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Abstract 

When faced with distraction, we can focus more on goal-relevant information (targets) or focus 

less on goal-conflicting information (distractors). How people use cognitive control to distribute 

attention across targets and distractors remains unclear. We address this question by developing a 

novel Parametric Attentional Control Task (PACT) that can ‘tag’ participants’ sensitivity to 

target and distractor information. We use these precise measures of attention to develop a novel 

process model that can explain how participant control attention towards target and distractors. 

Across three experiments, we find that participants met the demands of this task by 

independently controlling their processing of target and distractor information, exhibiting distinct 

adaptations to manipulations of incentives and conflict. Whereas incentives preferentially led to 

target enhancement, conflict on the previous trial preferentially led to distractor suppression. 

These distinct drivers of control altered sensitivity to targets and distractors early in the trial, 

promptly followed by reactive reconfiguration towards task-appropriate feature sensitivity. To 

provide a process-level account of these empirical findings, we develop a novel neural network 

model of evidence accumulation with attractor dynamics over feature weights that reconfigures 

target and distractor processing. These results provide a computational account of control 

reconfiguration that provides new insights into how multivariate attentional signals are optimized 

to achieve task goals. 
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Introduction  

Whether we are having a conversation in a crowded coffee shop or writing a paper at our desk 

while surrounded by browser tabs, most tasks require us to engage in two distinct forms of 

attentional control1. One form of control enhances the processing of task-relevant information, 

for instance by paying careful attention to what our conversation partner is sharing with us. The 

other form of control suppresses the processing of task-irrelevant information, particularly that 

which conflicts with our primary goal (e.g., distraction from a nearby conversation). While past 

research has extensively studied target and distractor processing, it has done so primarily by 

focusing on each one separately. As a result, relatively little is known about how control over 

task-relevant information (targets) interacts with control over task-irrelevant information 

(distractors). Can people control multiple forms of information processing, and if so, how do 

they regulate these information streams over time? Here, we bridge previous methodological 

gaps to gain new insight into the top-down control over target and distractor processing, 

providing an integrative model of how dynamic control adjustments could occur within and 

across trials. 

 

Research into how people enhance the target of their attention versus actively suppress 

distractors has been largely governed by separate research areas, using different approaches. 

Studies of perceptual decision-making have characterized the process by which people try to 

 
1 Through-out, we refer to ‘cognitive control’ as the process that configures information processing to achieve task 
goals (Botvinick and Cohen, 2014). Whereas cognitive control refers to all such adjustments, such as changes to 
stimulus sensitivity or decision threshold, we reserve ‘attentional control’ for just the top-down control over 
stimulus sensitivity. 
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determine the correct response (e.g., which of two categories this stimulus belongs to) based on 

noisy information about a target stimulus, and how this varies with the difficulty of 

discriminating that stimulus (e.g., how perceptually similar two stimuli are; (Britten et al., 1992; 

Gold and Shadlen, 2007). This contrasts with studies of inhibitory control, in which the correct 

response to a target is typically unambiguous (e.g., respond left when seeing a high-contrast 

leftward-facing arrow), but a second dimension of the stimulus display (one that is typically 

processed more automatically; e.g., flanking arrows pointing rightward) triggers a conflicting 

response (Botvinick and Cohen, 2014; Posner and Snyder, 1975).  

 

Despite the substantial progress that has been made in understanding these two processes in 

parallel, critical questions remain that can only be addressed by studying them in tandem (Ritz et 

al., 2022). Most notably, it is unclear how people decide how to distribute their control between 

targets and distractors. When the demands or incentives for performing a task change, do people 

re-direct control towards target enhancement, distractor suppression, or both? For instance, 

previous work has shown that people are less susceptible to the influence of distractors after 

overcoming a previously conflicting distractor (the so-called conflict adaptation or congruency 

sequence effect; (Gratton et al., 1992). Prevailing models have accounted for these findings by 

assuming that participants increase attention to the target dimension following a high-conflict 

trial (Botvinick et al., 2001; Egner, 2007), but limitations of the relevant experiments (e.g., most 

experiments don’t manipulate target salience; through see (Lindsay and Jacoby, 1994; Servant et 

al., 2014; Stafford et al., 2011)) make it difficult to rule out that adaptation may also occur at the 

level of distractor suppression (Lindsay and Jacoby, 1994; Tzelgov et al., 1992). It is more 

generally an open question whether effects of recent task difficulty (e.g., low discriminability or 
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high-conflict) result in control-specific or control-general adaptations and, similarly, whether the 

motivation to improve performance in such settings leads to preferential engagement of one or 

both forms of control. Cognitive control is fundamentally an adaptive process, so people’s 

specific control policies should depend on the task structure (Botvinick and Cohen, 2014; Egner, 

2008). However, understanding how people coordinate multiple forms of information processing 

can help inform the architecture of the underlying control process (Ritz et al., 2022). 

 

One way that previous research has studied target and distractor adjustments is to measure 

changes in brain activity associated with task-relevant stimulus processing. For example, some 

previous work has suggested that conflict-triggered control preferentially enhances sensitivity in 

regions associated with target stimuli (e.g., faces in fusiform face gyrus (Egner and Hirsch, 

2005). Other studies have found evidence for both target and distractor control by using similar 

stimulus-tagging methods (Gazzaley et al., 2005; Soutschek et al., 2015) or by exploiting 

lateralized EEG responses (Noonan et al., 2016; Wöstmann et al., 2019). The range of results 

across these neuroimaging experiments may come from the different tasks that have been 

deployed (Egner, 2008), but may also arise from noisy or complex correspondence between 

neuroimaging methods and underlying cognitive processes. In the current experiment, we 

provide new methods for indexing target and distractor sensitivity from behavior alone, enabling 

us to provide new insight into the cognitive architecture of feature-selective control. 

 

Recent models of controlled decision-making have emphasized the role that within-trial 

attentional dynamics play in response conflict tasks, offering new insight into the 

implementation of cognitive control (Servant et al., 2014; Weichart et al., 2020; White et al., 
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2011; Yu et al., 2009). These models have largely focused on the Eriksen flanker task, modelling 

how an attentional spotlight centered on the target item narrows over time. This formulation 

necessarily yokes target enhancement and distractor suppression due to the spatial spread of 

attention. As a result, little is known about whether target and distractor processing dynamics can 

fall under independent control when these are not explicitly yoked, as in the case of feature-

based attention. Less still is known about how adjustments driven by factors like conflict 

adaptation and incentives alter the dynamics of target and distractor processing (Adkins and Lee, 

2021).  

 

To address these questions, we developed a novel task that orthogonally varies target and 

distractor information, measuring how processing of these two dimensions varies both within 

and across trials. Our task merges elements of paradigms that have been separately popularized 

within the two research areas above. To capture variability in target processing, we based our 

task on the random dot kinematogram paradigm (Danielmeier et al., 2011; Kang et al., 2021; 

Kayser et al., 2010; Mante et al., 2013; Shenhav et al., 2018). This task parametrically varies the 

motion discriminability (e.g., percentage of dots moving left) and color discriminability (e.g., 

percentage of green dots) across an array of dots. Participants were instructed to respond to the 

color dimension, while ignoring the motion dimension. Critically, whereas color response 

mappings were arbitrary (e.g., left hand for green), motion responses were exactly aligned with 

the direction of motion (e.g., left hand for leftward moving stimuli), resulting in potent “Simon-

like” 2 response interference from this prepotent distractor. A salient incongruent distractor 

 
2 The Simon task is a classic cognitive control task in which participants must ignore a response-affording stimulus 
feature (e.g., respond ‘left’ to a leftwards spatial location), and instead respond to a less prepotent stimulus feature 
(e.g., respond ‘right’ to a blue stimulus). The classic pattern of results is that participants perform more poorly when 
these two features disagree than when they correspond to the same response (see: (Egner, 2007)). 
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provokes an erroneous response, providing a qualitatively different form of difficulty from how 

low coherence targets make it harder to choose the correct answer (Norman and Bobrow, 1975). 

 

Previous work has demonstrated response conflict and trial-to-trial adjustments in a color-motion 

kinematogram with full target coherence and binary distractor congruence (Danielmeier et al., 

2011). We extended this task by parametrizing both target coherence and distractor congruence. 

In doing so, we are able to obtain more precise measures of feature sensitivity by accounting for 

global performance factors (e.g., lapse rate; (Wichmann and Hill, 2001). Importantly, however, 

we can also isolate how participants simultaneously configure attention towards each of these 

feature dimensions. Using standard elicitors of cognitive control, namely performance-

contingent incentives and response conflict, we examine how people dynamically configure both 

target and distractor gain to maximize their performance. We then use the precision afforded by 

these methodological advances to inform an explicit process model of attentional control. 

 

We find that participants independently and dynamically control target and distractor processing 

over the course of a trial. To meet the demands of this task, participants preferentially enhanced 

target sensitivity under incentives, and preferentially suppressed distractor sensitivity after high 

conflict trials. Moreover, they implement these control strategies by changing the initial 

conditions of a dynamic process that enhances task-relevant feature processing and suppresses 

task-irrelevant feature processing. Finally, we find that these control strategies can be captured 

by extending classic neural network models of cognitive control to incorporate an attractor 

network that dynamically regulates the influence of different task features on choice. Together, 

these results extend our understanding of both decision-making and cognitive control by bridging 
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the methodological and theoretical divides between these fields, providing new insight into how 

we control multiple forms of information processing. 

Methods  

Participants 

All participants provided informed consent in compliance with Brown University's Institutional 

Review Board, participating for either course credit or pay. We excluded participants from our 

analyses if they had <70% accuracy during attend-color blocks or completed less than half of the 

experiment. Fifty-seven individuals participated in Experiment 1 (mean(SD) age: 20.6(2.21); 36 

female; 1 excluded), 42 individuals participated in Experiment 2 (age: 19.1(0.971); 31 female; 2 

excluded), and 62 individuals participated in Experiment 3 (age: 19.8(1.38); 47 female; 2 

excluded), resulting in 156 included participants across the three experiments. Sample sizes were 

guided by piloting in Experiment 1 and experimental standards in cognitive control research 

(commonly n = 20-40; e.g., (Adkins and Lee, 2021; Danielmeier et al., 2011; Jiang et al., 2015; 

Vogel et al., 2020; White et al., 2011).  

Parametric Attentional Control Task (PACT) 

We developed the Parametric Attentional Control Task (PACT), extending tasks used to study 

decision-making (Kang et al., 2021; Mante et al., 2013; Shenhav et al., 2018) and cognitive 

control (Danielmeier et al., 2011). On each trial, participants viewed an array of moving dots 

(i.e., random dot kinematogram), presented in one of four colors (see Figure 1). Participants were 

taught to match two colors to a left keypress and two colors to a right keypress (with colors 
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counterbalanced across participants). The majority color did not repeat on adjacent trials to avoid 

priming (Braem et al., 2019).  

 

The direction of the dot motion (leftward or rightward) was task-irrelevant and could be 

consistent with the color response (distractor congruent trials) or it could be inconsistent with 

this response (distractor incongruent trials). Uniquely in this experiment, we parametrically 

varied the degree of distractor congruence on each trial by varying the motion coherence 

(percentage of dots moving in the same direction vs moving in a random direction). Distractor 

congruence was linearly spaced between 95% congruence and 95% incongruence, sampled 

randomly across trials. For variants with 11 levels of congruence, the congruence levels were [-

95, -76, -57, -38, -19, 0, 19, 38, 57, 76, 95], with negative values being incongruent and positive 

values being congruent. We made the motion highly salient to maximize the conflict induced by 

this distracting dimension (Wöstmann et al., 2021), with dots moving quickly across a large 

aperture. 

 

In Experiment 1, all of the dots were the same color (100% color coherence), creating a 

parametric extension of the Simon conflict tasks (Danielmeier et al., 2011). In Experiments 2 and 

3, the dots contained a mixture of two colors associated with different responses. Color 

coherence was linearly spaced between 65% to 95%, drawn randomly across trials. 

 

To maintain the salience of the motion dimension throughout the session (Shiffrin and Schneider, 

1977), participants alternated between blocks of the task above (‘attend-color’ trials, putatively 

more control-demanding) and blocks where participants were instructed to instead indicate the 
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direction of the dot motion (‘attend-motion’ trials, putatively less control-demanding). Mirroring 

the attend-color blocks, in Experiment 1 we held the motion coherence constant (maximal) 

during attend-motion blocks, while varying the color coherence across trials. In Experiments 2 

and 3, we varied the coherence of both dimensions during attend-motion blocks. In Attend-

Motion trials, we allowed distractor colors to repeat on consecutive trials, mirroring the stimulus-

repetitions that occurred in Attend-Color blocks. 

 

Comparing performance across tasks that are matched for visual and motoric demands also 

allows us to test whether behavioral effects depend on stimulus or response confounds. For 

example, participants’ behavior may be influenced by eye movement confounds (e.g., bottom-up 

attentional capture by motion coherence), response repetition biases (e.g., due to responses 

switching more often than repeating), or stimulus-response priming (e.g., due to how response 

switching coincides with stimulus transitions). Critically, Attend-Color and Attend-Motion tasks 

differ in their putative control demands, allowing us to isolate stimulus-response confounds from 

goal-directed control. 

Session 

Participants first performed 100 motion-only training trials (0% coherent color) and 100 color-

only training trials (0% coherent motion; order counterbalanced across participants) to learn the 

stimulus-response mappings. During training, participants received accuracy feedback on every 

trial. During the main experiment, participants performed two types of interleaved blocks, 

without trial-wise feedback. Participants alternated between longer attend-color blocks (100 

trials) and shorter attend-motion blocks (Experiment 1: 20-50 trials; Experiment 2-3: 30 trials; 

order counterbalanced across participants). In Experiments 1 and 2, at the end of each block 
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participants were told their average accuracy and median RT, and encouraged to respond quickly 

and accurately. Participants were not given this information in Experiment 3 to avoid interactions 

with the incentive manipulation (see below).  Participants took self-timed breaks between blocks. 

Stimuli 

Participants were seated approximately 60cm from a computer screen, making their responses on 

a customizable gaming keyboard in a dark testing booth. The random dot motion array was 

presented in the center of the screen (~15 visual degrees in diameter; ~66.8 dots per visual 

degree squared; 19” LCD display at 60Hz). The dots colors were approximately (uncalibrated) 

isoluminant and perceptually equidistant (RGB: [187, 165, 222], [150, 180, 198], [192, 169, 

168], [157, 184, 130]; (Teufel and Wehrhahn, 2000) and moved at ~15 visual degrees per 

second. Each trial started with a random inter-trial interval (Experiment 1: 0.5 – 1.5s; 

Experiment 2-3: 0.5 – 1.0s). There was an alerting cue 300ms before the trial onset, indicated by 

the fixation cross turning from grey to white, to minimize non-decision time. The stimuli were 

then presented until either a response was made, or a deadline was reached (Experiment 1: 3s; 

Experiment 2-3: 5s).  

Task Variants 

Experiment 1: These data incorporate several similar versions of this task developed during 

piloting. The main differences across versions were the number of distractor congruence levels 

(mean(range) = 13.5(11-15)), the number of trials per attend-motion block (mean(range) = 

26(20-50)), and the total number of trials (mean(range) = 469(300-700) attend-color trials). We 

did not find significant differences in performance across versions, and so our analyses collapsed 

across these versions. Experiment 1 also included a learning condition in a separate set of blocks, 
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which was outside the scope of the current paper and not included in the analyses we report. 

 

Experiments 2 & 3: These data come from a single task variant (though see Experiment 3’s 

incentive manipulation below). In this variant, we presented participants with 11 levels of target 

coherence and 11 levels of distractor congruence, linearly spaced within their coherence range 

and randomly sampled across trials. Participants performed 12 blocks of 100 attend-color trials 

interleaved with 12 blocks of 30 attend-motion trials. Illustrative task instructions are provided in 

Supplementary Note 1. 

Incentivized Variant (Experiment 3) 

In Experiment 3, we studied task performance under monetary incentives to provide a 

convergent measure of control adjustments, to test where task processing was limited by 

motivation rather than hard constraints like stimulus information (Norman and Bobrow, 1975). 

We informed participants before the main session that they would be able to earn a monetary 

reward for good performance. On ‘Reward’ blocks, we randomly selected trials at the end of the 

experiment, and participants earned bonus payment for trials on which they were both fast 

(<75% of their RT distribution) and accurate. On ‘No Reward’ blocks, participants would not be 

eligible to earn a reward, but were encouraged to be fast and accurate. We indicated the incentive 

condition at the beginning of each block with a label and text coloring (gold text for ‘Reward’, 

white text for ‘No Reward’). Participants were not instructed on the reward algorithm, only that 

they would earn rewards from being fast and accurate on randomly selected trials. Participants 

were not informed which trials were selected to avoid biasing post-reward trials. Participants 

performed Attend-Color and Attend-Motion blocks in one incentive condition before alternating 

to the other incentive condition (order counterbalanced across participants). At the end of the 
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experiment, participants received a bonus calculated from their performance (mean(SD) bonus: 

$2.5($0.57)USD).  

Regression Analyses 

We used a hierarchical nonlinear regression of choice and reaction time as a tractable and 

minimally theory-laden measure of performance (Supplementary Figure 1). We designed these 

regression models to quantify changes to target and distractor sensitivity, while controlling for 

global factors like behavioral autocorrection and how task factors may change lapse rates. The 

results of these regression analyses then provided the basis for our explicit process modeling (see 

below). We confirmed that our regression models are identifiable using Belsley collinearity 

diagnostics (collintest in MATLAB; Supplementary Table 10). 

 

In particular, we implemented hierarchical expectation maximization (EM) in MATLAB R2020a 

(using emfit; available at github.com/mpc-ucl/emfit) to provide a maximum a posteriori (MAP) 

estimates for the mean and covariance of parameters linking task features to participants’ 

reaction time and accuracy. This fitting algorithm alternates between finding the MAP estimates 

of participants’ parameters given the current group-level expectations (M-step; with 5 parameter 

re-initialization per step), and updating this group-level expectation based on participants’ 

estimated parameters (E-step), repeated until convergence. We fit separate regression to each 

experiment for independent replications of our findings. Analysis code is available at 

github.com/shenhavlab/PACT-public. 

 

Our regression approach simultaneously estimated parameters for choice and RT: 
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𝑙𝑜𝑔𝑃𝑜𝑠𝑡 = 𝑙𝑜𝑔𝐿𝑖𝑘𝑒(𝐶ℎ𝑜𝑖𝑐𝑒) + 𝑙𝑜𝑔𝐿𝑖𝑘𝑒(𝑅𝑇) + 𝑙𝑜𝑔𝑃𝑟𝑖𝑜𝑟(𝐶ℎ𝑜𝑖𝑐𝑒, 𝑅𝑇) 

 

Our choice sub-function used a lapse-logistic likelihood function, as previous work has shown 

that un-modelled lapse rates can mimic changes in psychometric slope (Wichmann and Hill, 

2001). Our choice sub-function had the form: 

 

𝐶ℎ𝑜𝑖𝑐𝑒 ∼
1 − 𝑙𝑎𝑝𝑠𝑒

1 + 𝑒𝑥𝑝(−𝛽!"#$%&𝑋!"#$%&)
+ (𝑙𝑎𝑝𝑠𝑒 × 0.5) 

 

𝑙𝑎𝑝𝑠𝑒	 =
1

1 + 𝑒𝑥𝑝(−𝛽'()*&𝑋'()*&)
 

 

Where 𝛽!"#$%&and 𝛽'()*& 	are parameter vectors, and 𝑋!"#$%& and 𝑋'()*& 	are design matrices. Our 

RT sub-function used a shifted lognormal likelihood function: 

 

𝑙𝑜𝑔(𝑅𝑇 − 𝑛𝑑𝑡) ∼ 𝛽+,𝑋+, 

 

Where again 𝛽+,𝑋+,is a linear model, and 𝑛𝑑𝑡 is the estimated non-decision time. Rare RTs less 

than 𝑛𝑑𝑡 were assigned a small likelihood. This helped avoid one fast RT from unduly 

influencing this parameter, while still capturing these informative trials.  

 

Finally, the prior probability of the parameters was evaluated under a multivariate normal 

distribution defined by the group-level parameter mean and covariance, improving the robustness 

of our estimates through regularization. Critically, we estimated this group-level covariance 
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across both choice and RT parameters, which better regularized our estimates and produced a 

joint model of performance at the group level.  

 

All regression design matrices included an intercept (choice bias or average RT), an 

autoregressive component (previous trial’s choice or RT), and the transformed target and 

distractor coherence (scaled between -1 and 1). We included autoregressive components to 

capture well-established behavioral features like choice repetition and RT autocorrelation 

(Egner, 2007; Laming, 1979; Lau and Glimcher, 2005; Urai et al., 2019). We transformed feature 

coherences using a saturating nonlinearity, 

 

𝑐𝑜ℎ∗.&(/01& =
𝑡𝑎𝑛ℎ(𝛼.&(/01& × 𝑐𝑜ℎ.&(/01&)

𝑡𝑎𝑛ℎ(𝛼.&(/01&)
	

  

with 𝛼/(12&/ and 𝛼3$*/1(%/#1 fit as free parameters. This nonlinearity was inspired by classical 

work on psychophysical scaling laws (i.e., Fechner–Weber–Stevens scaling, (Krueger, 1989; 

Nieder and Miller, 2003)), and more recent work demonstrating this scaling during cognitive 

control experiments (Servant et al., 2014; Stafford et al., 2011). This approach distinguishes the 

coherence nonlinearity (𝛼) from how strongly coherence influences performance (𝛽!"#$%& and 

𝛽+,), with our analyses focused on the latter. To constrain these 𝛼 parameters, we estimated one 

parameter for both choice and RT, capturing similar nonlinearities across both performance 

measures.  

 

In our more complex models (e.g., incentives), our primary focus was on how additional task 

features moderated the influence of tanh-transformed feature coherence on performance. Lower 
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order effects of moderating factors (e.g., previous distractor congruence) were included in the 

lapse rate for choice analysis, and as a main effect in RT analyses. The full parameter sets for all 

analyses are available in Supplementary Data. 

 

We excluded trials in our regression if they were 1) the first trial of the block, 2) shorter than 

200ms or longer than 2s, 3) occurred after an error or after a trial was too fast/slow and 4) in 

reaction time analyses, if the current trial was an error. These exclusion criteria were chosen to 

be inclusive, while avoiding trials where there were likely to be a mixture of different cognitive 

processes (e.g., post-error adjustments). 

 

We performed statistical inference on the parameters using an estimate of the group-level error 

variance from the emfit package, necessary to avoid violations of independence across 

participants from our hierarchical modelling. Contrast tests across models used Welsh’s (unequal 

variance) t-tests, with contrasts weighting studies by the square root of the sample size. We 

aggregated p-values across studies using Lipták’s method (Lipták, 1958; Zaykin, 2011), 

weighting studies by the square root of their sample size. Correlations between parameters were 

calculated by converting the group-level MAP covariance matrix to a correlation matrix.  

 

We generated posterior predictive checks (trend lines on figures) by generating regression model 

predictions for all trials, and then aggregating these predictions in the same way as participants' 

raw behavior. This approach allows us to distinguish whether our model systematically deviates 

from behavior from whether deviations are driven by variability in parameters across 

participants. To provide finer-grained insights into our model fit, we generated additional 
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posterior predictive checks that aggregate trends across all participants (Supplementary Figure 6) 

and that highlight single participants (Supplementary Figure 7). To provide further validation of 

the robustness of our parameter estimation procedure, we performed parameter recovery 

(simulated behavior from our best-fitting regression parameters, refit our model to this simulated 

behavior, and the compared data-generating and recovered parameters; Supplementary Figure 8) 

and parameter knock-out analyses (re-fit models with key nuisance regressors removed; 

Supplementary Figure 9). These robustness checks provided convergent evidence that our key 

parameters had good identifiability. 

 

We generated sensitivity dynamics plots (e.g., Figure 6) by computing the regression-estimated 

coherence effect conditioned on RT. For a range of simulated RTs, the estimated motion 

sensitivity timeseries is: 

 

𝛽4#/$#5+, = (𝛽4#/$#5 + 𝛽4#/$#5:+,𝑆𝑖𝑚𝑅𝑇)	⊙ (1 − 𝑙𝑎𝑝𝑠𝑒𝑅𝑇) 

 

𝑙𝑎𝑝𝑠𝑒+, =
1

1 + 𝑒𝑥𝑝(−(𝛽'()*& + β9:𝑆𝑖𝑚𝑅𝑇))
 

 

Where 𝛽𝑠	are regression weights estimated in our analysis, 𝑆𝑖𝑚𝑅𝑇 is a vector of simulated RTs 

(e.g., .5:.01:1), and ⊙ indicates element-wise multiplication. For control-dependent dynamics 

(i.e., incentivized dynamics; see Figure 7), we included 2-way and 3-way interactions 

between feature sensitivity, RT, and control drivers. We generated these sensitivity dynamics 

for each participant, and then plotted the mean and between-participant standard error. 
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Feedforward Inhibition with Control Model 

To provide a bridge between our regression analyses and processes models of decision-making, 

we adopted a generative modeling approach and tested whether participant behavior could be 

reproduced by a sequential sampling model (Figure 8). This model was inspired by two 

theoretical traditions. The first was a classic connectionist model of cognitive control (Cohen et 

al., 1990), which demonstrated how top-down adjustments to target and distractor sensitivity in 

evidence accumulation framework can capture a wide range of behavioral phenomena. To 

capture apparent within-trial adjustments to feature processing (see Results), our second 

inspiration was from dynamical models of task set reconfiguration, both across-trial (Gilbert and 

Shallice, 2002; Musslick et al., 2018; Steyvers et al., 2019) and within-trial (Mante et al., 2013; 

Pagan et al., 2022). In these dynamic models, adjustments in feature gain behave as a dynamical 

system, starting at some initial condition and exponentially approaching a fixed point.  

 

This model takes as inputs the color and motion coherence in support of different responses (e.g., 

𝑐𝑜ℎ%#;#1'&./), nonlinearly transforms these inputs (e.g., 𝑐𝑜ℎ∗%#;#1'&./; see regression analyses 

above), and then integrates evidence for each response in separate rectified accumulators (𝑥;&./ 

and 𝑥1$2"/).  

 

For example, evidence for the left response would be calculated as: 

 

𝑑𝑥;&./ 	= 	−𝜆𝑥𝑑𝑡	 +	(𝛽%#;#1𝑐𝑜ℎ∗%#;#1'&./𝑑𝑡	 +	𝛽4#/$#5𝑐𝑜ℎ∗4#/$#5'&./𝑑𝑡 + 	𝑁(0, 𝜎<);&./√𝑑𝑡) 

−	𝜔(𝛽%#;#1𝑐𝑜ℎ∗%#;#1+$2"/𝑑𝑡	 +	𝛽4#/$#5𝑐𝑜ℎ∗4#/$#5+$2"/𝑑𝑡	 + 	𝑁(0, 𝜎<)1$2"/√𝑑𝑡) 
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𝑖𝑓	𝑥;&./ < 0;	𝑥;&./ = 0 

 

The model makes a choice when one of the accumulators reaches a linearly collapsing decision 

bound rectified above 0.01. We used a balanced feedforward inhibition model without leak (𝜆 =

0 and 𝜔 = 1), approximating a (rectified) drift diffusion process (Bogacz et al., 2006). Note that 

parameterizations of a leaky competing accumulator could also approximate the DDM (Bogacz 

et al., 2007, 2006), and so are plausible alternatives to our implementation. We preferred the FFI 

model because it provides a simple interpolation between DDM and race-like decision processes. 

 

To capture dynamics in participants’ feature sensitivity, we modified our accumulation model to 

incorporate an attractor network for the feature weights (Mante et al., 2013), a model we call the 

feedforward inhibition with control model (FFIc model). In this model, control acts like a 

stochastic dynamical system. The system starts at an initial level of feature gain (𝛽=; e.g., due to 

bottom-up salience or learning). This feature gain exponentially approaches an asymptotic gain 

level (its ‘fixed-point’; e.g., a setpoint on zero distractors gain), according to a decay rate 𝐾 (e.g., 

control gain). For example, the motion gain would be governed by:  

 

𝑑𝛽4#/$#5 =	−𝛾𝛽𝑑𝑡	 + 𝐾4#/$#5(𝑓𝑖𝑥𝑒𝑑𝑝𝑜𝑖𝑛𝑡4#/$#5 	− 	𝛽4#/$#5)𝑑𝑡	 + 	𝑁(0, 𝜎2($5)√𝑑𝑡 

 

With the leak term 𝛾 fixed to 0 as in the decision process.  

 

We simulated 10,000 trials for each combination of target discriminability and distractor 

congruence (11 x 11 x 10,000), and then aggregated simulated behavior in the same way we 



Humans reconfigure target and distractor processing 

 

18 

aggregated participants’ behavior. Simulation code and parameter sets are available at 

github.com/shenhavlab/PACT-public.  

Transparency and openness 

We report how we determined our sample size, all data exclusions, all manipulations, and all 

measures in the study, and we follow APA Journal Article Reporting Standards (Appelbaum et 

al., 2018). All data and analysis code are available at github.com/shenhavlab/PACT-public. This 

study’s design and its analysis were not pre-registered. 

Results 

Participants performed the Parametric Attentional Control Task (PACT), a perceptual 

discrimination task that required them to classify the dominant color in an array of moving dots 

(Figure 1a). Participants made bimanual responses, for example responding with their left hand 

when the dominant color was purple or blue or responding with their right hand when the 

dominant color was green or beige. To avoid stimulus repetition priming (Braem et al., 2019; 

Mayr et al., 2003), two colors were assigned to each response and the majority color did not 

repeat across sequential trials. Across trials, we varied the extent to which those dots were 

coherently moving in the same or opposite direction as the correct response (distractor 

interference; Experiments 1-3) and how easily the participant could determine the dominant 

color (target discriminability; Experiments 2-3; Figure 1b). Participants performed the main 

Attend-Color PACT in blocks of 100 trials. To enhance the potency of motion as a distracting 

dimension (Shiffrin and Schneider, 1977) and allow for additional measures of automaticity and 

feature-specificity, participants alternated between these blocks-of-interest and shorter blocks 



Humans reconfigure target and distractor processing 

 

19 

(20-50 trials) in which participants instead responded to the direction of dot motion (Attend-

Motion PACT; Figure 1c). 

 

 

Figure 1. Parametric Attentional Control Task (PACT). A) On each trial, participants responded to the dominant 

color in a bivalent random dot kinematogram. This stimulus had a random color (target) coherence, depending on 

the proportion of dots that were in the majority. This stimulus also had a random motion (distractor) congruence, 

depending on motion coherence in the same or opposite direction as the color response. B) Across trials, we 

parametrically and independently varied the coherence of the dominant color (y-axis) and the congruence of the 

motion direction (x-axis). C) In Experiments 1 and 2, participants alternated between longer blocks of Attend-Color 

trials (target dimension was color, as in A) and shorter blocks of Attend-Motion trials (target dimension was 

motion). Participants took a self-timed break between blocks. D) In Experiment 3, participants alternated between 

pairs of Reward blocks and No Reward blocks. On Reward blocks, participants could earn a monetary bonus if they 

were fast and accurate, whereas we just encourage good performance on No Reward blocks. Participants were 

informed of the reward condition during their break between blocks. 
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Task performance varies parametrically with target discriminability and 

distractor interference 

In Experiment 1 (N = 56), participants performed the PACT with uniformly colored dots (e.g., 

all blue or all green), but with the dots moving in a direction either congruent or incongruent 

with that target response. We varied the strength of this distractor dimension between being fully 

congruent with the correct color response (100% leftward coherence for a left color response) to 

being fully incongruent (100% rightward coherence for a left color response; Figure 1b). For 

trials mid-way between these two extremes (cf. ‘neutral’ trials), the dots did not move 

consistently in one direction or another (0% motion coherence).  

 

Consistent with past research on cognitive control, we found that participants were slowest and 

least accurate when distractors were fully incongruent (median RT = 585ms, mean accuracy = 

89%) and fastest and most accurate were fully congruent (median RT = 553ms, mean accuracy =  

97%; cf. (Danielmeier et al., 2011). Performance on neutral trials (0% motion coherence) fell 

between these two extremes (median RT = 576ms, mean accuracy = 94%). Extending this work, 

hierarchical regression analyses (see Methods) revealed that performance varied in a graded 

fashion across this continuum of interference. Both accuracy (Cohen’s d on regression estimate; 

d = -1.47) and reaction time (d = 1.25) worsened with parametrically increasing levels of 

interference (ps < 0.001, Figure 2c, Table 1).  
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Figure 2. Target and distractor sensitivity. A) Participants were more accurate (blue, left axis) and responded faster 

(red, right axis) when the target color had higher coherence. Circles depict participant behavior and lines depict 

aggregated regression predictions. In all graphs, behavior and regression predictions are averaged over participants 

and experiments. Target sensitivity aggregated across Experiments 2 & 3. B) Regression estimates for the effect of 

target coherence on performance within each experiment, plotted for accuracy (blue, left axis) and RT (red, right 

axis). C) Participants were more accurate and responded faster when the distracting motion had higher congruence 

(coherence signed relative to target response). In all graphs, behavior and regression predictions are averaged over 

participants and experiments. Distractor sensitivity aggregated across Experiments 1-3. D) Regression estimates for 

the effect of distractor congruence on performance within each experiment, plotted for accuracy and RT. E-F) 

Similar to A-B, performance (E) and regression estimates (F) for the effects of target coherence during Attend-

Motion blocks, in which motion was the target dimension. G-H) Similar to A-B, performance (G) and regression 

estimates (H) for the effects of distractor congruence during Attend-Motion blocks, in which color was the distractor 

dimension. Y-axis range is matched within-feature across tasks, see Supplementary Figure 10 for matched y-axes 
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across all features and tasks. Error bars on behavior reflect within-participant SEM, error bars on regression 

coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease of visualization.  

 

In Experiment 2 (N = 40) and Experiment 3 (N = 60), participants performed the same task as in 

Experiment 1, but we additionally varied the discriminability of the target (color) dimension. 

Across trials, the proportion of the majority color (color coherence) varied parametrically to 

make color discrimination easier (higher coherence) or more difficult (lower coherence). As in 

Experiment 1, the level of motion interference also varied across trials, independently of targets.  

 

Consistent with past research on perceptual decision-making (Britten et al., 1992; Mante et al., 

2013), we found that discrimination performance improved with higher levels of target 

discriminability. Participants in both studies were faster (Exp 2: d = -1.90, Exp 3: d = -1.99) and 

more accurate (Exp 2: d = 3.27, Exp 3: d = 3.73) with parametrically increasing levels of color 

coherence (aggregate ps < 0.001; Figure 2a, Table 1). At the same time, we continued to find that 

participants were slower and less accurate when the goal-irrelevant movement of those dots was 

increasingly incongruent with the correct color response (see Figure 2a, Table 1).  

 

Performance on our task varied parametrically with both color coherence and motion coherence, 

but these two coherence manipulations were designed to exert their influence on performance in 

different ways. Whereas variability in color coherence was intended to influence the stimulus 

uncertainty directly relevant to goal-directed decision-making (i.e., determining which response 

is the correct one), motion coherence was intended to exert a more automatic influence on 

response selection by facilitating responses consistent with the direction of motion. We 

confirmed this assumption regarding the relative automaticity of motion versus color processing 
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by having participants perform interleaved blocks in which they responded based on motion and 

ignored color (‘Attend-Motion’). We found that participants were more sensitive to the now-

relevant motion coherence (Figure 2e), but were no longer sensitive to the now-irrelevant color 

congruence (Figure 2g; Supplementary Table 1-2). This asymmetry suggests that participants’ 

decisions were not solely driven by the bottom-up salience of these features, as participants were 

more sensitive to color when it was relevant and less sensitive to motion when it was irrelevant, 

reflecting differential engagement of top-down control across the two tasks (Cohen et al., 1992).  

 

Table 1. Target and distractor sensitivity 

DV Predictors Exp 1 (df = 45) 
Effect size (d) 

Exp 2 (df = 25) 
Effect size (d) 

Exp 3 (df = 45) 
Effect size (d) 

Aggregate 
p-value 

Choice Target coherence   3.27 3.73 1.01×10-44 

 Distractor congruence 1.47 1.42 1.50 4.89×10-32 

 Target × Distractor  -0.184 -0.344 0.0226 

RT Target coherence   -1.90 -1.99 1.59×10-28 

 Distractor congruence -1.25 -1.49 -1.43 1.26×10-29 

 Target × Distractor  0.230 0.0525 0.437 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

Target discrimination and distractor interference occur in parallel  

We found that participants’ task performance varied parametrically with both the target 

discriminability and distractor congruence, both for choice and reaction time. We next sought to 

further understand the relationships between these changes in performance, within and across 

features. 
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First, we tested whether a given feature exerted a similar influence on both accuracy and RT. We 

found that this was indeed the case, as there was a significant correlation between the effect 

distractors had on accuracy and RT (rs < -0.87, ps < 0.001). The influences of target 

discriminability on accuracy and RT were also significantly correlated (rs < -0.54, ps < 0.001; 

Supplementary Table 3). Thus, participants who became faster with higher levels of a given 

feature’s strength also became more accurate, suggesting that accuracy and RT shared a common 

underlying process (e.g., evidence accumulation rate, which we return to below).  

 

Second, we tested whether the influences of target discriminability and distractor congruence on 

performance were independent (e.g., distractors and targets are processed in parallel; (Lindsay 

and Jacoby, 1994; Servant et al., 2014) or instead modulatory (e.g., distractor congruence 

influences target sensitivity). If the two forms of feature processing modulated one another, we 

would predict that target and distractor coherence would interact in predicting performance. We 

did not find such an interaction in RTs (ds = 0.05 to 0.23, p = 0.33; Table 1), though we did find 

a small but significant interaction between target and distractor coherence on accuracy (ds = -

0.18 to -0.34, p = 0.023). For both studies, removing target-distractor interactions as predictors in 

our accuracy regressions improved model fit (Protected exceedance probability on AIC: Exp 2 

PXP = 1; Exp 3 PXP = 1). If distractors had an antagonistic influence on target processing, we 

would also predict that target and distractor sensitivity would be negatively correlated across 

subjects. Contrary to this prediction, these effects were either not significantly correlated or 

positively correlated, both for RT (Exp 2: r(25) = .14, p = .48; Exp 3: r(45) = .44, p = .0019) and 

accuracy (Exp 2: r(25) = -.15, p = .45; Exp 3: r(45) = .12, p = .43), suggesting that individual 

differences in target and distractor processing were not antagonistic. 
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Previous conflict preferentially suppresses distractor sensitivity 

Within a given trial, we found that performance varies parametrically and independently with the 

coherence of target (color) and distractor (motion) features. We next sought to understand how 

participants adapted their information processing across trials, to provide insight into the control 

processes that guide performance in this task. We measured how participants’ feature sensitivity 

changed after difficult (e.g., more incongruent) trials, an index of cognitive control known as 

conflict adaptation (Egner, 2007; Gratton et al., 1992). The classic effect is that participants show 

weaker congruence effects after incongruent trials than after congruent trials, with the traditional 

interpretation being that this reflects upregulated target sensitivity (Botvinick et al., 2001; Egner, 

2007). Our task allowed us to build on this work to test whether this adaptation effect varies 

parametrically with distractor congruence. Critically, we can also test whether adaptation occurs 

through an influence of previous conflict on subsequent target enhancement, distractor 

suppression, or both. Finally, we can further test whether adaptation occurs due to the 

discriminability of the target on the previous trial.  

 

Across all three of our studies, we found that participants’ sensitivity to the distractor dimension 

was robustly and parametrically influenced by the distractor congruence on the previous trial, as 

reflected both in their choice (ds = 1.44 to 1.74, p < .001; Figure 3a) and RT (ds = 0.83 to 1.79, p 

< .001; Figure 3b; Table 2). When the previous trial had congruent distractors, participants had 

strong sensitivity to the distractor congruence (Figure 3a-b, navy). When the previous trial had 

incongruent distractors, participants were much less sensitive to distractors (Figure 3a-b, red). 

These patterns are consistent with those typically observed in studies of conflict adaptation 
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(Danielmeier et al., 2011; Egner, 2007), and further demonstrate gradations within these classic 

effects.  

 

When varying both target and distractor features (Experiments 2-3), we found an additional 

influence of previous distractor congruence on target processing, whereby more incongruent 

previous trials enhanced the influence of target discriminability on the current trial (Figure 3d-e). 

However, the influence of previous distraction on target processing was substantially smaller 

than its effect on distractor processing (see Figure 5), and was only found for accuracy (p < .001) 

and not RT (p = .57), Finally, we found that performance adapted to the strength of the previous 

target, with less-discriminable targets yielding lower sensitivity to target strength (i.e., poorer 

performance) on the following trial, potentially due to disengagement (Supplementary Figure 2, 

Table 2). However, like the distractor-target effect, this target-target effect was much smaller 

than the distractor-distractor effects and only observable in accuracy (p < .001) and not RT (p = 

.19).  
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Figure 3. Distractor-dependent adaptation. A-B) The relationship between distractor congruence and accuracy (A) 

and RT (B) was weaker when the previous trial was more incongruent (redder colors). Circles depict participant 

behavior and lines depict aggregated regression predictions. C) Regression estimates for the current distractor 

congruence by previous distractor congruence interaction, within each experiment. D-E) The relationship between 

target coherence and performance was stronger after more incongruent trials in accuracy (D) but not RT (E). F) 

Regression estimates for the current target coherence by previous distractor congruence interaction, within each 

experiment. Error bars on behavior reflect within-participant SEM, error bars on regression coefficients reflect 95% 

CI. Psychometric functions are jittered on the x-axis for ease of visualization. Feature coherence was rank-ordered 

and binned into quantiles with equal numbers of trials at each level of target coherence, distractor congruence, or 

previous distractor congruence. 
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Table 2. Effects of previous conflict on feature sensitivity 

DV Predictors Exp 1 (df = 41) 
Effect size (d) 

Exp 2 (df = 15) 
Effect size (d) 

Exp 3 (df = 35) 
Effect size (d) 

Aggregate 
p-value 

Choice Distractor × Prev Distract  1.59 1.45 1.74 6.15×10-31 

 Distractor × Prev Target   -0.670 0.103 0.964 

 Target × Prev Distract    -0.473 -0.990 2.83×10-8 

 Target × Prev Target   0.418 0.644 1.25×10-5 

Lapse 
Rate 

Prev Distract -0.522 -0.498 -1.04 1.75×10-10 

  Prev Target   -0.110 -0.494 0.00934 

RT Distractor × Prev Distract  -0.836 -1.44 -1.79 8.99×10-24 

  Distractor × Prev Target   0.174 0.0618 0.520 

  Target × Prev Distract    0.210 0.0155 0.726 

  Target × Prev Target   0.147 0.154 0.285 

  Prev Distract 0.287 0.202 -0.267 0.623 

  Prev Target   0.109 -0.275 0.0884 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

A common concern when measuring conflict adaptation effects is the extent to which these 

reflect control adjustment (as typically assumed) or low-level priming that can occur due to 

stimulus-stimulus or stimulus-response associations (Braem et al., 2019; Hommel et al., 2004; 

Mayr et al., 2003; Schmidt and De Houwer, 2011). For example, in some tasks, if two adjacent 

trials are both congruent or both incongruent, they are also more likely to share stimulus-

response mappings, biasing analyses of sequential adaptation (Schmidt, 2019). Our experiment 

was designed to largely avoid potential priming confounds by eliminating stimulus repetitions 

(with two colors assigned to each response hand that never repeat), and by using stochastic 
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motion stimuli (versus, e.g., static arrows) that also have very infrequent exact repetitions. For 

example, the probability that two trials will have the same motion coherence was only 9%.  

 

However, to further rule out that our key adaptation findings resulted from priming effects, we 

tested whether adaptation effects were present in our more automatic Attend-Motion blocks. 

Whereas a priming account would predict similar (within-feature) adaptation effects across both 

Attend-Color and Attend-Motion blocks (Moeller and Frings, 2014), a cognitive control account 

would predict weaker adaptation effects for Attend-Motion than Attend-Color blocks. We found 

that adaptation effects during Attend-Motion blocks were overall weak and inconsistently signed 

(e.g., previous interference led to either increased or decreased sensitivity to distractors across 

studies; Supplementary Table 4-5). Comparing the adaptation effects across the two types of 

blocks directly, we found significantly stronger adaptation effects during Attend-Color than 

Attend-Motion blocks. Distractor adaptation was weaker during Attend-Motion than Attend-

Color, despite including color repetitions during Attend-Motion blocks (Choice: p < .001; RT: p 

< .001). Critically, we can directly compare trial-to-trial changes in motion sensitivity when 

motion is task-relevant (Attend-Motion) and task-irrelevant (Attend-Color), matching the 

salience of this motion dimension across tasks (Giesen et al., 2012). Target adaptation during 

Attend-Motion was not significant (Choice: p = .268; RT: p = .777; Supplementary Table 4) and 

was weaker than distractor adaptation during Attend-Color (Choice: p < .001; RT: p = .34; 

Supplementary Table 5). Together, these results suggest that the adaptation effects we observed 

during Attend-Color trials likely reflected changes in control states rather than stimulus-driven 

priming. 
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In addition to influencing sensitivity of choices and RTs to individual features (adaptation effects 

described above), we found that previous target and distractor information also exerted a small 

but reliable influence on the likelihood that the participant would respond randomly on the next 

trial (lapse rate, see the Regression Analysis subsection in Methods). Specifically, higher levels 

of distractor incongruence and lower levels of target discriminability increased subsequent lapse 

rates (ps < .001; Table 2), though these changes were subtle (e.g., post-congruent lapse rates 

ranged from 0.023% to 0.13% across studies; post-incongruent lapse rates ranged from 0.13% to 

0.41% across studies). We did not otherwise find consistent main effects of previous targets and 

distractors on choice behavior (i.e., in the direction of a particular response) or on RT.  

Performance incentives preferentially enhance target sensitivity 

We found that performance on our task adapted to previous distractor-related interference, and 

that this influence was observed primarily in subsequent processing of the (motion) distractor 

rather than the (color) target. This may reflect a fundamental bias in the control system towards 

adjusting distractor processing in our task, but it may also reflect a process that is specialized for 

conflict adaptation. To disentangle these possibilities, we examined how target and distractor 

processing are influenced by heightened levels of motivation. In Experiment 3 we incorporated 

an incentive manipulation, with blocks of trials for which participants could either earn a 

monetary reward for fast and accurate performance, and blocks where performance was not 

rewarded (Figure 1d).  

 

We found that participants’ accuracy was more sensitive to target discriminability in rewarded 

blocks than non-rewarded blocks (d = 0.61, p < .001; Figure 4a, Table 3). This effect of 
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incentives on target sensitivity was specific to choice and not RTs (d = -0.10, p = 0.47), though 

participants were overall faster in rewarded blocks (d = -0.41, p = 0.0045). Participants were also 

marginally more likely to make lapses responses during rewarded blocks (d = 0.244, p = 0.092). 

In terms of distractors, we found that in rewarded blocks participants were less sensitive to 

distractors in RT (d = 0.35, p = 0.012), albeit with a small effect size, and that incentives did not 

significantly influence distractor sensitivity in choice (d = -0.016, p = 0.91).  

 

 

Figure 4. Influence of incentives on target and distractor sensitivity. A-B) The relationship between target 

coherence and performance was stronger during incentivized blocks (gold) in the domain of accuracy (A), but not 

RT (B). Circles depict participant behavior and lines depict aggregated regression predictions. C) Regression 

estimates for the target coherence by incentive interaction. D-E) The relationship between distractor congruence and 

performance was weaker on incentivized blocks (gold) in the for RT (E), but not Accuracy (D). F) Regression 
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estimates for the distractor congruence by incentive interaction. Error bars on behavior reflect within-participant 

SEM, error bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease 

of visualization.  

 

We further found that the target-enhancing effects of incentives also were not specific to the 

color dimension. When motion was the target dimension (attend-motion blocks), incentives 

preferentially increased sensitivity to motion coherence (d = 0.70, p < .001). Interestingly, 

incentives had an even larger influence on target sensitivity in attend-motion relative to attend-

color blocks (t(59.0) = 2.14, p = 0.036; Supplementary Table 6-7). 

 

Table 3. Effects of incentives on feature sensitivity 

DV Predictors Exp 3 (df = 41) 
Effect size (d) 

p-value 

Choice Target × Reward 0.612 8.56×10-5 

  Distractor × Reward -0.0156 0.911 

Lapse 
Rate 

Reward 0.244 0.0924 

RT Target × Reward -0.103 0.467 

  Distractor × Reward 0.349 0.0195 

  Reward -0.411 0.00447 

Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p-values (two-tailed, 

α = 0.05) are shown in bold. 

Previous conflict and incentives have dissociable influences on target 

and distractor processing 

Our within-trial results demonstrated that participants are sensitive to target (color) and distractor 

(motion) information, with little interaction between these dimensions. Consistent with this 
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putative independence, we found that previous interference primarily influenced distractor 

sensitivity (suppressing distractor sensitivity after trials with incongruent distractors), and that 

rewards primarily influenced target sensitivity (enhancing target sensitivity when incentivized). 

These findings strongly suggest a dissociation between target and distractor processing. 

 

To confirm these findings, we formally tested the double dissociation between how incentives 

and previous interference influenced target and distractor choice sensitivity (Figure 5). We found 

that previous conflict had a larger absolute effect on distractor processing than it did on target 

processing in both accuracy (t(31.4) = 9.54, p = 8.36 × 10-11) and RT (t(33.7) = 4.64, p = 5.14 × 

10-5). We found that rewards conversely had a larger influence on targets than distractors in 

Accuracy (t(44.5) = 5.08, p = 7.22 × 10-6), though not in RT (t(37.7) = 0.25, p = 0.80). Critically, 

the difference-of-differences was also significant in both Accuracy (t(39.6) = 10.2, p = 1.36 × 10-

12) and RT (t(48.3) = 3.11, p = 0.0031), supporting dissociable control over different dimensions 

of feature processing. 
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Figure 5. Dissociations between previous conflict and incentive effects. Post-conflict effects were significantly 

larger on distractor sensitivity than target sensitivity in accuracy (A) and RT (B). In contrast, reward effects were 

significantly larger on target sensitivity than distractor sensitivity in accuracy (A) and similarly large in RT (B). 

Errors bars show MAP SEM. 

 

These findings are consistent with a previous neuroimaging experiment that found incentives 

enhanced responses in target-related areas (visual word form area for text targets) and mostly-

incongruent blocks suppressed responses in distractor-related areas (fusiform face area for face 

distractors; (Soutschek et al., 2015). In the following sections, we extend these convergent 

findings to explore how previous conflict and incentives influence the dynamics of control 

implementation. 
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Differential within-trial dynamics of target and distractor processing  

Our initial results show that participants independently control their sensitivity to target (color) 

and distractor (motion) information. However, previous research has revealed that participants’ 

task processing also dynamically changes within a trial (Servant et al., 2014; Weichart et al., 

2020; White et al., 2011), including in response to incentives (Adkins and Lee, 2021). Whereas 

much of the previous research has focused on dynamics in spatial attention during flanker tasks 

(e.g., a shrinking spotlight of attention; (Weichart et al., 2020; White et al., 2011), less is known 

about the dynamics of attention between features of conjunctive stimuli like those in our task, 

where target and distractor processing may be more independent (Adkins and Lee, 2021; Servant 

et al., 2014). 

 

To test how sensitivity to target and distractor features changed within each trial, we measured 

whether the influence of coherence on participants’ choices depended on reaction time (i.e., the 

choice ~ coherence × RT interaction). These analyses work under the logic that faster RTs reflect 

earlier epochs of information processing, which we confirm through subsequent evidence 

accumulation simulations (see ‘An accumulator model of attentional control over target and 

distractor processing’ in Results; Supplementary Figures 4-5). Our approach builds on ‘delta 

function’ analyses of how congruence effects differ across RT quantiles (De Jong et al., 1994; 

Ridderinkhof, 2002; van den Wildenberg et al., 2010)3, extended this methodology with a GLM 

approach that estimates parametric changes in both target and distractor sensitivity over time. 

 
3 Previous work on delta-plot analyses have investigated how RT difference scores (e.g., congruent – incongruent) 
vary across RT quantiles. This work has been criticized based on the inherent mean-variance relationship in skewed 
RT distributions (Zhang and Kornblum, 1997). Instead, our analyses investigate how accuracy effects vary as a 
function of RT instead, avoiding this concern. 
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At the earliest RTs, participants were the least sensitive to targets (Figure 6a) and the most 

sensitive to distractors (Figure 6d). At later RTs, participants became more sensitive to targets 

(ds = 0.69 to 0.97, p < .001), and less sensitive to distractors (ds = -0.71 to -1.5, p < .001; Table 

4). This is consistent with an attentional control process that enhances sensitivity to goal-relevant 

features and suppresses attention towards goal-irrelevant features. Notably, these results suggest 

that this attentional process occurs ‘online’ within the course of a trial. 
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Figure 6. Target and distractor sensitivity dynamics. A) The relationship between target coherence and accuracy 

increased at later RTs (pinker color). B) Participants responded faster on error trials that correct trial when target 

coherence was higher. C) Regression estimates for the interaction between target coherence and RT (blue) and 

accuracy (red), within each experiment. D) The relationship between distractor congruence and accuracy decreased 

at later RTs (pinker). Note that these data are mean-centered within each RT bin to remove the target effects in (A) 

from this visualization of distractor sensitivity. E) Participants responded faster on error trials than correct trials 

when distractors were incongruent. F) Regression estimates for the interaction between distractor congruence and 
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RT (blue) and accuracy (red), within each experiment. G) Target (green) and distractor (cyan) sensitivity plotted as a 

function of reaction time, as estimated by our regression model in Attend-Color blocks. Vertical lines indicate 

quartiles of the RT distribution. H) Same as G, but generated from regression models fit to the Attend-Motion 

blocks. Note the different scaling of the x-axis and y-axis (see dashed line between plots). Error bars on behavior 

reflect within-participant SEM, error bars on sensitivity estimates reflect between-participant SEM of the 

predictions, error bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for 

ease of visualization. Feature coherence and RT were rank-ordered and binned into quantiles with equal numbers of 

trials at each level of target coherence, distractor congruence, or RT bin.  

 

We also fit a complementary analysis for RT (i.e., the RT ~ coherence × accuracy interaction). 

We found that participants had steeper target coherence slopes on error trials (ds = 0.89 to 1.5, p 

< .001; Figure 6b), driven by faster errors when the targets were high coherence, consistent with 

participants responding before their maximal target sensitivity. Likewise, we found that the 

relationship between RT and distractor congruence inverted on error trials (ds = -0.68 to -1.8, p < 

.001; Figure 6e), with participants making faster errors on more incongruent trials, consistent 

with an early sensitivity to distractors that is suppressed over time. 

 

Table 4. Dynamics of feature sensitivity across response times 

DV Predictors Exp 1 (df = 38) 
Effect size (d) 

Exp 2 (df = 21) 
Effect size (d) 

Exp 3 (df = 41) 
Effect size (d) 

Aggregate 
p-value 

Choice Target × RT   0.686 0.975 4.61×10-11 

 Distractor × RT -0.709 -1.54 -1.19 8.40×10-20 

Lapse 
Rate 

RT 0.247 0.928 0.534 9.25×10-13 

RT Target × Accuracy   1.46 0.889 1.99×10-14 

 Distractor × Accuracy -0.683 -1.82 -1.09 1.39×10-20 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 
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These findings suggest online dynamics in the allocation of top-down attention to facilitate target 

processing and suppress distractor processing, but it is possible that they instead reflect dynamics 

inherent to the bottom-up processing of color and motion information. To rule out this alternative 

hypothesis, we tested whether similar sensitivity dynamics were present during Attend-Motion 

blocks, when color information serves as a much less potent distractor. During these blocks, we 

found that participants enhanced target (motion) sensitivity faster than they did during Attend-

Color blocks (p < .001; Figure 6h; Supplementary Table 8-9). In contrast, participants had slower 

distractor sensitivity dynamics during Attend-Motion blocks (p < .001). Together these results 

demonstrate that these sensitivity dynamics depend on the task that participants are performing, 

rather than being exclusively due to stimulus-driven factors. 

 

Finally, we tested whether participants’ within-trial attentional dynamics changed over the 

course of the experiment, modeling the linear change in parameters across blocks of trials. We 

found that later in the experiment, participants’ overall sensitivity to distractors was higher (in 

choice), and their sensitivity to targets was lower (in reaction time; see Supplementary Table 11). 

However, later in the experiment participants also had faster target and distractor dynamics, such 

that maladaptive sensitivity was most prominent in the earliest phase of the trial (Supplementary 

Figure 11). These results speculatively suggest that over time participants shift from maintaining 

initial sensitivity to reactively reconfiguring attention, potentially due to fatigue or proactive 

interference from Attend-Motion blocks. 
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Previous conflict and incentives influence early trial dynamics 

We found that, within a trial, participants dynamically adjusted attention depending on the task at 

hand, with increasing sensitivity to task-relevant color information and decreasing sensitivity to 

task-irrelevant motion information over the course of a trial. This raises the question whether the 

two forms of adaptation we observed, related to previous conflict and incentives, influenced 

different components of the within-trial attentional dynamics.  

 

To address this question, we first examined how the dynamics of target and distractor sensitivity 

were altered by the congruence of the distractor on the previous trial (i.e., Choice ~ 

PreviousDistractor × RT × Coherence). We found that after incongruent trials, participants 

started the next trial more sensitive to targets and less sensitive to distractors (Figure 7a). 

Although this means that after congruent trials participants had worse initial conditions (starting 

less sensitive to targets and more sensitive to distractors), they appeared to compensate for this 

early disadvantage with faster increases in target enhancement (ds = 0.65 to 1.0, p < .001) and 

distractor suppression (ds = -0.68 to -1.1, p < .001; Table 5). Both post-congruent and post-

incongruent trials thus reached similar asymptotic levels of feature sensitivity. This early 

influence of previous conflict on congruence sensitivity is consistent with previous experiments 

on the timecourse of conflict adaptation (Stins et al., 2008; Wylie et al., 2010), with the current 

work extending these findings to show concurrent, albeit weaker, target-enhancement dynamics. 

 



Humans reconfigure target and distractor processing 

 

41 

 

Figure 7. Influence of conflict and incentives on sensitivity dynamics. A) The relationship between previous 

distractor congruence and current distractor congruence was strongest for early RTs (bluer color). The y-axis depicts 

the difference in accuracy between the extreme tertiles of previous congruence, for visualization purposes. B) Target 

(green) and distractor (cyan) sensitivity plotted as a function of previous congruence (color shade) and reaction time 

(x-axis), as estimated by our regression model. Vertical lines indicate quartiles of the RT distribution. C) Regression 

estimates for the interactions between reaction time and previous congruence on lapse rate (‘Saturation Dynamics’, 

orange); or reaction time, previous congruence, and feature coherence on accuracy (target is green, distractor is 

cyan). D) The relationship between incentives and target coherence was strongest for early RTs (bluer color). The y-

axis depicts the difference in accuracy between blocks where there were rewards vs blocks without rewards. E) 

Target (green) and distractor (cyan) sensitivity plotted as a function of incentives (gold) and reaction time (x-axis), 

as estimated by our regression model. Vertical lines indicate quartiles of the RT distribution. F) Regression 

estimates for the interactions between reaction time and incentives on lapse rate (orange); or reaction time, 
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incentives, and feature coherence on accuracy (target is green, distractor is cyan). Error bars on behavior reflect 

within-participant SEM, error bars on sensitivity estimates reflect between-participant SEM on the predictions, error 

bars on regression coefficients reflect 95% CI. Psychometric functions are jittered on the x-axis for ease of 

visualization. Feature coherence and RT were rank-ordered and binned into quantiles with equal numbers of trials at 

each level of target coherence, distractor congruence, or RT bin.  

 

Figure 5. Effects of previous conflict on feature sensitivity dynamics 

DV Predictors Exp 1 (df = 26) 
Effect size (d) 

Exp 2 (df = 9) 
Effect size (d) 

Exp 3 (df = 29) 
Effect size (d) 

Aggregate 
p-value 

Choice Prev Dist × Dist × RT -0.853 -1.07 -1.01 1.62×10-14 

  Prev Dist × Targ × RT   1.01 0.646 1.71×10-7 

Lapse Rate Prev Dist × RT 0.456 0.463 0.531 3.52×10-6 

RT Prev Dist × Dist × Acc -0.563 -1.15 -1.16 2.84×10-13 

  Prev Dist × Targ × Acc   -0.00500 -0.524 0.135 

  Prev Dist × Acc 0.417 0.175 -0.162 0.881 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

We performed the equivalent analysis for incentive-related adaptation (i.e., Choice ~ Reward × 

RT × Coherence). We found that during incentivized blocks, participants’ initial target 

sensitivity was higher than during non-incentivized blocks, and remained so across much of the 

trial (see Figure 7d). However, target sensitivity eventually reached an asymptote, such that 

towards the end of the trial both incentivized and non-incentivized trials had similar levels of 

target sensitivity (see slowest quantile in Figure 7d). This convergence was accounted for by 

larger increases in lapse rates later in incentivized trials (d = 0.52, p < .001; Table 6). The 

dynamics of distractor sensitivity, by contrast, did not significantly differ between incentivized 

and non-incentivized trials (d = 0.055, p = 0.71). 
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Table 6. Effects of incentives on feature sensitivity dynamics 

DV Predictors Exp 3 (df = 29) 
Effect size (d) 

p-value 

Choice Rew x Target × RT -0.139 0.331 

  Rew x Distractor × RT 0.0546 0.712 

Lapse Rate Rew × RT 0.524 0.000937 

RT Rew × Target × Acc 0.437 0.00432 

  Rew × Distractor × 
Acc 

-0.170 0.260 

  Rew × Acc -0.540 0.000646 

Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p-values (two-tailed, 

α = 0.05) are shown in bold. 

An accumulator model of attentional control over target and distractor 

processing  

Our results demonstrate that participants independently control the initialization and online 

adjustment of attention towards target and distractor features. To parsimoniously account for this 

set of findings, we developed an accumulator model that integrated elements of previous models 

used to separately account for performance in tasks involving perceptual discrimination (Gold 

and Shadlen, 2007; Ratcliff and McKoon, 2008) and overriding prepotent distractors (Cohen et 

al., 1990; Weichart et al., 2020; White et al., 2011). We used a variant of a feedforward 

inhibition model, in which inputs provide excitatory inputs to associated response units and 

inhibitory inputs to alternative response units (Shadlen and Newsome, 2001). Our decision 

model takes as inputs the color and motion coherence in support of different responses, 

nonlinearly transforms these inputs, and then integrates evidence for each response in separate 
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rectified accumulators with balanced feedforward excitation and inhibition (Figure 8). The 

signal-to-noise ratio of the intermediate layer’s outputs are determined by control units that 

determine the gain of a given feature (Cohen et al., 1990; Musslick et al., 2019). We hand-tuned 

the parameters of this model to determine whether it could capture our core experimental 

findings across choice and reaction time. 

  

 

Figure 8. Feedforward inhibition with control. Color evidence (green) and motion evidence (blue) are transformed 

and accumulated to make a choice. Balanced excitatory connections (black solid lines) and inhibitory connections 

(red dashed lines) cause accumulation of the difference in evidence for each response. A) Evidence for the left 

response (purple) and right response (orange) are accumulated over time without leak. When one of the 

accumulators crosses a (linearly collapsing) decision threshold, the model chooses that response. B) Within each 

trial, the signal-to-noise of each feature pathways is controlled by a feature gain. Over time within a trial, the feature 

gains for targets (green) and distractors (cyan) exponentially approach to a fixed level (high gain for targets, zero 

gain for distractors). Note the difference in x-axis scaling compared to Figure 6G. C) An equivalent visualization of 
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the dynamics in B. Attractor dynamics drive target and distractor gains to their fixed level, shown at different 

timepoints within the trial (pinker colors are later in the trial). The horizontal line depicts zero distractor gain.   

 

Our accumulator model was able to reproduce our key within-trial findings. During our main 

Attend-Color trials, it generated responses that were faster and more accurate with increasing 

color coherence (Figure 9a) and slower and less accurate with increasing motion incongruence 

(Figure 9b). We simulated Attend-Motion trials by increasing the target gain and decreasing the 

distractor gain, to capture potential differences in both automaticity and control. Now, our model 

generated responses that were even faster and more accurate with increasing target coherence 

(now motion; Figure 9c) but that were insensitive to distractor congruence (now color; Figure 

9d), replicating the main behavioral results in Attend-Motion blocks. Notably, distractor effects 

were not reproduced in an accumulator competition model parameterized to be more ‘race-like’ 

(Supplementary Figure 3; (Teodorescu and Usher, 2013). This occurred because larger inputs 

(whether congruent or incongruent) drove faster reaction times.  
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Figure 9. Simulation of target and distractor sensitivity (see Figure 2). A-B) Sensitivity to target coherence (A) and 

distractor congruence (B) in behavior (left) and in the FFIc simulation (right) for Attend-Color blocks. C-D) Same 

as A-B, but for Attend-Motion blocks. 

 

We next used this model to test potential mechanisms underlying participants’ within- and 

between-trial control adaptations. First, we tested whether participants’ apparent within-trial 

dynamics in feature sensitivity plausibly resulted from actual within-trial changes in control 

gains governing feature sensitivity, or whether such dynamics could result from static control 

gains. We implemented time-varying feature gains as attractors with an initial gain (e.g., 

reflecting bottom-up salience or learning) that exponentially approaches a fixed point (e.g., 

determined by the task goals and control; cf. (Musslick et al., 2019; Steyvers et al., 2019)). 
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We found that incorporating these time-varying gains into our accumulator model allowed it to 

reproduce participants’ behavioral dynamics. In accuracy, our model replicated the shift in target 

sensitivity over time, with the collapsing bound reducing performance on the slowest trials 

(Figure 10a). Our model similarly captured participants’ decreased target sensitivity at later RTs 

(Figure 10b). Finally, our model recreated the analogous effects in RT, with faster errors for high 

coherence targets and incongruent distractors (Figure 10c-d). Critically, we were unable to 

replicate these qualitative patterns of behavior with FFI models in which control gains that were 

frozen throughout the trial (Supplementary Figure 4). Drift diffusion models with across-trial 

variability in gain, noise, or threshold; or drift diffusion models with within-trial dynamics in 

noise or threshold were similarly unable to capture our key effects without within-trial gain 

dynamics (Supplementary Figure 5).  

 

At later RTs, participants were more likely to exhibit lapses in performance (i.e., choose 

randomly; ds = 0.25 to 0.93, p < .001, see Table 4), which were estimated with a separate term in 

our regression models (see ‘Regression Analyses’ section of Methods). This is evident in poorer 

overall performance in the slowest RT bin, relative to the 2nd-4th bins (see Figure 10a, left panel, 

pink line). A similar ‘hook’ is often observed in RT-conditioned accuracy functions, with 

gradually better performance followed by poorer performance for the slowest RTs (van den 

Wildenberg et al., 2010; Weichart et al., 2020). Our simulation captured this global reduction in 

accuracy by including a collapsing boundary (Drugowitsch et al., 2012; Rosenbaum et al., 2022), 

which leads to late errors irrespective of feature coherence (see Supplementary Figure 5 for 

contrast to fixed bound). Notably, even though overall accuracy is reduced over time, target 

sensitivity is stronger at the slowest RT bin relative to the earliest RT bin (compare navy and 
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pink psychometric slopes in Figure 10a), consistent with both feature-selective dynamics (gain 

control) and global dynamics (collapsing bound). By including a theory-driven mechanism for 

reductions in overall accuracy, our FFIc model captures performance trends in this slowest RT 

quantile that were difficult to capture with for more model-agnostic regression analyses. 

 

 

 

Figure 10. Simulation of target and distractor sensitivity dynamics (see Figure 6). A-B) RT-dependent (A) and 

accuracy-dependent (B) sensitivity to target coherence in behavior (left) and in the FFIc simulation (right). C-D) 

Same as A-B, but for distractor congruence. 

 

The parallel feature pathways in this model are designed to capture the independent influences of 

a target and distractor information (Lindsay and Jacoby, 1994). However, the time-varying 

feature gains providing an account for the weak interactions we observed between target and 
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distractor sensitivity in accuracy. Despite there being no competition in feature processing in our 

model, we found these weak target-distractor interactions emerge in simulated accuracies but not 

simulated RTs. This interaction appeared to result from the different time courses of target and 

distractor sensitivity. As in participants’ behavior, the model’s errors due to incongruent 

distractors tend to occur early (Figure 10c-d), censoring target processing at a lower (early) level 

of sensitivity. This interplay between feature sensitivity dynamics (but not overall feature 

sensitivity per se) offers a plausible explanation for the subtle and seeming inconsistent 

interactions in participants’ behavior. 

 

Having provided an account of how each of our stimulus features is processed over the course of 

the trial depending on the task goal, we next tested a potential model-based account of the two 

forms of control adaptation we observed across trials. Our participants demonstrated enhanced 

target sensitivity on rewarded blocks, and suppressed distractor sensitivity after increasingly 

incongruent trials. In both cases, adaptation appeared to enhance sensitivity to stimulus features 

at the fastest reaction times.  

 

To account for the early effects of conflict and incentives, we modified the initial conditions of 

our model’s gain dynamics (Figure 11a). We simulated post-interference adaptation by 

initializing the distractor gain closer to its asymptote, and we simulated reward incentivization by 

initializing the target gain closer to its asymptote. We found that these simulations qualitatively 

reproduced participants’ behavior, with stronger adaptation and reward effects earlier in the trial 

than later. The exponential dynamics in our attractor network parsimoniously accounts for the 

fact that dynamics tended to be faster when they were initialized further from the fixed point 
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(i.e., post-congruent trials). Thus, our model was able to capture the range of findings in this 

experiment: target-distractor sensitivity, within-trial dynamics, and how the dynamics of target 

and distractor processing may be influenced by control.  

 

 

Figure 11. Simulation of post-conflict and incentive effects (see Figure 7). A) The influences of previous 

congruence (shade) and incentive effects (gold) were implemented through changes to the initial conditions of the 

feature gain dynamics, with previous congruence influencing initial distractor gain and incentives influence initial 

target gain. B-C) The influence of previous congruence on distractor sensitivity dynamics in behavior (B) and in the 

FFIc simulation (C). D-E) The influence of incentives on target sensitivity dynamics in behavior (D) and in the FFIc 

simulation €. 
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Discussion  

When faced with distraction, we can sustain good performance by engaging with relevant 

information or ignoring disruptive information. Our experiment revealed that these strategies are 

under independent cognitive control, and are driven by distinct attentional dynamics. Using a 

bivalent random dot motion task with parametric target and distractor coherence (PACT), we 

found that target and distractor information have independent influences on participants’ 

performance. Furthermore, we found that participants’ sensitivity to targets and distractors was 

preferentially modulated by incentives and previous interference, respectively. These adaptations 

altered the initial conditions of feature-selective gains, which was followed by dynamic 

enhancement to target gains and suppression of distractor gains. These behavioral phenomena 

could be parsimoniously explained by a hybrid sequential sampling model with goal-dependent 

attractor dynamics over feature weights. 

 

Together, these results support a cognitive control architecture that is parametric, multivariate, 

and dynamic. Previous research has found that cognitive effort is enhanced in response to 

incentives (Parro et al., 2018; Yee and Braver, 2018) and to previous conflict (Egner, 2007; 

Gratton et al., 1992). The current experiments extend these previous findings to show that these 

adaptations are both graded in their intensity, and selective in their allocation. These findings are 

consistent with a multivariate perspective on cognitive control (Ritz et al., 2022), in which 

people optimize a configuration of control signal according to their costs and benefits (Musslick 

et al., 2015; Shenhav et al., 2013). The target and distractor configurations observed here add to 

a body of work teasing apart the conditions under which people coordinate across multiple 
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control signals (Danielmeier et al., 2011; Leng et al., 2021; Noonan et al., 2016; Simen et al., 

2009; Soutschek et al., 2015; Wöstmann et al., 2019).  

 

A core question arising from these results is why there are preferential relationships between 

previous conflict with distractors, and incentives with targets. One possibility is that this is due to 

credit assignment. A system that could properly assign credit to features based on their 

contribution to conflict and incentives should allocate control towards distractors and targets. 

Distractors are a salient source of response conflict, and participants could adjust sensitivity to 

reduce this conflict. When participants were performing the more automatic Attend-Motion 

blocks, during which response conflict was absent, this adaptation was also absent. In contrast, 

reward contingencies were explicitly tied to target discrimination performance. During Attend-

Motion blocks, there was a stronger association between target coherence and performance (e.g., 

due to response compatibility, and that only targets contributed to accuracy), potentially 

explaining why these blocks had larger incentive effects. This account is consistent with 

Bayesian models of cognitive control, such as those that predict feature congruence (Jiang et al., 

2014; Yu et al., 2009) or the value of control policies (Bustamante et al., 2021; Lieder et al., 

2018).  

 

Our results also provide insight into the dynamic implementation of attentional control. Previous 

work has shown that within-trial attentional dynamics play an important role in both decision 

making (Callaway et al., 2021; Krajbich et al., 2010; Li and Ma, 2021; Westbrook et al., 2020) 

and cognitive control (Adkins and Lee, 2021; Hardwick et al., 2019; Servant et al., 2014; Ulrich 

et al., 2015; Weichart et al., 2020; White et al., 2011). These foundational experiments have 
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largely focused on spatial attention, with far less known about the dynamics of feature-based 

attention, where processing of targets and distractors is less mutually constrained. Whereas 

previous work has modeled within-trial dynamics as simplified impulse functions (Ulrich et al., 

2015), our modeling approach extends these accounts with a more process-oriented focus on how 

a neural network could be parameterized to produce key patterns of within-trial attentional 

dynamics. Furthermore, relatively few experiments have studied how attentional dynamics are 

modified in response to control drivers like incentives or task demands (though see: (Adkins and 

Lee, 2021; van den Wildenberg et al., 2010; Yu et al., 2009)).  

 

Our experiments show that the dynamics of target and distractor sensitivity are independent, and 

that previous conflict and incentives appear to operate through changes to the initial conditions 

of these feature gains4. These findings are broadly consistent with influential theories of 

attentional dynamics which propose that early task processing is largely driven by feature 

salience and statistical or reinforcement learning, whereas attentional control has a relatively 

slower timecourse ((Awh et al., 2012; Theeuwes, 2018, 2010), see also (van den Wildenberg et 

al., 2010))5. If participants are learning the relevance of different features, it’s possible that these 

initial conditions in part reflect the prior probability that attention towards targets or distractors 

will support task goals (Lieder et al., 2018; Yu et al., 2009). Similar to how response priors are 

reflected in the initial decision state (Bogacz et al., 2006; Simen et al., 2009), priors on feature 

 
4 We found that just modifying feature gains' initial conditions parsimoniously accounted for incentive and previous 
conflict effects. Note that we do not explicitly compare this model to more complex models incorporating changes 
to parameters like decay rate and/or asymptotic gain, which should be more thoroughly investigated in future 
experiments. 
 
5 We assume that ‘early’ and ‘late’ processing do not reflect discrete stages (Hübner et al., 2010), but different 
timepoints in a continual process. While this is consistent with previous work showing that gradual attentional 
adjustments are a better model of flanker task performance (White et al., 2011), future work should experimentally 
confirm the continuous nature of these attentional dynamics. 
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priority may be reflected in the initial attentional state. In the case of previous interference, this 

could reflect learning whether distractors enhance performance (e.g., after trials on which 

congruent distractors led to better performance), or a local estimate of the probability a trial will 

be congruent (Yu et al., 2009). For incentives, this may reflect the expected target-reward 

contingency. Future research should investigate this account by measuring attentional dynamics 

as participants learn task contingencies (Shenhav et al., 2018).  

 

Our patterns of conflict- and incentive-dependent dynamics help rule out stimulus-driven 

dynamics and support independent control over feature processing. After congruent trials, 

participants started the next trial with more similar target and distractor gains, that were then 

more quickly separated within the trial (Figure 7b). If these dynamics were an artifact of the 

decision process (e.g., due to accumulator attractors; (Wong and Wang, 2006), then we would 

expect that when target and distractor gains are initially more similar, there would be slower 

dynamics. Instead, we found faster dynamics, supporting a role for feedback control that 

reconfigures attentional gain to align with task goals. Additionally, during incentivized blocks, 

we saw that participants modified attentional dynamics for targets, but not distractors. This 

finding further supports the independence of these attentional dynamics, demonstrating that 

participants can alter attention towards individual features one at a time. This pattern of 

incentives enhancing sensitivity to target information, while also producing faster responding 

and a marginally higher lapse rate, is consistent with previous work on motivated attention. A 

recent experiment used drift diffusion modeling to show that participants increase their rate of 

evidence accumulation and decrease their response threshold when faced with higher rewards, 

consistent with the reward-rate optimal policy (Leng et al., 2021). The current experiment 
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extends these findings by revealing how specific attentional adjustments improve evidence 

accumulation, providing a more process-oriented account of motivated cognitive control. 

Our dynamical process model may help link behavior in response conflict tasks to cognitive 

dynamics in other domains. In the domain of task-switching, recent cognitive models have 

developed similar dynamical accounts of how people reconfigure task sets. Classic work has 

shown that switch costs exponentially decay with preparation time (Monsell and Mizon, 2006; 

Rogers and Monsell, 1995), similar to the dynamics in the current task. Computational models 

have formalized these task set dynamics during the switch preparation period (Gilbert and 

Shallice, 2002; Jongkees et al., 2023; Musslick et al., 2019; Ueltzhöffer et al., 2015; Yeung and 

Monsell, 2003) and across trials (Grahek et al., 2022; Jaffe et al., 2023; Steyvers et al., 2019). If 

the within-trial dynamics we observe here reflect such “task set micro-adjustments” 

(Ridderinkhof, 2002), then our results highlight the computational similarities between different 

forms of cognitive flexibility. Both within trials and across tasks, reconfiguration appears to be 

well-captured by a common class of dynamical systems in which task configurations 

exponentially approach an appropriate set point. In this experiment, we show that these dynamics 

are multivariate and adjusted to meet local task demands through changes to initial conditions. 

Interestingly, control over initial conditions also plays a central role in the neural dynamics of 

motor preparation (Churchland et al., 2010; Kao et al., 2020; Remington et al., 2018), 

highlighting the broader similarities across motor and cognitive domains (Ritz et al., 2022, 2020) 

and generating neural predictions for the neural implementation of dynamic cognitive control. 

The evidence we provide for dissociable control over target and distractor processing is 

consistent with previous neuroscience experiments that used neural correlates of stimulus 
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processing to argue for independent enhancement and suppression processes (Gazzaley et al., 

2005; Noonan et al., 2016; Soutschek et al., 2015; Wöstmann et al., 2019). Our results extend 

these findings by exploring how different factors can contribute to dynamic reconfiguration of 

target and distractor attention, which we formalize in an explicit process model. Notably, our 

findings diverge from neuroimaging experiments that have suggested that control primarily acts 

through enhancements to target processing (Egner and Hirsch, 2005). One potential source of 

this divergence may be that people’s control strategies differ depending on the source of task 

conflict (Braem et al., 2014; Egner, 2008; Egner et al., 2007). For example, tasks evoking 

stimulus-stimulus conflict (e.g., semantic competition in Stroop task) may require different 

strategies than tasks evoking stimulus-response conflict (e.g., distractors driving competing 

responses, as in PACT). Although previous work using Stroop-like tasks has found similar 

patterns of control adjustments as in the current experiment (Soutschek et al., 2015), this raises 

the broader question of whether the specific feature-control relationships in this experiment 

should generalize to other tasks. According to the Expected Value of Control theory, and the 

Learned Value of Control model that builds upon it, control strategies are adapted to specific task 

contexts (Lieder et al., 2018; Ritz et al., 2022; Shenhav et al., 2013). This framework predicts 

there will be strategic or learned control-feature mappings, rather than a rigid relationship 

between task features and control policies. The current results show that participants can 

independently control target and distractor processing when these features are independent, and 

future work should explore whether control strategies appropriately accommodate other tasks.   

 

Interestingly, participants appeared to suppress distractor sensitivity even on congruent trials, 

evident in the right half of Figure 6d (see also (Mante et al., 2013; Pagan et al., 2022)), 
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suggesting that they are not reactively adjusting this control policy when the trial conditions 

deem it unnecessary or even detrimental. On its face, this finding presents a challenge to models 

that propose control allocation on the basis of response conflict (Botvinick et al., 2001; Yu et al., 

2009), though much of the evidence for these theories comes from across-trial adjustments 

(Botvinick et al., 2001; Egner and Hirsch, 2005; Kerns et al., 2004; Yeung et al., 2004). The 

current results may thus inform understanding of the timescale over which people plan reactive 

control adjustments. In some cases, this decision process may take more time than would be 

helpful for fast within-trial reconfiguration. 

 

Our analyses of attentional dynamics depend on participants’ own response times and choices, 

raising concerns about selection biases (i.e., lack of experimental control over reaction times). 

While evidence accumulation modelling typically depends on choice-conditioned reaction times, 

inferring time-varying influence of targets and distractors presents a particular challenge. To 

address these concerns, we used simulations to show that the dynamic profiles we observed 

cannot be accounted for by an evidence accumulation model with static gains on target and 

distractor processing (Supplementary Figure 4) or models with dynamic changes to non-selective 

components like decision threshold (Supplementary Figure 5). Introducing dynamic feature gains 

allowed us to account for those same patterns (Figures 9 to 11; Supplementary Figure 5). These 

results are consistent with previous work validating DDM estimates of attentional dynamics in 

conflict tasks (White et al., 2018, 2011). Even if these measurements are valid, using sparse 

behavioral measures is an inefficient method for measuring latent dynamics, and may combine 

multiple processes (e.g., accumulation and threshold adjustments). By integrating across multiple 

convergent measures of decision and attentional dynamics – including interrogation protocols 
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(Adkins and Lee, 2021; Hardwick et al., 2019), motor tracking (Erb et al., 2016; Menceloglu et 

al., 2021; Scherbaum et al., 2010), and/or temporally-resolved neuroimaging (Fischer et al., 

2018; Scherbaum et al., 2011; Weichart et al., 2020; Yeung et al., 2004) – future work can help 

strengthen and build on our understanding of continuous changes in the configuration of multiple 

control processes. 

 

The evidence accumulation modeling in the current experiment was able to categorically rule out 

several alternative architectures, demonstrating the necessity and sufficiency of feature-specific 

adjustments for capturing the full array of putative attentional dynamics. Our model validation 

approach supports our interpretation of feature-selective adjustments, while committing less 

strongly to the specific formulation of attentional control (e.g., a specific model 

parameterization, or the functional form of the collapsing bound). An important direction for 

future research should be to leverage emerging methods for parameter estimation to directly fit 

our accumulator model to participants’ behavior (Fengler et al., 2021; Weichart et al., 2020). 

This approach will help extend insights from the current experiment, such as enabling 

participant-specific parameters to reveal individual differences in attentional control. 

 

Together, these experiments provide new insight into how we flexibly adapt to the changing 

demands of our environment. We find evidence for flexible control that aligns multiple forms of 

information processing with task goals, and can be captured by an computationally explicit 

process model. The developments from this experiment can help extend models of cognitive 

control towards richer accounts of how multivariate control configurations, such as across targets 

and distractors, are optimized during goal-directed behavior. 
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Supplementary Tables 

Supplementary Table 1. Target and distractor sensitivity (Attend-Motion) 

DV Predictors Exp 1 (df = 45) 
Effect size (d) 

Exp 2 (df = 25) 
Effect size (d) 

Exp 3 (df = 45) 
Effect size (d) 

Aggregate 
p-value 

Choice Target coherence   4.39 5.44 5.69×10-53 

 Distractor congruence 0.732 0.352 0.269 0.000916 

 Target × Distractor  0.0522 0.145 0.6210 

RT Target coherence   -1.47 -1.63 2.71×10-21 

 Distractor congruence 0.125 0.179 0.407 0.121 

 Target × Distractor  0.0710 0.0371 0.864 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

Supplementary Table 2. Target and distractor sensitivity (Attend-Color - Attend-Motion) 

DV Predictors Exp 1 
Effect size (d) 

Exp 2 
Effect size (d) 

Exp 3 
Effect size (d) 

Aggregate 
p-value 

Choice Target coherence  -0.588 
(df = 50.0) 

-0.615 
(df = 89.8) 

1.00×10-10 

 Distractor congruence 0.432 
(df = 88.9) 

0.743  
(df = 49.1) 

0.971 
(df = 75.8) 

5.79×10-19 

RT Target coherence  0.00957 
(df = 44.4) 

0.339 
(df = 69.8) 

0.182 

  Distractor congruence -0.804 
(df = 78.8) 

-1.19 
(df = 42.8) 

-1.38 
(df = 59.1) 

2.69×10-31 

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across 

experiments, with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

Supplementary Table 3. Correlations between RT and accuracy betas 

Experiment Correlands MAP r-stat p-value 

Exp 1 (df = 54) Distractor Betas -0.891 1.95×10-20 
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Exp 2 (df = 38) Target Betas  -0.712 1.27×10-7 

 Distractor Betas -0.875 7.48×10-14 

Exp 3 (df = 58) Target Betas -0.540 4.20×10-6 

 Distractor Betas -0.907 1.05×10-23 

Parameter correlations are calculated from the MAP group-level parameter covariance. Statistically significant p-

values (two-tailed, α = 0.05) are shown in bold. 

 

Supplementary Table 4. Effects of previous conflict on feature sensitivity (Attend-Motion) 

DV Predictors Exp 1 (df = 41) 
Effect size (d) 

Exp 2 (df = 19) 
Effect size (d) 

Exp 3 (df = 39) 
Effect size (d) 

Aggregate 
p-value 

Choice Distractor × Prev Distract  0.0113 -0.176 0.293 0.578 

 target × Prev Target  -0.00795 -0.424 0.268 

RT Distractor × Prev Distract  0.503 -0.427 0.181 0.291 

  target × Prev Target  0.131 -0.0333 0.777 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

Supplementary Table 5. Effects of previous conflict on feature sensitivity (Attend-Color - Attend-Motion) 

DV Predictors Exp 1 
Effect size (d) 

Exp 2 
Effect size (d) 

Exp 3 
Effect size (d) 

Aggregate 
p-value 

Choice Distractor-dependent 
(Distractor - Distractor) 

0.505  
(df = 52.7) 

0.984  
(df = 33.6) 

0.280 
(df = 47.7)  

4.39×10-8 

 Motion-dependent 
(Distractor - Target) 

 0.448  
(df = 21.9) 

0.651  
(df = 40.2) 

2.27×10-5 

RT Distractor-dependent 
(Distractor - distractor) 

-0.629  
(df = 80.2) 

-0.956 
(df = 29.3) 

-1.20  
(df = 70.7) 

3.40×10-23 

  Motion-dependent 
(Distractor - Target) 

 -0.237 
(df = 19.1) 

-0.0929  
(df = 39.3) 

0.337 

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across 

experiments, with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 
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Supplementary Table 6. Effects of incentives on feature sensitivity (Attend-Motion) 

DV Predictors Exp 3 (df = 41) 
Effect size (d) 

p-value 

Choice Target × Reward 0.703 6.02×10-5 

  Distractor × Reward 0.289 0.110 

Lapse 
Rate 

Reward -0.0696 0.670 

RT Target × Reward -0.126 0.415 

  Distractor × Reward -0.192 0.265 

  Reward -0.0955 0.516 

Effect sizes are calculated from MAP group-level regression estimates. Statistically significant p-values (two-tailed, 

α = 0.05) are shown in bold. 

 

Supplementary Table 7. Effects of incentives on feature sensitivity (Attend-Color – Attend-Motion) 

DV Predictors Exp 3 
Effect size (d) 

p-value 

Choice Target × Reward -0.279 
(df = 59.0) 

0.0363 

  Distractor × Reward -0.230 
(df = 48.3) 

0.117 

RT Target × Reward 0.0566 
(df = 58.3) 

0.667 

  Distractor × Reward 0.271 
(df = 77.0) 

0.0199 

Effect sizes are calculated from Welsh’s contrasts across regression models. Statistically significant p-values (two-

tailed, α = 0.05) are shown in bold. 

 

Supplementary Table 8. Dynamics of feature sensitivity across response times (Attend-Motion) 

DV Predictors Exp 1 (df = 38) 
Effect size (d) 

Exp 2 (df = 21) 
Effect size (d) 

Exp 3 (df = 41) 
Effect size (d) 

Aggregate 
p-value 

Choice Target × RT   2.03 1.31 
 

3.30×10-20 

 Distractor × RT -0.257 0.194 -0.490 0.0226 
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Lapse 
Rate 

RT 0.509 0.763 -0.234 0.941 

RT Target × Accuracy   0.772 0.679 1.59×10-7 

 Distractor × Accuracy 0.0758 -0.211 0.0199 0.931 

Effect sizes are calculated from MAP group-level regression estimates. P-values are aggregated across experiments, 

with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

Supplementary Table 9. Dynamics of feature sensitivity across response times (Attend-Color – Attend-
Motion) 

DV Predictors Exp 1 
Effect size (d) 

Exp 2 
Effect size (d) 

Exp 3 
Effect size (d) 

Aggregate 
p-value 

Choice Target × RT  -2.08 
(df = 23.0) 

-1.09 
(df = 46.1) 

3.35×10-17 

 Distractor × RT -0.102 
(df = 56.3) 

-0.585 
(df = 22.4) 

-0.539 
(df = 78.5) 

4.57×10-5 

RT Target × Accuracy  -0.429 
(df = 23.0) 

-0.422 
(df = 46.2) 

0.00148 

  Distractor × Accuracy -0.344 
(df = 66.4) 

-0.648 
(df = 29.6) 

-0.723 
(df = 78.6) 

4.56×10-11 

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across 

experiments, with statistically significant p-values (two-tailed, α = 0.05) shown in bold. 

 

Supplementary Table 10. Model Collinearity 

Model Experiment Accuracy Model Collinearity 
median [25% - 75%] 

RT Model Collinearity 
median [25% - 75%] 

Baseline Experiment 1    1.4 [1.4 – 1.5]     1.1 [1.1 – 1.1] 

 Experiment 2     1.4 [1.4 – 1.5]     1.1 [1.1 – 1.1] 

 Experiment 3     1.4 [1.4 – 1.5]     1.1 [1.1 – 1.1] 

Post-Conflict Experiment 1     1.5 [1.4 – 1.5]     1.2 [1.1 – 1.3] 

 Experiment 2     1.4 [1.4 – 1.5]     1.3 [1.2 – 1.3] 

 Experiment 3     1.5 [1.4 – 1.5]     1.3 [1.2 – 1.3] 

Reward Experiment 3     1.4 [1.4 – 1.5]     1.2 [1.1 – 1.2] 
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Dynamics Experiment 1     1.5 [1.5 – 1.6]     1.5 [1.3 – 2.0] 

 Experiment 2     1.5 [1.4 – 1.5]     1.6 [1.4 – 1.7] 

 Experiment 3     1.5 [1.4 – 1.5]     1.7 [1.5 – 2.0] 

Post-Conflict Dynamics Experiment 1     1.6 [1.6 – 1.8]     2.2 [1.7 – 3.3] 

 Experiment 2     1.5 [1.4 – 1.5]     2.1 [1.8 – 2.4] 

 Experiment 3     1.5 [1.5 – 1.6]     2.1 [1.7 – 2.5] 

Reward Dynamics Experiment 3     1.5 [1.5 – 1.6]     2.0 [1.7 – 2.4] 

Belsley collinearity diagnostics for core models (from MATLAB’s collintest). Diagnostic values are the ratio of the 

design matrix’s largest singular value to its smallest singular value, summarized at different participant quantiles 

(i.e., median is the participant at the 50th percentile). A value of 1 is perfect orthogonality, and values below 30 are 

within the default tolerance. All values are well below 30, indicating tolerable collinearity. 

 

Supplementary Table 11. Across-block changes in Feature Sensitivity Dynamics 

DV Predictors Exp 2 
Effect size (d) 

Exp 3 
Effect size (d) 

Aggregate 
p-value 

Choice Block × Distractor × RT -0.501 -0.644 5.21 × 10-6 

  Block × Target × RT 0.348 0.480 .000576 

 Block × Distractor  0.633 0.524 1.27 × 10-5 

 Block × Target 0.0698 -0.0581 .501 

Lapse Rate Block  0.380 0.0793 .175 

 Block × RT -0.505 -0.277 .00342 

RT Block × Distractor × Accuracy 0.168 -0.397 .0399 

  Block × Target × Accuracy -0.142 -0.153 .286 

  Block × Distractor 0.0498 -0.129 .215 

 Block × Target 0.371 0.475 .000472 

 Block × Accuracy 0.396 0.448 .000422 

 Block -0.970 -1.23 1.33 × 10-12 

Effect sizes are calculated from Welsh’s contrasts across regression models. P-values are aggregated across 

experiments, with statistically significant p-values (two-tailed, α = 0.05) shown in bold.  
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Supplementary Figures 

 

Supplementary Figure 1. Regression schematic. To estimate feature sensitivity, trial-specific color (green) and 

motion (cyan) coherence levels were passed through a hyperbolic tangent nonlinearity (tanh), with the 𝛼 parameter 

determining the strength of the nonlinearity (see Methods). The linear relationships between transformed coherence 

and performance (RT in red and Choice in blue) were our estimates of participants’ feature sensitivity. Our critical 

analyses tested whether potential indices of control (e.g., task instructions or incentives) moderated this feature 

sensitivity. 
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Supplementary Figure 2. Target-dependent adaptation. A-B) The relationship between target coherence and 

accuracy (A) was weaker when the previous trial had weaker target coherence (redder colors). There was not a 

significant effect for RT (B) Circles depict participant behavior and lines depict aggregated regression predictions. 

C) Regression estimates for the current target coherence by previous target coherence interaction, within each 

experiment. D-E) There was not a significant relationship between distractor congruence and previous target 

coherence in accuracy (D) or €(E). F) Regression estimates for the current distractor congruence by previous target 

coherence interaction, within each experiment. Error bars on behavior reflect within-participant SEM, error bars on 

regression coefficients reflect 95% CI. 
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Supplementary Figure 3. Leak competing accumulator simulation. A) We simulated behavior from a leaky 

competing accumulator (Usher and McClelland, 2001). In this model, the response accumulators directly compete. 

In our parameter regime, leak and competition parameters produce race-like accumulation dynamics (Bogacz et al., 

2006; Weichart et al., 2020). B-C) We found that this parameter regime was unable to capture the effect of distractor 

congruence on reaction time, as stronger inputs (congruent or incongruent) produce faster RTs in a race-like regime 

(Teodorescu and Usher, 2013). Other parameter regime, producing DDM-like dynamics, would replicate our main 

simulation results (Bogacz et al., 2006). 
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Supplementary Figure 4. Static feature gain simulations. We simulated the FFI model under different formulations 

that lack feature sensitivity dynamics, showing that gain dynamics are necessary to capture the RT- and Accuracy-

dependent feature sensitivity we observed in participants’ behavior. Feature-specific processes are necessary to 

capture the opposite-going dynamics on target sensitivity and distractor sensitivity. A) Static model without feature 

dynamics. B) Static model without feature dynamics or collapse response threshold. C) Static model without feature 

dynamics, collapsing response threshold, or positive-rectified accumulators. 
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Supplementary Figure 5. Dynamic drift diffusion simulations. Drift diffusion model (DDM) simulations 

demonstrating the predictions from alternative formulations of within- and across-trial dynamics. Data are simulated 

target and distractor psychometric curves, conditioned on simulated RT quintiles (1 million simulations per 
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analysis). Row 1: Standard DDM, across-trial target gain variability, across-trial distractor gain variability. Row 2: 

across-trial accumulation noise variability, within-trial noise increase, within-trial noise decrease. Row 3: across-

trial bound (threshold) variability, within-trial bound decrease (‘collapsing bound’). Row 4: within-trial target gain 

enhancement and distractor suppression with fixed bound, within-trial target gain enhancement and distractor 

suppression with collapsing bound, participants’ behavior. All simulations were performed using the dm package 

(package available at www.github.com/DrugowitschLab/dm; simulation scripts available at 

www.github.com/shenhavlab/PACT-public).   

  

 

 

 

 

Supplementary Figure 6. Aggregated posterior predictive checks. A) Model predictions from participants in 

Experiments 2 and 3, showing predicted target sensitivity curves (top) and distractor sensitivity curves (bottom). 

Predictions are centered within-participant to remove individual intercepts. B) Model fit quality for participants in 

Experiments 2 and 3. Each participants’ behavior (x-axis) is plotted against predicted behavior (y-axis), across five 

levels of target coherence (top) or distractor congruence (bottom; bluer to pinker indicates harder to easier 

conditions). Dots closer to the black identity reflect better model fit, and color gradients on y-axis reflect feature 

sensitivity. Predictions and behavior are centered within-participant to remove individual intercepts. 
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Supplementary Figure 7. Single-participant posterior predictive checks. Posterior predictive checks from 48 

participants from Experiments 2 and 3, linearly spaced from the poorest model likelihood to the best model 

likelihood. First four rows are target sensitivity curves for accuracy (blue) and reaction time (red). Final four rows 

are distractor sensitivity curves (for the same participants) for accuracy (blue) and reaction time (red). Overlaid lines 

are single-trial model predictions aggregated like participants’ behavior. 
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Supplementary Figure 8. Parameter Recovery. We simulated behavior from each participants’ best-fitting 

parameters (x-axis) and then fit our model to this simulated behavior (y-axis). Each panel represents a parameter for 

the within-trial sensitivity model (top) and the within-trial dynamics model (bottom). Parameters were estimated 

hierarchically, with five simulated samples for each model (5 repetitions × 60 simulated participants). Gray 

horizontal and vertical lines reflect the parameter zero point, and the diagonal cyan line reflects the unity line. The 

simulated-recovered parameter correlation is reported in each panel title. 
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Supplementary Figure 9. Parameter knock-out analysis. Relative AIC (left column): parameter-penalized model 

fits for the regression model in the main text (‘Full Model’), a model with previous RT and Choice removed (‘No 

AR’), a model with tanh nonlinearities removed (‘No Tanh’), and a model with the lapse rate response (‘No Lapse’). 

Smaller values reflect better fit, with zero reflecting the AIC of the full model. Posterior predictive checks (center 

column): simulated behavior (lines) plotted over observed behavior (dots). Notice that removing tanh nonlinearities 
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fails to capture behavioral trends in within-subject models, and removing lapse terms fails to capture behavior in 

Dynamics models. Parameter comparisons (right column): model parameters plotted for the best-fitting model (red) 

and the full model (black). Notice that the parameters are very similar between these models, demonstrating that our 

key parameters are robust to knocking out other terms of the model. 

 

 

Supplementary Figure 10. Target and distractor sensitivity (Equal Axes). A) Participants were more accurate (blue, 

left axis) and responded faster (red, right axis) when the target color had higher coherence. Lines depict aggregated 

regression predictions. In all graphs, behavior and regression predictions are averaged over participants and 

experiments. Data aggregated across Experiments 2 & 3. B) Regression estimates for the effect of target coherence 

on performance within each experiment, plotted for accuracy (blue, left axis) and RT (red, right axis). C) 

Participants were more accurate and responded faster when the distracting motion had higher congruence (coherence 

signed relative to target response). In all graphs, behavior and regression predictions are averaged over participants 

and experiments. Data aggregated across Experiments 1-3. D) Regression estimates for the effect of distractor 
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congruence on performance within each experiment, plotted for accuracy and RT. E-F) Similar to A-B, perfor€ce 

(E) and regression estimates (F) for the effects of target coherence during Attend-Motion blocks, in which motion 

was the target dimension. G-H) Similar to A-B, performance (G) and regression estimates (H) for the effects of 

distractor congruence during Attend-Motion blocks, in which color was the distractor dimension. Error bars on 

behavior reflect within-participant SEM, error bars on regression coefficients reflect 95% CI. Psychometric 

functions are jittered on the x-axis for ease of visualization. Y-axes have been equalized across features and tasks. 

 

 

Supplementary Figure 11: Changes in within-trial dynamics across blocks. Compared to earlier blocks, in later 

blocks participants’ earliest sensitivity was weaker for targets and stronger for distractors (i.e., less task-appropriate 

later in the experiment). However, participants also exhibited faster corrected dynamics in later blocks, showing 

similar sensitivity for the slowest reaction times. 
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Supplementary Note 1: Task Instructions 

Motion training 

You will see dots that are moving left or right. If the dots are moving left, respond with the left key. If the 

dots are moving right, respond with the right key. If you are correct, you will be told so, and if you make 

a mistake, you will be reminded about the response mappings. As always, please respond as quickly and 

accurately as you can. 

 

Color training 

You will see dots that are one of *these* four colors. If the dots are *these* colors, respond with *this* 

hand. If the dots are *these* colors, respond with *this* hand. If you are correct, you will be told so, and 

if you make a mistake, you will get to see the colors again. As always, please respond as quickly and 

accurately as you can. 

 

Main Experiment  

This is the main section. Now you will see dots that both have a color and are moving left or right. There 

will be two kinds of blocks. This block is a color block. In this block, you will have to respond to color 

with these keys, like you did in the training. You will no longer receive feedback. Other blocks will be 

motion blocks, and you will have to respond based on the direction of the dot motion. Feel free to take a 

short break between blocks and come get me after you've finished all the blocks. As always, please 

respond as quickly and accurately as you can. (Note: during experiments 2 and 3, we emphasized 

choosing the color that was in the majority). 

 

Reward Variant 

During some of the color and motion blocks, you will be able to earn a monetary reward based on your 

performance. This block is one of the HIGH reward blocks. These blocks will say ‘high reward’ at the 



Humans reconfigure target and distractor processing 

 

78 

top, and the text will be gold. At the end of the experiment, we will randomly pick a bunch of trials from 

these blocks. Depending on how many trials that are fast and accurate, you will be able to earn up to $4. 

Other blocks will be ‘NO reward’ blocks, with ‘NO reward’ written at the top and white text. You will 

not earn any money for your performance on these blocks. 
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