Humans reconfigure target and distractor processing to address distinct task demands
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Abstract

When faced with distraction, we can focus more on goal-relevant information (targets) or focus
less on goal-conflicting information (distractors). How people use cognitive control to distribute
attention across targets and distractors remains unclear. We address this question by developing a
novel Parametric Attentional Control Task (PACT) that can ‘tag’ participants’ sensitivity to
target and distractor information. We use these precise measures of attention to develop a novel
process model that can explain how participant control attention towards target and distractors.
Across three experiments, we find that participants met the demands of this task by
independently controlling their processing of target and distractor information, exhibiting distinct
adaptations to manipulations of incentives and conflict. Whereas incentives preferentially led to
target enhancement, conflict on the previous trial preferentially led to distractor suppression.
These distinct drivers of control altered sensitivity to targets and distractors early in the trial,
promptly followed by reactive reconfiguration towards task-appropriate feature sensitivity. To
provide a process-level account of these empirical findings, we develop a novel neural network
model of evidence accumulation with attractor dynamics over feature weights that reconfigures
target and distractor processing. These results provide a computational account of control
reconfiguration that provides new insights into how multivariate attentional signals are optimized

to achieve task goals.
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Introduction

Whether we are having a conversation in a crowded coffee shop or writing a paper at our desk
while surrounded by browser tabs, most tasks require us to engage in two distinct forms of
attentional control!. One form of control enhances the processing of task-relevant information,
for instance by paying careful attention to what our conversation partner is sharing with us. The
other form of control suppresses the processing of task-irrelevant information, particularly that
which conflicts with our primary goal (e.g., distraction from a nearby conversation). While past
research has extensively studied target and distractor processing, it has done so primarily by
focusing on each one separately. As a result, relatively little is known about how control over
task-relevant information (targets) interacts with control over task-irrelevant information
(distractors). Can people control multiple forms of information processing, and if so, how do
they regulate these information streams over time? Here, we bridge previous methodological
gaps to gain new insight into the top-down control over target and distractor processing,
providing an integrative model of how dynamic control adjustments could occur within and

across trials.

Research into how people enhance the target of their attention versus actively suppress
distractors has been largely governed by separate research areas, using different approaches.

Studies of perceptual decision-making have characterized the process by which people try to

! Through-out, we refer to ‘cognitive control’ as the process that configures information processing to achieve task
goals (Botvinick and Cohen, 2014). Whereas cognitive control refers to all such adjustments, such as changes to
stimulus sensitivity or decision threshold, we reserve “attentional control’ for just the top-down control over
stimulus sensitivity.
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determine the correct response (e.g., which of two categories this stimulus belongs to) based on
noisy information about a target stimulus, and how this varies with the difficulty of
discriminating that stimulus (e.g., how perceptually similar two stimuli are; (Britten et al., 1992;
Gold and Shadlen, 2007). This contrasts with studies of inhibitory control, in which the correct
response to a target is typically unambiguous (e.g., respond left when seeing a high-contrast
leftward-facing arrow), but a second dimension of the stimulus display (one that is typically
processed more automatically; e.g., flanking arrows pointing rightward) triggers a conflicting

response (Botvinick and Cohen, 2014; Posner and Snyder, 1975).

Despite the substantial progress that has been made in understanding these two processes in
parallel, critical questions remain that can only be addressed by studying them in tandem (Ritz et
al., 2022). Most notably, it is unclear how people decide how to distribute their control between
targets and distractors. When the demands or incentives for performing a task change, do people
re-direct control towards target enhancement, distractor suppression, or both? For instance,
previous work has shown that people are less susceptible to the influence of distractors after
overcoming a previously conflicting distractor (the so-called conflict adaptation or congruency
sequence effect; (Gratton et al., 1992). Prevailing models have accounted for these findings by
assuming that participants increase attention to the target dimension following a high-conflict
trial (Botvinick et al., 2001; Egner, 2007), but limitations of the relevant experiments (e.g., most
experiments don’t manipulate target salience; through see (Lindsay and Jacoby, 1994; Servant et
al., 2014; Stafford et al., 2011)) make it difficult to rule out that adaptation may also occur at the
level of distractor suppression (Lindsay and Jacoby, 1994; Tzelgov et al., 1992). It is more

generally an open question whether effects of recent task difficulty (e.g., low discriminability or
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high-conflict) result in control-specific or control-general adaptations and, similarly, whether the
motivation to improve performance in such settings leads to preferential engagement of one or
both forms of control. Cognitive control is fundamentally an adaptive process, so people’s
specific control policies should depend on the task structure (Botvinick and Cohen, 2014; Egner,
2008). However, understanding how people coordinate multiple forms of information processing

can help inform the architecture of the underlying control process (Ritz et al., 2022).

One way that previous research has studied target and distractor adjustments is to measure
changes in brain activity associated with task-relevant stimulus processing. For example, some
previous work has suggested that conflict-triggered control preferentially enhances sensitivity in
regions associated with target stimuli (e.g., faces in fusiform face gyrus (Egner and Hirsch,
2005). Other studies have found evidence for both target and distractor control by using similar
stimulus-tagging methods (Gazzaley et al., 2005; Soutschek et al., 2015) or by exploiting
lateralized EEG responses (Noonan et al., 2016; Wostmann et al., 2019). The range of results
across these neuroimaging experiments may come from the different tasks that have been
deployed (Egner, 2008), but may also arise from noisy or complex correspondence between
neuroimaging methods and underlying cognitive processes. In the current experiment, we
provide new methods for indexing target and distractor sensitivity from behavior alone, enabling

us to provide new insight into the cognitive architecture of feature-selective control.

Recent models of controlled decision-making have emphasized the role that within-trial
attentional dynamics play in response conflict tasks, offering new insight into the

implementation of cognitive control (Servant et al., 2014; Weichart et al., 2020; White et al.,
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2011; Yu et al., 2009). These models have largely focused on the Eriksen flanker task, modelling
how an attentional spotlight centered on the target item narrows over time. This formulation
necessarily yokes target enhancement and distractor suppression due to the spatial spread of
attention. As a result, little is known about whether target and distractor processing dynamics can
fall under independent control when these are not explicitly yoked, as in the case of feature-
based attention. Less still is known about how adjustments driven by factors like conflict

adaptation and incentives alter the dynamics of target and distractor processing (Adkins and Lee,

2021).

To address these questions, we developed a novel task that orthogonally varies target and
distractor information, measuring how processing of these two dimensions varies both within
and across trials. Our task merges elements of paradigms that have been separately popularized
within the two research areas above. To capture variability in target processing, we based our
task on the random dot kinematogram paradigm (Danielmeier et al., 2011; Kang et al., 2021;
Kayser et al., 2010; Mante et al., 2013; Shenhav et al., 2018). This task parametrically varies the
motion discriminability (e.g., percentage of dots moving left) and color discriminability (e.g.,
percentage of green dots) across an array of dots. Participants were instructed to respond to the
color dimension, while ignoring the motion dimension. Critically, whereas color response
mappings were arbitrary (e.g., left hand for green), motion responses were exactly aligned with
the direction of motion (e.g., left hand for leftward moving stimuli), resulting in potent “Simon-

like” 2 response interference from this prepotent distractor. A salient incongruent distractor

2 The Simon task is a classic cognitive control task in which participants must ignore a response-affording stimulus
feature (e.g., respond ‘left’ to a leftwards spatial location), and instead respond to a less prepotent stimulus feature
(e.g., respond ‘right’ to a blue stimulus). The classic pattern of results is that participants perform more poorly when
these two features disagree than when they correspond to the same response (see: (Egner, 2007)).
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provokes an erroneous response, providing a qualitatively different form of difficulty from how

low coherence targets make it harder to choose the correct answer (Norman and Bobrow, 1975).

Previous work has demonstrated response conflict and trial-to-trial adjustments in a color-motion
kinematogram with full target coherence and binary distractor congruence (Danielmeier et al.,
2011). We extended this task by parametrizing both target coherence and distractor congruence.
In doing so, we are able to obtain more precise measures of feature sensitivity by accounting for
global performance factors (e.g., lapse rate; (Wichmann and Hill, 2001). Importantly, however,
we can also isolate how participants simultaneously configure attention towards each of these
feature dimensions. Using standard elicitors of cognitive control, namely performance-
contingent incentives and response conflict, we examine how people dynamically configure both
target and distractor gain to maximize their performance. We then use the precision afforded by

these methodological advances to inform an explicit process model of attentional control.

We find that participants independently and dynamically control target and distractor processing
over the course of a trial. To meet the demands of this task, participants preferentially enhanced
target sensitivity under incentives, and preferentially suppressed distractor sensitivity after high
conflict trials. Moreover, they implement these control strategies by changing the initial
conditions of a dynamic process that enhances task-relevant feature processing and suppresses
task-irrelevant feature processing. Finally, we find that these control strategies can be captured
by extending classic neural network models of cognitive control to incorporate an attractor
network that dynamically regulates the influence of different task features on choice. Together,

these results extend our understanding of both decision-making and cognitive control by bridging
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the methodological and theoretical divides between these fields, providing new insight into how

we control multiple forms of information processing.

Methods

Participants

All participants provided informed consent in compliance with Brown University's Institutional
Review Board, participating for either course credit or pay. We excluded participants from our
analyses if they had <70% accuracy during attend-color blocks or completed less than half of the
experiment. Fifty-seven individuals participated in Experiment 1 (mean(SD) age: 20.6(2.21); 36
female; 1 excluded), 42 individuals participated in Experiment 2 (age: 19.1(0.971); 31 female; 2
excluded), and 62 individuals participated in Experiment 3 (age: 19.8(1.38); 47 female; 2
excluded), resulting in 156 included participants across the three experiments. Sample sizes were
guided by piloting in Experiment 1 and experimental standards in cognitive control research
(commonly n = 20-40; e.g., (Adkins and Lee, 2021; Danielmeier et al., 2011; Jiang et al., 2015;

Vogel et al., 2020; White et al., 2011).

Parametric Attentional Control Task (PACT)

We developed the Parametric Attentional Control Task (PACT), extending tasks used to study
decision-making (Kang et al., 2021; Mante et al., 2013; Shenhav et al., 2018) and cognitive
control (Danielmeier et al., 2011). On each trial, participants viewed an array of moving dots
(i.e., random dot kinematogram), presented in one of four colors (see Figure 1). Participants were

taught to match two colors to a left keypress and two colors to a right keypress (with colors
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counterbalanced across participants). The majority color did not repeat on adjacent trials to avoid

priming (Braem et al., 2019).

The direction of the dot motion (leftward or rightward) was task-irrelevant and could be
consistent with the color response (distractor congruent trials) or it could be inconsistent with
this response (distractor incongruent trials). Uniquely in this experiment, we parametrically
varied the degree of distractor congruence on each trial by varying the motion coherence
(percentage of dots moving in the same direction vs moving in a random direction). Distractor
congruence was linearly spaced between 95% congruence and 95% incongruence, sampled
randomly across trials. For variants with 11 levels of congruence, the congruence levels were |-
95, -76,-57,-38,-19, 0, 19, 38, 57, 76, 95], with negative values being incongruent and positive
values being congruent. We made the motion highly salient to maximize the conflict induced by
this distracting dimension (Wostmann et al., 2021), with dots moving quickly across a large

aperture.

In Experiment 1, all of the dots were the same color (100% color coherence), creating a
parametric extension of the Simon conflict tasks (Danielmeier et al., 2011). In Experiments 2 and
3, the dots contained a mixture of two colors associated with different responses. Color

coherence was linearly spaced between 65% to 95%, drawn randomly across trials.

To maintain the salience of the motion dimension throughout the session (Shiffrin and Schneider,
1977), participants alternated between blocks of the task above (‘attend-color’ trials, putatively

more control-demanding) and blocks where participants were instructed to instead indicate the
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direction of the dot motion (‘attend-motion’ trials, putatively less control-demanding). Mirroring
the attend-color blocks, in Experiment 1 we held the motion coherence constant (maximal)
during attend-motion blocks, while varying the color coherence across trials. In Experiments 2
and 3, we varied the coherence of both dimensions during attend-motion blocks. In Attend-
Motion trials, we allowed distractor colors to repeat on consecutive trials, mirroring the stimulus-

repetitions that occurred in Attend-Color blocks.

Comparing performance across tasks that are matched for visual and motoric demands also
allows us to test whether behavioral effects depend on stimulus or response confounds. For
example, participants’ behavior may be influenced by eye movement confounds (e.g., bottom-up
attentional capture by motion coherence), response repetition biases (e.g., due to responses
switching more often than repeating), or stimulus-response priming (e.g., due to how response
switching coincides with stimulus transitions). Critically, Attend-Color and Attend-Motion tasks
differ in their putative control demands, allowing us to isolate stimulus-response confounds from

goal-directed control.

Session

Participants first performed 100 motion-only training trials (0% coherent color) and 100 color-
only training trials (0% coherent motion; order counterbalanced across participants) to learn the
stimulus-response mappings. During training, participants received accuracy feedback on every
trial. During the main experiment, participants performed two types of interleaved blocks,
without trial-wise feedback. Participants alternated between longer attend-color blocks (100
trials) and shorter attend-motion blocks (Experiment 1: 20-50 trials; Experiment 2-3: 30 trials;

order counterbalanced across participants). In Experiments 1 and 2, at the end of each block
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participants were told their average accuracy and median RT, and encouraged to respond quickly
and accurately. Participants were not given this information in Experiment 3 to avoid interactions

with the incentive manipulation (see below). Participants took self-timed breaks between blocks.

Stimuli

Participants were seated approximately 60cm from a computer screen, making their responses on
a customizable gaming keyboard in a dark testing booth. The random dot motion array was
presented in the center of the screen (~15 visual degrees in diameter; ~66.8 dots per visual
degree squared; 19 LCD display at 60Hz). The dots colors were approximately (uncalibrated)
isoluminant and perceptually equidistant (RGB: [187, 165, 2221, [150, 180, 198], [192, 169,
168], [157, 184, 130]; (Teufel and Wehrhahn, 2000) and moved at ~15 visual degrees per
second. Each trial started with a random inter-trial interval (Experiment 1: 0.5 — 1.5s;
Experiment 2-3: 0.5 — 1.0s). There was an alerting cue 300ms before the trial onset, indicated by
the fixation cross turning from grey to white, to minimize non-decision time. The stimuli were
then presented until either a response was made, or a deadline was reached (Experiment 1: 3s;

Experiment 2-3: 5s).

Task Variants

Experiment 1: These data incorporate several similar versions of this task developed during
piloting. The main differences across versions were the number of distractor congruence levels
(mean(range) = 13.5(11-15)), the number of trials per attend-motion block (mean(range) =
26(20-50)), and the total number of trials (mean(range) = 469(300-700) attend-color trials). We
did not find significant differences in performance across versions, and so our analyses collapsed

across these versions. Experiment 1 also included a learning condition in a separate set of blocks,
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which was outside the scope of the current paper and not included in the analyses we report.

Experiments 2 & 3: These data come from a single task variant (though see Experiment 3’s
incentive manipulation below). In this variant, we presented participants with 11 levels of target
coherence and 11 levels of distractor congruence, linearly spaced within their coherence range
and randomly sampled across trials. Participants performed 12 blocks of 100 attend-color trials
interleaved with 12 blocks of 30 attend-motion trials. Illustrative task instructions are provided in

Supplementary Note 1.

Incentivized Variant (Experiment 3)

In Experiment 3, we studied task performance under monetary incentives to provide a
convergent measure of control adjustments, to test where task processing was limited by
motivation rather than hard constraints like stimulus information (Norman and Bobrow, 1975).
We informed participants before the main session that they would be able to earn a monetary
reward for good performance. On ‘Reward’ blocks, we randomly selected trials at the end of the
experiment, and participants earned bonus payment for trials on which they were both fast
(<75% of their RT distribution) and accurate. On ‘No Reward’ blocks, participants would not be
eligible to earn a reward, but were encouraged to be fast and accurate. We indicated the incentive
condition at the beginning of each block with a label and text coloring (gold text for ‘Reward’,
white text for ‘No Reward”). Participants were not instructed on the reward algorithm, only that
they would earn rewards from being fast and accurate on randomly selected trials. Participants
were not informed which trials were selected to avoid biasing post-reward trials. Participants
performed Attend-Color and Attend-Motion blocks in one incentive condition before alternating

to the other incentive condition (order counterbalanced across participants). At the end of the
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experiment, participants received a bonus calculated from their performance (mean(SD) bonus:

$2.5($0.57)USD).

Regression Analyses

We used a hierarchical nonlinear regression of choice and reaction time as a tractable and
minimally theory-laden measure of performance (Supplementary Figure 1). We designed these
regression models to quantify changes to target and distractor sensitivity, while controlling for
global factors like behavioral autocorrection and how task factors may change lapse rates. The
results of these regression analyses then provided the basis for our explicit process modeling (see
below). We confirmed that our regression models are identifiable using Belsley collinearity

diagnostics (collintest in MATLAB; Supplementary Table 10).

In particular, we implemented hierarchical expectation maximization (EM) in MATLAB R2020a
(using emfit; available at github.com/mpc-ucl/emfit) to provide a maximum a posteriori (MAP)
estimates for the mean and covariance of parameters linking task features to participants’
reaction time and accuracy. This fitting algorithm alternates between finding the MAP estimates
of participants’ parameters given the current group-level expectations (M-step; with 5 parameter
re-initialization per step), and updating this group-level expectation based on participants’
estimated parameters (E-step), repeated until convergence. We fit separate regression to each
experiment for independent replications of our findings. Analysis code is available at

github.com/shenhavlab/PACT-public.

Our regression approach simultaneously estimated parameters for choice and RT:
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logPost = logLike(Choice) + logLike(RT) + logPrior(Choice, RT)

Our choice sub-function used a lapse-logistic likelihood function, as previous work has shown
that un-modelled lapse rates can mimic changes in psychometric slope (Wichmann and Hill,

2001). Our choice sub-function had the form:

1 — lapse
1+ exp(_BChoiceXChoice)

Choice ~ + (lapse x 0.5)

1
1+ exp (_ﬁLapseXLapse)

lapse =

Where Bchoiceand Brapse are parameter vectors, and Xcpoice and X qpse are design matrices. Our

RT sub-function used a shifted lognormal likelihood function:

log(RT — ndt) ~ BrrXgr

Where again SrrXgris a linear model, and ndt is the estimated non-decision time. Rare RTs less
than ndt were assigned a small likelihood. This helped avoid one fast RT from unduly

influencing this parameter, while still capturing these informative trials.

Finally, the prior probability of the parameters was evaluated under a multivariate normal
distribution defined by the group-level parameter mean and covariance, improving the robustness

of our estimates through regularization. Critically, we estimated this group-level covariance
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across both choice and RT parameters, which better regularized our estimates and produced a

joint model of performance at the group level.

All regression design matrices included an intercept (choice bias or average RT), an
autoregressive component (previous trial’s choice or RT), and the transformed target and
distractor coherence (scaled between -1 and 1). We included autoregressive components to
capture well-established behavioral features like choice repetition and RT autocorrelation
(Egner, 2007; Laming, 1979; Lau and Glimcher, 2005; Urai et al., 2019). We transformed feature

coherences using a saturating nonlinearity,

tanh(afeature X co hfeature)
tanh(afeature)

*
coh feature —

with @¢grger and Qgiseractor fit as free parameters. This nonlinearity was inspired by classical
work on psychophysical scaling laws (i.e., Fechner—Weber—Stevens scaling, (Krueger, 1989;
Nieder and Miller, 2003)), and more recent work demonstrating this scaling during cognitive
control experiments (Servant et al., 2014; Stafford et al., 2011). This approach distinguishes the
coherence nonlinearity () from how strongly coherence influences performance (S¢poice and
Brr), with our analyses focused on the latter. To constrain these a parameters, we estimated one
parameter for both choice and RT, capturing similar nonlinearities across both performance

measurcs.

In our more complex models (e.g., incentives), our primary focus was on how additional task

features moderated the influence of tanh-transformed feature coherence on performance. Lower
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order effects of moderating factors (e.g., previous distractor congruence) were included in the
lapse rate for choice analysis, and as a main effect in RT analyses. The full parameter sets for all

analyses are available in Supplementary Data.

We excluded trials in our regression if they were 1) the first trial of the block, 2) shorter than
200ms or longer than 2s, 3) occurred after an error or after a trial was too fast/slow and 4) in
reaction time analyses, if the current trial was an error. These exclusion criteria were chosen to
be inclusive, while avoiding trials where there were likely to be a mixture of different cognitive

processes (e.g., post-error adjustments).

We performed statistical inference on the parameters using an estimate of the group-level error
variance from the emfit package, necessary to avoid violations of independence across
participants from our hierarchical modelling. Contrast tests across models used Welsh’s (unequal
variance) t-tests, with contrasts weighting studies by the square root of the sample size. We
aggregated p-values across studies using Liptak’s method (Liptak, 1958; Zaykin, 2011),
weighting studies by the square root of their sample size. Correlations between parameters were

calculated by converting the group-level MAP covariance matrix to a correlation matrix.

We generated posterior predictive checks (trend lines on figures) by generating regression model
predictions for all trials, and then aggregating these predictions in the same way as participants'
raw behavior. This approach allows us to distinguish whether our model systematically deviates
from behavior from whether deviations are driven by variability in parameters across

participants. To provide finer-grained insights into our model fit, we generated additional
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posterior predictive checks that aggregate trends across all participants (Supplementary Figure 6)
and that highlight single participants (Supplementary Figure 7). To provide further validation of
the robustness of our parameter estimation procedure, we performed parameter recovery
(simulated behavior from our best-fitting regression parameters, refit our model to this simulated
behavior, and the compared data-generating and recovered parameters; Supplementary Figure 8)
and parameter knock-out analyses (re-fit models with key nuisance regressors removed;
Supplementary Figure 9). These robustness checks provided convergent evidence that our key

parameters had good identifiability.
We generated sensitivity dynamics plots (e.g., Figure 6) by computing the regression-estimated

coherence effect conditioned on RT. For a range of simulated RTs, the estimated motion

sensitivity timeseries is:

11517t;ti0n = (ﬁmotion + Bmotion:RTSimRT) @ (1 - lapseRT)

1
lapseRT = ,
1+ exp(_(ﬁLapse + BRTSlmRT))

Where [s are regression weights estimated in our analysis, SimRT is a vector of simulated RTs
(e.g.,.5:.01:1), and © indicates element-wise multiplication. For control-dependent dynamics
(i.e., incentivized dynamics; see Figure 7), we included 2-way and 3-way interactions
between feature sensitivity, RT, and control drivers. We generated these sensitivity dynamics

for each participant, and then plotted the mean and between-participant standard error.
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Feedforward Inhibition with Control Model

To provide a bridge between our regression analyses and processes models of decision-making,
we adopted a generative modeling approach and tested whether participant behavior could be
reproduced by a sequential sampling model (Figure 8). This model was inspired by two
theoretical traditions. The first was a classic connectionist model of cognitive control (Cohen et
al., 1990), which demonstrated how top-down adjustments to target and distractor sensitivity in
evidence accumulation framework can capture a wide range of behavioral phenomena. To
capture apparent within-trial adjustments to feature processing (see Results), our second
inspiration was from dynamical models of task set reconfiguration, both across-trial (Gilbert and
Shallice, 2002; Musslick et al., 2018; Steyvers et al., 2019) and within-trial (Mante et al., 2013;
Pagan et al., 2022). In these dynamic models, adjustments in feature gain behave as a dynamical

system, starting at some initial condition and exponentially approaching a fixed point.

This model takes as inputs the color and motion coherence in support of different responses (e.g.,

cohcororLest), nonlinearly transforms these inputs (€.g., COR™ co1orLeft; S€€ TEression analyses
above), and then integrates evidence for each response in separate rectified accumulators (X s

and xn-ght).

For example, evidence for the left response would be calculated as:

dxleft = —Axdt + (ﬁcolorCOh*colorLeftdt + BmotionCOh*motionLeftdt+ N(O, O-x)left"dt)

- w(ﬁcolorCOh*colorRightdt + ,BmotionCOh*motionRightdt + N(Or Ux)right \ dt)
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if Xiepe < 0; Xjepe = 0

The model makes a choice when one of the accumulators reaches a linearly collapsing decision
bound rectified above 0.01. We used a balanced feedforward inhibition model without leak (1 =
0 and w = 1), approximating a (rectified) drift diffusion process (Bogacz et al., 2006). Note that
parameterizations of a leaky competing accumulator could also approximate the DDM (Bogacz
et al., 2007, 2006), and so are plausible alternatives to our implementation. We preferred the FFI

model because it provides a simple interpolation between DDM and race-like decision processes.

To capture dynamics in participants’ feature sensitivity, we modified our accumulation model to
incorporate an attractor network for the feature weights (Mante et al., 2013), a model we call the
feedforward inhibition with control model (FFIc model). In this model, control acts like a
stochastic dynamical system. The system starts at an initial level of feature gain (8°; e.g., due to
bottom-up salience or learning). This feature gain exponentially approaches an asymptotic gain
level (its ‘fixed-point’; e.g., a setpoint on zero distractors gain), according to a decay rate K (e.g.,

control gain). For example, the motion gain would be governed by:

dﬁmotion = —]/ﬁdt + Kmotion(fixedPOintmotion - ﬁmotion)dt + N(O' O-gain)\/a

With the leak term y fixed to 0 as in the decision process.

We simulated 10,000 trials for each combination of target discriminability and distractor

congruence (11 x 11 x 10,000), and then aggregated simulated behavior in the same way we
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aggregated participants’ behavior. Simulation code and parameter sets are available at

github.com/shenhavlab/PACT-public.

Transparency and openness

We report how we determined our sample size, all data exclusions, all manipulations, and all
measures in the study, and we follow APA Journal Article Reporting Standards (Appelbaum et
al., 2018). All data and analysis code are available at github.com/shenhavlab/PACT-public. This

study’s design and its analysis were not pre-registered.

Results

Participants performed the Parametric Attentional Control Task (PACT), a perceptual
discrimination task that required them to classify the dominant color in an array of moving dots
(Figure 1a). Participants made bimanual responses, for example responding with their left hand
when the dominant color was purple or blue or responding with their right hand when the
dominant color was green or beige. To avoid stimulus repetition priming (Braem et al., 2019;
Mayr et al., 2003), two colors were assigned to each response and the majority color did not
repeat across sequential trials. Across trials, we varied the extent to which those dots were
coherently moving in the same or opposite direction as the correct response (distractor
interference; Experiments 1-3) and how easily the participant could determine the dominant
color (target discriminability; Experiments 2-3; Figure 1b). Participants performed the main
Attend-Color PACT in blocks of 100 trials. To enhance the potency of motion as a distracting
dimension (Shiffrin and Schneider, 1977) and allow for additional measures of automaticity and

feature-specificity, participants alternated between these blocks-of-interest and shorter blocks
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(20-50 trials) in which participants instead responded to the direction of dot motion (Attend-

Motion PACT; Figure 1c¢).
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Figure 1. Parametric Attentional Control Task (PACT). A) On each trial, participants responded to the dominant
color in a bivalent random dot kinematogram. This stimulus had a random color (target) coherence, depending on
the proportion of dots that were in the majority. This stimulus also had a random motion (distractor) congruence,
depending on motion coherence in the same or opposite direction as the color response. B) Across trials, we
parametrically and independently varied the coherence of the dominant color (y-axis) and the congruence of the
motion direction (x-axis). C) In Experiments 1 and 2, participants alternated between longer blocks of Attend-Color
trials (target dimension was color, as in A) and shorter blocks of Attend-Motion trials (target dimension was
motion). Participants took a self-timed break between blocks. D) In Experiment 3, participants alternated between
pairs of Reward blocks and No Reward blocks. On Reward blocks, participants could earn a monetary bonus if they
were fast and accurate, whereas we just encourage good performance on No Reward blocks. Participants were

informed of the reward condition during their break between blocks.
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Task performance varies parametrically with target discriminability and

distractor interference

In Experiment 1 (N = 56), participants performed the PACT with uniformly colored dots (e.g.,
all blue or all green), but with the dots moving in a direction either congruent or incongruent
with that target response. We varied the strength of this distractor dimension between being fully
congruent with the correct color response (100% leftward coherence for a left color response) to
being fully incongruent (100% rightward coherence for a left color response; Figure 1b). For
trials mid-way between these two extremes (cf. ‘neutral’ trials), the dots did not move

consistently in one direction or another (0% motion coherence).

Consistent with past research on cognitive control, we found that participants were slowest and
least accurate when distractors were fully incongruent (median RT = 585ms, mean accuracy =
89%) and fastest and most accurate were fully congruent (median RT = 553ms, mean accuracy =
97%; cf. (Danielmeier et al., 2011). Performance on neutral trials (0% motion coherence) fell
between these two extremes (median RT = 576ms, mean accuracy = 94%). Extending this work,
hierarchical regression analyses (see Methods) revealed that performance varied in a graded
fashion across this continuum of interference. Both accuracy (Cohen’s d on regression estimate;
d =-1.47) and reaction time (d = 1.25) worsened with parametrically increasing levels of

interference (ps < 0.001, Figure 2c, Table 1).
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Figure 2. Target and distractor sensitivity. A) Participants were more accurate (blue, left axis) and responded faster
(red, right axis) when the target color had higher coherence. Circles depict participant behavior and lines depict
aggregated regression predictions. In all graphs, behavior and regression predictions are averaged over participants
and experiments. Target sensitivity aggregated across Experiments 2 & 3. B) Regression estimates for the effect of
target coherence on performance within each experiment, plotted for accuracy (blue, left axis) and RT (red, right
axis). C) Participants were more accurate and responded faster when the distracting motion had higher congruence
(coherence signed relative to target response). In all graphs, behavior and regression predictions are averaged over
participants and experiments. Distractor sensitivity aggregated across Experiments 1-3. D) Regression estimates for
the effect of distractor congruence on performance within each experiment, plotted for accuracy and RT. E-F)
Similar to A-B, performance (E) and regression estimates (F) for the effects of target coherence during Attend-
Motion blocks, in which motion was the target dimension. G-H) Similar to A-B, performance (G) and regression
estimates (H) for the effects of distractor congruence during Attend-Motion blocks, in which color was the distractor

dimension. Y-axis range is matched within-feature across tasks, see Supplementary Figure 10 for matched y-axes
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across all features and tasks. Error bars on behavior reflect within-participant SEM, error bars on regression

coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease of visualization.

In Experiment 2 (N = 40) and Experiment 3 (N = 60), participants performed the same task as in
Experiment 1, but we additionally varied the discriminability of the target (color) dimension.
Across trials, the proportion of the majority color (color coherence) varied parametrically to
make color discrimination easier (higher coherence) or more difficult (lower coherence). As in

Experiment 1, the level of motion interference also varied across trials, independently of targets.

Consistent with past research on perceptual decision-making (Britten et al., 1992; Mante et al.,
2013), we found that discrimination performance improved with higher levels of target
discriminability. Participants in both studies were faster (Exp 2: d =-1.90, Exp 3: d =-1.99) and
more accurate (Exp 2: d =3.27, Exp 3: d = 3.73) with parametrically increasing levels of color
coherence (aggregate ps < 0.001; Figure 2a, Table 1). At the same time, we continued to find that
participants were slower and less accurate when the goal-irrelevant movement of those dots was

increasingly incongruent with the correct color response (see Figure 2a, Table 1).

Performance on our task varied parametrically with both color coherence and motion coherence,
but these two coherence manipulations were designed to exert their influence on performance in
different ways. Whereas variability in color coherence was intended to influence the stimulus
uncertainty directly relevant to goal-directed decision-making (i.e., determining which response
is the correct one), motion coherence was intended to exert a more automatic influence on
response selection by facilitating responses consistent with the direction of motion. We

confirmed this assumption regarding the relative automaticity of motion versus color processing
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by having participants perform interleaved blocks in which they responded based on motion and
ignored color (‘Attend-Motion’). We found that participants were more sensitive to the now-
relevant motion coherence (Figure 2¢), but were no longer sensitive to the now-irrelevant color
congruence (Figure 2g; Supplementary Table 1-2). This asymmetry suggests that participants’
decisions were not solely driven by the bottom-up salience of these features, as participants were
more sensitive to color when it was relevant and less sensitive to motion when it was irrelevant,

reflecting differential engagement of top-down control across the two tasks (Cohen et al., 1992).

Table 1. Target and distractor sensitivity
DV Predictors Exp1(df=45) | Exp2(df=25) | Exp3(df=45) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value

Choice | Target coherence 3.27 3.73 1.01x104
Distractor congruence 1.47 1.42 1.50 4.89x1032
Target x Distractor -0.184 -0.344 0.0226

RT Target coherence -1.90 -1.99 1.59x1028
Distractor congruence -1.25 -1.49 -1.43 1.26x10%
Target x Distractor 0.230 0.0525 0.437

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

Target discrimination and distractor interference occur in parallel

We found that participants’ task performance varied parametrically with both the target

discriminability and distractor congruence, both for choice and reaction time. We next sought to

further understand the relationships between these changes in performance, within and across

features.
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First, we tested whether a given feature exerted a similar influence on both accuracy and RT. We
found that this was indeed the case, as there was a significant correlation between the effect
distractors had on accuracy and RT (s <-0.87, ps < 0.001). The influences of target
discriminability on accuracy and RT were also significantly correlated (rs < -0.54, ps < 0.001;
Supplementary Table 3). Thus, participants who became faster with higher levels of a given
feature’s strength also became more accurate, suggesting that accuracy and RT shared a common

underlying process (e.g., evidence accumulation rate, which we return to below).

Second, we tested whether the influences of target discriminability and distractor congruence on
performance were independent (e.g., distractors and targets are processed in parallel; (Lindsay
and Jacoby, 1994; Servant et al., 2014) or instead modulatory (e.g., distractor congruence
influences target sensitivity). If the two forms of feature processing modulated one another, we
would predict that target and distractor coherence would interact in predicting performance. We
did not find such an interaction in RTs (ds = 0.05 to 0.23, p = 0.33; Table 1), though we did find
a small but significant interaction between target and distractor coherence on accuracy (ds = -
0.18 to -0.34, p = 0.023). For both studies, removing target-distractor interactions as predictors in
our accuracy regressions improved model fit (Protected exceedance probability on AIC: Exp 2
PXP = 1; Exp 3 PXP = 1). If distractors had an antagonistic influence on target processing, we
would also predict that target and distractor sensitivity would be negatively correlated across
subjects. Contrary to this prediction, these effects were either not significantly correlated or
positively correlated, both for RT (Exp 2: #(25) = .14, p = .48; Exp 3: r(45) = .44, p = .0019) and
accuracy (Exp 2: 7(25) =-.15, p = .45; Exp 3: r(45) = .12, p = .43), suggesting that individual

differences in target and distractor processing were not antagonistic.
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Previous conflict preferentially suppresses distractor sensitivity

Within a given trial, we found that performance varies parametrically and independently with the
coherence of target (color) and distractor (motion) features. We next sought to understand how
participants adapted their information processing across trials, to provide insight into the control
processes that guide performance in this task. We measured how participants’ feature sensitivity
changed after difficult (e.g., more incongruent) trials, an index of cognitive control known as
conflict adaptation (Egner, 2007; Gratton et al., 1992). The classic effect is that participants show
weaker congruence effects after incongruent trials than after congruent trials, with the traditional
interpretation being that this reflects upregulated target sensitivity (Botvinick et al., 2001; Egner,
2007). Our task allowed us to build on this work to test whether this adaptation effect varies
parametrically with distractor congruence. Critically, we can also test whether adaptation occurs
through an influence of previous conflict on subsequent target enhancement, distractor
suppression, or both. Finally, we can further test whether adaptation occurs due to the

discriminability of the target on the previous trial.

Across all three of our studies, we found that participants’ sensitivity to the distractor dimension
was robustly and parametrically influenced by the distractor congruence on the previous trial, as
reflected both in their choice (ds = 1.44 to 1.74, p < .001; Figure 3a) and RT (ds = 0.83 to 1.79, p
<.001; Figure 3b; Table 2). When the previous trial had congruent distractors, participants had
strong sensitivity to the distractor congruence (Figure 3a-b, navy). When the previous trial had
incongruent distractors, participants were much less sensitive to distractors (Figure 3a-b, red).

These patterns are consistent with those typically observed in studies of conflict adaptation
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(Danielmeier et al., 2011; Egner, 2007), and further demonstrate gradations within these classic

effects.

When varying both target and distractor features (Experiments 2-3), we found an additional
influence of previous distractor congruence on target processing, whereby more incongruent
previous trials enhanced the influence of target discriminability on the current trial (Figure 3d-e).
However, the influence of previous distraction on target processing was substantially smaller
than its effect on distractor processing (see Figure 5), and was only found for accuracy (p <.001)
and not RT (p = .57), Finally, we found that performance adapted to the strength of the previous
target, with less-discriminable targets yielding lower sensitivity to target strength (i.e., poorer
performance) on the following trial, potentially due to disengagement (Supplementary Figure 2,
Table 2). However, like the distractor-target effect, this target-target effect was much smaller
than the distractor-distractor effects and only observable in accuracy (p < .001) and not RT (p =

19).
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and RT (B) was weaker when the previous trial was more incongruent (redder colors). Circles depict participant
behavior and lines depict aggregated regression predictions. C) Regression estimates for the current distractor
congruence by previous distractor congruence interaction, within each experiment. D-E) The relationship between
target coherence and performance was stronger after more incongruent trials in accuracy (D) but not RT (E). F)
Regression estimates for the current target coherence by previous distractor congruence interaction, within each
experiment. Error bars on behavior reflect within-participant SEM, error bars on regression coefficients reflect 95%
CI. Psychometric functions are jittered on the x-axis for ease of visualization. Feature coherence was rank-ordered
and binned into quantiles with equal numbers of trials at each level of target coherence, distractor congruence, or

previous distractor congruence.
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Table 2. Effects of previous conflict on feature sensitivity

DV Predictors Exp 1 (df=41) | Exp2 (df=15) | Exp 3 (df =35) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value
Choice | Distractor x Prev Distract 1.59 1.45 1.74 6.15x103!
Distractor % Prev Target -0.670 0.103 0.964
Target x Prev Distract -0.473 -0.990 2.83x108
Target x Prev Target 0.418 0.644 1.25x10°%
Lapse | Prev Distract -0.522 -0.498 -1.04 1.75x101°
Rate
Prev Target -0.110 -0.494 0.00934
RT Distractor x Prev Distract -0.836 -1.44 -1.79 8.99x10%
Distractor % Prev Target 0.174 0.0618 0.520
Target x Prev Distract 0.210 0.0155 0.726
Target x Prev Target 0.147 0.154 0.285
Prev Distract 0.287 0.202 -0.267 0.623
Prev Target 0.109 -0.275 0.0884

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

A common concern when measuring conflict adaptation effects is the extent to which these

reflect control adjustment (as typically assumed) or low-level priming that can occur due to

stimulus-stimulus or stimulus-response associations (Braem et al., 2019; Hommel et al., 2004;

Mayr et al., 2003; Schmidt and De Houwer, 2011). For example, in some tasks, if two adjacent

trials are both congruent or both incongruent, they are also more likely to share stimulus-

response mappings, biasing analyses of sequential adaptation (Schmidt, 2019). Our experiment

was designed to largely avoid potential priming confounds by eliminating stimulus repetitions

(with two colors assigned to each response hand that never repeat), and by using stochastic
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motion stimuli (versus, e.g., static arrows) that also have very infrequent exact repetitions. For

example, the probability that two trials will have the same motion coherence was only 9%.

However, to further rule out that our key adaptation findings resulted from priming effects, we
tested whether adaptation effects were present in our more automatic Attend-Motion blocks.
Whereas a priming account would predict similar (within-feature) adaptation effects across both
Attend-Color and Attend-Motion blocks (Moeller and Frings, 2014), a cognitive control account
would predict weaker adaptation effects for Attend-Motion than Attend-Color blocks. We found
that adaptation effects during Attend-Motion blocks were overall weak and inconsistently signed
(e.g., previous interference led to either increased or decreased sensitivity to distractors across
studies; Supplementary Table 4-5). Comparing the adaptation effects across the two types of
blocks directly, we found significantly stronger adaptation effects during Attend-Color than
Attend-Motion blocks. Distractor adaptation was weaker during Attend-Motion than Attend-
Color, despite including color repetitions during Attend-Motion blocks (Choice: p <.001; RT: p
<.001). Critically, we can directly compare trial-to-trial changes in motion sensitivity when
motion is task-relevant (Attend-Motion) and task-irrelevant (Attend-Color), matching the
salience of this motion dimension across tasks (Giesen et al., 2012). Target adaptation during
Attend-Motion was not significant (Choice: p = .268; RT: p =.777; Supplementary Table 4) and
was weaker than distractor adaptation during Attend-Color (Choice: p <.001; RT: p = .34;
Supplementary Table 5). Together, these results suggest that the adaptation effects we observed
during Attend-Color trials likely reflected changes in control states rather than stimulus-driven

priming.
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In addition to influencing sensitivity of choices and RTs to individual features (adaptation effects
described above), we found that previous target and distractor information also exerted a small
but reliable influence on the likelihood that the participant would respond randomly on the next
trial (lapse rate, see the Regression Analysis subsection in Methods). Specifically, higher levels
of distractor incongruence and lower levels of target discriminability increased subsequent lapse
rates (ps < .001; Table 2), though these changes were subtle (e.g., post-congruent lapse rates
ranged from 0.023% to 0.13% across studies; post-incongruent lapse rates ranged from 0.13% to
0.41% across studies). We did not otherwise find consistent main effects of previous targets and

distractors on choice behavior (i.e., in the direction of a particular response) or on RT.

Performance incentives preferentially enhance target sensitivity

We found that performance on our task adapted to previous distractor-related interference, and
that this influence was observed primarily in subsequent processing of the (motion) distractor
rather than the (color) target. This may reflect a fundamental bias in the control system towards
adjusting distractor processing in our task, but it may also reflect a process that is specialized for
conflict adaptation. To disentangle these possibilities, we examined how target and distractor
processing are influenced by heightened levels of motivation. In Experiment 3 we incorporated
an incentive manipulation, with blocks of trials for which participants could either earn a
monetary reward for fast and accurate performance, and blocks where performance was not

rewarded (Figure 1d).

We found that participants’ accuracy was more sensitive to target discriminability in rewarded

blocks than non-rewarded blocks (d = 0.61, p <.001; Figure 4a, Table 3). This effect of
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incentives on target sensitivity was specific to choice and not RTs (d =-0.10, p = 0.47), though

participants were overall faster in rewarded blocks (d =-0.41, p = 0.0045). Participants were also

marginally more likely to make lapses responses during rewarded blocks (d = 0.244, p = 0.092).

In terms of distractors, we found that in rewarded blocks participants were less sensitive to

distractors in RT (d = 0.35, p = 0.012), albeit with a small effect size, and that incentives did not

significantly influence distractor sensitivity in choice (d =-0.016, p =0.91).
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coherence and performance was stronger during incentivized blocks (gold) in the domain of accuracy (A), but not

RT (B). Circles depict participant behavior and lines depict aggregated regression predictions. C) Regression

estimates for the target coherence by incentive interaction. D-E) The relationship between distractor congruence and

performance was weaker on incentivized blocks (gold) in the for RT (E), but not Accuracy (D). F) Regression
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estimates for the distractor congruence by incentive interaction. Error bars on behavior reflect within-participant
SEM, error bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease

of visualization.

We further found that the target-enhancing effects of incentives also were not specific to the
color dimension. When motion was the target dimension (attend-motion blocks), incentives
preferentially increased sensitivity to motion coherence (d = 0.70, p < .001). Interestingly,
incentives had an even larger influence on target sensitivity in attend-motion relative to attend-

color blocks (#59.0) = 2.14, p = 0.036; Supplementary Table 6-7).

Table 3. Effects of incentives on feature sensitivity
DV Predictors Exp 3 (df=41) p-value
Effect size (d)

Choice | Target x Reward 0.612 8.56x10°
Distractor x Reward -0.0156 0.911

Lapse Reward 0.244 0.0924

Rate

RT Target x Reward -0.103 0.467
Distractor x Reward 0.349 0.0195
Reward -0.411 0.00447

Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p-values (two-tailed,

a = 0.05) are shown in bold.

Previous conflict and incentives have dissociable influences on target

and distractor processing

Our within-trial results demonstrated that participants are sensitive to target (color) and distractor

(motion) information, with little interaction between these dimensions. Consistent with this




Humans reconfigure target and distractor processing 33

putative independence, we found that previous interference primarily influenced distractor
sensitivity (suppressing distractor sensitivity after trials with incongruent distractors), and that
rewards primarily influenced target sensitivity (enhancing target sensitivity when incentivized).

These findings strongly suggest a dissociation between target and distractor processing.

To confirm these findings, we formally tested the double dissociation between how incentives
and previous interference influenced target and distractor choice sensitivity (Figure 5). We found
that previous conflict had a larger absolute effect on distractor processing than it did on target
processing in both accuracy (#(31.4) = 9.54, p = 8.36 x 10"'") and RT (#(33.7) = 4.64, p = 5.14 x
10-). We found that rewards conversely had a larger influence on targets than distractors in
Accuracy (#(44.5) = 5.08, p = 7.22 x 10°®), though not in RT (#37.7) = 0.25, p = 0.80). Critically,
the difference-of-differences was also significant in both Accuracy (#39.6) = 10.2, p =1.36 x 10
12) and RT (#(48.3) = 3.11, p = 0.0031), supporting dissociable control over different dimensions

of feature processing.
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Figure 5. Dissociations between previous conflict and incentive effects. Post-conflict effects were significantly
larger on distractor sensitivity than target sensitivity in accuracy (A) and RT (B). In contrast, reward effects were
significantly larger on target sensitivity than distractor sensitivity in accuracy (A) and similarly large in RT (B).

Errors bars show MAP SEM.

These findings are consistent with a previous neuroimaging experiment that found incentives
enhanced responses in target-related areas (visual word form area for text targets) and mostly-
incongruent blocks suppressed responses in distractor-related areas (fusiform face area for face
distractors; (Soutschek et al., 2015). In the following sections, we extend these convergent
findings to explore how previous conflict and incentives influence the dynamics of control

implementation.
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Differential within-trial dynamics of target and distractor processing

Our initial results show that participants independently control their sensitivity to target (color)
and distractor (motion) information. However, previous research has revealed that participants’
task processing also dynamically changes within a trial (Servant et al., 2014; Weichart et al.,
2020; White et al., 2011), including in response to incentives (Adkins and Lee, 2021). Whereas
much of the previous research has focused on dynamics in spatial attention during flanker tasks
(e.g., a shrinking spotlight of attention; (Weichart et al., 2020; White et al., 2011), less is known
about the dynamics of attention between features of conjunctive stimuli like those in our task,
where target and distractor processing may be more independent (Adkins and Lee, 2021; Servant

et al., 2014).

To test how sensitivity to target and distractor features changed within each trial, we measured
whether the influence of coherence on participants’ choices depended on reaction time (i.e., the
choice ~ coherence x RT interaction). These analyses work under the logic that faster RTs reflect
earlier epochs of information processing, which we confirm through subsequent evidence
accumulation simulations (see ‘An accumulator model of attentional control over target and
distractor processing’ in Results; Supplementary Figures 4-5). Our approach builds on ‘delta
function’ analyses of how congruence effects differ across RT quantiles (De Jong et al., 1994;
Ridderinkhof, 2002; van den Wildenberg et al., 2010)%, extended this methodology with a GLM

approach that estimates parametric changes in both target and distractor sensitivity over time.

3 Previous work on delta-plot analyses have investigated how RT difference scores (e.g., congruent — incongruent)
vary across RT quantiles. This work has been criticized based on the inherent mean-variance relationship in skewed
RT distributions (Zhang and Kornblum, 1997). Instead, our analyses investigate how accuracy effects vary as a
function of RT instead, avoiding this concern.
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At the earliest RTs, participants were the least sensitive to targets (Figure 6a) and the most
sensitive to distractors (Figure 6d). At later RTs, participants became more sensitive to targets
(ds =0.69 t0 0.97, p <.001), and less sensitive to distractors (ds =-0.71 to -1.5, p <.001; Table
4). This is consistent with an attentional control process that enhances sensitivity to goal-relevant
features and suppresses attention towards goal-irrelevant features. Notably, these results suggest

that this attentional process occurs ‘online’ within the course of a trial.
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Figure 6. Target and distractor sensitivity dynamics. A) The relationship between target coherence and accuracy

increased at later RTs (pinker color). B) Participants responded faster on error trials that correct trial when target

coherence was higher. C) Regression estimates for the interaction between target coherence and RT (blue) and

accuracy (red), within each experiment. D) The relationship between distractor congruence and accuracy decreased

at later RTs (pinker). Note that these data are mean-centered within each RT bin to remove the target effects in (A)

from this visualization of distractor sensitivity. E) Participants responded faster on error trials than correct trials

when distractors were incongruent. F) Regression estimates for the interaction between distractor congruence and
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RT (blue) and accuracy (red), within each experiment. G) Target (green) and distractor (cyan) sensitivity plotted as a
function of reaction time, as estimated by our regression model in Attend-Color blocks. Vertical lines indicate
quartiles of the RT distribution. H) Same as G, but generated from regression models fit to the Attend-Motion
blocks. Note the different scaling of the x-axis and y-axis (see dashed line between plots). Error bars on behavior
reflect within-participant SEM, error bars on sensitivity estimates reflect between-participant SEM of the
predictions, error bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for
ease of visualization. Feature coherence and RT were rank-ordered and binned into quantiles with equal numbers of

trials at each level of target coherence, distractor congruence, or RT bin.

We also fit a complementary analysis for RT (i.e., the RT ~ coherence x accuracy interaction).
We found that participants had steeper target coherence slopes on error trials (ds = 0.89 to 1.5, p
<.001; Figure 6b), driven by faster errors when the targets were high coherence, consistent with
participants responding before their maximal target sensitivity. Likewise, we found that the
relationship between RT and distractor congruence inverted on error trials (ds = -0.68 to -1.8, p <
.001; Figure 6e), with participants making faster errors on more incongruent trials, consistent

with an early sensitivity to distractors that is suppressed over time.

Table 4. Dynamics of feature sensitivity across response times
DV Predictors Exp1(df=38) |Exp2(df=21) | Exp3(df=41) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value

Choice | Target x RT 0.686 0.975 4.61x10"
Distractor x RT -0.709 -1.54 -1.19 8.40x102°

Lapse RT 0.247 0.928 0.534 9.25x1013

Rate

RT Target x Accuracy 1.46 0.889 1.99x10
Distractor x Accuracy -0.683 -1.82 -1.09 1.39x1020

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.
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These findings suggest online dynamics in the allocation of top-down attention to facilitate target
processing and suppress distractor processing, but it is possible that they instead reflect dynamics
inherent to the bottom-up processing of color and motion information. To rule out this alternative
hypothesis, we tested whether similar sensitivity dynamics were present during Attend-Motion
blocks, when color information serves as a much less potent distractor. During these blocks, we
found that participants enhanced target (motion) sensitivity faster than they did during Attend-
Color blocks (p < .001; Figure 6h; Supplementary Table 8-9). In contrast, participants had slower
distractor sensitivity dynamics during Attend-Motion blocks (p <.001). Together these results
demonstrate that these sensitivity dynamics depend on the task that participants are performing,

rather than being exclusively due to stimulus-driven factors.

Finally, we tested whether participants’ within-trial attentional dynamics changed over the
course of the experiment, modeling the linear change in parameters across blocks of trials. We
found that later in the experiment, participants’ overall sensitivity to distractors was higher (in
choice), and their sensitivity to targets was lower (in reaction time; see Supplementary Table 11).
However, later in the experiment participants also had faster target and distractor dynamics, such
that maladaptive sensitivity was most prominent in the earliest phase of the trial (Supplementary
Figure 11). These results speculatively suggest that over time participants shift from maintaining
initial sensitivity to reactively reconfiguring attention, potentially due to fatigue or proactive

interference from Attend-Motion blocks.
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Previous conflict and incentives influence early trial dynamics

We found that, within a trial, participants dynamically adjusted attention depending on the task at
hand, with increasing sensitivity to task-relevant color information and decreasing sensitivity to
task-irrelevant motion information over the course of a trial. This raises the question whether the
two forms of adaptation we observed, related to previous conflict and incentives, influenced

different components of the within-trial attentional dynamics.

To address this question, we first examined how the dynamics of target and distractor sensitivity
were altered by the congruence of the distractor on the previous trial (i.e., Choice ~
PreviousDistractor x RT x Coherence). We found that after incongruent trials, participants
started the next trial more sensitive to targets and less sensitive to distractors (Figure 7a).
Although this means that after congruent trials participants had worse initial conditions (starting
less sensitive to targets and more sensitive to distractors), they appeared to compensate for this
early disadvantage with faster increases in target enhancement (ds = 0.65 to 1.0, p <.001) and
distractor suppression (ds = -0.68 to -1.1, p <.001; Table 5). Both post-congruent and post-
incongruent trials thus reached similar asymptotic levels of feature sensitivity. This early
influence of previous conflict on congruence sensitivity is consistent with previous experiments
on the timecourse of conflict adaptation (Stins et al., 2008; Wylie et al., 2010), with the current

work extending these findings to show concurrent, albeit weaker, target-enhancement dynamics.
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Figure 7. Influence of conflict and incentives on sensitivity dynamics. A) The relationship between previous
distractor congruence and current distractor congruence was strongest for early RTs (bluer color). The y-axis depicts
the difference in accuracy between the extreme tertiles of previous congruence, for visualization purposes. B) Target
(green) and distractor (cyan) sensitivity plotted as a function of previous congruence (color shade) and reaction time
(x-axis), as estimated by our regression model. Vertical lines indicate quartiles of the RT distribution. C) Regression
estimates for the interactions between reaction time and previous congruence on lapse rate (‘Saturation Dynamics’,
orange); or reaction time, previous congruence, and feature coherence on accuracy (target is green, distractor is
cyan). D) The relationship between incentives and target coherence was strongest for early RTs (bluer color). The y-
axis depicts the difference in accuracy between blocks where there were rewards vs blocks without rewards. E)
Target (green) and distractor (cyan) sensitivity plotted as a function of incentives (gold) and reaction time (x-axis),
as estimated by our regression model. Vertical lines indicate quartiles of the RT distribution. F) Regression

estimates for the interactions between reaction time and incentives on lapse rate (orange); or reaction time,
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incentives, and feature coherence on accuracy (target is green, distractor is cyan). Error bars on behavior reflect
within-participant SEM, error bars on sensitivity estimates reflect between-participant SEM on the predictions, error
bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease of
visualization. Feature coherence and RT were rank-ordered and binned into quantiles with equal numbers of trials at

each level of target coherence, distractor congruence, or RT bin.

Figure 5. Effects of previous conflict on feature sensitivity dynamics
DV Predictors Exp 1 (df=26) | Exp2 (df=9) Exp 3 (df=29) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value
Choice Prev Dist x Dist x RT -0.853 -1.07 -1.01 1.62x10
Prev Dist x Targ x RT 1.01 0.646 1.71x107
Lapse Rate | Prev Dist x RT 0.456 0.463 0.531 3.52x10%°
RT Prev Dist x Dist x Acc | -0.563 -1.15 -1.16 2.84x10°13
Prev Dist x Targ x Acc -0.00500 -0.524 0.135
Prev Dist x Acc 0.417 0.175 -0.162 0.881

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

We performed the equivalent analysis for incentive-related adaptation (i.e., Choice ~ Reward

RT x Coherence). We found that during incentivized blocks, participants’ initial target

sensitivity was higher than during non-incentivized blocks, and remained so across much of the

trial (see Figure 7d). However, target sensitivity eventually reached an asymptote, such that

towards the end of the trial both incentivized and non-incentivized trials had similar levels of

target sensitivity (see slowest quantile in Figure 7d). This convergence was accounted for by

larger increases in lapse rates later in incentivized trials (d = 0.52, p <.001; Table 6). The

dynamics of distractor sensitivity, by contrast, did not significantly differ between incentivized

and non-incentivized trials (d = 0.055, p = 0.71).
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Table 6. Effects of incentives on feature sensitivity dynamics
DV Predictors Exp 3 (df=29) p-value
Effect size (d)

Choice Rew x Target x RT -0.139 0.331
Rew x Distractor x RT | 0.0546 0.712

Lapse Rate | Rew x RT 0.524 0.000937

RT Rew x Target x Acc 0.437 0.00432
Rew X Distractor -0.170 0.260
Acc
Rew x Acc -0.540 0.000646

Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p-values (two-tailed,

a = 0.05) are shown in bold.

An accumulator model of attentional control over target and distractor

processing

Our results demonstrate that participants independently control the initialization and online

adjustment of attention towards target and distractor features. To parsimoniously account for this

set of findings, we developed an accumulator model that integrated elements of previous models

used to separately account for performance in tasks involving perceptual discrimination (Gold

and Shadlen, 2007; Ratcliff and McKoon, 2008) and overriding prepotent distractors (Cohen et

al., 1990; Weichart et al., 2020; White et al., 2011). We used a variant of a feedforward

inhibition model, in which inputs provide excitatory inputs to associated response units and

inhibitory inputs to alternative response units (Shadlen and Newsome, 2001). Our decision

model takes as inputs the color and motion coherence in support of different responses,

nonlinearly transforms these inputs, and then integrates evidence for each response in separate
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rectified accumulators with balanced feedforward excitation and inhibition (Figure 8). The
signal-to-noise ratio of the intermediate layer’s outputs are determined by control units that
determine the gain of a given feature (Cohen et al., 1990; Musslick et al., 2019). We hand-tuned
the parameters of this model to determine whether it could capture our core experimental

findings across choice and reaction time.
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Figure 8. Feedforward inhibition with control. Color evidence (green) and motion evidence (blue) are transformed
and accumulated to make a choice. Balanced excitatory connections (black solid lines) and inhibitory connections
(red dashed lines) cause accumulation of the difference in evidence for each response. A) Evidence for the left
response (purple) and right response (orange) are accumulated over time without leak. When one of the
accumulators crosses a (linearly collapsing) decision threshold, the model chooses that response. B) Within each
trial, the signal-to-noise of each feature pathways is controlled by a feature gain. Over time within a trial, the feature
gains for targets (green) and distractors (cyan) exponentially approach to a fixed level (high gain for targets, zero

gain for distractors). Note the difference in x-axis scaling compared to Figure 6G. C) An equivalent visualization of
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the dynamics in B. Attractor dynamics drive target and distractor gains to their fixed level, shown at different

timepoints within the trial (pinker colors are later in the trial). The horizontal line depicts zero distractor gain.

Our accumulator model was able to reproduce our key within-trial findings. During our main
Attend-Color trials, it generated responses that were faster and more accurate with increasing
color coherence (Figure 9a) and slower and less accurate with increasing motion incongruence
(Figure 9b). We simulated Attend-Motion trials by increasing the target gain and decreasing the
distractor gain, to capture potential differences in both automaticity and control. Now, our model
generated responses that were even faster and more accurate with increasing target coherence
(now motion; Figure 9c¢) but that were insensitive to distractor congruence (now color; Figure
9d), replicating the main behavioral results in Attend-Motion blocks. Notably, distractor effects
were not reproduced in an accumulator competition model parameterized to be more ‘race-like’
(Supplementary Figure 3; (Teodorescu and Usher, 2013). This occurred because larger inputs

(whether congruent or incongruent) drove faster reaction times.
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Figure 9. Simulation of target and distractor sensitivity (see Figure 2). A-B) Sensitivity to target coherence (A) and

distractor congruence (B) in behavior (left) and in the FFIc simulation (right) for Attend-Color blocks. C-D) Same

as A-B, but for Attend-Motion blocks.

We next used this model to test potential mechanisms underlying participants’ within- and

between-trial control adaptations. First, we tested whether participants’ apparent within-trial

dynamics in feature sensitivity plausibly resulted from actual within-trial changes in control

gains governing feature sensitivity, or whether such dynamics could result from static control

gains. We implemented time-varying feature gains as attractors with an initial gain (e.g.,

reflecting bottom-up salience or learning) that exponentially approaches a fixed point (e.g.,

determined by the task goals and control; cf. (Musslick et al., 2019; Steyvers et al., 2019)).
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We found that incorporating these time-varying gains into our accumulator model allowed it to
reproduce participants’ behavioral dynamics. In accuracy, our model replicated the shift in target
sensitivity over time, with the collapsing bound reducing performance on the slowest trials
(Figure 10a). Our model similarly captured participants’ decreased target sensitivity at later RTs
(Figure 10b). Finally, our model recreated the analogous effects in RT, with faster errors for high
coherence targets and incongruent distractors (Figure 10c-d). Critically, we were unable to
replicate these qualitative patterns of behavior with FFI models in which control gains that were
frozen throughout the trial (Supplementary Figure 4). Drift diffusion models with across-trial
variability in gain, noise, or threshold; or drift diffusion models with within-trial dynamics in
noise or threshold were similarly unable to capture our key effects without within-trial gain

dynamics (Supplementary Figure 5).

At later RTs, participants were more likely to exhibit lapses in performance (i.e., choose
randomly; ds = 0.25 to 0.93, p <.001, see Table 4), which were estimated with a separate term in
our regression models (see ‘Regression Analyses’ section of Methods). This is evident in poorer
overall performance in the slowest RT bin, relative to the 2"-4" bins (see Figure 10a, left panel,
pink line). A similar ‘hook’ is often observed in RT-conditioned accuracy functions, with
gradually better performance followed by poorer performance for the slowest RTs (van den
Wildenberg et al., 2010; Weichart et al., 2020). Our simulation captured this global reduction in
accuracy by including a collapsing boundary (Drugowitsch et al., 2012; Rosenbaum et al., 2022),
which leads to late errors irrespective of feature coherence (see Supplementary Figure 5 for
contrast to fixed bound). Notably, even though overall accuracy is reduced over time, target

sensitivity is stronger at the slowest RT bin relative to the earliest RT bin (compare navy and
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pink psychometric slopes in Figure 10a), consistent with both feature-selective dynamics (gain

control) and global dynamics (collapsing bound). By including a theory-driven mechanism for

reductions in overall accuracy, our FFIc model captures performance trends in this slowest RT

quantile that were difficult to capture with for more model-agnostic regression analyses.
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Figure 10. Simulation of target and distractor sensitivity dynamics (see Figure 6). A-B) RT-dependent (A) and

accuracy-dependent (B) sensitivity to target coherence in behavior (left) and in the FFIc simulation (right). C-D)

Same as A-B, but for distractor congruence.

The parallel feature pathways in this model are designed to capture the independent influences of

a target and distractor information (Lindsay and Jacoby, 1994). However, the time-varying

feature gains providing an account for the weak interactions we observed between target and
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distractor sensitivity in accuracy. Despite there being no competition in feature processing in our
model, we found these weak target-distractor interactions emerge in simulated accuracies but not
simulated RTs. This interaction appeared to result from the different time courses of target and
distractor sensitivity. As in participants’ behavior, the model’s errors due to incongruent
distractors tend to occur early (Figure 10c-d), censoring target processing at a lower (early) level
of sensitivity. This interplay between feature sensitivity dynamics (but not overall feature
sensitivity per se) offers a plausible explanation for the subtle and seeming inconsistent

interactions in participants’ behavior.

Having provided an account of how each of our stimulus features is processed over the course of
the trial depending on the task goal, we next tested a potential model-based account of the two
forms of control adaptation we observed across trials. Our participants demonstrated enhanced
target sensitivity on rewarded blocks, and suppressed distractor sensitivity after increasingly
incongruent trials. In both cases, adaptation appeared to enhance sensitivity to stimulus features

at the fastest reaction times.

To account for the early effects of conflict and incentives, we modified the initial conditions of
our model’s gain dynamics (Figure 11a). We simulated post-interference adaptation by
initializing the distractor gain closer to its asymptote, and we simulated reward incentivization by
initializing the target gain closer to its asymptote. We found that these simulations qualitatively
reproduced participants’ behavior, with stronger adaptation and reward effects earlier in the trial
than later. The exponential dynamics in our attractor network parsimoniously accounts for the

fact that dynamics tended to be faster when they were initialized further from the fixed point
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(i.e., post-congruent trials). Thus, our model was able to capture the range of findings in this
experiment: target-distractor sensitivity, within-trial dynamics, and how the dynamics of target

and distractor processing may be influenced by control.
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Figure 11. Simulation of post-conflict and incentive effects (see Figure 7). A) The influences of previous
congruence (shade) and incentive effects (gold) were implemented through changes to the initial conditions of the
feature gain dynamics, with previous congruence influencing initial distractor gain and incentives influence initial
target gain. B-C) The influence of previous congruence on distractor sensitivity dynamics in behavior (B) and in the
FFlc simulation (C). D-E) The influence of incentives on target sensitivity dynamics in behavior (D) and in the FFIc

simulation €.
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Discussion

When faced with distraction, we can sustain good performance by engaging with relevant
information or ignoring disruptive information. Our experiment revealed that these strategies are
under independent cognitive control, and are driven by distinct attentional dynamics. Using a
bivalent random dot motion task with parametric target and distractor coherence (PACT), we
found that target and distractor information have independent influences on participants’
performance. Furthermore, we found that participants’ sensitivity to targets and distractors was
preferentially modulated by incentives and previous interference, respectively. These adaptations
altered the initial conditions of feature-selective gains, which was followed by dynamic
enhancement to target gains and suppression of distractor gains. These behavioral phenomena
could be parsimoniously explained by a hybrid sequential sampling model with goal-dependent

attractor dynamics over feature weights.

Together, these results support a cognitive control architecture that is parametric, multivariate,
and dynamic. Previous research has found that cognitive effort is enhanced in response to
incentives (Parro et al., 2018; Yee and Braver, 2018) and to previous conflict (Egner, 2007;
Gratton et al., 1992). The current experiments extend these previous findings to show that these
adaptations are both graded in their intensity, and selective in their allocation. These findings are
consistent with a multivariate perspective on cognitive control (Ritz et al., 2022), in which
people optimize a configuration of control signal according to their costs and benefits (Musslick
et al., 2015; Shenhav et al., 2013). The target and distractor configurations observed here add to

a body of work teasing apart the conditions under which people coordinate across multiple
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control signals (Danielmeier et al., 2011; Leng et al., 2021; Noonan et al., 2016; Simen et al.,

2009; Soutschek et al., 2015; Wostmann et al., 2019).

A core question arising from these results is why there are preferential relationships between
previous conflict with distractors, and incentives with targets. One possibility is that this is due to
credit assignment. A system that could properly assign credit to features based on their
contribution to conflict and incentives should allocate control towards distractors and targets.
Distractors are a salient source of response conflict, and participants could adjust sensitivity to
reduce this conflict. When participants were performing the more automatic Attend-Motion
blocks, during which response conflict was absent, this adaptation was also absent. In contrast,
reward contingencies were explicitly tied to target discrimination performance. During Attend-
Motion blocks, there was a stronger association between target coherence and performance (e.g.,
due to response compatibility, and that only targets contributed to accuracy), potentially
explaining why these blocks had larger incentive effects. This account is consistent with
Bayesian models of cognitive control, such as those that predict feature congruence (Jiang et al.,
2014; Yu et al., 2009) or the value of control policies (Bustamante et al., 2021; Lieder et al.,

2018).

Our results also provide insight into the dynamic implementation of attentional control. Previous
work has shown that within-trial attentional dynamics play an important role in both decision
making (Callaway et al., 2021; Krajbich et al., 2010; Li and Ma, 2021; Westbrook et al., 2020)
and cognitive control (Adkins and Lee, 2021; Hardwick et al., 2019; Servant et al., 2014; Ulrich

et al., 2015; Weichart et al., 2020; White et al., 2011). These foundational experiments have
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largely focused on spatial attention, with far less known about the dynamics of feature-based
attention, where processing of targets and distractors is less mutually constrained. Whereas
previous work has modeled within-trial dynamics as simplified impulse functions (Ulrich et al.,
2015), our modeling approach extends these accounts with a more process-oriented focus on how
a neural network could be parameterized to produce key patterns of within-trial attentional
dynamics. Furthermore, relatively few experiments have studied how attentional dynamics are
modified in response to control drivers like incentives or task demands (though see: (Adkins and

Lee, 2021; van den Wildenberg et al., 2010; Yu et al., 2009)).

Our experiments show that the dynamics of target and distractor sensitivity are independent, and
that previous conflict and incentives appear to operate through changes to the initial conditions
of these feature gains*. These findings are broadly consistent with influential theories of
attentional dynamics which propose that early task processing is largely driven by feature
salience and statistical or reinforcement learning, whereas attentional control has a relatively
slower timecourse ((Awh et al., 2012; Theeuwes, 2018, 2010), see also (van den Wildenberg et
al., 2010))°. If participants are learning the relevance of different features, it’s possible that these
initial conditions in part reflect the prior probability that attention towards targets or distractors
will support task goals (Lieder et al., 2018; Yu et al., 2009). Similar to how response priors are

reflected in the initial decision state (Bogacz et al., 2006; Simen et al., 2009), priors on feature

4 We found that just modifying feature gains' initial conditions parsimoniously accounted for incentive and previous
conflict effects. Note that we do not explicitly compare this model to more complex models incorporating changes
to parameters like decay rate and/or asymptotic gain, which should be more thoroughly investigated in future
experiments.

5 We assume that ‘early’ and ‘late’ processing do not reflect discrete stages (Hiibner et al., 2010), but different
timepoints in a continual process. While this is consistent with previous work showing that gradual attentional
adjustments are a better model of flanker task performance (White et al., 2011), future work should experimentally
confirm the continuous nature of these attentional dynamics.
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priority may be reflected in the initial attentional state. In the case of previous interference, this
could reflect learning whether distractors enhance performance (e.g., after trials on which
congruent distractors led to better performance), or a local estimate of the probability a trial will
be congruent (Yu et al., 2009). For incentives, this may reflect the expected target-reward
contingency. Future research should investigate this account by measuring attentional dynamics

as participants learn task contingencies (Shenhav et al., 2018).

Our patterns of conflict- and incentive-dependent dynamics help rule out stimulus-driven
dynamics and support independent control over feature processing. After congruent trials,
participants started the next trial with more similar target and distractor gains, that were then
more quickly separated within the trial (Figure 7b). If these dynamics were an artifact of the
decision process (e.g., due to accumulator attractors; (Wong and Wang, 2006), then we would
expect that when target and distractor gains are initially more similar, there would be slower
dynamics. Instead, we found faster dynamics, supporting a role for feedback control that
reconfigures attentional gain to align with task goals. Additionally, during incentivized blocks,
we saw that participants modified attentional dynamics for targets, but not distractors. This
finding further supports the independence of these attentional dynamics, demonstrating that
participants can alter attention towards individual features one at a time. This pattern of
incentives enhancing sensitivity to target information, while also producing faster responding
and a marginally higher lapse rate, is consistent with previous work on motivated attention. A
recent experiment used drift diffusion modeling to show that participants increase their rate of
evidence accumulation and decrease their response threshold when faced with higher rewards,

consistent with the reward-rate optimal policy (Leng et al., 2021). The current experiment
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extends these findings by revealing how specific attentional adjustments improve evidence

accumulation, providing a more process-oriented account of motivated cognitive control.

Our dynamical process model may help link behavior in response conflict tasks to cognitive
dynamics in other domains. In the domain of task-switching, recent cognitive models have
developed similar dynamical accounts of how people reconfigure task sets. Classic work has
shown that switch costs exponentially decay with preparation time (Monsell and Mizon, 2006;
Rogers and Monsell, 1995), similar to the dynamics in the current task. Computational models
have formalized these task set dynamics during the switch preparation period (Gilbert and
Shallice, 2002; Jongkees et al., 2023; Musslick et al., 2019; Ueltzhoffer et al., 2015; Yeung and
Monsell, 2003) and across trials (Grahek et al., 2022; Jaffe et al., 2023; Steyvers et al., 2019). If
the within-trial dynamics we observe here reflect such “task set micro-adjustments”
(Ridderinkhof, 2002), then our results highlight the computational similarities between different
forms of cognitive flexibility. Both within trials and across tasks, reconfiguration appears to be
well-captured by a common class of dynamical systems in which task configurations
exponentially approach an appropriate set point. In this experiment, we show that these dynamics
are multivariate and adjusted to meet local task demands through changes to initial conditions.
Interestingly, control over initial conditions also plays a central role in the neural dynamics of
motor preparation (Churchland et al., 2010; Kao et al., 2020; Remington et al., 2018),
highlighting the broader similarities across motor and cognitive domains (Ritz et al., 2022, 2020)

and generating neural predictions for the neural implementation of dynamic cognitive control.

The evidence we provide for dissociable control over target and distractor processing is

consistent with previous neuroscience experiments that used neural correlates of stimulus
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processing to argue for independent enhancement and suppression processes (Gazzaley et al.,
2005; Noonan et al., 2016; Soutschek et al., 2015; Wostmann et al., 2019). Our results extend
these findings by exploring how different factors can contribute to dynamic reconfiguration of
target and distractor attention, which we formalize in an explicit process model. Notably, our
findings diverge from neuroimaging experiments that have suggested that control primarily acts
through enhancements to target processing (Egner and Hirsch, 2005). One potential source of
this divergence may be that people’s control strategies differ depending on the source of task
conflict (Braem et al., 2014; Egner, 2008; Egner et al., 2007). For example, tasks evoking
stimulus-stimulus conflict (e.g., semantic competition in Stroop task) may require different
strategies than tasks evoking stimulus-response conflict (e.g., distractors driving competing
responses, as in PACT). Although previous work using Stroop-like tasks has found similar
patterns of control adjustments as in the current experiment (Soutschek et al., 2015), this raises
the broader question of whether the specific feature-control relationships in this experiment
should generalize to other tasks. According to the Expected Value of Control theory, and the
Learned Value of Control model that builds upon it, control strategies are adapted to specific task
contexts (Lieder et al., 2018; Ritz et al., 2022; Shenhav et al., 2013). This framework predicts
there will be strategic or learned control-feature mappings, rather than a rigid relationship
between task features and control policies. The current results show that participants can
independently control target and distractor processing when these features are independent, and

future work should explore whether control strategies appropriately accommodate other tasks.

Interestingly, participants appeared to suppress distractor sensitivity even on congruent trials,

evident in the right half of Figure 6d (see also (Mante et al., 2013; Pagan et al., 2022)),
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suggesting that they are not reactively adjusting this control policy when the trial conditions
deem it unnecessary or even detrimental. On its face, this finding presents a challenge to models
that propose control allocation on the basis of response conflict (Botvinick et al., 2001; Yu et al.,
2009), though much of the evidence for these theories comes from across-trial adjustments
(Botvinick et al., 2001; Egner and Hirsch, 2005; Kerns et al., 2004; Yeung et al., 2004). The
current results may thus inform understanding of the timescale over which people plan reactive
control adjustments. In some cases, this decision process may take more time than would be

helpful for fast within-trial reconfiguration.

Our analyses of attentional dynamics depend on participants’ own response times and choices,
raising concerns about selection biases (i.e., lack of experimental control over reaction times).
While evidence accumulation modelling typically depends on choice-conditioned reaction times,
inferring time-varying influence of targets and distractors presents a particular challenge. To
address these concerns, we used simulations to show that the dynamic profiles we observed
cannot be accounted for by an evidence accumulation model with static gains on target and
distractor processing (Supplementary Figure 4) or models with dynamic changes to non-selective
components like decision threshold (Supplementary Figure 5). Introducing dynamic feature gains
allowed us to account for those same patterns (Figures 9 to 11; Supplementary Figure 5). These
results are consistent with previous work validating DDM estimates of attentional dynamics in
conflict tasks (White et al., 2018, 2011). Even if these measurements are valid, using sparse
behavioral measures is an inefficient method for measuring latent dynamics, and may combine
multiple processes (e.g., accumulation and threshold adjustments). By integrating across multiple

convergent measures of decision and attentional dynamics — including interrogation protocols
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(Adkins and Lee, 2021; Hardwick et al., 2019), motor tracking (Erb et al., 2016; Menceloglu et
al., 2021; Scherbaum et al., 2010), and/or temporally-resolved neuroimaging (Fischer et al.,
2018; Scherbaum et al., 2011; Weichart et al., 2020; Yeung et al., 2004) — future work can help
strengthen and build on our understanding of continuous changes in the configuration of multiple

control processes.

The evidence accumulation modeling in the current experiment was able to categorically rule out
several alternative architectures, demonstrating the necessity and sufficiency of feature-specific
adjustments for capturing the full array of putative attentional dynamics. Our model validation
approach supports our interpretation of feature-selective adjustments, while committing less
strongly to the specific formulation of attentional control (e.g., a specific model
parameterization, or the functional form of the collapsing bound). An important direction for
future research should be to leverage emerging methods for parameter estimation to directly fit
our accumulator model to participants’ behavior (Fengler et al., 2021; Weichart et al., 2020).
This approach will help extend insights from the current experiment, such as enabling

participant-specific parameters to reveal individual differences in attentional control.

Together, these experiments provide new insight into how we flexibly adapt to the changing
demands of our environment. We find evidence for flexible control that aligns multiple forms of
information processing with task goals, and can be captured by an computationally explicit
process model. The developments from this experiment can help extend models of cognitive
control towards richer accounts of how multivariate control configurations, such as across targets

and distractors, are optimized during goal-directed behavior.
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Supplementary Table 1. Target and distractor sensitivity (Attend-Motion)

DV Predictors Exp1(df=45) | Exp2(df=25) | Exp3(df=45) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value

Choice | Target coherence 4.39 5.44 5.69x1053
Distractor congruence 0.732 0.352 0.269 0.000916
Target x Distractor 0.0522 0.145 0.6210

RT Target coherence -1.47 -1.63 2.71x102!
Distractor congruence 0.125 0.179 0.407 0.121
Target x Distractor 0.0710 0.0371 0.864

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

Supplementary Table 2. Target and distractor sensitivity (Attend-Color - Attend-Motion)

DV Predictors Exp 1 Exp 2 Exp 3 Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value
Choice | Target coherence -0.588 -0.615 1.00x101°
(df = 50.0) (df = 89.8)
Distractor congruence 0.432 0.743 0.971 5.79x10°"°
(df = 88.9) (df=49.1) (df=75.8)
RT Target coherence 0.00957 0.339 0.182
(df = 44.4) (df = 69.8)
Distractor congruence -0.804 -1.19 -1.38 2.69x103!
(df=78.8) (df=42.8) (df=59.1)

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across

experiments, with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

Supplementary Table 3. Correlations between RT and accuracy betas

Experiment

Correlands

MAP r-stat

p-value

Exp | (df=54)

Distractor Betas

-0.891

1.95x102°
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Exp 2 (df = 38) Target Betas -0.712 1.27x107
Distractor Betas -0.875 7.48x101
Exp 3 (df =58) Target Betas -0.540 4.20x10°°
Distractor Betas -0.907 1.05x102

Parameter correlations are calculated from the MAP group-level parameter covariance. Statistically significant p-

values (two-tailed, o = 0.05) are shown in bold.

Supplementary Table 4. Effects of previous conflict on feature sensitivity (Attend-Motion)

DV Predictors Exp 1 (df=41) | Exp2 (df=19) | Exp 3 (df =39) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value
Choice | Distractor x Prev Distract 0.0113 -0.176 0.293 0.578
target x Prev Target -0.00795 -0.424 0.268
RT Distractor % Prev Distract 0.503 -0.427 0.181 0.291
target x Prev Target 0.131 -0.0333 0.777

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

Supplementary Table 5. Effects of previous conflict on feature sensitivity (Attend-Color - Attend-Motion)

DV Predictors Exp 1 Exp 2 Exp 3 Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value

Choice | Distractor-dependent 0.505 0.984 0.280 4.39x108
(Distractor - Distractor) (df=52.7) (df=33.6) (df=47.7)
Motion-dependent 0.448 0.651 2.27x10°8
(Distractor - Target) (df=21.9) (df=40.2)

RT Distractor-dependent -0.629 -0.956 -1.20 3.40x102
(Distractor - distractor) (df=80.2) (df=29.3) (df=70.7)
Motion-dependent -0.237 -0.0929 0.337
(Distractor - Target) (df=19.1) (df=39.3)

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across

experiments, with statistically significant p-values (two-tailed, o = 0.05) shown in bold.
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Supplementary Table 6. Effects of incentives on feature sensitivity (Attend-Motion)

DV Predictors Exp 3 (df=41) p-value
Effect size (d)

Choice | Target x Reward 0.703 6.02x10°
Distractor x Reward 0.289 0.110

Lapse Reward -0.0696 0.670

Rate

RT Target x Reward -0.126 0.415
Distractor x Reward -0.192 0.265
Reward -0.0955 0.516

Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p-values (two-tailed,

a = 0.05) are shown in bold.

Supplementary Table 7. Effects of incentives on feature sensitivity (Attend-Color — Attend-Motion)

DV Predictors Exp 3 p-value
Effect size (d)
Choice | Target x Reward -0.279 0.0363
(df=59.0)
Distractor x Reward -0.230 0.117
(df=48.3)
RT Target x Reward 0.0566 0.667
(df=58.3)
Distractor x Reward 0.271 0.0199
(df=77.0)

Effect sizes are calculated from Welsh’s contrasts across regression models. Statistically significant p-values (two-

tailed, o = 0.05) are shown in bold.

Supplementary Table 8. Dynamics of feature sensitivity across response times (Attend-Motion)

DV Predictors Exp1(df=38) |Exp2(df=21) | Exp3(df=41) | Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value
Choice | Target x RT 2.03 1.31 3.30x102°
Distractor x RT -0.257 0.194 -0.490 0.0226
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Lapse RT 0.509 0.763 -0.234 0.941
Rate
RT Target X Accuracy 0.772 0.679 1.59x107
Distractor X Accuracy 0.0758 -0.211 0.0199 0.931

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments,

with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

Supplementary Table 9. Dynamics of feature sensitivity across response times (Attend-Color — Attend-

Motion)
DV Predictors Exp 1 Exp 2 Exp 3 Aggregate
Effect size (d) Effect size (d) Effect size (d) p-value
Choice | Target x RT -2.08 -1.09 3.35x10°"7
(df=23.0) (df=46.1)
Distractor x RT -0.102 -0.585 -0.539 4.57x10°%
(df=56.3) (df=22.4) (df=78.5)
RT Target X Accuracy -0.429 -0.422 0.00148
(df=23.0) (df=46.2)
Distractor X Accuracy -0.344 -0.648 -0.723 4.56x10 1!
(df =66.4) (df=29.6) (df=78.6)

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across

experiments, with statistically significant p-values (two-tailed, o = 0.05) shown in bold.

Supplementary Table 10. Model Collinearity

Model Experiment Accuracy Model Collinearity RT Model Collinearity
median [25% - 75%] median [25% - 75%]
Baseline Experiment 1 1.4[14-1.5] LL1[L.1-1.1]
Experiment 2 14[1.4-1.5] LL1[L.1-1.1]
Experiment 3 14[1.4-1.5] LL1[L.1-1.1]
Post-Conflict Experiment 1 1.5[1.4—1.5] 1.2 1.1 -1.3]
Experiment 2 14[1.4-1.5] 1.3[1.2-1.3]
Experiment 3 1.5[1.4-1.5] 1.3[1.2-1.3]
Reward Experiment 3 1.4[1.4-1.5] 1.2[1.1-1.2]




Humans reconfigure target and distractor processing

64

Dynamics Experiment 1 1.5[1.5-1.6] 1.5[1.3-2.0]
Experiment 2 1.5[1.4-1.5] 1.6 [1.4-1.7]
Experiment 3 1.5[1.4—1.5] 1.7[1.5-2.0]
Post-Conflict Dynamics | Experiment 1 1.6 [1.6 — 1.8] 2.2 [1.7-3.3]
Experiment 2 1.5[1.4-1.5] 2.1[1.8-2.4]
Experiment 3 1.5[1.5-1.6] 2.1[1.7-2.5]
Reward Dynamics Experiment 3 1.5[1.5-1.6] 2.0[1.7-2.4]

Belsley collinearity diagnostics for core models (from MATLAB’s collintest). Diagnostic values are the ratio of the

design matrix’s largest singular value to its smallest singular value, summarized at different participant quantiles

i.e., median is the participant at the 50" percentile). A value of 1 is perfect orthogonality, and values below 30 are
p p p

within the default tolerance. All values are well below 30, indicating tolerable collinearity.

Supplementary Table 11. Across-block changes in Feature Sensitivity Dynamics

DV Predictors Exp 2 Exp 3 Aggregate
Effect size (d) Effect size (d) p-value
Choice Block x Distractor x RT -0.501 -0.644 5.21 x 106
Block x Target x RT 0.348 0.480 .000576
Block x Distractor 0.633 0.524 1.27 x 10°%
Block x Target 0.0698 -0.0581 501
Lapse Rate | Block 0.380 0.0793 175
Block x RT -0.505 -0.277 .00342
RT Block x Distractor x Accuracy 0.168 -0.397 .0399
Block x Target X Accuracy -0.142 -0.153 .286
Block % Distractor 0.0498 -0.129 215
Block x Target 0.371 0.475 .000472
Block x Accuracy 0.396 0.448 000422
Block -0.970 -1.23 1.33 x 10"

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across

experiments, with statistically significant p-values (two-tailed, o = 0.05) shown in bold.
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Supplementary Figures
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Supplementary Figure 1. Regression schematic. To estimate feature sensitivity, trial-specific color (green) and
motion (cyan) coherence levels were passed through a hyperbolic tangent nonlinearity (tanh), with the a parameter
determining the strength of the nonlinearity (see Methods). The linear relationships between transformed coherence
and performance (RT in red and Choice in blue) were our estimates of participants’ feature sensitivity. Our critical
analyses tested whether potential indices of control (e.g., task instructions or incentives) moderated this feature

sensitivity.
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Supplementary Figure 2. Target-dependent adaptation. A-B) The relationship between target coherence and

accuracy (A) was weaker when the previous trial had weaker target coherence (redder colors). There was not a
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0.8
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-0.8
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significant effect for RT (B) Circles depict participant behavior and lines depict aggregated regression predictions.

C) Regression estimates for the current target coherence by previous target coherence interaction, within each

experiment. D-E) There was not a significant relationship between distractor congruence and previous target

coherence in accuracy (D) or €(E). F) Regression estimates for the current distractor congruence by previous target

coherence interaction, within each experiment. Error bars on behavior reflect within-participant SEM, error bars on

regression coefficients reflect 95% CI.
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Leaky Competing Accumulator (LCA)
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Supplementary Figure 3. Leak competing accumulator simulation. A) We simulated behavior from a leaky
competing accumulator (Usher and McClelland, 2001). In this model, the response accumulators directly compete.
In our parameter regime, leak and competition parameters produce race-like accumulation dynamics (Bogacz et al.,
2006; Weichart et al., 2020). B-C) We found that this parameter regime was unable to capture the effect of distractor
congruence on reaction time, as stronger inputs (congruent or incongruent) produce faster RTs in a race-like regime
(Teodorescu and Usher, 2013). Other parameter regime, producing DDM-like dynamics, would replicate our main

simulation results (Bogacz et al., 2006).
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Supplementary Figure 4. Static feature gain simulations. We simulated the FFI model under different formulations
that lack feature sensitivity dynamics, showing that gain dynamics are necessary to capture the RT- and Accuracy-
dependent feature sensitivity we observed in participants’ behavior. Feature-specific processes are necessary to
capture the opposite-going dynamics on target sensitivity and distractor sensitivity. A) Static model without feature
dynamics. B) Static model without feature dynamics or collapse response threshold. C) Static model without feature

dynamics, collapsing response threshold, or positive-rectified accumulators.
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Supplementary Figure 5. Dynamic drift diffusion simulations. Drift diffusion model (DDM) simulations

demonstrating the predictions from alternative formulations of within- and across-trial dynamics. Data are simulated

target and distractor psychometric curves, conditioned on simulated RT quintiles (1 million simulations per
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analysis). Row 1: Standard DDM, across-trial target gain variability, across-trial distractor gain variability. Row 2:
across-trial accumulation noise variability, within-trial noise increase, within-trial noise decrease. Row 3: across-
trial bound (threshold) variability, within-trial bound decrease (‘collapsing bound’). Row 4: within-trial target gain
enhancement and distractor suppression with fixed bound, within-trial target gain enhancement and distractor
suppression with collapsing bound, participants’ behavior. All simulations were performed using the dm package

(package available at www.github.com/Drugowitschlab/dm; simulation scripts available at

www.github.com/shenhavlab/PACT-public).
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Supplementary Figure 6. Aggregated posterior predictive checks. A) Model predictions from participants in
Experiments 2 and 3, showing predicted target sensitivity curves (top) and distractor sensitivity curves (bottom).
Predictions are centered within-participant to remove individual intercepts. B) Model fit quality for participants in
Experiments 2 and 3. Each participants’ behavior (x-axis) is plotted against predicted behavior (y-axis), across five
levels of target coherence (top) or distractor congruence (bottom; bluer to pinker indicates harder to easier
conditions). Dots closer to the black identity reflect better model fit, and color gradients on y-axis reflect feature

sensitivity. Predictions and behavior are centered within-participant to remove individual intercepts.
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Supplementary Figure 7. Single-participant posterior predictive checks. Posterior predictive checks from 48
participants from Experiments 2 and 3, linearly spaced from the poorest model likelihood to the best model
likelihood. First four rows are target sensitivity curves for accuracy (blue) and reaction time (red). Final four rows
are distractor sensitivity curves (for the same participants) for accuracy (blue) and reaction time (red). Overlaid lines

are single-trial model predictions aggregated like participants’ behavior.
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Supplementary Figure 8. Parameter Recovery. We simulated behavior from each participants’ best-fitting
parameters (x-axis) and then fit our model to this simulated behavior (y-axis). Each panel represents a parameter for
the within-trial sensitivity model (top) and the within-trial dynamics model (bottom). Parameters were estimated
hierarchically, with five simulated samples for each model (5 repetitions x 60 simulated participants). Gray
horizontal and vertical lines reflect the parameter zero point, and the diagonal cyan line reflects the unity line. The

simulated-recovered parameter correlation is reported in each panel title.
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Supplementary Figure 9. Parameter knock-out analysis. Relative AIC (left column): parameter-penalized model
fits for the regression model in the main text (‘Full Model”), a model with previous RT and Choice removed (‘No
AR’), a model with tanh nonlinearities removed (‘No Tanh’), and a model with the lapse rate response (‘No Lapse’).
Smaller values reflect better fit, with zero reflecting the AIC of the full model. Posterior predictive checks (center

column): simulated behavior (lines) plotted over observed behavior (dots). Notice that removing tanh nonlinearities
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fails to capture behavioral trends in within-subject models, and removing lapse terms fails to capture behavior in
Dynamics models. Parameter comparisons (right column): model parameters plotted for the best-fitting model (red)
and the full model (black). Notice that the parameters are very similar between these models, demonstrating that our

key parameters are robust to knocking out other terms of the model.
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Supplementary Figure 10. Target and distractor sensitivity (Equal Axes). A) Participants were more accurate (blue,
left axis) and responded faster (red, right axis) when the target color had higher coherence. Lines depict aggregated
regression predictions. In all graphs, behavior and regression predictions are averaged over participants and
experiments. Data aggregated across Experiments 2 & 3. B) Regression estimates for the effect of target coherence
on performance within each experiment, plotted for accuracy (blue, left axis) and RT (red, right axis). C)
Participants were more accurate and responded faster when the distracting motion had higher congruence (coherence
signed relative to target response). In all graphs, behavior and regression predictions are averaged over participants

and experiments. Data aggregated across Experiments 1-3. D) Regression estimates for the effect of distractor
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congruence on performance within each experiment, plotted for accuracy and RT. E-F) Similar to A-B, perfor€ce
(E) and regression estimates (F) for the effects of target coherence during Attend-Motion blocks, in which motion
was the target dimension. G-H) Similar to A-B, performance (G) and regression estimates (H) for the effects of
distractor congruence during Attend-Motion blocks, in which color was the distractor dimension. Error bars on
behavior reflect within-participant SEM, error bars on regression coefficients reflect 95% CI. Psychometric

functions are jittered on the x-axis for ease of visualization. Y-axes have been equalized across features and tasks.
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Supplementary Figure 11: Changes in within-trial dynamics across blocks. Compared to earlier blocks, in later
blocks participants’ earliest sensitivity was weaker for targets and stronger for distractors (i.e., less task-appropriate
later in the experiment). However, participants also exhibited faster corrected dynamics in later blocks, showing

similar sensitivity for the slowest reaction times.
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Supplementary Note 1: Task Instructions

Motion training

You will see dots that are moving left or right. If the dots are moving left, respond with the left key. If the
dots are moving right, respond with the right key. If you are correct, you will be told so, and if you make
a mistake, you will be reminded about the response mappings. As always, please respond as quickly and

accurately as you can.

Color training

You will see dots that are one of *these* four colors. If the dots are *these* colors, respond with *this*
hand. If the dots are *these* colors, respond with *this* hand. If you are correct, you will be told so, and
if you make a mistake, you will get to see the colors again. As always, please respond as quickly and

accurately as you can.

Main Experiment

This is the main section. Now you will see dots that both have a color and are moving left or right. There
will be two kinds of blocks. This block is a color block. In this block, you will have to respond to color
with these keys, like you did in the training. You will no longer receive feedback. Other blocks will be
motion blocks, and you will have to respond based on the direction of the dot motion. Feel free to take a
short break between blocks and come get me after you've finished all the blocks. As always, please
respond as quickly and accurately as you can. (Note: during experiments 2 and 3, we emphasized

choosing the color that was in the majority).

Reward Variant

During some of the color and motion blocks, you will be able to earn a monetary reward based on your

performance. This block is one of the HIGH reward blocks. These blocks will say ‘high reward’ at the
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top, and the text will be gold. At the end of the experiment, we will randomly pick a bunch of trials from
these blocks. Depending on how many trials that are fast and accurate, you will be able to earn up to $4.
Other blocks will be ‘NO reward’ blocks, with ‘NO reward’ written at the top and white text. You will

not earn any money for your performance on these blocks.
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