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ABSTRACT
Spatial process models are widely used for modeling point-referenced variables arising from diverse sci-
entific domains. Analyzing the resulting random surface provides deeper insights into the nature of latent
dependence within the studied response. We develop Bayesian modeling and inference for rapid changes
on the response surface to assess directional curvature along a given trajectory. Such trajectories or curves
of rapid change, often referred to as wombling boundaries, occur in geographic space in the form of rivers
in a flood plain, roads, mountains or plateaus or other topographic features leading to high gradients on the
response surface. We demonstrate fully model based Bayesian inference on directional curvature processes
to analyze differential behavior in responses along wombling boundaries. We illustrate our methodology
with a number of simulated experiments followed by multiple applications featuring the Boston Housing
data; Meuse river data; and temperature data from the Northeastern United States. Supplementary materials
for this article are available online.
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1. Introduction

Spatial data science manifests in a variety of domains including
environmental and Geographical Information Systems (GIS)
(Webster and Oliver 2007; Burrough, McDonnell, and Lloyd
2015; Schabenberger and Gotway 2017; Plant 2018), digital
cartography and terrain modeling (Law, Kelton, and Kelton
2000; Santner et al. 2003; Jones 2014; Vaughan 2018), imaging
(Winkler 2003; Chiu et al. 2013; Dryden and Mardia 2016), spa-
tial econometrics and land use (LeSage and Pace 2009), public
health and epidemiology (Elliot et al. 2000; Waller and Gotway
2004; Lawson 2013) and public policy (Haining 1993; Wise and
Craglia 2007). Spatial data analysis seeks to estimate an underly-
ing spatial surface representing the process generating the data.
Specific inferential interest resides with local features of the sur-
face including rates of change of the process at points and along
“spatial boundaries” to understand the behavior of the under-
lying process and identify lurking explanatory variables or risk
factors. This exercise is often referred to as “wombling”, named
after a seminal paper by Womble (1951); (also see Gleyze, Bacro,
and Allard 2001; Banerjee 2010). For regionally aggregated data,
it identifies boundaries delineating neighboring regions and
has been used to study health disparities (Lu and Carlin 2005;
Li et al. 2015; Gao, Banerjee, and Ritz 2022) and ecological
boundaries (Fitzpatrick et al. 2010). For point-referenced data,
where variables are mapped at locations within an Euclidean
coordinate frame with a sufficiently smooth spatial surface, it
refers to estimating spatial gradients and identifying boundaries
representing large gradients (Banerjee, Gelfand, and Sirmans
2003; Banerjee and Gelfand 2006; Qu, Bradley, and Niu 2021).

CONTACT Sudipto Banerjee sudipto@ucla.edu Department of Biostatistics, University of California, Los Angeles, CA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

Our current contribution develops Bayesian inference for
spatial curvature along curves on Euclidean domains. Modeling
curvature will require smoothness considerations of the pro-
cess (Adler 1981; Kent 1989; Stein 1999; Banerjee and Gelfand
2003). Observations over a finite set of locations from these
processes cannot visually inform about smoothness. There-
fore, smoothness of the process is specified from mechanistic
considerations which can be introduced through prior spec-
ifications as needed. While Bayesian inference for first-order
derivatives and directional gradients have received consider-
able attention (see, e.g., Morris, Mitchell, and Ylvisaker 1993;
Banerjee, Gelfand, and Sirmans 2003; Majumdar et al. 2006;
Liang, Banerjee, and Carlin 2009; Heaton 2014; Terres and
Gelfand 2015; Wang and Berger 2016; Terres and Gelfand
2016; Wang, Bhattacharya, and Gelfand 2018; Qu, Bradley, and
Niu 2021, for inferential developments involving spatial gradi-
ents from diverse modeling and application perspectives) such
processes inform about directional change, but do not enable
inference on curvature (departure from flatness) of the spatial
surface.

Analyzing surface roughness from sampling considerations
can be traced at least as far back as Greenwood (1984). We
offer full inference with uncertainty quantification about spa-
tial curvature at a point and average curvature along a curve
from observed data after accounting for explanatory variables.
Considering second-order finite differences we establish a valid
spatial curvature process as a limit of such finite difference
processes. When formulating directional curvature, we favor
the normal direction corresponding to a chosen curve and
devise a “wombling” measure to track curvature of the surface

© 2023 American Statistical Association
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along the curve. We derive and exploit analytical expressions of
higher order processes to avoid numerical finite differences. The
Bayesian inferential framework delivers exact posterior infer-
ence for the above constructs on the response as well as latent
(or residual) processes.

Section 2 develops the directional curvature processes
through a differential operator. Section 3 develops the vector
analytic framework for curvilinear wombling using curvature
processes. Section 4 builds a hierarchical model to exploit the
preceding distribution theory and conduct curvature analysis on
the response and the latent process. Section 5 presents detailed
simulation experiments for assessing directional gradients and
curvatures. Section 6 considers applications to three different
datasets: Boston housing data, Meuse river data, and North-
eastern U.S. Temperatures (the third data is presented in the
supplementary materials).

2. Spatial Curvature Processes

Let {Y(s) : s ∈ S ⊂ Rd} be a univariate weakly stationary
random field with zero mean, finite second moment and a pos-
itive definite covariance function K(s, s′) = cov

(
Y(s), Y(s′)

)
for locations s, s′ ∈ Rd. In particular, under isotropy we assume
K(s, s′) = K̃

(||s − s′||), where ||s−s′|| is the Euclidean distance
between the locations s, s′ (Matérn 2013). Building upon notions
of mean square smoothness (see, e.g., Stein 1999) at an arbitrary
location s0 in Rd, we focus upon second order differentiability,
Y(s0 + hu) = Y(s0) + hu�∇Y(s0) + h2u�∇2Y(s0)u/2 +
r2(s0, h2||u||), where r2(s0, h2||u||)/h2 → 0 as h → 0 in the
L2 sense and ∇ and ∇2 are the gradient and Hessian operators,
respectively.

For the scalar h and unit vectors u, v, we define Y(2)

u,v,h(s0) =
(Y(s0 + h(u + v)) − Y(s0 + hu) − Y(s0 + hv) + Y(s0))/h2

to be the second order finite difference processes in the direc-
tions u, v at scale h. Being a linear function of stationary
processes it is well-defined. Passing to limits, D(2)

u,vY(s0) =
limh→0 Y(2)

u,v,h(s0). Provided the limit exists, D(2)
u,uY(s0) is defined

as the directional curvature process. If Y(s) is a mean square
second order differentiable process in Rd for every s ∈ Rd

then D(2)
u,vY(s) = u�∇2Y(s)v is well-defined with D(2)

u,vY(s) =
limh→0

(
h2u�∇2Y(s)v + r̃2

)
/h2 = u�∇2Y(s)v, where r̃2 =

r2(s, h2||u + v||) − r2(s, h2||u||) − r2(s, h2||v||). In practice,
we need only work with computing these derivatives for an
orthonormal basis of Rd, say the Euclidean canonical unit vec-
tors along each axis {e1, . . . , ed}. If u = ∑d

i=1 uiei, and v =∑d
i=1 viei are arbitrary unit vectors, we can compute D(2)

u,vY(s) =∑d
i=1
∑d

j=1 uiD(2)
ei,ej Y(s)vj. The directional curvature process is

linear in the sense that D(2)
−u,−vY(s) = D(2)

u,vY(s), D(2)
u,−vY(s) =

D(2)
−u,vY(s) = −D(2)

u,vY(s). Since D(2)
w,wY(s) = ||w||2D(2)

u,uY(s),
where w = ||w||u and u is a unit direction, we henceforth only
consider unit directions. First-order directional gradient pro-
cesses, D(1)

u Y(s), are reviewed in Banerjee and Gelfand (2006)
and in Section S1.1 of the supplementary materials. Choosing a
direction is emphasized with respect to interpreting the direc-
tional curvature processes. Directional curvature is the change
in the normal to the surface Y(s) at s0 when moving along a

slice of the surface in the direction w. The associated algebraic
sign locally classifies the nature of curvature at s0—for instance,
convex or concave ellipsoids (see Stevens 1981). A detailed
discussion, with illustration, is available in Section S2 of the
supplementary materials.

Since ∇2Y(s) is a symmetric matrix, to avoid singularities
arising from duplication we modify D(2)

u,vY(s) as follows. If vech
is the usual half-vectorization operator for symmetric matrices
and Dd is the duplication matrix (Magnus and Neudecker 1980)
of order d2 × d(d + 1)/2 then, D(2)

u,vY(s) = c�
u,vvech

(∇2Y(s)
)

where c�
u,v = (u ⊗ v)�Dd and ⊗ is the Kronecker prod-

uct for matrices. If u = (u1, u2)
�, v = (v1, v2)

� ∈ R2,
then cu,v = (u ⊗ v)�D2 = (v1u1, v1u2 + v2u1, v2u2)

�.
The process vech

(∇2Y(s)
)

in Rd(d+1)/2 consists of the pure
and mixed second order derivatives in ∇2Y(s). The distri-
butions needed for inference on directional curvature pro-
cesses depend on vech

(∇2Y(s)
)

rather than ∇2Y(s). We refer
to (∇Y(s)�, vech(∇2Y(s))�)� as the differential process and
{u�∇Y(s), c�

u,uvech(∇2Y(s))} as the directional differential pro-
cesses induced by Y(s) along u.

Inference for differential processes requires
(Y(s), ∇Y(s)� , vech(∇2Y(s))�

) to be a valid multivariate
process. Its existence is derived from the limit of corresponding
finite difference approximations, which yields the cross-
covariance matrix depending on fourth (and lower) order
derivatives of K. We investigate the parent and differential
processes using a differential operator L : R1 → Rm,
m = 1+d+d(d+1)/2, whereLY = (Y , ∇Y�, vech(∇2Y)�

)�.
The resulting process LY(s) is also stationary with a zero mean
and a cross-covariance matrix

VLY(�) =

⎛⎜⎜⎝
K(�) −(∇K(�))� vech(∇2K(�))�

∇K(�) −∇2K(�) ∇3K(�)�

vech(∇2K(�)) −∇3K(�) ∇4K(�)

⎞⎟⎟⎠ ,

(1)

where � = s − s′, ∇K(�) is the d × 1 gradient, ∇2K(�)

is the d × d Hessian, ∇3K(�) is the d(d + 1)/2 × d
matrix of third derivatives and ∇4K(�) is the d(d + 1)/2 ×
d(d + 1)/2 matrix of fourth order derivatives associated with
K(�). Under isotropy, ∇K(�) = ∇K̃(||�||)

||�|| �, if A0 =(
∇2K̃(||�||) − ∇K̃(||�||)

||�||
)

then, ∇2K(�) = ∇K̃(||�||)
||�|| Id +

A0
���
||�||2 , ∇3K(�) = A0

{
vech(Id)�⊗�

||�||2 − 3 vech(���)�⊗�

||�||4 +
1

||�||2
(

∂vech(���)
∂�

)}
+∇3K̃(||�||)· vech(���)�⊗�

||�||3 , where K̃(�)

and its derivatives are analytically computed for our covariance
functions of interest in Section S3 of the supplementary mate-
rials. Let A1 = ∂�⊗vech(Id)�

∂�
, A2 = ∂�⊗vech(���)�

∂�
, A3 =

∂
∂�

(
∂vech(���)

∂�

)
be reordered tensors (matrices) of order d(d+

1)/2 × d(d + 1)/2 conforming to the order of corresponding
elements in vech. Let A4 be the element-wise product of � with(

∂vech(���)
∂�

)
in the same order, B1 = vech(���)vech(Id)

�

and B2 = vech(���)vech(���)�. Then, ∇4K(�) is,
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A0

{
A1

||�||2 − 3
A2

||�||4 + A3
||�||2 − (1 + A4)

(
2B1

||�||4 + B1
||�||3
)

+3
(

4B2
||�||6 + B2

||�||5
)}

+ ∇3K̃(||�||)
(

B1
||�||3 + A2

||�||3 + A4
||�||3 − 6

B2
||�||5
)

+ ∇4K̃(||�||) B2
||�||4 . (2)

The resulting multivariate differential process, LY , is station-
ary but not isotropic. Evidently, for the differential operator
to be well-defined under isotropy, ∇4K(0) must exist since
var(D(2)

u,uY(s)) = ∇4K̃(0) (analogous to results in Baner-
jee, Gelfand, and Sirmans 2003, sec. 3). The directional dif-
ferential operator is defined analogously as LuY(s) such that
Lu : R → R3. If a0 =

(
1 − (u��)2

||�||2
)

, then analogous to
(2) the covariance function of the directional curvature pro-
cess, cov

(
c�

u,uvech(∇2Y(s)), c�
u,uvech(∇2Y(s′))

) = 3
||�||2 (5a0 −

4)a0A0 + 6
||�|| (1 − a0)a0∇3K̃(||�||) + (1 − a0)

2∇4K̃(||�||).
To characterize covariance functions that admit such processes,
we turn to spectral theory. Recall that for a positive definite
function K defined in R, Bochner’s theorem (see, e.g., Williams
and Rasmussen 2006) establishes the existence of a finite pos-
itive spectral measure F on R. K can be expressed as the
inverse Fourier transform of F , K(t) = ∫

R
e−iλtF(dλ). In

cases where F admits a spectral density, K(t) = ∫ e−iλtf (λ) dλ.
For ∇4K to exist, a trivial extension of the result in Wang,
Bhattacharya, and Gelfand (2018) requires that f possess a
finite fourth moment. Examples of covariance kernels that
satisfy this condition are (a) the squared exponential covari-
ance kernel with K(t) = exp(−t2) (σ 2 = φ = 1), and
f (λ) = 1/2

√
π exp(−λ2/4) then, 1

2
√

π

∫
R

λ4 exp(−λ2/4) dλ =
3(

√
2)4 = 12; and (b) the Matérn class with fractal param-

eter, ν; f (λ) is known to belong to the t-family (see, e.g.,
Stein 1999) with f (λ) = C(φ, ν)/(c(φ, ν) + λ2)ν+1/2 then,∫
R

λ4C(φ, ν)/(c(φ, ν) + λ2)ν+1/2 dλ < ∞, for all ν > 2
(since the fourth central moment for the t-distribution exists if
ν > 2). Here, we consider formulating the directional differ-
ential processes using these two classes of covariance functions
(a) the squared exponential, K̃(||�||) = σ 2 exp(−φ||�||ν),
ν = 2; and (b) members of the Matérn class, K̃(||�||) =
σ 2(φ||�||)νKν(φ||�||), where Kν is the modified Bessel func-
tion of order ν (see, e.g., Abramowitz, Stegun, and Romer 1988),
and ν controls the smoothness of process realizations. We are
particularly interested in ν = 5/2.

The multivariate process, LY(s), is valid under the above
assumptions without any further specific parametric assump-
tions over what has been outlined above. To facilitate inference
for LY(s), a probability distribution is specified for the parent
process. We assume that Y(s) ∼ GP(μ(s, β), K(·; σ 2, φ)) is
a stationary process specified on Rd. In what follows we also
assume that K = K(·; σ 2, φ) admits four derivatives. There are
some immediate implications of a Gaussian assumption on the
parent process. If Y1(·) and Y2(·) are zero mean, independent
stationary Gaussian processes on Rd, then (i) the differential
processes LY1 and LY2 are independent of each other; (ii) if
c1, c2 ∈ R are scalars, then L(c1Y1 + c2Y2) = c1LY1 + c2LY2

is stationary and (iii) any sub-vector of LY , for example Y or
(Y , ∇Y�)�, is a stationary Gaussian processes.

If K is k-times mean square differentiable (i.e., ∇2kK exists),
the proposed differential operator can be extended to include
higher order derivatives of ∇kY(s) (Mardia et al. 1996). Dif-
ferential operators characterizing change in the response (and
gradient) surface also follow valid stationary Gaussian pro-
cesses. For instance, at an arbitrary location s0 the divergence

operator, div(Y(s0)) =
d∑

i=1

∂

∂ei
Y(s0) = c�

1 LY(s0), where

c1 is an m × 1 vector with 0’s in all places except for first-
order derivatives where it takes a value of 1, and the Laplacian,
defined as the divergence operator for gradients, �(Y(s0)) =

d∑
i=1

(∇2Y(s0))ii =
d∑

i=1

∂2

∂e2
i

Y(s0) = c�
2 LY(s0), where c2 is a

m × 1 vector with 0’s in all places except for pure second order
derivatives where it takes a value of 1. Furthermore, they follow
valid Gaussian processes with var(div(Y(s0))) = c�

1 VLc1 and
var(�(Y(s0))) = c�

2 VLc2.
Let Y(s) be a Gaussian parent process with a twice-

differentiable mean function μ(s, β), that is, ∇μ(s, β) and
∇2μ(s, β) exist, and let K(·) be a covariance function with
variance σ 2 and range φ. Let Y = (Y(s1), . . . , Y(sL))�
be the observed realization over S with mean μ =
(μ(s1, β), . . . , μ(sL, β))� and 	Y be the associated L × L
covariance matrix with elements K(si, sj), and s0 be an
arbitrary location. Let ∇K1 = (∇K(δ1)

�, . . . , ∇K(δL)�
)�

and ∇K2 = (
vech(∇2K(δ1))

�, . . . , vech(∇2K(δL))�
)� be

L×d and L×d(d+1)/2 matrices, respectively, and δi = si − s0,
i = 1, . . . , L. The distribution P(Y, ∇Y(s0), vech(∇2Y(s0)) | θ),
where θ = {β , σ 2, φ}, is the m0 = L + d + d(d + 1)/2-
dimensional Gaussian,

Nm0

⎛⎜⎝
⎛⎜⎝ μ

∇μ(s0)

vech(∇2μ(s0))

⎞⎟⎠ ,

⎛⎜⎝ 	Y −∇K1 ∇K2

∇K�
1 −∇2K(0) ∇3K(0)

∇K�
2 −∇3K(0)� ∇4K(0)

⎞⎟⎠
⎞⎟⎠ ,

(3)
which is well-defined as long as the fourth order derivative of K
exists. The posterior predictive distribution for the differential
process at s0 is

P(∇Y(s0), vech(∇2Y(s0)) | Y) (4)

=
∫

P(∇Y(s0), vech(∇2Y(s0)) | Y, θ)P(θ | Y) dθ .

Posterior inference for curvature proceeds by sampling
from P(vech(∇2Y(s0)) | Y) = ∫

P(vech(∇2Y(s0)) |
∇Y(s0), Y, θ)P(∇Y(s0) | Y, θ)P(θ | Y) dθ d∇Y . We sample
from (4) by drawing one instance of (∇Y(s0), vech(∇2Y(s0))
for each sample of θ obtained from P(θ | Y). The conditional
predictive distribution of the differential process is given by
∇Y(s0), vech(∇2Y(s0)) | Y, θ ∼ Nm1 (μ1, 	1) where m1 =
d + d(d + 1)/2, and

μ1 =
( ∇μ(s0)

vech(∇2μ(s0))

)
−
(∇K1

∇K2

)�
	−1

Y (Y − μ) , (5)
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	1 =
(−∇2K(0) ∇3K(0)�

−∇3K(0) ∇4K(0)

)
−
(∇K1

∇K2

)�
	−1

Y

(−∇K1
∇K2

)
.

(6)

Analogous results follow for posterior predictive inference on
the curvature process.

If μ(s, β) = μ is a constant, as in simple “kriging,” then
∇μ(s) = ∇2μ(s) = 0. More generally, if μ(s, β) = x(s)�β ,
where x(s) is a vector of spatially indexed covariates and x(s)�β

produces a twice differentiable trend surface then explicit cal-
culation of ∇μ(s0) and ∇2μ(s0) are possible. In case Y(s) =
μ(s, β) + Z(s) + ε(s), where Z(s) ∼ GP(0, K(·; σ 2, φ)) and
ε(s) ∼ N(0, τ 2) is a white-noise process, inference on gradients
for the residual spatial process, Z(s), can be performed from the
posterior predictive distribution, P(∇Z(s0), vech(∇2Z(s0)) | Y).
We address this in Section 4 in the context of curvature
wombling.

3. Wombling with Curvature Processes

Bayesian wombling deals with inference for line integrals


(C) =
∫

C
g (LY) d� or, 
(C) = 1

�(C)

∫
C

g (LY) d� , (7)

where C is a geometric structure of interest, such as lines or
planar curves, residing within the spatial domain of reference,
� is an appropriate measure, often taken to be the arc-length
measure, g is a linear function (or functional) of the differential
operator LY . 
 and 
 are referred to as the total and average
wombling measures, respectively. The structure C is defined to
be a wombling boundary if it yields a large total (or average)
wombling measure. Depending on the spatial domain, geomet-
ric structures of interest constructed within them may vary. For
example, if we are dealing with surfaces in R3, choices of C are
curves and lines within the surface, with the local co-ordinate
being R2. In higher dimensions they would be planes (curves)
or hyperplanes (hypercurves). Specifically, Bayesian curvilinear
wombling involves estimating integrals in (7) over curves, which
tracks rapid change over the spatial domain by determining
boundaries (curves) with large gradients normal to the curve
(see for e.g., Banerjee and Gelfand 2006). The integrand in (7)
inherently involves a direction, in particular change measured
is always in a direction normal to C. Hence, g(LY) can equiva-
lently be expressed as a linear function (functional) of LnY(s),
where n = n(s) denotes the unit normal vector to C at s. The
next few paragraphs provide more detail.

With wombling measures for directional gradients dis-
cussed the Section S1.2, supplementary materials, we construct
wombling measures for curvature. Given C, depending on the
smoothness of the surface, the rate at which gradients change
along the curve may present sufficient heterogeneity while
traversing the curve. If C forms a wombling boundary with
respect to the gradient, then wombling boundaries for curvature
are subsets of C that feature segments with large positive (nega-
tive) directional curvature along a normal direction to the curve.
Leveraging only gradients, we develop wombling measures for
curvature that further characterize such boundaries located for
gradients. The wombling measure for curvature in Y(s) along

C ascertains whether C also forms a wombling boundary with
respect to curvature. We associate a directional curvature to
each s ∈ C, g(LY(s)) = D(2)

n,nY(s) = c�
n,nvech(∇2Y(s)) (a linear

function of LnY(s) ) along the direction of a unit normal n =
n(s) to C at s. Using (7) we define wombling measures for total
and average curvature as,


(2)(C) =
∫

C
D(2)

n,nY(s)d� =
∫

C
n(s)�∇2Y(s)n(s)d� ,



(2)

(C) = 
(2)(C)/�(C) , (8)

respectively, where �(C) denotes the arc-length of C. Param-
eterized curves, C = {s(t) = (s1(t), s2(t)) : t ∈ T ⊂
R}, offer further insights. As t varies over its domain, s(t)
outlines the curve C. Implicitly assuming that C is regular,
that is, ||s′(t)|| �= 0, allows the tangent and normal to
exist at all points on the curve. The unit tangent and nor-
mal at each point of the curve are s′(t)/||s′(t)|| and n =
n(s(t)) = (s′2(t), −s′1(t))�/||s′(t)||, respectively, while cn,n =
cn(s(t)),n(s(t)) = (n(s(t)) ⊗ n(s(t)))� Dd from Section 2.

The arc-length of C is �(C) = ∫T ||s′(t)|| dt or d� =
||s′(t)|| dt. If T = [t0, t1], then �(C) = ∫ t1

t0
||s′(t)|| dt and


(2)(C) = ∫ t1
t0

n(s(t))�∇2Y(s(t))n(s(t))||s′(t)|| dt. If C is
an open curve, then �(C)−1 ∫

C n(s)�∇2Y(s)n(s)ds = �(C)−1∫
C n(s(t))�∇2Y(s(t))n(s(t))||s′(t)|| dt is the average directional

curvature. For example, C = {s(t) = (r cos t, r sin t), t ∈ [0,
π/4]} is the arc of a parameterized circle of radius r. It
follows that ||s′(t)|| = r, n(s(t)) = (cos t, sin t)� and �(C)−1∫ π/4

0 n(s(t))�∇2Y(s(t))n(s(t))r dt = 4
π

∫ π/4
0 n(s(t))�∇2Y(s(t))

n(s(t)) dt. The average curvature in the tangential direction
of C is 1

�(C)

∫
C u(s(t))�∇2Y(s(t))u(s(t))||s′(t)|| dt = �(C)−1∫ t1

t0
s′(t)

||s′(t)||
�∇2Y(s(t)) s′(t)

||s′(t)|| ||s′(t)|| dt = u(s(t1))
�∇Y(s(t1)) −

u(s(t0))
�∇Y(s(t0)). Hence, the average directional curvature

remains path independent and is the difference of directional
gradient at the endpoints of C.

For a closed curve C,
∮

C n(s)�∇2Y(s)n(s)ds =∮
C n(s(t))�∇2Y(s(t))n(s(t))||s′(t)|| dt. If the surface admits

up to three derivatives, that is, ∇3Y(s) exists, the average
curvature of the region, D, enclosed by C, is free of t. If
F(s) = ∇2Y(s) = (Fij(s))i,j=1,2, with F12(s) = F21(s) and
Fij = Fij(s) = ∂2

∂si∂sj
Y(s) then,

∮
C n(s)�∇2Y(s)n(s)ds =∮

C n(s)�F(s)n(s)ds = ∮
C n(s(t))�F(s)n(s(t))||s′(t)|| dt =∮

C ||s′(t)||−1 (F11s′2(t)2 − 2F12s′1(t)s′2(t) + F22s′1(t)2) dt =∫∫
D

{
∂F11n2

∂s1
+
(

∂F12n2
∂s2

+ ∂F12n1
∂s1

)
+ ∂F22n1

∂s2

}
ds1ds2. The last

equality is obtained using Green’s theorem (see, e.g., Rudin
1976). This can be interpreted as “flux” in the gradient within
D. Since, Fij(s) = ∇2

ijY(s), the integrand in the last equality
require the existence of ∇3

ijkY(s), i, j, k = 1, 2. Denoting,
∇̃3Y(s) = (∇3

ijkY(s))�i,j,k=1,2, vector of unique third derivatives,
and n0(s) = (n2(s), n2(s), n1(s), n1(s))� then,

1
�(C)

∮
C

c�
n,nvech(∇2Y(s)) ds = 1

�(C)

∫∫
D

n0(s)�∇̃3Y(s) ds.

(9)
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This extends the development in Section 3.2 of Banerjee
and Gelfand (2006) to study the behavior of spatial curva-
ture over closed curves on surfaces in R3. Sampling along
C is generally harder than sampling inside D. Hence, the
computational implications of (9) are more appealing. When
studying the same behavior along a tangential direction to

C with s(t0) = s(t1) = s0,
∮

C
u(s)�∇2Y(s)u(s)ds =∮ s(t1)

s(t0)
F11(s)n1ds1 +F12(s)n1ds2 +F21(s)n2ds1 +F22(s)n2ds2 =

u(s(t1))
�∇Y(s(t1)) − u(s(t0))

�∇Y(s(t0)) = 0, again a con-
sequence of path independence. This validates the choice of a
normal direction to C when measuring change in the gradient.
Using the rectilinear approximation to curvature wombling,
as discussed later, provides a more computationally tractable
and simpler approach, where double integrals manifest when
computing variances of the wombling measures.

Curvature wombling requires predictive inference performed
using gradient measures on the interval T , to include 
(2)(C)

(or 

(2)

(C)) in (8). Leveraging inference for differential pro-
cesses in Section 2, we obtain joint inference on the wombling
measures. Suppose C = {s(t) : t ∈ [0, T]} is generated
over T = [0, T]. For any t∗ ∈ [0, T], let Ct∗ denote the
curve restricted to [0, t∗] and �(Ct∗) its arc-length. Line integrals
for curvilinear gradient and curvature wombling measures are

(1)(Ct∗) = ∫ t∗

0 D(1)
n Y(s(t))||s′(t)|| dt, 


(1)
(Ct∗) = 1

�(Ct∗ )

(1)

(Ct∗), 
(2)(Ct∗) = ∫ t∗
0 D(2)

n,nY(s(t))||s′(t)|| dt and 

(2)

(Ct∗) =
1

�(Ct∗ )

(2)(Ct∗). Since D(1)

n Y(s(t)) and D(2)
n,nY(s(t)) are Gaussian

processes on T , 
(1)(Ct∗) and 
(2)(Ct∗) are valid dependent
Gaussian processes on T . Therefore, �(Ct∗) = (
(1)(Ct∗),

(2)(Ct∗))� ∼ N2

(
μ�(t∗), K�(t∗, t∗)

)
, where μ�(t∗) =

( ∫ t∗
0

D(1)
n μ(s(t))||s′(t)|| dt ,

∫ t∗
0 D(2)

n,nμ(s(t))||s′(t)|| dt
)� = (m1(t∗),

m2(t∗))� and K�(t∗, t∗) = {kij(t∗, t∗)}i,j=1,2 whose elements are
evaluated as

kij(t∗, t∗) = (−1)j
∫ t∗

0

∫ t∗

0
a�

i (t1)∇ i+jK(�(t1, t2))

aj(t2)||s′(t1)||||s′(t2)|| dt1 dt2 , (10)
where a1(t) = n(s(t)) and a2(t) = cn(s(t)),n(s(t)). Sim-
plifications arise in d = 2. For example, cn,n(t) =
(s′2(t)2, −2s′2(t)s′1(t), s′1(t)2)�, while ∇kK, for k = 2, 3, 4, are
matrices of orders 2×2, 2×3 and 3×3, respectively, of partial and
mixed second, third and fourth derivatives of K and �(t1, t2) =
s(t2) − s(t1). For any two points t∗1 , t∗2 ∈ T , the dependence

is specified through
(

�(Ct∗1 )
�(Ct∗2 )

)
∼ N4

((
m1
m2

)
,
(

k11 k12
k21 k22

))
,

where mi = (mi(t∗1), mi(t∗2 ))�, kij =
(

kij(t∗1 , t∗1 ) kij(t∗1 , t∗2 )

kij(t∗2 , t∗1 ) kij(t∗2 , t∗2 )

)
,

i, j = 1, 2. Generally, for nP points partitioning T the above can
be analogously extended. Clearly, �(Ct∗) is a mean squared con-
tinuous process. However, stationarity of Y(s) does not imply
stationarity of �(Ct∗). For any sj ∈ S with cov(Y(sj), �(Ct∗)) =
γ j(t∗) and �j(t) = s(t) − sj we have,

γ j(t∗) =
(∫ t∗

0
D(1)

n K(�j(t))||s′(t)|| dt,

∫ t∗

0
D(2)

n,nK(�j(t))||s′(t)|| dt

)�
. (11)

A valid joint distribution can be specified over T by,

(
Y

�(Ct∗)

)
∼ NL+2

((
μ

μ�(t∗)

)
,
(

	Y γ �(t∗)
γ �

� (t∗) K�(t∗, t∗)

))
,

(12)
where γ �

� (t∗) = [γ 1(t∗) γ 2(t∗) . . . γ L(t∗)
]

is the 2 × L cross-
covariance matrix.

In practical applications curvilinear wombling is performed
by approximating the curve C using linear segments. These
measures at the segment level are then aggregated to produce a
wombling measure for the curve. The curve is segmented using
a partition. Consequently, the accuracy of estimated wombling
measures for the curve depend on the choice of partition. Fig-
ures S2 and S3 in the supplementary materials illustrate this con-
cept. Explicitly, let C be a regular rectifiable curve and [a, b] ⊂ T
be a compact interval. Let g be a uniformly continuous function.
For any partition, P of [a, b], a = t′0 < t′1 < · · · <

t′nP = b, with its norm defined as |P| = max
i=1,...,nP

(t′i − t′i−1).

A polygonal (piecewise-linear) approximation to the curve is,

C̃P =
nP⋃

i=1
Cti , where Cti = {s(t′i−1) + tui, t ∈ [0, ti]}, ti =

||s(t′i)− s(t′i−1)|| and ui = ||s(t′i)− s(t′i−1)||−1(s(t′i)− s(t′i−1))
�.

Note that s(t) = s(t′i−1) + tui for t ∈ [0, ti] and, hence,
||s′(t)|| = ||ui|| = 1. Wombling measure for C̃P is, 
(C̃P) =
nP∑

i=1

∫
Cti

g (LY(s(t))) ||s′(t)|| dt. As |P| → 0 we have, 
(C̃P)
a.s.−→


(C) = ∫ b
a g (LY(s(t))) ||s′(t)|| dt. This provides us with an

estimate, 
(C̃P) for curvilinear wombling measures associated
with any general curve C. Further details are provided in the
supplementary materials, at the end of Section S5.

The choices of g for our wombling measures result in,
u�∇Y and c�

u,uvech(∇2Y), which are linear and therefore
uniformly continuous over any compact interval. Since
predictive inference is performed iteratively on individual line
segments, it is sufficient to show the inferential procedure
for an arbitrary curve segment Cti . The normal to Cti
is free of t and denoted as, u⊥

i , which is the normal
to ui. The associated wombling measures with Cti are

�(ti) =
(∫ ti

0
D(1)

u⊥
i

Y(s(t)) dt,
∫ ti

0
D(2)

u⊥
i ,u⊥

i
Y(s(t)) dt

)�
. For

a point sj define �i−1,j = si−1 − sj, j = 1, 2, . . . , L. Their
joint distribution is specified by (12), where γ j(ti) is obtained
from (11) by replacing �j(t) with �i−1,j + tui and K�(ti, ti)
is obtained from (10) replacing �(t1, t2) = (t2 − t1)ui in the
integrand. The analytic tractability of the line integrals in γ j(ti)
is not a concern. Given choices of μ(·) and K(·), they are all one
or two dimensional integrals which are efficiently computed
using simple quadrature. For example, let Y(s) be the isotropic
Gaussian process with mean μ(s) = μ and K(||�||; σ 2, φ) =
σ 2 exp(−φ||�||2), where � = (δ1, δ2)

�. ∇kK(�), k = 2, 3, 4 is
obtained from (2) and related results. γ j(ti) = γ j(ti; σ 2, φ) ={
�
(√

2φ
(
ti+u�

i �i−1,j
))−�
(√

2φu�
i �i−1,j

)}
(c1, c2)

� where,

c1 = c1(σ
2, φ, u⊥

i , �i−1,j) = −2σ 2√πφu⊥
i

�
�i−1,j e−φ

(
u⊥

i
�

�i−1,j
)2

,
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c2 = c2(σ
2, φ, u⊥

i , �i−1,j) = c1(1−2φu⊥
i

�
�i−1,j�

�
i−1,ju⊥

i ), and
�(·) denotes the standard Gaussian cumulative distribution
function. These are simple computations with quadrature
required only for computing K�(ti, ti).

4. Bayesian Hierarchical Model

We operate under a Bayesian hierarchical model, which is spec-
ified as

Y(s) = μ(s, β) + Z(s) + ε(s) , (13)

where Z(s) ∼ GP(0, K(·; σ 2, φ)) is a Gaussian process, and
ε(s) ∼ N(0, τ 2) is a white noise process, termed as the nugget
(see Banerjee, Carlin, and Gelfand 2014, and references therein).
The process parameters are θ = {β , σ 2, φ, τ 2}. More generally,
we can consider a latent specification for response arising from
exponential families, α(η(s)) = x�(s)β + Z(s) + ε(s), Z(s) ∼
GP(0, K(·; σ 2, φ)) and Y(s) ∼ π (η(s), ·), where α is a mono-
tonic link function, π is a member of the exponential family
and η is the natural parameter. Predictive inference on differ-
ential processes and curvature wombling proceeds on the latent
surface through P(LZ | Y). The joint posterior for differential
processes is obtained through, P(∇Z�, vech(∇2Z)� | Y) =∫

P(∇Z�, vech(∇2Z)� | Z, θ)P(Z | Y, θ)P(θ | Y) dθ dZ, while
wombling measures �Z(t∗) for a curve Ct∗ within the esti-
mated posterior surface for Z, are sampled from the posterior,
P(�Z(t∗) | Y) = ∫ P(�Z(t∗) | Z, θ)P(Z | Y, θ)P(θ | Y) dθ dZ.
Customary prior specifications for θ yield

P(θ , Z | Y) ∝ U(φ | aφ , bφ) × IG(σ 2 | aσ , bσ ) × IG(τ 2 | aτ , bτ )

× NL(Z | 0, σ 2RZ) × Np(β | μβ , 	β) (14)

×
L∏

l=1
N1
(
Y(sl) | x(sl)

�β + Z(sl), τ 2) ,

where IG denotes the inverse-gamma distribution with a
shape-rate parameterization, U is a uniform distribution and
RZ is the correlation matrix corresponding to K(·; σ 2, φ). The
resulting full conditionals are β | τ 2, Z, Y ∼ Np(Mβmβ , Mβ),
σ 2 | φ, Z ∼ IG(aσ + L

2 , bσ + 1
2 Z�R−1

Z (·; φ)Z),
τ 2 | β , Z, Y ∼ IG

(
aτ + L

2 , bτ + 1
2 ||Y − Xβ − Z||22

)
, Z | Y, θ ∼

NL(MZmZ , τ 2MZ), where X is the L × p matrix with x(si)� as
rows, M−1

β = 	−1
β +τ−2X�X, mβ = 	−1

β μβ +τ−2X�(Y−Z),
M−1

Z = τ−2(τ−2IL + σ−2R−1
Z (·; φ)

)
, and mZ = Y − Xβ . φ is

updated using Metropolis steps with a normal proposal and an
adaptive variance.

Under this setup posterior samples for the differential
processes and wombling measures result from (5)
and (6). For each posterior sample of {Z, θ}, we draw
�Z(t∗) | Z, θ ∼ N2

(
μ�Z (t∗) − γ �

�Z
(t∗)	−1

Z Z, K�Z (t∗, t∗) −
γ �

�Z
(t∗)	−1

Z γ �Z (t∗)
)
, where μ�Z (t∗), γ �Z (t∗), and K�Z (t∗, t∗)

are computed from (10) and (11). Algorithms 1 and 2 in the
Supplement, Section S4, present further details for posterior
sampling. Next, we turn to numerical experiments and data
analyses. Codes required for reproducing and emulating the
analyses presented in the manuscript are produced for the
R statistical programming environment and available for
download at https://github.com/arh926/spWombling.

5. Simulation Experiments

5.1. Data Generation

The proposed differential processes are not observed in reality,
but are induced by an observed spatially indexed parent process.
To evaluate statistical learning of the curvature process we per-
form simulation experiments within a setup where true values
of the differential process and wombling measures are available.
We consider locations s = (s1, s2)

� ∈ R2 over the unit square
[0, 1] × [0, 1] ⊂ R2. We generate synthetic data from two distri-
butions: (a) Pattern 1: y1(s) ∼ N(10[sin(3πs1)+cos(3πs2)], τ 2);
(b) Pattern 2: y2(s) ∼ N(10[sin(3πs1) · cos(3πs2)], τ 2), where
the value of τ 2 = 1. Figure 1 presents spatial plots of the
generated synthetic response from these patterns. The rationale
behind selecting these distributions is: (i) synthetic data is more
practical and not from the model in (13), and (ii) true gradient
and curvature can be computed at every location s.

The synthetic patterns chosen feature two different
scenarios that may arise. In the first pattern expressions
for differentials along the principal directions e1 =
(1, 0)� and e2 = (0, 1)� are functions of either
s1 or s2, ∇μ1(s) = 30π(cos(3πs1), − sin(3πs2))

�,
∇2μ1(s) = −90π2diag{sin(3πs1), cos(3πs2)}. The
curvature along s1 does not influence curvature along
s2,
(∇2μ1(s)

)
12 = 0 for all s. While ∇μ2(s) =

30π(cos(3πs1) cos(3πs2), − sin(3πs1) sin(3πs2))�, ∇2μ2(s) =
−90π2M(s), where M(s) is a 2 × 2 matrix with, m11 =
sin(3πs1) cos(3πs2), m12 = m21 = cos(3πs1) sin(3πs2) and
m22 = sin(3πs1) cos(3πs2) with differentials being functions of

Figure 1. Spatial plots for synthetic patterns, from Pattern 1 (left) and Pattern 2 (right). Scales are shown in the legend alongside.

https://github.com/arh926/spWombling
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Figure 2. (left) shows color coded directional gradients for segments, (center) shows color coded directional curvature for segments in the direction normal to the curve,
(right) shows curves selected for performing curvature wombling. green indicates a positive significance, cyan indicates negative significance and white indicates no
significance.

both s1 and s2 and
(∇2μ(s)

)
12 �= 0 for some s. While setting up

the experiments we vary L ∈ {100, 500, 1000} with 10 replicated
instances under each setting.

5.2. Bayesian Model Fitting

We fit the model in (14) with only an intercept allowing the
spatial process to learn the functional patterns in the synthetic
response. We use the following hyperparameter values in (14):
aφ = 3/ max ||�||, bφ = 30, aσ = 2, bσ = 1, aτ = 2, bτ = 0.1
μβ = 0 and 	β = 106Ip. These choices comprise reasonable
weakly informative priors. While a Uniform(2, 3) prior on ν can
be specified (and was implemented as part of this experiment)
to ensure the existence of the curvature process, here our choice
of scales in the data-generating patterns ensured that ν = 5/2
provided the best model fit when compared with values of ν ∈
{1/2, 3/2, 5/2}. Hence, we present the results with ν = 5/2.

The parameter estimates for θ are computed using posterior
medians and their highest posterior density (HPD) intervals
(Chen and Shao 1999; Plummer et al. 2015). For each replicate,
we assess our ability to estimate the local geometry of the result-
ing posterior surface. For this we overlay a grid spanning the
unit square. We perform posterior predictive inference for the
differential processes at each grid location following Section 2.
Posterior predictive medians (accompanied by 95% HPD inter-
vals) summarize inference for the differential processes over the
grid locations (Section 5.4 offers supplementary analysis).

5.3. Bayesian Wombling with Curvature Processes

For wombling with curvature processes, or curvature wombling,
we focus on locating curves that track rapid change within the
simulated random surfaces. For example, consider the surface
produced by the first pattern. If a curve is provided to us, we can
evaluate the posterior distribution of the average or total curva-
ture wombling measures to assess their statistical significance.
On the other hand, without a given curve, we consider three dif-
ferent approaches for constructing them from a boundary anal-
ysis or wombling perspective: (a) level curves: Cy0 = {s : Y(s) =
y0}: Bayesian wombling literature finds that curves parallel to
contours often form wombling boundaries (see, e.g., Banerjee
and Gelfand 2006) and level curves on a surface are parallel
to local contours by definition; (b) smooth curves: produces a
smooth curve using Bézier splines (see, e.g., Gallier and Gallier

2000) from a set of annotated points that are of interest within
the surface; and (c) rectilinear curves: produces a rectilinear
curve joining adjacent annotated points of interest within the
surface using straight lines, performs curvature wombling using
a Riemann sum approximation (see (S1) in the supplementary
materials). Curves of types (b) and (c) allow the investigator
to specify a region of interest that house possible wombling
boundaries. For the surface realization produced by Pattern
1, we consider four different types of curves on the response
surface, (A) a closed curve enclosing a trough corresponding
to a level curve, Cy0=−18, (B) a closed curve enclosing a peak
corresponding to a level curve, Cy0=+18, (C) a closed curve that
outlines a contour corresponding to a level curve, Cy0=+15 and
(D) an open curve along a contour constructed using a Bézier
spline. These curves are marked in Figure 2(right).

Curvature wombling is performed using methods outlined
in Section 3. Referring to the discussion on rectilinear
approximation, for each curve, given a partition, we compute
ti and ui. Combining the segments produces a vector t
and a matrix of directions, U that represents the curve.
Algorithm 2 in the Section S4, supplementary materials devises
efficient computation using t and U. The total (and average)
wombling measures �(C) are sampled from their posteriors
using (12). For curves A, B, C and D, we use partitions with
sufficiently small norms (|P|) to achieve accuracy (3.99 × 10−3,
3.97 × 10−3, 4.42 × 10−3 and 2.66 × 10−2, respectively).
One and two dimensional line integrals (refer to (10) and
(11)) are computed via quadrature using grids of size 10
on [0, ti], and size 100 on [0, ti] × [0, ti], respectively, for
i = 1, 2, . . . , nP. The median of sampled �(C̃P) is our estimated
wombling measure for the curve. Significance at the curve-
segment level is assessed based on the inclusion of 0 within
the HPD intervals. Our design allows us to compute true
values of average wombling measures for each rectilinear
segment in the curve. They are computed using, μtrue

� (C̃P) =(∑nP
i=1 ti
)−1 (∑nP

i=1
∫ ti

0 u⊥
i

�∇μ1(s(t)) dt,
∑nP

i=1
∫ ti

0 u⊥
i

�∇2μ1

(s(t))u⊥
i dt
)�. We compute HPD intervals for the wombling

measures at the segment level. Coverage probabilities (CPs) are
then constructed by aggregating coverage of true values by HPD
intervals over segments.

Curve A encloses a trough and a local minima for the surface,
while B and C enclose peaks and local maximums (referring to
corresponding locations in Figures S8c and S9c). Along all seg-
ments of A we expect negative gradients owing to the decreasing
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Table 1. Results from curvature wombling performed on curves A, B, C, and D as
shown in Figure 2.

Curves (C) Average gradient (
(1)(C)) Average curvature (
(2)(C))

True Estimated True Estimated

Curve A −61.54 −64.97 731.94 768.03
(−92.37, −38.57) (599.30, 913.70)

Curve B 40.85 49.19 −808.04 -850.84
(20.45, 73.12) (−1066.98, −630.09)

Curve C 84.03 85.65 −558.58 -504.98
(59.81, 109.97) (−767.55, −241.61)

Curve D −110.84 −113.27 11.32 −94.64
(−153.23, −77.01) (−386.94, 233.78)

NOTE: The estimated average directional gradient and curvature are accompanied
by their respective HPD intervals in brackets. HPD intervals containing 0 are
marked in bold.

nature of the response in that region, while for B and C we
expect positive gradients. Each of them would be expected to
yield significant wombling measures for gradients. Referring to
the Laplacian surface (see Figures S8e and S9e) A, B, and C are
located in regions manifesting rapid change in the gradient sur-
face, implying they should yield large positive (curve A) or neg-
ative (curves B and C) curvature, forming curvature wombling
boundaries. These are all aligned with our findings presented
in Table 1, which presents measures of quality assessment for
wombling. The magnitude and sign of wombling measures also
allow us to differentiate between the type of curvature for the
different wombling boundaries. For instance, B is located in a
region of higher convexity compared to C, while the nature of
convexity for regions enclosed by them are different compared
to A. Plots in Figure 2 (left and center) show line segment
level inference for average wombling measures. Arrows indicate
segments which were not significant with respect to gradient
or curvature, while regions of significance are color coded. D
is located in a “relatively flat” region of the surface (see Figures
S8e and S9e) and is expected to have gradients but no curvature,
which aligns with results shown in Table 1. We conclude by
noting that the true values, μtrue

� (C) of the wombling measures
for the curves considered, are all covered by the estimated HPD
intervals for respective curves. Additionally, at the line segment
level we achieved a CP of 1.0 across all curves.

5.4. Supplementary Analysis

We present additional results in the online supplement. Tables
S1 and S2 present parameter estimates, measures of goodness
of fit for the fitted process, and assessment of derivative process
characteristics for each pattern considered. We compute root
mean square errors (RMSE) across observed locations averaged
over 10 replicates for each sample size setting for the fitted
process Ŷ(s) = β̂0 + Ẑ(s), and ∇̂Y(s), ̂vech(∇2Y(s)). We
report standard deviations across replicates. With increasing
number of observed locations we are able to effectively learn the
underlying process and induced differential processes. Figures
S4–S7 present spatial plots of posterior medians of gradient
and curvature processes, for L = 100 locations. These plots
demonstrate the effectiveness of our methods in learning about
the differential processes from the underlying patterns. Simi-
larly plots shown in Figures S8–S11 demonstrate the same for

derived quantities and operators of LY(s)—principal curvature
(eigenvalues), Gaussian curvature (determinant) (see, e.g., Spi-
vak 1999; Do Carmo 2016), divergence and Laplacian, which
pertain to geometric analysis of curvature for the random sur-
face resulting from the underlying patterns. Statistical signifi-
cance is assessed at every grid point by checking the inclusion
of 0 in their HPD intervals. Significantly positive (negative)
points are color coded. We compute average CPs at every grid
location to measure the accuracy of our assessment. These CPs
are then averaged over replicates. We observed high CPs across
the grid for parent and differential processes. Figures S12 and
S13 compare observed against estimated differential processes
coupled with their HPD regions.

6. Applications

Frameworks developed for differential assessment and bound-
ary analysis in spatially indexed response are applied to multiple
datasets with the aim of locating curvature wombling bound-
aries that track rapid change in response. The chosen data arise
from varied areas of scientific interest, we briefly describe the
origin and significance of each with respect to our methods
before performing our analysis. Response is modeled using the
hierarchical model in (13). Prior specifications used in (14) are,
φ ∼ Unif (3/ maxs∈S ||�||, 300), σ 2 ∼ IG(2, 1), τ 2 ∼ IG(2, 1)

(mean 1, infinite variance), β ∼ N(0, 106Ip), p being the number
of covariates and ν = 5/2 for the Matérn kernel ensuring
existence of the differential processes.

Boston Housing: The Boston housing data (see, e.g., Harrison Jr
and Rubinfeld 1978) was collected by the United States Census
Service featuring median house prices for tracts and towns in
Boston, Massachusetts area. The purpose was to study hetero-
geneity in the market caused by the need for residents to have
clean air. To study such heterogeneity, modern equitable housing
policies are incorporating statistical modeling to quantify such
behavior. Often they are a result of unobserved effects of rapidly
shifting socioeconomic conditions (see, e.g., Hu et al. 2019).
Within a spatial map this manifests as neighboring regions of
disparity. Figure 3 shows two such regions: high priced including
Downtown Boston, Cambridge, Newton, Wellesley, Brookline
etc. and low priced including South and East End. For effective
policy implementation, identifying such regions becomes cru-
cial. Spatial variation in the median house prices is evidenced
in Figure 4. Curvature wombling effected on the house price
surface would locate regions that feature such change.

The data contains median house price values for 506 census-
tracts along with demographic data. Latitude-longitude centers
of the census-tracts are used for spatial referencing. To allow
Z(s) to capture all the spatial variation, we include only an
intercept in the model. Table 2 shows posterior estimates and
HPD intervals for process parameters. We observe that σ 2

σ 2+τ 2 ≈
78.75%—larger portion of total variance being explained by
varying location.

Modeled spatial variation in the response is shown in Figure 3
(left). Significance for the estimate, Ẑ(s), is assessed using the
inclusion of 0 in its posterior HPD. Using posterior samples
we estimate the derivative processes for Z(s). A grid, (G =
{sg : sg ∈ convex− hull(S)}, containing 1229 equally
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Figure 3. Plots showing (left) probability density of median house prices (in USD 1000) (right) spatial plot of median owner occupied house prices in Boston.

Figure 4. Plots (left to right) showing fitted process, divergence and Laplacian for the median house price surface.

Table 2. Posterior Estimates from the hierarchical linear model in (13) to Boston
housing.

Parameters (θ ) Posterior estimates (̂θ ) HPD

φ 0.96 (0.83, 1.11)
σ 2 55.18 (43.91, 68.06)
τ2 14.89 (11.77, 18.71)
β0 25.58 (24.29, 27.34)

spaced locations) is overlaid over the region with the same
purpose. To effect posterior surface analysis on the estimated
surface we use posterior predictive distributions of div(Z) and
�(Z) revealing zones that manifest rapid change in response
and gradients, respectively. They are shown in Figures 4 (center
and right). Next, we focus on performing curvature wombling
on the estimated surface. Strategic posterior surface analysis is
used to locate level-sets of interest within the surface that could
possibly contain wombling boundaries. We start with contours
shown in Figure 5 (left column). Boundary 1 (2) bounds a
region where the fitted process has positive (negative) significant
estimates. Evidently, the chosen curves should house significant
gradients along most segments, but significant curvature should
only be detected for segments located at the center (lat-long:
(42.18, 42.23) × (−71.05, −70.05)) of the surface in Figures 4
(center and right). Estimated average wombling measures for
these curves are shown in Table 3. Figures 5 (center and right)
correspond to segment level posterior inference for the curves,
line segments with significant directional differentials are indi-
cated in bold. Summarizing, we observe that the gradient, cur-
vature and posterior surface analysis allow us to highlight towns
(with census-tracts) within Boston that exhibit heterogeneity in
prices. Curvature wombling performed on the surface allows us

Table 3. Curvature wombling measures for boundaries in Boston housing accom-
panied by corresponding HPD intervals in brackets below.

Curve (C) Average gradient (
(1)
(C)) Average curvature (
(2)

(C))

Boundary 1 −8.91 10.14
(−11.31, −6.65) (2.84, 18.34)

Boundary 2 6.18 −0.09
(4.75, 7.49) (−3.45, 3.35)

Boundary 3 −6.47 12.69
(−9.74, −3.27) (2.65, 22.48)

Boundary 4 6.92 1.26
(4.63, 9.19) (−5.04, 7.14)

Boundary 5 5.47 1.36
(2.95, 7.86) (−4.33, 7.42)

Boundary 6 11.82 −16.27
(7.28, 16.14) (−26.68,−6.57)

NOTE: Estimates corresponding to HPD intervals containing 0 are marked in bold.

to delineate zones that house such heterogeneity. For instance,
towns located within boundaries 3 (South and East End) and
6 (Newton and Brookline) show significant change in price
gradients, compared to towns within boundaries 4 (Lincoln
and Weston) and 5 (Wellesley and Dover). These findings can
be verified referring back to price dynamics for real estate in
Boston during 1978 (see, e.g., Schnare and Struyk 1976). The
same regions are scrutinized for studying segmentation—towns
within curves 1 and 3 are accessible to lower income groups
willing to sacrifice air quality.

Meuse River Data: The Meuse river data features in Pebesma
et al. (2012). It provides locations of topsoil heavy metal concen-
trations, along with soil and landscape variables at the observed
locations, collected in a flood plain of the river Meuse, near the
village of Stein, Netherlands. The heavy metal concentrations
recorded include Cadmium (Cd), Copper (Cu), Lead (Pb), and
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Figure 5. Curvature wombling on the Boston Housing Data.

Figure 6. Plots showing heavy metal concentrations in the topsoil of a flood plain at 155 locations for (from left to right) Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc
(Zn) (in mg/kg of soil).

Zinc (Zn). A distinguishing feature is the naturally occurring
boundary—the Meuse. From a boundary analysis standpoint
we are interested in examining differentials in heavy metal con-
centrations along the flood plain of the river to understand the
heterogeneous effect of the river on the topsoil. The soils of the
floodplain are commonly used for agriculture. Crops grown on
the floodplain of the river banks of the Meuse may be consumed
by man and/or livestock. The spatial variation in heavy metal
concentration can be seen in Figure 6. The path of the Meuse
river is shown in each of the spatial plots. Evidently, the heavy
metal concentrations decreases with increasing distance from
the river. We model the concentrations as independent Gaussian
processes. Covariates used are relative elevation above local river
bed (elev, measured in meters), organic matter (om measured
in kg/(100kg) of soil), distance to Meuse (dist), frequency of
flooding, soil type (soil), and lime content in soil (p = 9).

Table 4 shows the posterior estimates of process parameters and
model coefficients, β for each of the heavy metals in question.
We observe that σ 2/(σ 2 + τ 2) ≈ 62.45%, 99.79%, 52.09%,
62.29% for Cd, Cu, Pb, and Zn, respectively, indicating larger
portions of total variation being explained by spatial hetero-
geneity, except for Pb. Variation in Cd and Zn concentration
is significantly affected by elevation, organic matter and flood-
ing frequency, while variations in Cu and Pb concentration is
significantly affected by elevation, organic matter and flooding
frequency and lime content. The estimated residual surface is
shown in Figure 7 (left) for Cd concentrations. We observe
significant positive gradients with varying curvature depending
on segments of the river bed for all heavy metals. We perform
curvature wombling on the Meuse using the residual surface,
Z. The results of curvature wombling for cadmium are shown
in Figure 7. Results and plots for other metals can be found



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1165

Table 4. Posterior estimates of process parameters and covariates for the Meuse river data accompanied by their corresponding HPD intervals in brackets below.

Parameters (θ ) Cadmium (Cd) Copper (Cu) Lead (Pb) Zinc (Zn)

φ 0.0379 0.1138 0.0399 0.0472
(0.0207, 0.0618) (0.0871, 0.1471) (0.0131, 0.1900) (0.0230, 0.0744)

σ 2 2.9566 3.2044 0.9303 38.3538
(1.2803, 5.2227) (2.3955, 4.0892) (0.2763, 1.7641) (16.7815, 65.1450)

τ2 1.7771 0.0067 0.8555 23.2226
(0.9107, 2.6328) (0.0012, 0.0244) (0.0010, 1.2280) (9.3743, 35.6867)

Intercept 9.4973 4.8503 6.1120 37.1315
(5.9750, 13.3704) (3.1392, 6.8308) (3.4615, 8.1910) (25.0903, 53.0870)

elev −0.7672 −0.4065 −0.5413 −2.8781
(-1.2531, −0.3574) (−0.7418, −0.1656) (−0.7853, −0.1442) (−4.7805, −1.2834)

om 0.4011 0.4293 0.3434 0.8606
(0.2616, 0.5233) (0.3276, 0.4728) (0.2490, 0.4253) (0.3681, 1.3166)

dist −0.0033 −0.0025 −0.0011 −0.0081
(−0.0061, 0.0000) (−0.0043, −0.0014) (−0.0029, 0.0006) (−0.0197, 0.0038)

ffreq (=2) −1.4176 −2.4727 −0.8483 −4.3182
(−2.3202, −0.3432) (−3.1794, −1.6716) (−1.6109, −0.2598) (−7.9184, −0.6220)

ffreq (=3) −0.7322 −1.4298 −0.1865 −3.3159
(−2.0520, 0.6248) (−2.4443, −0.5157) (−1.2972, 0.6861) (−7.9307, 1.9128)

soil (=2) −0.3337 0.2236 0.5988 −2.2213
(−1.4661, 0.7491) (−0.7248, 0.9799) (−0.0345, 1.2956) (−6.1446, 2.0831)

soil (=3) −0.3884 0.6344 0.3707 −2.9922
(−2.0891, 1.2628) (−0.2309, 1.8474) (−0.7108, 1.4029) (−9.0918, 3.6289)

lime (=1) 0.5752 1.3223 0.7759 −0.4759
(−0.3509, 1.4341) (0.7152, 1.9427) (0.1173, 1.4645) (−3.9057, 2.6510)

NOTE: Effects with HPDs containing 0 are marked in bold.

Figure 7. Plots showing results for curvature wombling on the Meuse river for Cadmium (Cd) concentration. Plots showing (left) the resulting fitted process (center) the
contiguous segments that display significant gradients (right) the contiguous segments with significant curvature.

in the Section S7, Figure S14, supplementary materials. The
accompanying wombling measures are shown in Table 5. We
observe sufficient heterogeneity in the signs of the wombling
measures, yielding contiguous positive (negative) segments. For
example, in Cd concentration, boundaries located for average
gradients in the northern and southern region are positive, as
opposed to boundaries located in the north western region.
Therefore, while displaying the wombling measures, in Table 5,
we separate them by their sign.

We conclude that effects of river Meuse on regions of the
flood plain exhibit significant heterogeneity when considered
across heavy metals. Compared to other metals, Pb concentra-
tions are limited to northern regions of the flood plain. Concen-
trations of Cd and Zn concentrations along the river are similar.
Compared to the northern region, in the northwestern region
Zn concentrations decrease significantly as we move inland.
Studies corroborating such evidence can be found in Leenaers,
Schouten, and Rang (1988) and Albering et al. (1999).

7. Discussion and Future Work

We developed a fully model-based Bayesian inferential frame-
work for differential process assessment and curvature-based
boundary analysis for spatial processes. Introducing the direc-
tional curvature process and its associated inferential frame-
work supplements the directional gradients with inference for
their rates of change, while its induction into the folds of
Bayesian curvilinear wombling allows for further characteriza-
tion of difference boundaries. Adopting a Bayesian hierarchi-
cal model allows for Gaussian calibration when characterizing
points, regions and boundaries within a surface. This frame-
work is widely applicable; our applications arise from selected
disciplines indicating the utilities of mapping curvature process
boundaries to understand spatial data-generating patterns. Sub-
stantive case studies will be reported separately.

Several avenues hold scope for future developments. A
more generalized theoretical framework can be developed for
studying joint behavior of the principal curvature (direction
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Table 5. Curvature wombling measures for the Meuse, separated by zones of positive and negative signs, they are accompanied by their corresponding HPD intervals in
brackets below.

Wombling Measures Cd Cu Pb Zn



(1)

(> 0) 0.0510 0.1273 0.0375 0.1984
(0.0298, 0.07401) (0.0913, 0.1729) (0.0019, 0.1561) (0.0876, 0.3162)



(1)

(< 0) −0.0400 −0.2561 – −0.1890
(−0.0635, −0.0170) (−0.3187, −0.1997 ) – (-0.2967, -0.0669)



(2)

(> 0) 0.0074 – – 0.0422
(0.0019, 0.0158) – – (0.0111, 0.0879)



(2)

(< 0) −0.0078 −0.1247 −0.0039 −0.0473
(−0.0223, −0.0024) (−0.1979, −0.0860) (−0.1076, −0.0006) (−0.1114, −0.0095)

of maximum (or minimum) curvature) and the aspect (direc-
tion of maximum gradient) (see, e.g., Wang, Bhattacharya, and
Gelfand 2018) leveraging dependent circular uniform distribu-
tions (see, e.g., Kent, Mardia, and Taylor 2008). We offer some
brief remarks . To obtain the direction of maximum curva-
ture for a spatial surface, we solve max

u∈R2

∣∣∣u�∇2Y(s)u
∣∣∣, such that

||u|| = 1, at an arbitrary point s. Using Lagrange multipliers and
denoting κ(u) = |u�∇2Y(s)u|, defineO(u) = κ(u)−λ(||u||2−
1) hence, ∂O(u)/∂ui = κ(u)−1(∇2

iiY(s)ui + ∇2
ijY(s)uj) −

λui = 0, i, j = 1, 2. With u2/u1 = tan θpc, eliminating

λ we get tan θpc = ∇2
22Y(s) tan θpc + ∇2

12Y(s)
∇2

11Y(s) + ∇2
12Y(s) tan θpc

. Defining h1 =
h1(s) = (∇2

11Y(s) − ∇2
22Y(s))/∇2

12Y(s) given ∇2
12Y(s) �= 0

and solving θpc = tan−1 1
2

[
−h1 ±

√
h2

1 + 4
]

. If ∇2
12Y(s) = 0

then, ∇2Y(s) is diagonal and θpc corresponds to the direction
of max{∇2

11Y(s), ∇2
22Y(s)}. We propose that � = (θasp, θpc)�

follows a dependent circular uniform distribution over [0, 2π ]×
[0, 2π ]. Further developments with circular regression methods
can proceed to examine the effect of covariates on �. Multi-
variate extensions would involve formulating these differential
processes on arbitrary manifolds. This requires simulating a
Gaussian process on manifolds and inspecting the covariant
derivative. Bayesian curvilinear wombling could then be imple-
mented on curves of interest to the investigator. This would
not only involve an inferential framework for normal curvature,
but also geodesic curvature for such curves. Spatiotemporal
curvature processes can build upon Quick, Banerjee, and Carlin
(2015) to study evolutionary behavior of the curvature processes
with respect to variations in the response across time. Finally,
we remark that while there have been substantial recent devel-
opments in scalable spatial processes for massive datasets—a
comprehensive review is beyond the scope of the current article
(see, e.g., Heaton et al. 2019)—not all scalable processes admit
the correct degree of smoothness for curvature processes to
exist. Constructing scalable processes for curvilinear wombling,
and subsequent inference, remains a problem of interest in the
wombling community.

Supplementary Materials

The online supplement includes additional theoretical derivations and
computational details on spatial curvature processes, additional simulation
experiment results referenced in Section 5.4 and wombling for Northeastern
US temperatures during January, 2000.
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