes are due to
thermal conduction through the viscous boundary layer with
thickness λ, �b = k(Tb − T )/λ and �t = k(Tt − T )/λ, where
k is the thermal conductivity of air. In practice, the boundary
layer thickness can be estimated from the Nusselt number,

Nu = H/λ. The temperature equation then simplifies to

dT

dt
= 2α

Hλ
(T0 − T ), (A2)

where α is the thermal diffusivity of air and T0 = (Tb + Tt )/2.
Under cloud-free conditions, the supersaturation in a con-

vection chamber is denoted s0 and this can be calculated
directly from the imposed �T . It is assumed that both bound-
aries are saturated, such that the vapor pressure at the top
boundary is et = es(Tt ) and at the bottom boundary is eb =
es(Tb). The mean vapor pressure is e = (et + eb)/2, and it
follows that the supersaturation of the bulk fluid, which is at
T and e, is

s0 = e

es(T )
− 1. (A3)

Note that T = T0 from the main paper. Using the above defi-
nitions, we can write

s0 = es(T + �T/2) + es(T − �T/2)

2es(T )
− 1. (A4)

We desire an approximate, analytical expression of s0(�T ),
so we integrate the Clausius-Clapeyron equation, assum-
ing the latent heat L is a constant, resulting in es(T ) =
Ae exp(−L/RvT ), where Ae is a constant. Assuming �T �
T , we can write

es

(
T ± �T

2

)
= Ae exp

(
− L

RvT

)
exp

(
± L�T

2RvT
2

)
. (A5)

The supersaturation given by Eq. (A4) then becomes

s0 = 1

2

[
exp

(
L�T

2RvT
2

)
+ exp

(
− L�T

2RvT
2

)]
− 1. (A6)

The exponentials can be expanded to second order to preserve
the curvature of the vapor-pressure function, which is neces-
sary to represent supersaturation formation through mixing.
The approximate expression for the cloud-free supersaturation
then becomes

s0 = 1

2

(
L�T

2RvT
2

)2

. (A7)

Note that this expansion requires �T � 2RvT
2
/L. For T =

290 K this requirement becomes approximately �T � 30 K.
For �T = 10 K the expression given by Eq. (A7) is good to
about 10%.

The fundamental point here is that s0 is a function of the
boundary conditions Tb and Tt through �T and T . Thus,
the boundary conditions control both the turbulent fluxes of
water vapor and thermal energy, and the resulting cloud-free
supersaturation s0.

APPENDIX B: EQUATION FOR ds/dt

Because s = s(qv,T ), the time rate of change of supersat-
uration is

ds

dt
= ∂s

∂qv

dqv

dt
+ ∂s

∂T

dT

dt
. (B1)
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The time rates of change of qv and T given by Eqs. (1) and
(3) contain the same time scale τt , and can be substituted into
Eq. (B1) to give

ds

dt
= 1

τt

[
∂s

∂qv

(qv0 − qv ) + ∂s

∂T
(T0 − T )

]
. (B2)

If we take the partial derivatives ∂s/∂qv and ∂s/∂T as con-
stants evaluated at (qv0,T0), then the right-hand side has the
form of a Taylor expansion around s0,

s = s0 + ∂s

∂qv

∣∣∣
qv0,T0

(qv − qv0) + ∂s

∂T

∣∣∣
qv0,T0

(T − T0). (B3)

Since the term in square brackets in Eq. (B2) can be
replaced with s − s0 by using Eq. (B3), it then follows
that ds/dt = (s0 − s)/τt , which is Eq. (4). At this level of
approximation, therefore, we can treat supersaturation as a
simple scalar field forced by the water vapor and thermal
energy fluxes from the boundaries. It should be noted that only
a first-order expansion is needed here, in contrast to the deriva-
tion leading to Eq. (A7), because the expansion is for small
deviations from s0 and the shape of the Clausius-Clapeyron
function does not matter. The adequacy of this approxima-
tion is checked both computationally and experimentally in
Sec. V.
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