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Abstract

Over time, tumor treatment resistance inadvertently develops when androgen de-
privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat
tumor resistance, while reducing the harsh side effects of h ormone t herapy, t he clini-
cian may opt to cyclically alternates the patient’s treatment on and off. This method,
known as intermittent ADT, is an alternative to continuous ADT that improves the
patient’s quality of life while testosterone levels recover between cycles. In this paper,
we explore the response of intermittent ADT to metastasized prostate cancer by em-
ploying a previously clinical data validated mathematical model to new clinical data
from patients undergoing Abiraterone therapy. This cell quota model, a system of
ordinary differential e quations constructed using Droop’s nutrient limiting t heory, as-
sumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)
cancer sub-populations. The two sub-populations rely on varying levels of intracellular
androgen for growth, death and transformation. Due to the complexity of the model,
we carry out sensitivity analyses to study the effect o f c ertain p arameters o n their
outputs, and to increase the identifiability of each patient’s unique parameter s et. The
model’s forecasting results show consistent accuracy for patients with sufficient data,
which means the model could give useful information in practice, especially to decide
whether an additional round of treatment would be effective.
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1 Introduction

1.1 Background

Prostate cancer is one of the greatest global health concerns and is the second leading cause
of men’s deaths by cancer in the United States [22]. The growth of advanced prostate tumors
is notably linked with its high dependence on androgen, a male hormone developed in the
testis and adrenal gland. Unfortunately, androgen levels are not always directly measurable,
nor is androgen data always available. However, prostate cells convert androgen to a potent
form called dihydrotestosterone (DHT) and bind to the androgen receptors, thus elevating
prostate-specific antigen (PSA) levels and leading to growth and survival of the cancer cells.
Then the PSA proteins that are produced by the tissue in the prostate could be used as
biomarkers for cancerous activity. [10].

Huggins and Hodges Nobel-prize winning studies on castration and metastasized PCa
shows androgen deprivation rapidly regresses tumor size [12]. However, many patients with
a metastatic form of cancer eventually suffer a relapse. Treatment that effectively kills most
of the tumor’s cancerous cells may quickly become ineffective when the cells that remain
are those resistant to treatment - or can quickly mutate to sustain growth in an androgen-
deprived environment. In 2006, Bruchovsky et al. used the CS Shionogi model to conclude
that androgen deprivation causes a change in cellular phenotype, from CS to CR [5]. It makes
sense that lessening selective pressure would be effective in delaying treatment resistance.
Taking the patient off treatment for a period of time would potentially allow the overall
tumor population to remain sensitive to ADT.

Patients who respond well to Abiraterone show drastically reduced levels of PSA which
demonstrates the efficacy of the treatment. This is shown in [9], where clinical trials show
that Abiraterone rapidly decreases serum testosterone to castrate levels in non-castrate pa-
tients diagnosed with PCa.

In order to combat treatment resistance, intermittent ADT is introduced. Taking the
patient off treatment for a period of time potentially allows the overall tumor population
to stay sensitive to ADT. Another treatment method, continuous ADT, causes many side
effects that diminish the quality of life of the patient. With intermittent ADT, treatment is
administered until PSA levels reach a desired threshold before they are taken off treatment.
This allows serum testosterone levels to return to normal, which would not occur under
continuous ADT. With intermittent ADT, treatment begins again once PSA levels rise to a
predetermined level. [§]

1.2 Modeling

The development of previous models for hormonal treatment of prostate cancer has paved
the way for further research. Jackson [14] introduced a model that described prostate cancer
growth using continuous ADT, which inspired further research by Ideta et al. [13] that
separates cancer cells into two sub-populations, CR and CS. Portz et al. [20] extends the
work of previous models that take intracellular androgen into account, while incorporating
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the use of clinical data to their model. Hirata et al.[11] introduces a piecewise linear model
that potentially permits a more accurate fit of the on and off alternations of intermittent
ADT. Baez and Kuang [2] formulate a simplification of the Portz et al. model, incorporating
the assumption that the level of intracellular androgen is the same as that of body serum
androgen. Moreover, the model is further simplified to incorporate a compartment for serum
androgen, referred to as model T in Wu et al. [24] and further modified in Phan et al. [19].
For this paper, we focus on Phan et al’s modification which we will call “Model T,” which
incorporates androgen production and its diffusion to intracellular androgen. By modeling
the factors that come into play with metastasized PCa, such as the cycling involved with
intermittent ADT to potentially avoid or reduce resistance, we are able to predict three to
four months of treatment progress. Because the treatment is administered in cycles, we
explore whether another round of treatment could be effective for the patient.

Although there has been an emergence of mathematical modeling of cancer within the
past few decades, the ability to predict and treat cancer is limited. Being able to reliably
forecast each patient’s next cycle allows clinicians to choose the best treatment options for
each patient’s given tumor behavior three to four months prior. The difficulty of reliability
in forecasting cancer behavior stems from the fact that cancer is the result of a complex in-
terplay between numerous factors, or cellular parameters. Mathematical modeling attempts
to analyze the enormous amount of data being produced and extract useful answers by at-
tempting to mimic the behavior of a tumor on a biological level. However, the accuracy of
the predictions varies as the forecast increases.

We use the model to fit the data that is described in section 2.2. For this paper, we
fit all but the last full cycle of data to the model, and use the rest of the data to test the
predictability of the model. In section 2.4, we introduce the weighted error that we employ
to prioritizes recent data. The sensitivity analysis, detailed in section 2.5, is used to reduce
uncertainty and increase robustness of individual patient fits. By doing this, we can explore
unique parameter dynamics for each patient. This allows us to set up future attempts to
draw biological conclusions for parameters assigned to each individual patient. The precision
that the model shows for each patient shows promise for optimal treatment options.

Where this paper differs from similar models and model analyses, is the particular use
of Aberiterone to treat the patients. Both Wu et al. and Phan et al. use similar models,
but both data sets are from prostate cancer patients treated with Cyproterone acetate or
Leuprolide acetate. Moreover, the weighted exponential error is emphasized in our compu-
tations - which we compare in section 3.1.2. Phan et al. found relative success with the
weighted error metric implemented with their clinical data, so we chose to use the the same
metric to patients treated with Abiraterone to explore its practicality and validity.
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2 Model and method
2.1 Model T

Because the authors did not contribute to the formulation of the model used, we simply
describe the model and its dynamics. Model T is a series of differential equations constructed
to describe the dynamics of the cancer cells, and is a cell quota model that originates from
the mathematical formulations credited to Portz, Kuang and Nagy (PKN) [20]. The PKN
model incorporates Droop’s limiting nutrient theory [6], which describes a positive saturating
relationship between metabolic performance and availability of an element. Specifically, the
PKN model regards intracellular androgen as the threshold for cancer sub-population growth.
However, model T differs from the PKN model by the incorporation of a compartment for
serum androgen, as well as the addition of an irreversibly treatment-resistant subpopulation
[2][19]. This cell quota model contains five variables (z; for CS cells, x5 for CR cells, Q
for intracellular androgen, A for serum androgen, P for PSA ), each describing a dynamic
that represents a critical role in how androgen, PSA, and the cancerous cell sub-populations
interact. The model takes the form:
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The growth of both the CS cells (1) and CR cells (2) is dependent upon the internal
androgen concentration of the sub-population. At any time the intracellular androgen falls
below the "cell quota,” the subpopulation will decline, causing cellular apoptosis. Transfor-
mation to resistant cancerous cells are assumed to be irreversible, hence the transformation
will only facilitate CS cells to CR cells. This means that, unlike the PKN model, x5 can’t
transform into .

Transformation is not a mutation, but rather refers to phenotypical adaptation due to
selective pressure of the treatment - hence it is androgen dependent. The transformation
rates between different cells are assumed to be the same, and is described in the form of a
hill function which describes switching rates between cell phenotypes:

MQ) = 5%

Death is characterized by density dependent competition, a result of assuming inter-
species effect is negligible in population growth because cells of the same phenotype tend to
cluster. The death term is as follows, and describes how sensitive apoptosis is to variation
of the cell quota threshold:

d;R; -
Di(Q) = 5% i =1,2

A comprehensive derivation of death and transformation in this model can be found via
Phan et al., Baez et al. and Morken et al. [2][16][18].

Androgen uptake is based on ecological stoichiometry and Droop’s law. The formulation
comes from the conservation of androgen as it moves in and out of the tumor. Details
regarding uptake in this model can be found in Baez et al. [2].

Intracellular androgen is described by the diffusion of serum androgen into the cell. The
unit step function, u(t), characterizes the on and off cycles of treatment when a patient is on
intermittent androgen deprivation therapy, and describes the suppression of serum androgen
production. Mathematically, a value of 1 (when the patient is on treatment) will effectively
reduce production of A. A value of 0 (when the patient is off treatment) will eliminate
deprivation of A production.

As listed on Table 1, Model T has 19 biological parameters and 5 initial conditions with
biological ranges obtained from previous literature [20][24]. The units for this model, along
with specific definitions of each variables for the differential equations are established in
Phan et al. [19]. Phan et al’s assumption that serum androgen and intracellular androgen
are approximately the same prior to treatment would have been used when selecting initial
Q(0) and A(0) for this model [19]. This assumption was made with available androgen data.
However, the data provided to us by Phoenix’s Mayo Clinic did not include androgen levels,
but PSA levels instead. The previous assumption inspired a similar approach by setting
Q(0) to 40-50 percent of initial PSA, and A(0) to roughly 60-70 percent of initial PSA. We
recommend further exploration when modeling without androgen data.
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Param Description Range Ref.
f max proliferation rate (CS cells) [0.001,0.09] [day~?] 3]
Lo max proliferation rate (CR cells) [0.001,0.09] [day 1] [19]
T min CS cell quota [0.41,1.73] [nmol/L] [17]
¢ min CR cell quota [0.01,0.41] [nmol/Lj] estimated
b baseline PSA production rate [0.0001,0.1] [pg] [nmol]_ [day]’ [20][2]
o tumor PSA production rate [0.001,1] [pg][nmol] ' [L]7Y] [day] '  ad hoc
€ PSA clearance rate [0.0001,0.1] [day] ! [20][2]
dy max CS cell death rate [0.001,0.09] [day]~! 3]
do max CR cell death rate [0.01,0.09] [day] ! [19]
1 density death rate (CS cells) [1,90] [L]*[day]~* 2]
5y density death rate (CR cells) [1,90] [L]*[day]~* [19]
Ry CS death rate half-saturation [0,3] [nmol/L] 2]
R, CR death rate half-saturation [1,6] [nmol /L] 7]
c maximum mutation rate [1075,107] [day]~* [20][7]
K mutation rate half-saturation level [0.8,1.7] [nmol][L]~* [20]
T primary androgen production rate [0.008,0.8] [day]~* [13]
Yo secondary androgen production rate [0.001,0.1] [day]~* estimated
m diffusion rate from A to Q [0.01,0.9] [19]
Ay maximum serum androgen level (27, 35] [nmol][L] ™! [2][13][5]
x1(0) initial population of CS cells [0.009,0.02] 5]
75(0) initial population of CR cells [107°,107] (5]
Q(0) initial intracellular androgen P(0) % [0.4,0.5)" estimated
A(0) initial serum androgen P(0) % [0.6,0.7]* estimated
P(0) initial PSA level initial given

Table 1: Estimated biologically realistic ranges of the parameters for Model T. Q(0) and
A(0) were calculated as ratios of the clinical data we were given.

2.2 Data Description

The data is from 41 patients at Phoenix, Arizona’s Mayo Clinic. Table 2 provides an
excerpt of the data, particularly patient 2. Included in this data were the measured PSA
amounts, the date the measurement was taken and the patient number. No direct androgen
data was provided and the date measurements were converted to time elapsed (in days)
between data points. This allowed us to create data points from a beginning treatment date
of 0. No information was provided to ascertain whether the patient was on or off treatment,
so the authors were required to manually input this in the data so that the model could kick
on or off the suppression of production as described by equations (4) and (6) in section 2.1.
The treatment was determined to be on when PSA levels were decreasing, and off when PSA
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levels were increasing. A new cycle was counted when the PSA reached a new relative max
before decreasing. Careful consideration of cycle count allowed us to cut the model off with
one full cycle remaining. The remaining data was left to be compared to the forecast.

While coding the model in MATLAB, we used the patient data as a reference to create
unique fittings for each patient.

Table 2: Patient 2’s reference data

Patient | Time Elapsed | PSA Level | Cycle | On/Off
2 0 13.8 1 1
2 90 0.19 1 0
2 226 0.61 1 0
2 358 6.98 1 0
2 482 24 1 0
2 611 13.8 1 0
2 744 4.9 1 0
2 1000 5 1 0
2 1084 7.4 1 0
2 1109 7.8 2 1
2 1150 6.6 2 1
2 1178 5.4 2 1
2 1246 0.1 2 1
2 1331 0.23 2 0
2 1416 0.1 2 0
2 1529 0.13 2 0

2.3 Parameter Estimation

To fit the patient’s data, MATLAB’s ODFE45 function was used to solve our system of
differential equations. To obtain parameter estimates, we optimized the parameters us-
ing MATLAB’s fmincon function. This tool implements an interior point algorithm that
minimizes the objective function within the boundaries defined by parameters from Table 1.
Because local optimization algorithms are highly dependent on initial guess, we use the same
initial conditions across all patients for simplicity. This is mostly due to the time constraints
of the REU.

Prior to Phan et al’s adaptation of this model, the error function was calculated as the
sum of squared means, e.g., the MSE method to fit the data. For this model, we attempted
to fit the data using the MSE method. However, many unsatisfying data fits of our patients
with high PSA error motivated the use of an error correction (section 2.4). Specifically,
fmincon’s mean-squared-error forecasts for patients would measure much higher than the
actual data points due to high PSA peaks when off of treatment. Phan et al. [19] considers
the treatment administered over time and the effect time has on the fit. Comparing the
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mean-squared-error with a weighted error showed that the latter provided a superior fit in
many situations where clinical data was used.

2.4 'Weighted Error

Intermittent ADT is characteristically cyclic with sharp peaks. This presents a problem
when forecasting data. In particular, a uniform mean error tool would cause the forecast to
be underestimated because of the quantity of small PSA data points. Phan et al. implements
a weighted error metric that puts an emphasis on recent data while controlling the weight
contributions pre and post PSA level peaks [19]. The weighted least square method in
exponential form is as follows:

PSA — Data)?eiltr—to)
ETrTOTi=1,2 = z< ]C\L[a) c ; (7>

where « is the weight as a ratio between zero and one, N; is the number of PSA data
points for data set i, ¢; is the final time of the forecast treatment period, ¢y is the time of the
observed PSA data point, PSA is the PSA level according to the model at time t, and Data
is the actual data point at time t. The higher that « is, the lower the weight is that is applied
to the earliest data points. The exponential form of the least square error rapidly decreases
the weight to combat losing earliest data points by sectioning the data into multiple sets. In
Phan et al. [19], the sets were divided pre and post peak levels of PSA. However, because of
the lack of cycles for some patients, as well as inconsistent data, we decided to employ the
weight division one half cycle prior to the beginning of the forecast - this provided consistent
and accurate fits despite the somewhat inconsistent data. Similar to Phan et al, we divided
the minimized error function into two parts:

Error = ¢ errory + ¢ errory (8)

where ¢; and ¢, are the weighted contributions of error from both prior and post PSA peak
level, such that ¢; + ¢o = 1 for consistent results. In general, ¢; = 0.5 = ¢; and a; = 0.01 =
as. Because each model is precisely unique to different patients, the value of ¢y, ¢o and o will
always be different. The objective function that fmincon minimizes is the sum of squared
PSA and androgen residuals:

Objectiverrsg = Erroryse psa + Erroravse androgen 9)

2.5 Sensitivity analysis

In general, sensitivity analysis is implemented to improve the quality of a model. In
the interest of identifying precise fits for each patient, sensitivity analysis is used to reduce
uncertainty in each of the patient’s unique fit. To understand the effect that changing
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a parameter has on the patient’s dynamics, we varied the value by a small amount and
measured change in the effect at a particular time. For this paper, we use the one factor at
a time (OAT) approach [21]:

oz p (10)

dp =«
where the partial derivative is the sensitivity coefficient, p is the parameter, and z is the
variable being analyzed. We use this method to investigate the behavior of x by a fixed
fraction of the parameter’s mean value for that patient. By using this method, we identified
the most insensitive parameters and converted them to constants, reducing uncertainty in
remaining parameters and improving the fit and forecast of individual patients. Since there is
a large amount of variability between patient data, it seems reasonable to assume there is no
uniform parameter sensitivity. Due to time constraints of the REU in which this analysis was
performed, we were unable to investigate biological implications from parameter sensitivity.
Instead, we made observations of parameter sensitivity coefficients from a patient with a
particularly good forecast (patient 13) and a particularly undesirable forecast (patient 17).

3 Results

Our results utilize a qualitative approach by visually comparing parameter sets to interpret
the dynamics of individual fits of each patient, and the differences in patient forecasts. The
differences we look for are the sensitivity of the parameters used in the model, and patterns
in the fitting that could imply model error or give insight to cancerous activity.

3.1 Fitting and forecasting of androgen and cell population

Figure 1 shows a comparison of four patients, where we can eyeball the fit of the model
to the PSA data. Our intention was to explore whether we can use the model to reliably
predict a practical time frame of intermittent ADT progress in advance, i.e. three to four
months. Ideally, we would like to predict whether another round of treatment would be
meaningful. In other words, would an additional round of hormone treatment effectively
reduce PSA levels? There are some spikes or deviations from the data points, likely caused
by outliers in the data or the distribution of error weight. Even with the deviations and
spikes, the forecast remains consistent with PSA trends, with some forecasts projecting well
beyond the three to four months that we were looking to project.
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Figure 1: Model T (black line) fits to the patient’s PSA levels (the red dots) to train the
model to forecast (blue line) the last half cycle. Datal (dashed line) is where the forecast
begins.

On patient 5, we notice the model spikes around day 500 up to roughly 40 PSA. We
could possibly infer the model’s attempt to compensate for the higher weight closer to the
forecast, which shows a spike around day 1200. This is also apparent in the forecast of
patient 5 which shows the same trend as the PSA data, but spikes much higher. Patient
38’s initial PSA levels vary in a way that could imply that treatment may have not started
until around day 100. A logical reason could be the patient switching between alternative
medications, however this likely could have been addressed if more data had been available
from the beginning up to the forecast. With patient 34, the prediction does not seem to fit
very well. It seems that patient 34 was not provided with sufficient training data for the
forecast to be accurate. In other words, patient 34’s PSA data prior to the forecast should
have been comprised of more cycles (ideally 2.5, as explained in section 3.1.1) to cause a
better fit forecast.
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3.1.1 Comparison of full-cycle forecasts

Some patient datasets had enough data to forecast a full cycle, while other patient datasets
were either inconsistent, or did not have enough data to constitute 2.5 cycles prior to forecast.
We observed that a full-cycle forecast could not be consistently predicted when less than 2.5
cycles of PSA data were available. When comparing patient figures, the forecast of patient
17 seemingly deviates from the data. To accurately predict a full cycle of intermittent ADT
trends in advanced prostate cancer, it seems that model T needs at least 2.5 cycles before
a more accurate prediction can be forecasted. The goal was to forecast reliably for three to
four months, which it does not quite do with patient 17 as accurately as a clinician may like.
In contrast, patient 13 has 2.5 intermittent ADT cycles of PSA data and shows a promising
full-cycled prediction.

patient13

6 o patient17
Forcasted PSA | Gw ! ' | ' - 2.
Fitted PSA | = Forcasted PSA
51 ® PSADala : Fitted PSA
- = —data1 51 i ® PSA Data
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3 1 o < !
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1 |
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1 =) |
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|
1

0 500 1000 1500 0! : : . : : -
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Days

Figure 2: PSA data and model fits and predictions for patients 13 and 17. Model T seems
to have sufficient data to reasonably forecast a full cycle for patient 13. The lack of data and
lack of intermittent ADT cycles seems to cause the model’s forecast to deviate from patient
17’s actual data.

3.1.2 Comparison of Mean Squared Error and Weighted Exponential Error

Mean squared error method is commonly used to minimize error in models across many
scientific disciplines. The problem with using this method in our case, is that clinical data
may not be very consistent, thus causing the data points to be a bit erratic. For example,
Figure 3 shows a large gap in data between the first two points. By comparing the mean
squared method to the weighted error that we employed, we can argue that a weighted error
method may be superior, at least when using clinical data. Phan et al. uses weighted error
in a similar clinical application using intermittent ADT [19]. By using weighted error in this
application, we can verify prediction accuracy with the use of the drug Abiraterone.
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Figure 3: PSA data and model fits and predictions for patients 13. The weighted error
method (left) has a significantly more accurate fit than the mean squared error method

(right).

A reason the mean squared fit may fluctuate in such a manner may be because it takes
the average of all the data points into account when finding an expected value. In contrast,
the weighted error puts far less weight on earlier data points. Notice that there are two data
points (at roughly day 0 and day 1300) that deviate far from the other data points. Also,
notice the relatively large gap between day 0 and the next data point. This large gap likely
plays the greatest factor in the large fluctuations in the MSE method use on patient 13’s
data.

3.2 Sensitivity Results

Analyzing the sensitivity of parameters can be beneficial for making connections to the
biological causes of certain phenomena. Here, the vertical axis of figures 4 through 8 are
the normalized sensitivity coefficients. We observed many differing sensitivity coefficients
between the parameters of patients 13 and 17. This is expected, because each of the patient’s
data will have a unique fit. However, we observed similar sensitivity coefficients between
patients 13 and 17. For example, both patients showcased that x5 had a positive sensitivity
coefficient with respect to us. This is expected because a small positive change in CR cell
populations would imply the expectation of CR cells to take over a hormonally failing patient
[19].

Parameters ¢, K, ¢», and R, were kept constant for both patients. Some noticeable
agreed correlations between patient sensitivity coefficients are between ) and vy, xo and ps,
and x9 and do. Also, 7; has a negative coefficient with respect to all of the variables in both
figures.
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From the sensitivity results, we show that patient 13’s x; has a high positive relationship
with p1, and similarly x5 has a high positive relationship with ps. A reason for this could be
the effect that the proliferation rate of the castration-sensitive and castration-resistant sub-
populations have on their respective cancer cells’” sub-population. This relationship makes
biological sense, because the growth of these variables is contingent upon the rate of the
cells” reproduction.

The following are comparisons between patient 13 (left) and patient 17 (right). Due to
time constraints of the REU, these were the only two sensitivity analyses conducted.

X1
Dai i e S
. -y
0.5
pydy Redy c K py0,d,Rp0, ma, v Ay b e e #q01dy Rydy € Kpyq,d,R6, may v Agboo e
Parameters Parameters
X2 x2
2 . - - 2 - -
1 1
0 0
;.-qudsﬂ_.‘,_ C K,-;qudzﬁzfzm-z-:ﬂgn o ;.-:quER_.‘,_ c K;.-qudzﬁz -12m-2-:ADD .
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Figure 4: Parameter sensitivity coefficients of patients 13 (left) and 17 (right). The
castration-sensitive sub-populations (top) show consistent sensitivity across two different
patients. The castration-resistant sub-population (bottom) shows ds to be more sensitive in
patient 13, than with patient 17. Patient 17’s sensitivity analysis shows m, v, 72 and «q
have very little sensitivity with respect to the castration-resistant sub-population, x,.
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Figure 5: Parameter sensitivity coefficients of patients 13 (left) and 17 (right). Intracellular
androgen (top) displays consistent sensitivity of the parameters across both patients 13 and
17. Serum androgen (middle) also displays consistent sensitivity of the parameters across
both patients 13 and 17. There are differing sensitivity of parameters between patient 13
and patient 17’s PSA parameters (bottom).
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4 Discussion

The focus of the implemented work was to extend the efforts of Phan et al. by applying
the modified version of Baez and Kuang’s model, Model T, to a different set of clinical data
and a different hormone, Aberiterone. We used the sensitivity analysis to find parameters
unique to each patient to minimize error between PSA data and model T. Due to the sporadic
nature of data reporting and/or data collecting, we had erratic data to work with. Not every
patient’s data worked with the model because of the lack of cycles, lack of data points, large
gaps between data points, or inconsistent data points. In fact, of the forty-one patients we
obtained data for, only ten provided sufficient data to be used with the model. Specifically,
the fit of the other patient’s datasets never captured the cyclic trend of intermittent ADT in
metastasized PCa. However, the clinical data from the ten patients should permit valuable
insight for potential clinical usage and future work. As for the concern of validating a reliable
three to four month forecast, the fittings and forecasts of model T in Section 3.1 show that it
is possible when enough data cycles are available to appropriately train the model to predict
the cyclic nature of intermittent ADT. The patient figures of all ten forecasts have been
added to appendix A

We used an exponential weighted error which Phan et al. [19] found to be superior to
mean square error in the application of intermittent ADT. We found this particular method
for reducing error useful for modeling clinical data associated with intermittent ADT and
Aberiterone. The weighted error approach controls the weight pre and post peak PSA
levels and gives more recent data a higher weight. We show that weighing the later data
points contribute to a better fit to the clinical data, and that the earlier data points do not
necessarily contribute as much to the forecast, which is useful when updating the model
with newly received data. This is not to say that the earlier data is not significant. Figure
3 shows a direct comparison of mean squared versus weighted exponential, and provides
valuable insight on the possibility of continuing the weighted error method for the fitting of
clinical data in future work involving intermittent ADT.

Intermittent ADT is cyclic, which means the model must incorporate the cyclic nature of
intermittent ADT when making predictions. As mentioned before, we observed that at least
2.5 cycles of patient data may be necessary before an accurate full-cycle prediction could
be made. However, it is recommended that this be explored in future work. If this is the
case, then a certain amount of therapy must have already been applied before this model
could make a reasonably accurate full-cycle prediction for each specific patient, preventing
full-cycle forecasts from being predicted prior to initial treatment. However, it should be
noted that this model has been used previously with completely different hormones [19]. In
other words, this application could contribute to future work in generality of intermittent
ADT predictions for patients with advanced PCa.

The outputs of varied patient parameters and error weights likely are a result of the
uniqueness of each patient’s cancer dynamics. Our sensitivity analysis allowed us to reduce
the dimension of the parameter space and increase identifiability, which resulted in unique
fits for each patient. This is a significant factor in the context of precision medicine, a
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key concept in patient-specific modeling and forecasting. In Figure 4, we noticed that v,
(primary androgen production rate) had a negative association with both 1 and 5. There is
an underlying assumption that androgen is depleted as fast as it is produced. Androgen level
goes down at rate 7, when the patient is on treatment, and will go up at rate v; while the
patient is off treatment. This is convenient to represent the depletion of androgen following
treatment. However, in fact, the correlation of 7; depends on the time that we select to
evaluate the sensitivity coefficient. If we pick a time during the off-treatment interval, the
coefficient would be positive. The sensitivity results discussed in Section 3.2 provided some
qualitative observations that may be a useful for future work.

5 Acknowledgement

This work is supported by the (AM)2 program provided by NSEF DMS-1757663. We are
profoundly grateful to Mayo Clinic for the clinical data set. In addition, the authors would
like to thank Dr. Wenbo Tang and Dr. Eric Kostelich for providing valuable discussions and
thank our outstanding advisor Dr. Yang Kuang, as well as his research assistant, Tin Phan,
for many helpful comments. The code used for this project originated from Dr. Kuang’s
former PhD student, Javier Baez, and has been edited by Tin Phan, Kyle Nguyen, and
Alejandro Martinez before being further edited by the authors of this manuscript. We also
thank the referees for their many helpful comments.

References

[1] P. A. ABRAHAMSSON, Potential benefits of intermittent androgen suppression therapy

in the treatment of prostate cancer: A systematic review of the literature, European
Urology, 57 (2010), pp. 49-59.

[2] J. BAEz AND Y. KUANG, Mathematical models of androgen resistance in prostate

cancer patients under intermittent androgen suppression therapy, Applied Sciences, 6
(2016), p. 352.

[3] R. BERGES, J. VUukaNovic, J. EPSTEIN, M. CARMICHEL, L. CISEK, D. JOHNSON,
R. VELTRI, P. WALSH, AND J. IsAAcCs, Implications of cell kinetic changes during the
progression of human prostatic cancer, Clinical Cancer Research, 1 (1995), pp. 473-480.

[4] R. BrRADY-NIcHOLLS, H. ENDERLING, R. GATENBY, J. ZHANG, A. WANG,
T. ZuaNG, T. GERKE, AND J. NAGY, Prostate-specific antigen dynamics predict indi-
vidual responses to intermittent androgen deprivation, Nature communications, (2020).

[5] N. BRucHOVSKY, L. KLoTtz, J. CROOK, S. MALONE, C. LUDGATE, W. J. MORRIS,
M. E. GLEAVE, AND S. L. GOLDENBERG, Final results of the canadian prospective
phase i trial of intermittent androgen suppression for men in biochemical recurrence
after radiotherapy for locally advanced prostate cancer, Cancer, 107 (2006), pp. 389-395.

73



[6]

[7]

[12]

[13]

[17]

[18]

M. Droop, Some thoughts on nutrient limitation in algae, Journal of Phycology 9,
(1973), pp. 264-272.

R. A. EVERETT, A. M. PACKER, AND Y. KUANG, Can mathematical models predict
the outcomes of prostate cancer patients undergoing intermittent androgen deprivation
therapy?, Biophysical Reviews and Letters, 09 (2014), pp. 173-191.

B. J. FELDMAN AND D. FELDMAN, The development of androgen-independent prostate
cancer, Nature Reviews Cancer, 1 (2001), pp. 34-45.

B. A. GARTRELL AND F. SAAD, Abiraterone in the management of castration-resistant
prostate cancer prior to chemotherapy, Therapeutic Advances in Urology, 7 (2015),
pp. 194-202.

HEINLEIN, A. CYNTHIA, CHANG, AND CHAWNSHANG, Androgen receptor in prostate
cancer, Apr 2004.

Y. HIRATA, N. BRUCHOVSKY, AND K. AIHARA, Development of a mathematical model
that predicts the outcome of hormone therapy for prostate cancer, Journal of Theoretical

Biology, 264 (2010), pp. 517-527.

C. HuaGaIns AND C. V. HODGES, Studies on prostatic cancer: The effect of castration,
of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma

of the prostate, Cancer Research, 1 (1941), pp. 293-297.

A. M. IDETA, G. TANAKA, T. TAKEUCHI, AND K. AIHARA, A mathematical model
of intermittent androgen suppression for prostate cancer, Journal of Nonlinear Science,

18 (2008), pp. 593-614.

T. JACKSON, A mathematical model of prostate tumor growth and androgen-independent
relapse, Discrete and Continuous Dynamical Systems - Series B, 4 (2003), pp. 187-201.

B. L. MAUGHAN AND E. S. ANTONARAKIS, Androgen pathway resistance in prostate
cancer and therapeutic implications, Expert Opinion on Pharmacotherapy, 16 (2015),
pp. 1521-1537.

J. D. MORKEN, A. PACKER, R. A. EVErReTT, J. D. NAGY, AND Y. KUANG,
Mechanisms of resistance to intermittent androgen deprivation in patients with prostate
cancer identified by a novel computational method, Cancer Research, 74 (2014), pp. 3673—
3683.

T. NISHIYAMA, Serum testosterone levels after medical or surgical androgen deprivation:
A comprehensive review of the literature, Urologic Oncology: Seminars and Original
Investigations, 32 (2014), pp. 38—el7.

T. Puan, C. HE, A. MARTINEZ, AND Y. KUANG, Dynamics and implications of
models for intermittent androgen suppression therapy, Jan 2019.

74



[19]

[20]

[24]

T. PHAN, K. NGUYEN, P. SHARMA, AND Y. KUANG, The impact of intermittent
androgen suppression therapy in prostate cancer modeling, Applied Sciences, 9 (2018).

T. PorTz, Y. KUANG, AND J. NAGY, A clinical data validated mathematical model of
prostate cancer growth under intermittent androgen suppression therapy, AIP Advances,
2 (2012).

A. SALTELLI, K. CHAN, AND E. M. ScotT, Sensitivity analysis, Wiley, 2008.

R. L. SIEGEL, K. D. MILLER, AND A. JEMAL, Cancer statistics, 2019, CA: A Cancer
Journal for Clinicians, 69 (2019), pp. 7-34.

G. TANAKA, Y. HIRATA, S. L. GOLDENBERG, N. BRUCHOVSKY, AND K. AIHARA,
Mathematical modelling of prostate cancer growth and its application to hormone ther-
apy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 368 (2010), pp. 5029-5044.

Z. Wu, T. PHAN, J. BAEZ, Y. KUANG, AND E. KOSTELICH, Predictability and iden-

tifiability assessment of models for prostate cancer under androgen suppression therapy,
Mathematical Biosciences and Engineering, 16 (2019), pp. 3512-3536.

75



A Patient figures

tient5
40 patien

35+

30

Days
atient17
6w T : o Par : =] : -
[ : ——— Forcasted PSA
i | Fitted PSA
5t " ® PSAData
' (- = —datal
1
4 : .
|
< I
23 .
I
1
2] '
I
1
I
11 I
I
ol . . i . . . e ® e |
0 200 400 600 BOD 1000 1200 1400
Days

[——Forcasted PSA
Fitted PSA

® PSAData
(= = —datal

160(

PSA

PSA

25

20

25

20

patient8

3 T

Forcasted PSA
Fitted PSA

® PSA Data
datat

+

X
200 400 600 8OO 1000 1200 1400 1600
Days
patient10
Forcasted PSA
Fitted PSA
® PSAData

data 1

50 100 150
Days

200 250

76



6 patient13
Forcasted PSA
s Fitted PSA
5 ® PSAData 1
= = =datal

1500
Days
patient17
: = Farcasted PSA
- Fitted PSA
5 ; ® PSAData
I = = —datal
1
4 1

| L ]
1

% i

@3 :
1
1
1
[
1
1
1

L

1000 1200 1400 160(

0 L _— - —
800
Days

patient38

200

Days

" LI NN

Forcasted PSA |
Fitted PSA

® PSAData | 1
- — —datal

patient29

35
i Forcasted PSA
20 i Fitted PSA
i ® PSAData
! data 1
25 :
i
20 :
3 a
15 !
|
!
10 !
L i
I [ ]
5 i
®
L
0
0 100 200 300 400 500 600
Days
atient34
20 patt
—— Forcasted PSA ®
Fitted PSA
® PSAData
15 - = —data1

60

1500
Days
_ patientd1
Forcasted PSA |
Fitted PSA
® PSA Data
- = —datal

—

400

600 800
Days

—mmt_ s L

1000 1200 1400 1600

—

77



	Introduction
	Background
	Modeling

	Model and method
	Model T
	Data Description
	Parameter Estimation
	Weighted Error
	Sensitivity analysis

	Results
	Fitting and forecasting of androgen and cell population
	Comparison of full-cycle forecasts
	Comparison of Mean Squared Error and Weighted Exponential Error

	Sensitivity Results

	Discussion
	Acknowledgement
	Patient figures

