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Abstract

The complex challenges of our mental life require us to coordinate multiple forms of neural
information processing. Recent behavioral studies have found that people can coordinate
multiple forms of attention, but the underlying neural control process remains obscure. We
hypothesized that the brain implements multivariate control by independently monitoring
feature-specific difficulty and independently prioritizing feature-specific processing. During
fMRI, participants performed a parametric conflict task that separately tags target and distractor
processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially
segregated encoding of target and distractor difficulty in dorsal anterior cingulate cortex.
Consistent with feature-specific attentional priority, our Encoding Geometry Analysis revealed
overlapping, but orthogonal, representations of target and distractor coherence in intraparietal
sulcus. Coherence representations were mediated by control demands and aligned with both
performance and frontoparietal activity, consistent with top-down attention. Together, these
findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive
control.

Keywords: cognitive control, attention, decision-making, fMRI
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Introduction

We have remarkable flexibility in how we think and act. This flexibility is enabled by the array
of mental tools we can bring to bear on challenges to our goal pursuit 6. For example, someone
may respond to a mistake by becoming more cautious, enhancing task-relevant processing, or
suppressing task-irrelevant processing 7, and previous work has shown that people
simultaneously deploy multiple such strategies at the same time in response to different task
demands 319, Flexibly coordinating multiple cognitive processes requires a control system that
can monitor multiple forms of task demands and deploy multiple forms of control (also referred
to as the necessity for observability and controllability; '"). These monitoring and regulation
processes are fundamental to control, and are thought to be underpinned by distinct cingulo-
opercular and frontoparietal neural systems >, However, much is still unknown about how
multiple forms of control are represented across these domains.

Past research on the neural mechanisms of cognitive control has often sought to identify
representations that integrate over multiple different sources of task demands (i.e., represent
these different sources in alignment). For instance, previous studies has proposed that dorsal
anterior cingulate cortex (dACC) tracks integrative features like response conflict, effort, value,
error likelihood, and time-on-task 2°27. Because they integrate over different task features
instead of differentiating between them, these forms of ‘aligned encoding’ (Figure 1a) are ill-
suited for carrying out multidimensional control. Multidimensional cognitive control requires
independent representations that can track multiple sources of difficulty and regulate multiple
cognitive processes (e.g., prioritize multiple sources of information 2%).

An alternative to aligned encoding — one that would allow the brain to separately control
multiple processes — is independent encoding, which can come in at least two forms. One way
the brain can have independent representations is by encoding different task features in spatially
segregated neural populations (‘segregated encoding’; Figure 1b). For example, past work has
shown that different subregions within dACC encode distinct task demands, including various
forms of errors and processing conflict 2-34. The brain can instead have independent
representations that are distributed across units within the same population, as has also been
observed in dACC *>%7, Within a shared population, independent encoding of information occurs
along a set of orthogonal dimensions or subspaces (Figure 1c, ‘subspace encoding’; 3841,
Despite this exciting recent work, it remains unclear to what extent different components of the
cognitive control system leverage these aligned, segregated, or orthogonal encoding strategies
for monitoring multiple task demands and prioritizing multiple sources of information.

To gain new insight into the representations supporting cognitive control, we drew upon two key
innovations. First, we leveraged an experimental paradigm we developed to tag multiple control
processes '°, Building on prior work 3304142 this task incorporates elements of perceptual
decision-making (discrimination of a target feature) and inhibitory control (overcoming a salient
and prepotent distractor). We have previously shown that we can separately tag target and
distractor processing from participants’ performance on this task, and that target and distractor
processing are independently controlled. For example, participants adjust target and distractor
sensitivity in response to distinct task demands (e.g., previous conflict or incentives; ). In
conjunction with this process-tagging approach, our second innovation was to develop a
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multivariate fMRI analysis for measuring relationships between feature encoding (i.e., encoding
geometry). Extending recent statistical approaches in systems neuroscience *>**4 we combined
the strengths of multivariate encoding analyses and representation similarity analyses into a
method we call ‘Encoding Geometry Analysis’ (EGA). We used EGA to characterize whether
putative markers of monitoring and prioritization leverage independent representations for
targets and distractors.

In brief, we found that key nodes within the cognitive control network use orthogonal
representations of target and distractor information to support cognitive control. In the dorsal
anterior cingulate cortex (dACC), encoding of target and distractor difficulty was spatially
segregated and arranged along a rostrocaudal gradient. By contrast, in the intraparietal sulcus
(IPS), encoding of target and distractor coherence was encoded along orthogonal neural
subspaces. These regional distinctions are consistent with hypothesized roles in planning and
implementing (multivariate) attentional policies '>!7. Furthermore, we found that coherence
encoding depended on control demands, and was aligned with both task performance and
frontoparietal activity, consistent with these coherence representations playing a critical role in
cognitive control (e.g., feature prioritization). Together, these results suggest that cognitive
control uses representational formats that allow the brain to monitor and control multiple streams
of information processing.

Results

Task overview

Twenty-nine human participants performed the Parametric Attentional Control Task (PACT 1°)
during fMRI. On each trial, participants responded to an array of colored moving dots (colored
random dot kinematogram; Figure 1d). In the critical condition (Attend-Color), participants
respond with a left/right keypress based on which of two colors were in the majority. In
alternating scanner runs, participants instead responded based on motion (Attend-Motion), which
was designed to be less control-demanding due to the (Simon-like) congruence between motion
direction and response hand *!°. Across trials, we independently and parametrically manipulated
target and distractor information across five levels of target coherence (e.g., percentage of dots in
the majority color, regardless of which color) and distractor congruence (e.g., percentage of dots
moving either in the congruent or incongruent direction relative to the correct color response;
Figure le). This task allowed us to ‘tag’ participants’ sensitivity to each dimension by measuring
behavioral and neural responses to independently manipulated target and distractor features.
Unlike a similar task used to study post-error adjustments 3, our parametric manipulation of
target and distractor coherence allows us to better measure feature-specific representations.
Unlike similar tasks used to study contextual decision-making %4143 this task pits more control-
demanding responses (towards color) against more automatic responses (towards motion),
allowing comparisons between Attend-Color and Attend-Motion tasks to isolate the
contributions of cognitive control 4647,
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Performance depends on targets and distractors

Participants had overall good performance on the task, with a high level of accuracy (median
Accuracy = 89%, IQR = [84% - 92%]), and a low rate of missed responses (median lapse rate =
2%, IQR =[0% - 5%]). We used mixed effects regressions to characterize how target coherence
and distractor congruence influenced participants’ accuracy and log-transformed correct reaction
times. Replicating previous behavioral findings using this task, participants were sensitive to
both target and distractor information '°. When target coherence was weaker, participants
responded slower (#27.6)= 16.1, p <.001, d = 3.01, 95% CI [0.0248, 0.0310]) and less accurately
(t28)=-8.90, p <.001, d = -1.65, C1 95% [-0.365, -0.233]; Figure 1f). When distractors were
more incongruent, participants also responded slower (#28.8)=5.09, p <.001, d = .942, 95% CI
[0.00603, 0.0141]); and less accurately (#2s) = -4.66, p <.001, d =-0.865, 95% CI [-0.220,
0.0896]; Figure 1g). Also replicating prior findings with this task, interactions between targets
and distractors were not significant for reaction time (#2s2)= 0.143, p = .887, d = 0.0265, 95% CI
[-0.00181 0.00208]) and had a weak influence on accuracy (¢2g)= 2.36, p = .0257, d = 437, 95%
CI[0.00581, 0.0634]). Models omitting target-distractor interactions provided a better
complexity-penalized fit (RT AAIC = 17.7, Accuracy AAIC = 1.38).

[Figure 1]

Segregated encoding of target and distractor difficulty

Past work has separately shown that the dACC tracks task demands related to perceptual
discrimination (induced in our task when target information is weaker) and related to the need to
suppress a salient distractor (induced in our task when distractor information is more strongly
incongruent with the target '239-324%) Our task allowed us to test whether these two sources of
increasing control demand are tracked within common regions of dACC (reflecting an
aggregated representation of multiple sources of task demands), or whether they are tracked by
separate regions (potentially reflecting a specialized representation according to the nature of the
demands).

Targeting a large region of dACC — a conjunction of a cortical parcellation with a meta-analytic
mask for ‘cognitive control’ (see ‘fMRI univariate analyses’ in Methods) — we found spatially
distinct signatures of target difficulty and distractor congruence within dACC. In caudal dACC,
we found significant clusters encoding the parametric effect of target difficulty (Figure 2a;
negative effect of target coherence in green), and in more rostral dACC we found clusters
encoding parametric distractor incongruence (negative effect of distractor congruence in blue).
Supporting this dissociation, the spatial patterns of target and distractor regression weights were
uncorrelated across dACC voxels (#28.0)= 1.32, p =.197, logBF =-0.363, 95% CI [-.111, .515]).
These analyses control for omission errors, and additionally controlling for commission errors
produced the same whole-brain pattern at a reduced threshold (see Extended Data Figure 1). We
additionally found the most rostral portion of our dACC mask responded to target ease
(Extended Data Figure 2).

[Figure 2]
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To further quantify how feature encoding changed along the longitudinal axis of dACC, we used
principal component analysis to extract the axis position of dACC voxels (see ‘dACC
longitudinal axis analyses’ in Methods), and then regressed target and distractor beta weights
onto these axis scores. We found that targets had stronger difficulty coding in more caudal
voxels (#27.9)= 3.40, p =.00204, d = .631, 95% CI [10.6, 42.8]), with a quadratic trend (#2265 =
4.48, p <.001, d = .85, [38.2, 103]; Figure 2b). In line with previous work on both perceptual
and value-based decision-making 3%4-32, we found that signatures of target discrimination
difficulty (negative correlation with target coherence) in caudal dACC were paralleled by signals
of target discrimination ease (positive correlation with target coherence) within the rostral-most
extent of our JACC ROI (Extended Data Figure 3). In contrast to targets, distractors had stronger
incongruence coding in more rostral voxel (#28.0)=-2.87, p =.00781, d = -.533, 95% CI [-55.6, -
9.25]), without a significant quadratic trend. We used participants’ random effects terms to
estimate the gradient location where target and distractor coding were at their most negative,
finding that the target minimum was significantly more caudal than the distractor minimum
(signed-rank test, z(2g)= 2.41, p = .0159). Target and distractor minima were uncorrelated across
subjects (r27) = .0282, p = .880, logBF = -0.839), again consistent with independent encoding of
targets and distractors.

As additional evidence that target-related and distractor-related demands have a dissociable
encoding profile, we found that the crossover between target and distractor encoding in dACC
occurred at the boundary between two well-characterized functional networks 3-35, Whereas
distractor-related demands were more strongly encoded rostrally in the Control Network
(particularly within regions of dACC and insula corresponding to the ‘Control C* Sub-Network;
54.36) target-related demands were more strongly encoded caudally within the ‘Salience / Ventral
Attention (SVA)’ Network (Figure 2C-D). Including network membership alongside long axis
location predicted target and distractor encoding better than models with either network
membership or axis location alone (ABIC > 1675).

Independent encoding of target and distractor coherence

We found that dACC appeared to dissociably encode target and distractor difficulty through
spatially segregated encoding, consistent with a role in monitoring different task demands and/or
specifying different control signals !2. To identify neural mechanisms for the implementation of
this control through the prioritization targets versus distractors, we next tested for regions that
encode target and distractor coherence (the amount of information in a feature, regardless of
which response it supports). Based on previous research, we might expect to find this form of
selective attention in posterior parietal cortex 1778, We explored whether target and distractor
coherence share a common neural code (e.g., as a global index of spatial salience), compared to
where these features are encoded distinctly (e.g., as separate targets of control).

An initial whole-brain univariate analysis showed that overlapping regions throughout occipital,
parietal, and prefrontal cortices track the feature coherence (proportion of dots in the majority
category) for both targets and distractors (Figure 3a; conjunction in orange). These regions
showed elevated responses to lower target coherence and higher distractor coherence, potentially
reflecting the relevance of each feature for task performance. Note that in contrast to distractor
congruence, distractor coherence had an inconsistent relationship with task performance (RT:
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f27.00=2.08, p = .0468, d = .394, 95% CI [8.33 X 107, 0.0107]; Accuracy: 8= -0.845, p = .406,
d=-0.157,95% CI [-0.085, 0.0338]), suggesting that these neural responses are unlikely to
reflect task difficulty per se.

While these univariate activations point towards widespread and coarsely overlapping encoding
of the feature coherence (potentially consistent with aligned encoding; Figure 1a), they lack
information about how these features are encoded at finer spatial scales. To interrogate the
relationship between target and distractor encoding, we developed a multivariate analysis that
combines multivariate encoding analyses with pattern similarity analyses, which we term
Encoding Geometry Analysis (EGA). Whereas pattern similarity analyses typically quantify
relationships between representations of specific stimuli or responses (e.g., whether they could
be classified, °), EGA characterizes relationships between encoding subspaces (patterns of
contrast weights) across different task features, consistent with recent analyses trends in systems
neuroscience 3%364360-62 " A stronger correlation between encoding subspaces (either positive or
negative) indicates that features are similarly encoded (i.e., that their representations are aligned
and thus confusable by a linear decoder; Figure 1a), whereas weak correlation indicate that these
representations are orthogonal (and thus distinguishable by a linear decoder; *°). In contrast to
standard pattern similarity, the sign of these relationships is interpretable in EGA, reflecting how
features are coded relative to one another. Compared to standard encoding analyses, EGA is less
sensitive to noise (Extended Data Figure 3). We estimated this encoding alignment within each
parcel, correlating unsmoothed and spatially pre-whitened patterns of parametric regression betas
across scanner runs to minimize spatiotemporal autocorrelation %-%°, This cross-validated
similarity further allowed us to anchor our analysis on the measurement reliability of encoding
profiles (i.e., the self-correlation of encoding patterns across cross-validation folds 6-67).

Focusing on regions that encoded both target and distractor information (parcels where both
group-level p <.001), EGA revealed clear dissociations between regions that represent these
features in alignment versus orthogonally. Within visual cortex and the superior parietal lobule
(SPL), target and distractor representations demonstrated significant negative correlations
(Figure 3b, red), reflecting (negatively) aligned encoding. In contrast, early visual cortex and
intraparietal sulcus (IPS; see Figure 3c for anatomical boundaries) demonstrated target-distractor
correlations near zero (Figure 3b, black), suggesting encoding along orthogonal subspaces.

To bolster our interpretation of the latter findings as reflecting orthogonal (i.e., uncorrelated)
representations rather than merely small but non-significant correlations, we employed Bayesian
t-tests at the group level to estimate the relative (log-10) likelihood that these encoding
dimensions were orthogonal or correlated. Consistent with our previous analyses, we found
strong evidence for correlation (positive log bayes factors) in more medial regions of occipital
and posterior parietal cortex (e.g., SPL), and strong evidence for orthogonality (negative log
bayes factors) in more lateral regions of occipital and posterior parietal cortex (e.g., IPS; Figure
3D). Control analyses confirmed that coherence orthogonality was not due to encoding
reliability, as a similar topography was observed with disattenuated correlations (normalizing
correlations by their reliability; see Supplementary Figure 1). Further supporting these results,
our Bayes factor analyses were robust to the choice of priors (see Supplementary Figure 2).

[Figure 3]
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While our analyses support independent encoding of targets and distractors within the same
parcel, we further explored whether feature information is reflected in overlapping voxels (i.e.,
voxel-level mixed selectivity 4°). Simulations revealed that the alignment between absolute
encoding weights can differentiate between pure and mixed selectivity, and parietal coherence
representations bore this signature of voxel-level mixed selectivity (Extended Data Figure 4),
consistent with the subspace encoding hypothesis.

These results have focused on the coherence of different features regardless of the response they
support, demonstrating that SPL exhibits aligned representations of target and distractor
coherence. Past decision-making research has separately demonstrated that SPL tracks the
amount of evidence supporting specific response *?6%6° which we found was also true for our
task. In addition to encoding target and distractor coherence, SPL and visual cortex also tracked
target and distractor ‘evidence’ (proportion of dots supporting a rightward vs leftward response;
Figure 3e). EGA revealed orthogonal evidence representations between targets and distractors, in
the same areas with aligned coherence representations (compare Figure 3d and 3e), consistent
with previous observations of multiple decision-related signals in SPL %. We confirmed that
these representations

[Figure 4]

We complemented our whole-brain analyses with ROI analyses in areas exhibiting reliable
encoding of key variables, focusing on core frontal regions linked with cognitive control (dACC
and lateral PFC [IPFC]), and parietal regions linked with decision-making and attention (SPL
and IPS !215), Consistent with our analyses above, we found that target and distractor coherence
encoding was aligned in SPL, but not in IPS (Figure 4a, compare to Figure 3d), whereas SPL
encoded target and distractor evidence. Directly comparing these regions (see Supplementary
Table 1), we found stronger encoding of target evidence in SPL, stronger encoding of target
coherence in IPS, and stronger alignment between target-distractor coherence alignment in SPL.
Unlike our univariate results, we did not find distractor congruence encoding in dACC (though
this was found in IPFC and IPS). Instead, dACC showed multivariate encoding of target
coherence and evidence.

To further characterize how feature coherence and evidence are encoded across these regions, we
performed multidimensional scaling over each regions task representations (Figure 4b; 6470).
Briefly, this method allows us to visualize — in a non-parametric manner — the relationships
between representations of different feature levels (e.g., levels of target coherence), by
estimating each feature level separately within a GLM and then using singular value
decomposition to project these patterns into a 2D space (see Methods for additional details). We
found that coherence and evidence axes naturally emerge in the top two principal components in
this analysis within dACC, SPL, and IPS. Coherence axes (light to dark shading) are parallel
between left (blue) and right (brown) responses, suggesting a response-independent encoding. In
these components, evidence encoding appeared to be binary, in contrast to parametric coherence
encoding (we found similar whole-brain encoding maps for binary-coded evidence; see
Supplementary Figure 3). Critically, whereas coherence encoding axes within SPL were aligned
between targets (circles) and distractors (diamonds; confirming aligned encoding), in IPS these
representations form perpendicular lines (confirming orthogonal encoding). When we visualized
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higher dimensions, we found that IPS did appear to have weak encoding alignment between
target and distractor coherence in higher dimensions (Extended Data Figure 5). Nevertheless, the
orthogonal encoding in the first two principal components is sufficient for a downstream region
to have an independent read-out of feature-specific coherence. These analyses both help to
visualize cross-region dissociations in encoding profiles and validate that task features are
encoded in a monotonic fashion.

Finally, to explore the divisions between SVA and Control networks evident in the univariate
analyses, we split up our two prefrontal ROIs by their network membership (Extended Data
Figure 6). In dACC, we found that SVA parcels tended to have stronger feature encoding than
Control parcels. Interestingly, in these SVA parcels several features were aligned with the target
evidence dimension, consistent with recent human electrophysiology findings *. In IPFC, we
found that Control parcels, but not SVA parcels, encoded distractor congruence (Control: g)=
3.60, two-tailed p = .0012, logBF = 1.45, 95% CI[0.0037, 0.0135]; SVA: t08)=0.57, p = .57,
logBF = -0.64, 95% CI [-0.0046, 0.0082]; Control — SVA: f28)=3.27, p = .0029, logBF = 1.12,
95% CI1[0.0025, 0.0111]). This distractor congruence encoding was present in IPFC in ‘Control
A/B’ parcels (¢28)= 3.66, p = .001, logBF = 1.51, 95% CI [0.0041, 0.0146]), but not significantly
in ‘Control C’ parcels (#28)= 1.86, p = .073, logBF =-0.0448, 95% CI [-0.0006, 0.0136]),). This
network-selective encoding of congruence is consistent with the univariate results in dACC (see
Figure 2).

Control demands dissociate coherence and evidence encoding

Our findings thus far demonstrate two sets of dissociations within and across brain regions. In
dACC, we find that distinct regions encode the control demands related to discriminating targets
(caudal dACC) versus overcoming distractor incongruence (rostral dACC). In posterior parietal
cortex, we find that overlapping regions track the coherence of these two stimulus features, but
that distinct regions represent these features in alignment (SPL) versus orthogonally (IPS). While
these findings suggest that this set of regions was involved in translating between feature
information and goal-directed responding, they only focus on the information that was presented
to the participant on a given trial. To provide a more direct link between feature-specific
encoding and control, we examined how the encoding of feature coherence differed between
matched task that placed stronger or weaker demands on cognitive control. So far, our analyses
have focused on conditions in which participants needed to respond to the color feature while
ignoring the motion feature (Attend-Color task), but on alternating scanner runs participants
instead responded to the motion dimension and ignored the color dimension (Attend-Motion
task). These tasks were matched in their visual properties (identical stimuli) and motor outputs
(left/right responses), but critically differed in their control demands. Attend-Motion was
designed to be much easier than Attend-Color, as the left/right motion directions are compatible
with the left/right response directions (i.e., Simon facilitation; *!'?). Comparing these tasks allows
us to disambiguate bottom-up attentional salience from the top-down contributions to attentional
priority 477173,
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Consistent with previous work ', performance on the Attend-Motion task was better overall
(mean RT: 565ms vs 725ms, sign-rank p < .001; mean Accuracy: 93.7% vs 87.5%, sign-rank p <
.001). Unlike the Attend-Color task, performance was not impaired by distractor incongruence
(i.e., color distractors; RT: #28)=-1.39, p = .176, d = -.0438, 95% CI [-0.00629, 0.000577];
Accuracy: f28)=0.674, p = .506, d = 0.0847, 95% CI [-0.0913, 0.147]). To investigate these task-
dependent feature representations, we fit a GLM that included both tasks. To control for
performance differences across tasks, we only analyzed accurate trials and included trial-wise
RT as a nuisance covariate, concatenating RT across tasks.

[Figure 5]

Whereas the encoding of both color and motion coherence was widespread during the Attend-
Color task (Figure 3), coherence encoding was consistently weaker during the less demanding
Attend-Motion task (Figure 5A). Coherence encoding was weaker during Attend-Motion
whether classifying according to goal-relevance (comparing targets or distractors) or the features
themselves (comparing motion or color). Task-relevant ROIs revealed that coherence encoding
was effectively absent during the easy Attend-Motion task (Figure 5B), suggesting that they
depend on the control demands of the Attend-Color task 4774,

In contrast to these stark task-related differences in coherence encoding, we found that neural
encoding of the target evidence (color evidence in the Attend-Color task and motion evidence in
the Attend-Motion task) was preserved across tasks, including within dACC, IPFC, SPL, and IPS
(Figure 5B). Consistent with previous experiments examining context-dependent decision-
making 3641:4245.73.75.76 ' we found stronger target evidence encoding relative to distractor
evidence encoding, in our case in the evidence-encoding SPL (Attend-Color: #28)= 4.26, right-
tailed p <.001, d = 0.790; Attend-Motion: #2s)= 2.37, right-tailed p = 0.0124, d = 0.4403). We
also found that target evidence encoding during Attend-Motion was aligned with Attend-Color,
both for motion evidence encoding (‘stimulus axis’; SPL: #28) = 2.08, right-tailed p =.0236, d =
0.386, 95% CI [0.0009, 0.0095]; IPS: #2s8) = 2.24, right-tailed p =.0167,d = 0.416, 95% CI
[0.0016, 0.0114]) and farget evidence encoding (‘decision axis’; SPL: #28) = 5.87, right-tailed p <
001, d=1.09, 95% CI [0.0109, 0.0199]; IPS: #¢s) = 3.64, right-tailed p = .0011, d = 0.676, 95%
CI [0.0056, 0.0154]). These axis alignments are again in agreement with previous experiments,
though note that target evidence is often manipulated separately from the motor response.
Whereas our experiment replicates previous observations of the neural representations
supporting contextual decision-making, we now extended these findings to understand how
putative attention signals (i.e., feature coherence) are encoded in response to the asymmetric
inference that is characteristic of cognitive control ”’.

Feature coherence aligns with task performance

Feature coherence encoding (i.e., feature strength, regardless of response or congruence) depends
on task demands, consistent with a role in cognitive control. To further understand this
relationship between coherence encoding and control, we next explored how coherence encoding
was related to task performance. We tested this question by determining whether feature
coherence representations were aligned with performance representations (i.e., alignment
between stimulus and behavioral subspaces 7®). Specifically, we included trial-level reaction time
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and accuracy in our first-level GLMs. Encoding of performance was itself highly robust: most
parcels encoded reaction time and accuracy, with the strongest encoding in cognitive control
regions (Extended Data Figure 7). Across cortex, reaction time and accuracy were negatively
correlated, again most prominently across the cognitive control network. To explore the
behavioral relevance of coherence representations, we tested whether coherence encoding was
aligned with the voxel patterns encoding task performance.

[Figure 6]

We found that the encoding of target and distractor coherence was aligned with performance
across frontoparietal and visual regions (Figure 6a-b). If a regions’ encoding of target coherence
reflects how sensitive the participant was to target information on that trial (e.g., due to top-down
priority), we would expect target encoding to be positively aligned with performance on a given
trial, such that stronger target coherence encoding is associated with better performance and
weaker target coherence encoding is associated with poorer performance. We would also expect
distractor encoding to demonstrate the opposite pattern — stronger encoding associated with
poorer performance and weaker encoding associated with better performance. We found
evidence for both patterns of feature-performance alignment across visual and frontoparietal
cortex: target encoding was aligned with better performance (faster RTs and higher accuracy;
Figure 6a), whereas distractor encoding was aligned with worse performance (slower RTs and
lower accuracy; Figure 6b).

Next, we examined whether performance-coherence alignment reflected individual differences in
participants’ task performance in our main task-related ROIs (see Figures 3-4). In particular, we
tested whether the alignment between features and behavior reflects specific relationships with
speed or accuracy, or whether they reflected overall increases in evidence accumulation (e.g.,
faster responding and higher accuracy). Within each ROI, we correlated feature-RT alignment
with feature-accuracy alignment across subjects. We found that in dACC and IPS, participants
showed the negative correlation between performance alignment measures predicted by an
increase in processing speed (Figure 6¢). People with stronger alignment between target
coherence and shorter RTs tended to have stronger alignment between target coherence and
higher accuracy, with the opposite found for distractors. While these between-participant
correlations were present within targets and distractors, we did not find any significant
correlations across features (between-feature: all ps > .10), again consistent with feature-specific
processing. These analyses were qualitatively similar after partialing out the reliability of
coherence and performance encoding (see Supplementary Table 2). While between-participant
analyses using small sample sizes warrant a note of caution, these findings are consistent across
features and regions. In conjunction with our within-participant evidence that feature coherence
representations are aligned with performance efficiency, these findings support a role for
coherence encoding in adaptive control.

Feature coherence aligns with frontoparietal activity
Across frontal, parietal, and visual cortex, encoding of target and distractor coherence depended

on task demands and was aligned with performance. Since this widespread encoding of task
information likely reflects distributed network involvement in cognitive control 77-7%80 we sought

10
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to understand how frontal and parietal systems interact. We focused our analyses on IPS and
lateral PFC (IPFC), linking the core parietal site of orthogonal coherence encoding (IPS) to an
prefrontal site previous work suggests provides top-down feedback during cognitive control
>8.7981.82 Previous work has found that IPS attentional biases lower-level stimulus encoding in
visual cortices 884, and that IPS mediates directed connectivity between IPFC and visual cortex
during perceptual decision-making #>. Here, we extended these experiments to test how IPS
mediates the relationship between prefrontal feedback and stimulus encoding.

To investigate these putative cortical interactions, we developed a multivariate connectivity
analysis to test whether coherence encoding was aligned with prefrontal activity, and whether
this IPFC-coherence alignment was mediated by IPS. We first estimated the voxel-averaged
residual timeseries in IPFC (SPM12’s eigenvariate), and then included this residual timeseries
alongside task predictors in a whole-brain regression analysis (Extended Data Figure 8). This
analysis can be schematized as:

Bseed = GLM(Yseed'X) (1)
€seed = PCA(Yseed - X,Bseed) (2)
Bau = GLM (Ygy, [X, €seeal) 3)

The GLM function performs regression on multivariate voxel timeseries Y using design matrix
X, and the PCA function extracts the first principal component of the residuals. Finally, we used
EGA to test whether there was alignment between patterns encoding IPFC functional
connectivity (i.e., betas from the residual timeseries predictor eg,,4) and patterns encoding target
and distractor coherence. Note that these analyses depend on functional connectivity, a
correlational measure that can be subject to confounding ®°.

We found that IPFC connectivity patterns were aligned with coherence-encoding patterns in
visual cortex (Figure 7A). Stronger prefrontal functional connectivity was aligned with weaker
target coherence and stronger distractor coherence, consistent with prefrontal recruitment during
difficult trials. Notably, IPS connectivity was also aligned with target and distractor coherence in
overlapping parcels, even when controlling for IPFC connectivity. These effects were liberally
thresholded for visualization, as significant direct and indirect effects are not necessary for
significant mediation 8¢.

Our critical test was whether IPS mediated the relationship between IPFC activity and coherence
encoding. We compared regression estimates between a model that only included IPFC residuals
(‘solo’ model) to a model that included both IPFC and IPS residuals (‘both’ model). Comparing
the strength of IPFC-coherence alignment with and without IPS is a test of whether parietal
cortex mediates IPFC-coherence alignment (MacKinnon et al., 2007). These models can be
schematized as:

Psoto = GLM (Yyy, [X, eiprc]) 4)
Brotn = GLM (Y, [X, eirpc, erps]) (5)

We found that this mediation was strongest in early visual cortex, where the alignment between
IPFC and feature coherence was reduced in a model that included IPS relative to a model without
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IPS (Figure 7B). The negatively correlated target-1PFC relationship became more positive when
IPS was included (top), and the positively correlated distractor-PFC relationship became more
negative when IPS was included (bottom). Critically, we found that IPS reduced prefrontal-
coherence alignment in early visual cortex more than IPFC reduced parietal-coherence alignment
(Figure 7B inset; Supplementary Figure 4A-B), consistent with frontal-to-parietal directed
connectivity in previous research 4>8!, Looking within color- and motion-sensitive parcels,
determined using task-free localizer runs (see Methods), we found this mediation was significant
in color-sensitive cortex. The opposite relationship, IPFC mediation of IPS connectivity,
appeared in higher-level visual cortex for distractor coherence (Supplementary Figure 4C-D),
though these effects were not reliable in explicit contrasts and may reflect projections from both
regions. Note that we did not see any significant mediation of first-order target or distractor
coherence encoding by IPS.

[Figure 7]

While we were primarily interested in alignment with IPFC due to previous work implicating
these regions in top-down control (for reviews, see '287), for completeness we also examined
how different subnetworks in both IPFC and dACC aligned with coherence encoding. In IPFC,
we found that SVA and Control subnetworks had similar patterns of alignment (Supplementary
Figure 5). In dACC we found that the SVA subnetwork had a qualitatively similar profile of
coherence alignment as IPFC, but this alignment was absent in the Control subnetwork. Whereas
this seed-coherence alignment was similar across IPFC and SVA dACC, unlike IPFC we found
that SVA dACC failed to demonstrate strong evidence for mediation by IPS (Supplementary
Figure 6).

A final set of analyses examined whether SPL and IPS demonstrated different patterns of task-
related functional connectivity with other regions, given that we found that these regions
differentially encoded evidence and coherence. When seeding our connectivity analyses with
SPL activity, we found that SPL activity aligned with evidence encoding in bilateral motor
cortex (Extended Data Figure 9). In contrast, IPS activity did not significantly align with
evidence encoding, and this seed-evidence alignment in motor cortex was stronger for SPL than
IPS, consistent with a putative role for SPL in response selection 8,

Discussion

In this experiment, we explored whether neural control systems use representations with the
same dimensionality as the processes they regulate 2>!!. Inspired by behavioral evidence that
participants can independently control their sensitivity to targets and distractors ', we set out to
understand whether the neural correlates of monitoring and prioritization leverage independent
encoding for feature-selective control (Figures 1a-c). We found that key nodes of canonical
cognitive control networks had orthogonal neural representations of targets and distractors.
Within dACC, orthogonal representations of target and distractor difficulty arose from
segregated encoding along a rostrocaudal axis. Within IPS, orthogonal representations of target
and distractor coherence arose from orthogonal subspaces in overlapping voxels. Consistent with
a role in attentional priority, coherence representations depended on control demands, task

12



0NN WD

performance, and frontoparietal activity. Together, these results reveal a neural mechanism for
how cognitive control prioritizes multiple streams of information during decision-making.

Neurocomputational theories have proposed that dACC is involved in planning control across
multiple levels of abstraction 28890 Past work has found that control abstraction is
hierarchically organized along dACC’s rostrocaudal axis, with more caudal dACC involved in
lower-level action control, and more rostral dACC involved in higher-level strategy control -
3234 an organization that may reflect a more general hierarchy of abstraction within PFC 3191-93,
Consistent with this account, we found that caudal dACC tracked the coherence of the target and
distractor dimensions, especially within the SVA network. In contrast, more rostral dACC
tracked incongruence between targets and distractors, especially within the Control network.
Speculatively, our results are consistent with caudal dACC tracking the first-order difficulty
arising from the relative salience of feature-specific information, and more rostral dACC
tracking the second-order difficulty arising from cross-feature (in)compatibility °2, the latter of
which may require additional disengagement from distractor-dependent attentional capture.

Whereas dACC encoded feature difficulty (e.g., distractor incongruence), in parietal cortex we
found overlapping representations of feature coherence (e.g., distractor coherence). In SPL,
features had correlated coherence encoding (similarly representing low target coherence and high
distractor coherence), consistent with this region’s transient and non-selective role in attentional
control °*?_ In contrast, IPS had orthogonal representations of feature coherence, consistent with
selective prioritization of task-relevant information #7-71-73:81.83.94-96.99.100 ‘\Whjle IPS primarily
encoded features orthogonally (i.e., in the largest components of our multidimensional scaling
analysis), the total coherence across features could also be read out at higher dimensions. The
ability of IPS to communicate both orthogonal and aligned coherence representations is
consistent with the diverse roles of IPS in attentional control.

Our previous work has demonstrated behavioral evidence for independent control over target and
distractor attentional priority in this task '°, with different task variables selectively enhancing
target or distractor sensitivity (see also #!°1). Orthogonal feature representation in IPS may offer
a mechanism for this feature-selective control, consistent with theoretical accounts of IPS
implementing a priority map that combines stimulus- or value-dependent salience with goal-
dependent feedback from PFC 17-57:58.80.102

In dACC, we found that target and distractor difficulty encoding was consistent with the
segregated encoding hypothesis, with features evoking univariate responses in distinct but
adjacent regions. Interestingly, we did not find corresponding encoding of distractor congruence
in our multivariate analyses within dACC, potentially reflecting the spatial smoothness of this
response. However, we did find multivariate encoding of distractor congruence in IPFC, and
multivariate encoding of target and distractor coherence in IPS. These multivariate profiles were
consistent with our subspace encoding hypothesis. The reasons for a mix of segregated and
subspace encoding across cortex is unclear, but this may speculatively reflect the segregation
across functional networks. Like in dACC, distractor congruence had stronger encoding within
the IPFC Control network, albeit without the feature segregation (IPFC Control parcels also
encoded target coherence in an orthogonal subspace). It is possible that these network
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segregations help bind related control processes !>188 a hypothesis that future experiments
should test with targeted paradigms (e.g., with subject-specific functional networks).

By comparing two different task goals (Attend-Color vs. Attend-Motion), our study was able to
test whether coherence representations reflect control-dependent prioritization of information
processing. Previous research has shown that these tasks differ dramatically in their control
demands '°. As in previous work, task performance was much better in Attend-Motion runs than
Attend-Color runs, and participants were not sensitive to color distractors. Consistent with
previous work on context-dependent decision-making, target evidence had similarly strong
encoding across tasks, with generalizable encoding dimensions for choice and motion directions
364145 Tn contrast to these putative decision representations, we found that coherence
representations disappeared in the easier Attend-Motion task. On its own, weaker encoding of
color distractors in Attend-Motion could be explained by the weaker bottom-up salience of the
color dimension. However, the stark drop in the encoding of target (motion) coherence in these
blocks cannot be similarly accounted for — these differences in target coherence encoding
showed the opposite relationship expected from salience: better encoding of low-salience color
targets (hard Attend-Color task) and weaker encoding of high-salience motion targets (easy
Attend-Motion task). Instead, this encoding profile is consistent with previous research finding
that feature decoding is stronger for more difficult tasks 4-"172103 or when people are
incentivized to use cognitive control 10410,

Critically, stimuli and responses were matched across tasks, helping to rule out alternative
accounts of coherence encoding based on ‘bottom-up’ stimulus salience, decision-making, or eye
movements. Difficulty-dependent coherence encoding may instead reflect the involvement of an
attention control system that can separately regulate target and distractor processing,
speculatively indexing the top-down ‘gain’ or ‘priority” on these features !7-*%192, Supporting this
account, coherence representations in cognitive control regions like IPS were aligned with
performance representations, with target encoding strength aligned with better performance and
distractor encoding strength aligned with poorer performance. Individual difference in feature-
performance alignment was correlated across features, consistent with these representations
reflecting the underlying processes (e.g., priority) that give rise to behavior, rather than
performance monitoring or surprise (which would likely have the opposite relationship, e.g., high
target coherence aligned with poorer performance).

Classic models of prefrontal involvement in cognitive control 77-8219 propose that prefrontal
cortex biases information processing in sensory regions. In line with this macro-scale
organization, we found that coherence encoding in visual cortex was related to functional
connectivity with the frontoparietal network. In particular, coherence encoding in visual cortex
was aligned with patterns of functional connectivity to lateral prefrontal cortex, and this feature-
seed relationship was mediated by IPS. The results of this multivariate connectivity analysis are
consistent with previous research supporting a role for IPS in top-down control of visual
encoding 338+197 as well as a granger-causal PFC-IPS-visual pathway during a similar decision-
making task 2. Here, we demonstrate stable ‘communication subspaces’ between visual cortex
and PFC 1919 which can plausibly communicate feedback adjustments to feature gain. With
that said, while our interpretation of the direction of communication is therefore supported by
prior work, these connectivity methods are correlational ®°, and cannot rule out the possibility
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that our mediation findings reflect a bottom-up pattern of communication (e.g., visual-IPS-PFC).
The asymmetric mediation between regions (i.e., IPS mediates IPFC more than IPFC mediates
IPS; Supplementary Figure 4) rules out a range of potential confounders, and these regions were
selected based on the anatomical connectivity within the frontoparietal network, notably

through the superior longitudinal fasciculus ''°, Future research should use temporally precise
neuroimaging to account for directionality, causal manipulations to account for causality (e.g.,
111 "and should explore the higher dimensional connectivity subspaces that link different regions
103,109 These considerations notwithstanding, our findings are consistent with IPS, a critical site
for orthogonal feature representations, playing a key role in linking prefrontal cortex with early
perceptual processing.

Collectively, our findings provide new insights into how the brain may control multiple streams
of information processing. While evidence for multivariate control has a long history in
attentional tracking 2%!'2, including parametric relationships between attentional load and TIPS
activity 3117 little is known about how the brain coordinates multiple control signals >°. Future
experiments should further elaborate on this frontoparietal control circuit, for instance by
interrogating how incentives influence different task representations '9+195:118-120 " o how neural
and behavioral indices of control causally depend on perturbations of neural activity !'!. Future
experiments should also use fast timescale neural recording technologies like (i) EEG or (OP-
)MEG to better understand the within-trial dynamics of multivariate control 1%2!, Tn sum, this
experiment provides new insights into the large-scale neural networks involved in multivariate
cognitive control, and points towards new avenues for developing a richer understanding of goal-
directed attention.
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Methods

Participants

Twenty-nine individuals (17 females, Age: M = 21.2, SD = 3.4) provided informed consent and
participated in this experiment for compensation ($40 USD; IRB approval code: 1606001539).
All participants had self-reported normal color vision and no history of neurological disorders.
Two participants missed one Attend-Color block (see below) due to a scanner removal, and one
participant missed a motion localizer due to a technical failure, but all participants were retained
for analysis. This study was approved by Brown University’s institutional review board.

Task

The main task closely followed our previously reported behavioral experiment !°. On each trial,
participants saw a random dot kinematogram (RDK) against a black background. This RDK
consisted of colored dots that moved left or right, and participants responded to the stimulus with
button presses using their left or right thumbs.

In Attend-Color blocks (six blocks of 150 trials), participants responded depending on which
color was in the majority. Two colors were mapped to each response (four colors total), and dots
were a mixture of one color from each possible response. Dots colors were approximately
isolument (uncalibrated RGB: [239, 143, 143], [191, 239, 143], [143, 239, 239], [191, 143,
239]), and we counterbalanced their assignment to responses across participants.

In Attend-Motion blocks (six blocks of 45 trials), participants responded based on the dot motion
instead of the dot color. Dot motion consisted of a mixture between dots moving coherently
(either left or right) and dots moving in a random direction. Attend-Motion blocks were shorter
because they acted to reinforce motion sensitivity and provide a test of stimulus-dependent
effects.

Critically, dots always had color and motion, and we varied the strength of color coherence
(percentage of dots in the majority) and motion coherence (percentage of dots moving
coherently) across trials. Our previous experiments have found that in Attend-Color blocks,
participants are still influenced by motion information, introducing a response conflict when
color and motion are associated with different responses '°. Target coherence (e.g., color
coherence during Attend-Color) was linearly spaced between 65% and 95% with 5 levels, and
distractor congruence (signed coherence relative to the target response) was linearly spaced
between -95% and 95% with 5 levels. In order to increase the salience of the motion dimension
relative to the color dimension, the display was large (~10 degrees of visual angle) and dots
moved quickly (~10 degrees of visual angle per second).

Participants had 1.5 seconds from the onset of the stimulus to make their response, and the RDK
stayed on the screen for this full duration to avoid confusing reaction time and visual stimulation
(the fixation cross changed from white to gray to register the response). The inter-trial interval
was uniformly sampled from 1.0, 1.5, or 2.0 seconds. This ITI was relatively short in order to
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maximize the behavioral effect, and because efficiency simulations showed that it increased
power to detect parametric effects of target and distractor coherence (e.g., relative to a more
standard 5 second ITT). The fixation cross changed from gray to white for the last 0.5 seconds
before the stimulus to provide an alerting cue.

Procedure

Before the scanning session, participants provided consent and practiced the task in a mock MRI
scanner. First, participants learned to associate four colors with two button presses (two colors
for each response). After being instructed on the color-button mappings, participants practiced
the task with feedback (correct, error, or 1.5 second time-out). Errors or time-out feedback were
accompanied with a diagram of the color-button mappings. Participants performed 50 trials with
full color coherence, and then 50 trials with variable color coherence, all with 0% motion
coherence. Next, participants practiced the motion task. After being shown the motion mappings,
participants performed 50 trials with full motion coherence, and then 50 trials with variable
motion coherence, all with 0% color coherence. Finally, participants practiced 20 trials of the
Attend-Color task and 20 trials of Attend-Motion tasks with variable color and motion coherence
(same as scanner task).

Following the twelve blocks of the scanner task, participants underwent localizers for color and
motion, based on the tasks used in our previous experiments *°. Both localizers were block
designs, alternating between 16 seconds of feature present and 16 seconds of feature absent for
seven cycles. For the color localizer, participants saw an aperture the same size as the task, either
filled with colored squares that were resampled every second during stimulus-on (‘Mondrian
stimulus’), or luminance-matched gray squares that were similarly resampled during stimulus-
off. For the motion localizer, participants saw white dots that were moving with full coherence in
a different direction every second during stimulus-on, or still dots for stimulus-off. No responses
were required during the localizers.

MRI sequence

We scanned participants with a Siemens Prisma 3T MR system. We used the following sequence
parameters for our functional runs: field of view (FOV) =211 mm X% 211 mm (60 slices), voxel
size = 2.4 mm’, repetition time (TR) = 1.2 sec with interleaved multiband acquisitions
(acceleration factor 4), echo time (TE) = 33 ms, and flip angle (FA) = 62°. Slices were acquired
anterior to posterior, with an auto-aligned slice orientation tilted 15° relative to the AC/PC plane.
At the start of the imaging session, we collected a high-resolution structural MPRAGE with the
following sequence parameters: FOV =205 mm x 205 mm (192 slices), voxel size = 0.8 mm?,
TR =2.4 sec, TE1 = 1.86 ms, TE2 =3.78 ms, TE3 = 5.7 ms, TE4 = 7.62, and FA = 7°. At the
end of the scan, we collected a field map for susceptibility distortion correction (TR = 588ms,
TE1 =4.92 ms, TE2 = 7.38 ms, FA = 60°).
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fMRI preprocessing

We preprocessed our structural and functional data using fMRIprep (v20.2.6; 122 based on the
Nipype platform 2. We used FreeSurfer and ANTSs to nonlinearly register structural T1w
images to the MNI152NLin6Asym template (resampling to 2mm). To preprocess functional T2w
images, we applied susceptibility distortion correction using fMRIprep, co-registered our
functional images to our T1w images using FreeSurfer, and slice-time corrected to the midpoint
of the acquisition using AFNI. We then registered our images into MNI152NLin6Asym space
using the transformation that ANTs computed for the T1w images, resampling our functional
images in a single step. For univariate analyses, we smoothed our functional images using a
Gaussian kernel (§mm FWHM, as dACC responses often have a large spatial extent). For
multivariate analyses, we worked in the unsmoothed template space (see below).

fMRI univariate analyses

We used SPM12 (v7771) for our univariate general linear model (GLM) analyses. Due to high
trial-to-trial collinearity from to our short ITIs, we performed all analyses across trials, rather
than extracting single-trial estimates. Our regression models used whole trials as events (i.e., a
1.5 second boxcar aligned to the stimulus onset). We parametrically modulated these events with
standardized trial-level predictors (e.g., linear-coded target coherence, or contrast-coded errors),
and then convolved these predictors with SPM’s canonical HRF, concatenating our voxel
timeseries across runs. We included nuisance regressors to capture 1) run intercepts and 2) the
average timeseries across white matter and CSF (as segmented by fMIRPrep). To reduce the
influence of motion artifacts, we used robust weighted least-squares 2123, a procedure for
optimally down-weighting noisy TRs.

We estimated contrast maps at the subject-level, which we then used for one-sample t-tests at the
group-level. We controlled for family-wise error rate using threshold-free cluster enhancement
126 testing whether voxels have an unlikely degree of clustering under a randomized null
distribution (Implemented in PALM !27; 10,000 randomizations). To improve the specificity of
our coverage (e.g., reducing white-matter contributions) and to facilitate our inference about
functional networks (see below), we limited these analyses to voxels within the Kong2022
whole-brain parcellation >*>°, This parcellation assigns regional labels to parcels (e.g., whether
parcels are in ‘SPL’ or ‘IPS’), which was used through-out to generate ROIs. Surface renders
were generated using surfplot 12%12°, projecting from MNI space to the Human Connectome
Project’s fsLR space (164,000 vertices).

dACC longitudinal axis analyses

To characterize the spatial organization of target difficulty and distractor congruence signals in
dACC, we constructed an analysis mask that provided broad coverage across cingulate cortex
and preSMA. This mask was constructed by 1) getting a meta-analytic mask of cingulate
responses co-occurring with ‘cognitive control’ (Neurosynth uniformity test; '3%, and taking any
parcels from the whole-brain Schaefer parcellation (400 parcels; 3+°° that had a 50 voxel overlap
with this meta-analytic mask. We used this parcellation because it provided more selective gray
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matter coverage than the Neurosynth mask alone and it allowed us to categorize voxels
membership in putative functional networks.

To characterize the spatial organization within dACC, we first performed PCA on the masked
voxel coordinates (y and z), getting a score for eac’ voxel’s position on the longitudinal axis of
this ROI. We then regressed voxel’s gradient scores against their regression weights from a
model including linear target coherence and distractor congruence (both coded -1 to 1 across
difficulty levels). We used linear mixed effects analysis to partially pool across subjects and
accommodate within-subject correlations between voxels. Our model predicted gradient score
from the linear and quadratic expansions of the target and distractor betas (gradientScore ~ 1 +
target + target® + distractor + distractor? + (1 + target + target? + distractor + distractor? |
subject)). To characterize the network-dependent organization of target and distractor encoding,
we complexity-penalized fits between models that either 1) predicted target or distractor betas
from linear and quadratic expansions of gradient scores, or 2) predicted target/distractor betas
from dummy-coded network assignment from the Schaefer parcellation, comparing these models
against a model that used both network and gradient information.

Encoding Geometry Analysis (EGA)

We adapted functions from the pcm-toolbox and rsatoolbox packages for our multivariate
analyses >3, We first fit whole-brain GLMs without spatial smoothing, separately for each
scanner run. These GLMs estimated the parametric relationship between task variables and
BOLD response (e.g., linearly coded target coherence), with a pattern of these parametric betas
across voxels reflecting linear encoding subspace >°. Within each Schaefer parcel (n=400), we
spatially pre-whitened these beta maps, reducing noise correlations between voxels that can
inflate pattern similarity and reduce reliability . We then computed the cross-validated Pearson
correlation, estimating the similarity of whitened patterns across scanner runs. We used a
correlation metric to estimate the alignment between encoding subspaces, rather than distances
between condition patterns, to normalize biases and scaling across stimuli (e.g., greater
sensitivity to targets vs distractors) and across time (e.g., representational drift). Note that this
analysis approach is related to ‘Parallelism Scores’ #*, but here we use parametric encoding
models and emphasize not only deviations from parallel/orthogonal, but also the direction of
alignment between features (e.g., Figures 5 and 7).

We computed subspace alignment between contrasts of interest within each participant, and then
tested these against zero at the group level. Since our correlations were less than » = |0.5|, we did
not transform correlations before analysis. We used a Bayesian t-test to test for orthogonality
(bayesFactor toolbox in MATLAB, based on !*?). The Bayes factor from this t-test gives
evidence for either non-orthogonality (BF1o further from zero) or orthogonality (BFio closer to
zero, often defined as the reciprocal BFo1). Using a standard prior (Cauchy, width = 0.707), our
strongest possible evidence for the orthogonality is BFo1 = 5.07 or equivalently logBF = -0.705
(i.e., the Bayes factor when #.25) = 0).

Our measure of encoding strength was whether encoding subspaces were reliable across blocks

(i.e., whether within-feature encoding pattern correlations across runs were significantly above
zero at the group level). We used pattern reliability as a geometric proxy for how well a linear
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encoder would predict held-out brain data, as reliability provides the similarity between the
cross-validated model and the best linear unbiased estimator of the within-sample data. We
confirmed through simulations that pattern reliability is a good proxy for the traditional encoding
metric of predicting held-out timeseries °°. However, we found that pattern reliability is more
powerful, due to it being much less sensitive to the magnitude of residual variance (these two
methods are identical in the noise-free case; see Extended Data Figure 3).

When looking at alignment between two subspaces across parcels, we first selected parcels that
significantly encoded both factors (‘jointly reliable parcels’, both p <.001 uncorrected). This
selection process acts as a thresholded version of classical correlation disattenuation %7, and we
confirmed through simulations this selection procedure does not increase type 1 error rate. We
corrected for multiple comparisons using non-parametric max-statistic randomization tests across
parcels '*3. These randomization tests determine the likelihood of an observed effects under a
null distribution generated by randomizing the sign of alignment correlations across participants
and parcels 10,000 times. Within each randomization, we saved the max and min group-level
effect sizes across all parcels, estimating the strongest parcel-wise effect we’d expect if there
wasn’t a systematic group-level effect.

Some of our first-level models had non-zero levels of multicollinearity, due to conditioning on
trials without omission errors or when including feature coherence and performance in the same
model. Multicollinearity was far below standard thresholds for concern, generally (much) less
than 5 for a standard threshold is 30 (ratio between largest and smallest singular values in the
design matrix, using MATLAB colintest; '3*). However, we wanted to confirm that predictor
correlations wouldn’t bias our estimates of encoding alignment. We simulated data from a
pattern component model '*! in which two variables were orthogonal (generated by separate
variance components with no covariance), but were generated from a design matrix with
correlated predictors. These simulations confirmed that cross-validated similarity measures were
not biased by predictor correlations (Extended Data Figure 10).

To provide further validation for our parametric analyses, we estimated encoding profiles using
an analysis with fewer parametric assumptions. First, we fit a GLM with separate predictors for
levels of target and distractor evidence (‘Evidence Levels’ GLM in Table 1). Next, we estimated
a traditional (cross-validated) representational dissimilarity matrix across all feature levels.
Finally, we visualized these encoding profiles using classical multidimensional scaling
(eigenvalue decomposition; see Figure 4B and Extended Data Figure 5).

Multivariate Connectivity Analysis

To estimate what information is plausibly communicated between cortical areas, we measured
the alignment between multivariate connectivity patterns (i.e., the ‘communication subspace’
with a seed region, 1%®) and local feature encoding patterns. First, we residualized our
Performance GLM (see Table 1) from a seed region’s timeseries, and then extracted the
variance-weighted average timecourse (i.e., the leading eigenvariate from SPM12’s volume of
interest function). We then re-estimated our Performance GLM, including the block-specific
seed timeseries as a covariate, and performed EGA between seed and coherence patterns (see
Equations 1-3). We found convergent results when we residualized a quadratic expansion of our
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Performance GLM from our seed region, helping to confirm that connectivity alignment wasn’t
due to underfitting. Note that our cross-validated EGA helps avoid false positives due to any
correlations in the design matrix (see above). We localized this connectivity analysis to color-
and motion-sensitive cortex by finding the bilateral Kong22 parcels that roughly covered the area
of strongest block-level contrast during our localizer runs. Note that these analyses reflect
‘functional connectivity’, which is susceptible to unmodelled confounders %°.

To estimate the mediation of IPFC connectivity by IPS, we compared models in which just IPFC
or just IPS were used for EGA against a model where both seeds were included as covariates in
the same model (*%; see Equations 4-5). Our test of mediation was the group-level difference in
IPFC seed-coherence alignment before and after including IPS. While these analyses are
inherently cross-sectional (i.e., IPFC and IPS are measured at the same time), we supplemented
these analyses by showing that the mediating effect of IPS on IPFC was much larger than the
mediating effect of IPFC on IPS (see Figure 7B; Supplementary Figure 4). Unlike traditional
mediation analyses looking at the first-order change in regression estimates, our analysis looks at
the second-order change in the multivariate alignment between regression estimates, using the
same core rationale.

Data Availability: Unprocessed fMRI data is available at
https://doi.org/10.18112/openneuro.ds004909.v1.1.0. Behavioral data, event timing, and analysis
code are available at: https://github.com/shenhavlab/PACT fMRI public.

Code Availability: Analysis pipeline is available at
https://github.com/shenhavlab/PACT fMRI public. Software versions: MATLAB 2020a;
fMRIPrep 20.2.6; SPM12 (v7771); rwls 4.1; PALM al19; rsatoolbox matlab 1.0; bayesFactor
1.1; surfplot 0.1.0; ScientificColourMaps7.
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Tables

Model Trial Predictors (z-scored)
Name selection
Feature UV No omission | target coherence, distractor coherence, target evidence, distractor evidence,
errors; distractor congruence;
run- omission errors (run-concatenated)
concatenated
Difficulty No omission | Separate levels (1,2,4,5) of target coherence, separate levels (1,2,4,5) of
Levels errors; distractor congruence;
run- omission errors (run-concatenated)
concatenated
Feature MV No errors; target coherence, distractor coherence, target evidence, distractor evidence,
run-separated | distractor congruence;
errors (run-concatenated)
Evidence No errors; Levels (1-5, 6-10) of target evidence, Levels (1,2,4,5) of distractor evidence;
Levels run-separated | errors (run-concatenated)

Between-Task

No errors;
run-separated

target coherence, distractor coherence, target evidence, distractor evidence,
distractor congruence;

errors (run-concatenated);

reaction time (run-concatenated)

Performance No omission | target coherence, distractor coherence, target evidence, distractor evidence,
errors; distractor congruence, reaction time, accuracy;
run-separated | omission errors (run-concatenated)
Performance No omission | target coherence, distractor coherence, target evidence, distractor evidence,
CX errors; distractor congruence, reaction time, accuracy;

run-separated

omission errors (run-concatenated);
seed timeseries (run-separated)

Table 1. fMRI models. First-level general linear models used for univariate and multivariate fMRI analyses.
Coherence: percentage of dots supporting the same response (‘unsigned coherence’). Evidence: % dots supporting a
rightwards vs leftwards response (‘signed coherence”). Distractor Congruence: % dots supporting the same response
as the target dimension. All predictors were z-scored within their run. For difficulty and feature levels, we included
each level as a separate predictor, with collinearity with the block intercept preventing all levels from being
included. For Evidence Levels, targets had greater granularity due to distractors being coded relative to targets (5
levels of congruence led to 5 levels of coherence). For Performance CX, seed timeseries were included as run-
separated regressors (see Multivariate Connectivity Analysis in Methods).
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Figure Captions

Figure 1. Task and Behavior. A-C) Three hypothesized encoding schemes. A) In aligned encoding features are
represented similarly, e.g., encode performance variables like error likelihood or time-on-task. B) In segregated
encoding features are encoded independently, in distinct voxel populations (i.e., voxel-level pure selectivity *°). C)
In subspace encoding, features are encoding independently, in overlapping voxel populations (i.e., voxel-level
mixed selectivity). D) Participants responded to a color-motion random dot kinematogram (RDK) with a button
press. Participants either responded to the left/right motion direction of the RDK (Attend-Motion runs) or based on
the majority color (Attend-Color runs; critical condition). E) We parametrically and independently manipulated
target coherence (% of dots in the majority color) and distractor congruence (motion coherence signed relative to the
target response). F) Participants were faster and more accurate when the target was more coherent. G) Participants
were faster and more accurate when the distractor was more congruent with the target. Error bars on line plots
reflect mean and within-participant SEM, error bars for regression fixed-effect betas reflect 95% CI (N=29 for all
figures).

Figure 2. Distinct coding of target and distractor difficulty in dACC. A) We looked for linear target coherence and
distractor congruence signals within an a priori dACC mask (white outline; overlapping Kong2?2 parcels and medial
‘cognitive control’ Neurosynth mask). We found that voxels in the most caudal dACC reflected target difficulty
(green), more rostral voxels reflected distractor incongruence (blue). Note that these maps only show difficulty-
coded effects; the most rostral portion of dACC responded to target ease (Extended Data Figure 2). Shading reflects
two-tailed t-stats, corrected for multiple comparisons using non-parametric threshold-free cluster enhancement. B)
We extracted the long axis of the dACC using a PCA of the voxel coordinates. We plotted the target coherence
(green) and distractor congruence (blue) along the deciles of this long axis. Fit lines are the quantized predictions
from a second-order polynomial regression. We used these regression betas to estimate the minima for target and
distractor tuning (i.e., location of strongest difficulty effects), finding that the target difficulty peak (vertical green
line) was more caudal than the distractor incongruence peak (vertical blue line). C) Plotting the uncorrected whole-
brain response, distractor incongruence responses (blue) were strongest within the ‘Control C* sub-network (red),
both in dACC and anterior insula. D) BOLD responses across levels of target coherence and distractor congruence,
plotted within the whole dACC ROI (left), or the ‘Salience/Ventral Attention (SVA)’ network and ‘Control’
network parcels within the dACC ROI (right). GLMs: A-C: Feature UV, D: Difficulty Levels, see Table 1.
Throughout, error bars reflect mean and within-participant SEM (N=29).

Figure 3. Encoding Geometry Analysis (EGA) dissociates target and distractor encoding. A) Parametric univariate
responses to weak target coherence (green; percentage of dots in majority color), strong distractor coherence
(orange; percentage of dots with coherent motion), and their conjunction (yellow). Statistical tests (two-tailed t-tests)
are corrected for multiple comparisons using non-parametric threshold-free cluster enhancement (TFCE). B)
Alignment between target and distractor coherence (two-tailed t-test on correlation values), within parcels where
both were jointly reliable (two-tailed p <.001, uncorrelated). Representations were negatively correlated within
Superior Parietal Lobule (SPL in gold; Kong22 labels), and uncorrelated within Intraparietal Sulcus (IPS in white;
Kong22 labels). C) Anatomical labels for parietal regions, based on the labels in the Kong22 parcellation. D)
Bayesian analyses provide explicit evidence for orthogonality within IPS (i.e., negative BF; theoretical minima: -
0.71). E) Coherence coded in terms of evidence (i.e., supporting a left vs right choice). Target and distractor
evidence encoding overlapped in visual cortex and SPL and was represented orthogonally. GLMs: A: Feature UV,
B-E: Feature MV, see Table 1.

Figure 4. Region-specific feature encoding. A) Similarity matrices for dACC, IPFC, SPL, and IPS, correlating
feature evidence (‘Evid’), feature coherence (‘Coh’), and feature congruence (‘Cong’). Encoding strength on
diagonal (right-tailed #-test), encoding alignment on off-diagonal (two-tailed #-test). No correction for multiple
comparisons. B) Classical MDS embedding of target (circle) and distractor (diamond) representations at different
levels of evidence. Colors denote responses, hues denote coherence. GLMs: A: Feature MV, B: Evidence Levels,
see Table 1.

23



OO0~ KW —

Figure 5. Task-dependent encoding strength. A) Across cortex, feature coherence encoding was stronger during
Attend-Color than Attend-Motion, matched for the same number of trials. Attend-Color had stronger encoding when
comparing target coherence (top left), distractor coherence (top right), color coherence (bottom left) and motion
coherence (bottom right). Parcels are thresholded at p <.001 (two-tailed, uncorrected); outlined parcels are
significant at p < .05 (two-tailed max-statistic randomization test across all parcels). Condition labels in title
parentheses are coded ‘Featureras’. B) Target and distractor coherence information was encoded more strongly
during Attend-Color than Attend-Motion in dACC, IPFC, SPL and IPS. Attend-Color encoding plotted from the
whole sample (blue fill) and a trial-matched sample (first 45 trials of each run; white fill) In Attend-Motion runs,
only target evidence was significantly encoded (magenta). Error bars reflect mean and within-participant SEM
(N=29). GLM: Between-Task, see Table 1.

Figure 6. Alignment between feature and performance encoding. A) Alignment between encoding of target
coherence and performance (top row: Accuracy, bottom row: RT). B) Alignment between encoding of distractor
coherence and performance (top row: Accuracy, bottom row: RT). Across A and B, parcels are thresholded at p <
.001 (two-tailed uncorrected t-test, in jointly reliable parcels at p <.001). Outlined parcels are significant at p < .05
(two-tailed max-statistic randomization test across jointly reliable parcels). C) Individual differences in feature-RT
alignment correlated with feature-accuracy alignment across regions (Pearson correlation values in top right; p <.05
in red). See Supplementary Table 2 for partial correlations controlling for reliability. GLM: Performance, see Table
1.

Figure 7. IPS mediates alignment between IPFC and feature encoding. A) Connectivity patterns from IPFC (color)
and IPS (red outline) were aligned with target and distractor coherence patterns (two-tailed p <.001 uncorrected, in
jointly reliable parcels at p <.001). IPS effects are outlined to show overlap, with all effects in a consistent direction
to IPFC. B) IPFC-feature alignment contrasted between IPFC-only model (‘Solo”) and IPFC + IPS model (‘Both’).
Including IPS reduced the alignment between IPFC and feature encoding (compare the sign of the main effect in A
to the contrast in B). Parcels are thresholded at two-tailed p < .001 (uncorrected, jointly reliable parcels), and
outlined parcels are significant at p <.05 (two-tailed max-statistic randomization test across jointly reliable parcels).
Insets graphs: seed-coherence alignment in Solo models (black) and Both model (orange) across visual regions.
“Visual C’ is defined by our parcellation 3*; Color and Motion localizers are parcels near the peak response
identified during feature localizer runs (see Methods). In general, IPFC alignment was more affected by IPS than
IPS alignment was affected by IPFC. Throughout, error bars reflect mean and within-participant SEM (N=29).
GLM: Performance CX, see Table 1.

24



10

11

12

13

14

15

16

17

18

19

20

21

22

23

References

1.

10.

Musslick, S., Shenhav, A., Botvinick, M. & Cohen, J. A Computational Model of Control
Allocation based on the Expected Value of Control. in 2nd Multidisciplinary Conference on
Reinforcement Learning and Decision Making (2015).

Badre, D., Bhandari, A., Keglovits, H. & Kikumoto, A. The dimensionality of neural
representations for control. Curr Opin Behav Sci 38, 20-28 (2021).

Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M. & Ullsperger, M. Posterior
medial frontal cortex activity predicts post-error adaptations in task-related visual and motor
areas. J. Neurosci. 31, 1780-1789 (2011).

Egner, T. Multiple conflict-driven control mechanisms in the human brain. 7rends Cogn.
Sci. 12, 374-380 (2008).

Ritz, H., Leng, X. & Shenhav, A. Cognitive Control as a Multivariate Optimization
Problem. J. Cogn. Neurosci. 34, 569-591 (2022).

Friedman, N. P. & Miyake, A. Unity and diversity of executive functions: Individual
differences as a window on cognitive structure. Cortex 86, 186-204 (2017).

Danielmeier, C. & Ullsperger, M. Post-error adjustments. Front. Psychol. 2,233 (2011).
Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C. & Ullsperger, M. Cortical beta
power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nat.
Commun. 9, 5038 (2018).

Leng, X., Yee, D., Ritz, H. & Shenhav, A. Dissociable influences of reward and punishment
on adaptive cognitive control. PLoS Comput. Biol. 17, 1009737 (2021).

Ritz, H. & Shenhav, A. Humans reconfigure target and distractor processing to address

distinct task demands. bioRxiv 2021.09.08.459546 (2021) doi:10.1101/2021.09.08.459546.

25



10

11

12

13

14

15

16

17

18

19

20

21

22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Kalman, R. E. On the general theory of control systems. /FAC Proceedings Volumes 1,
491-502 (1960).

Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative
theory of anterior cingulate cortex function. Neuron 79, 217-240 (2013).

MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role
of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288,
1835-1838 (2000).

Smith, E. H. et al. Widespread temporal coding of cognitive control in the human prefrontal
cortex. Nat. Neurosci. 66, 83 (2019).

Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive
function. Neuropsychopharmacology 1-14 (2021) doi:10.1038/s41386-021-01152-w.
Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science
303, 1023-1026 (2004).

Gottlieb, J., Cohanpour, M., Li, Y., Singletary, N. & Zabeh, E. Curiosity, information
demand and attentional priority. Current Opinion in Behavioral Sciences 35, 83-91 (2020).
Gordon, E. M. et al. Precision Functional Mapping of Individual Human Brains. Neuron 95,
791-807.e7 (2017).

Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B. & Petersen, S. E. Evidence for
Two Independent Factors that Modify Brain Networks to Meet Task Goals. Cell Rep. 17,
12761288 (2016).

Kragel, P. A. et al. Generalizable representations of pain, cognitive control, and negative

emotion in medial frontal cortex. Nat. Neurosci. 21, 283-289 (2018).

26



10

11

12

13

14

15

16

17

18

19

20

21

22

23

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Fu, Z. et al. The geometry of domain-general performance monitoring in the human medial
frontal cortex. Science 376, eabm9922 (2022).

Vermeylen, L. et al. Shared Neural Representations of Cognitive Conflict and Negative
Affect in the Medial Frontal Cortex. J. Neurosci. 40, 8715-8725 (2020).

Brown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior
cingulate cortex. Science 307, 1118-1121 (2005).

Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and
cingulate cortex. Nat. Neurosci. 11, 389-397 (2008).

Grinband, J. ef al. The dorsal medial frontal cortex is sensitive to time on task, not response
conflict or error likelihood. Neuroimage 57, 303-311 (2011).

Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E. & Braver, T. S. BOLD correlates of
trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis.
PLoS One 4, e4257 (2009).

Mumford, J. A. et al. The response time paradox in functional magnetic resonance imaging
analyses. bioRxiv 2023.02.15.528677 (2023) doi:10.1101/2023.02.15.528677.

Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a
parallel tracking mechanism. Spat. Vis. 3, 179-197 (1988).

Beldzik, E. & Ullsperger, M. A thin line between conflict and reaction time effects on EEG
and fMRI brain signals. bioRxiv 2023.02.14.528515 (2023)
doi:10.1101/2023.02.14.528515.

Shenhav, A., Straccia, M. A., Musslick, S., Cohen, J. D. & Botvinick, M. M. Dissociable
neural mechanisms track evidence accumulation for selection of attention versus action.

Nat. Commun. 9, 2485 (2018).

27



10

11

12

13

14

15

16

17

18

19

20

21

22

23

31.

32.

33.

34.

35.

36.

37.

38.

39.

Taren, A. A., Venkatraman, V. & Huettel, S. A. A parallel functional topography between
medial and lateral prefrontal cortex: evidence and implications for cognitive control. J.
Neurosci. 31, 50265031 (2011).

Venkatraman, V., Rosati, A. G., Taren, A. A. & Huettel, S. A. Resolving response,
decision, and strategic control: evidence for a functional topography in dorsomedial
prefrontal cortex. J. Neurosci. 29, 13158-13164 (2009).

Fu, Z. et al. Single-Neuron Correlates of Error Monitoring and Post-Error Adjustments in
Human Medial Frontal Cortex. Neuron 101, 165-177.e5 (2019).

Zarr, N. & Brown, J. W. Hierarchical error representation in medial prefrontal cortex.
Neuroimage 124, 238-247 (2016).

Ebitz, B. R. ef al. Human dorsal anterior cingulate neurons signal conflict by amplifying
task-relevant information. bioRxiv 2020.03.14.991745 (2020)
do0i:10.1101/2020.03.14.991745.

Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal
representations for robust context-dependent task performance in brains and neural
networks. Neuron 0, (2022).

Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of
memory-based choice representations by the human medial frontal cortex. Science 368,
(2020).

Ebitz, R. B. & Hayden, B. Y. The population doctrine in cognitive neuroscience. Neuron
(2021) doi:10.1016/j.neuron.2021.07.011.

Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings.

Nat. Neurosci. 17, 1500-1509 (2014).

28



10

11

12

13

14

15

16

17

18

19

20

21

40.

41.

42.

43.

44,

45.

46.

47.

48.

Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature
497, 585-590 (2013).

Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation
by recurrent dynamics in prefrontal cortex. Nature 503, 78-84 (2013).

Kayser, A. S., Erickson, D. T., Buchsbaum, B. R. & D’Esposito, M. Neural representations
of relevant and irrelevant features in perceptual decision making. J. Neurosci. 30, 15778—
15789 (2010).

Bernardi, S. ef al. The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex.
Cell 0, (2020).

Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working
memory and attention. Nature 1-5 (2021) doi:10.1038/s41586-021-03390-w.

Takagi, Y., Hunt, L. T., Woolrich, M. W., Behrens, T. E. & Klein-Fliigge, M. C. Adapting
non-invasive human recordings along multiple task-axes shows unfolding of spontaneous
and over-trained choice. Elife 10, (2021).

Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a
parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332-361
(1990).

Woolgar, A., Hampshire, A., Thompson, R. & Duncan, J. Adaptive coding of task-relevant
information in human frontoparietal cortex. J. Neurosci. 31, 14592—-14599 (2011).

Nee, D. E., Wager, T. D. & Jonides, J. Interference resolution: insights from a meta-analysis

of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 7, 1-17 (2007).

29



10

11

12

13

14

15

16

17

18

19

20

21

22

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Shenhav, A., Straccia, M. A., Botvinick, M. M. & Cohen, J. D. Dorsal anterior cingulate
and ventromedial prefrontal cortex have inverse roles in both foraging and economic
choice. Cogn. Affect. Behav. Neurosci. 1127-1139 (2016) doi:10.3758/s13415-016-0458-8.
Fleming, S. M., van der Putten, E. J. & Daw, N. D. Neural mediators of changes of mind
about perceptual decisions. Nat. Neurosci. 21, 617-624 (2018).

Shenhav, A. & Karmarkar, U. R. Dissociable components of the reward circuit are involved
in appraisal versus choice. Sci. Rep. 9, 1958 (2019).

Clairis, N. & Pessiglione, M. Value, confidence, deliberation: a functional partition of the
medial prefrontal cortex demonstrated across rating and choice tasks. J. Neurosci. 42, 5580—
5592 (2022).

Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125-1165 (2011).

Kong, R. et al. Individual-Specific Areal-Level Parcellations Improve Functional
Connectivity Prediction of Behavior. Cereb. Cortex 31, 4477-4500 (2021).

Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
Functional Connectivity MRI. Cereb. Cortex 28, 3095-3114 (2018).

Kong, R. et al. Spatial Topography of Individual-Specific Cortical Networks Predicts
Human Cognition, Personality, and Emotion. Cereb. Cortex 29, 2533-2551 (2019).

Bisley, J. W. & Mirpour, K. The neural instantiation of a priority map. Curr. Opin. Psychol.
29, 108-112 (2019).

Yantis, S. & Serences, J. T. Cortical mechanisms of space-based and object-based

attentional control. Curr. Opin. Neurobiol. 13, 187-193 (2003).

30



10

11

12

13

14

15

16

17

18

19

20

21

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Kriegeskorte, N. & Diedrichsen, J. Peeling the Onion of Brain Representations. Annu. Rev.
Neurosci. 42, 407—432 (2019).

Cohen, M. R. & Maunsell, J. H. R. A neuronal population measure of attention predicts
behavioral performance on individual trials. J. Neurosci. 30, 15241-15253 (2010).

Libby, A. & Buschman, T. J. Rotational dynamics reduce interference between sensory and
memory representations. Nat. Neurosci. 1-12 (2021) doi:10.1038/s41593-021-00821-9.
Kimmel, D. L., Elsayed, G. F., Cunningham, J. P. & Newsome, W. T. Value and choice as
separable and stable representations in orbitofrontal cortex. Nat. Commun. 11, 3466 (2020).
Walther, A. ef al. Reliability of dissimilarity measures for multi-voxel pattern analysis.
Neuroimage 137, 188200 (2016).

Diedrichsen, J. & Kriegeskorte, N. Representational models: A common framework for
understanding encoding, pattern-component, and representational-similarity analysis. PLoS
Comput. Biol. 13, 1005508 (2017).

Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10,
e1003553 (2014).

Spearman, C. The Proof and Measurement of Association between Two Things. Am. J.
Psychol. 100, 441-471 (1987).

Thornton, M. A. & Mitchell, J. P. Consistent Neural Activity Patterns Represent Personally
Familiar People. J. Cogn. Neurosci. 29, 1583—-1594 (2017).

Hunt, L. T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat.

Neurosci. 15, 4706, S1-3 (2012).

31



10

11

12

13

14

15

16

17

18

19

20

21

22

69.

70.

71.

72.

73.

74.

75.

76.

77.

Kayser, A. S., Buchsbaum, B. R., Erickson, D. T. & D’Esposito, M. The functional
anatomy of a perceptual decision in the human brain. J. Neurophysiol. 103, 1179-1194
(2010).

Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping.
Proc. Natl. Acad. Sci. U. S. A. 103, 3863—-3868 (2006).

Woolgar, A., Williams, M. A. & Rich, A. N. Attention enhances multi-voxel representation
of novel objects in frontal, parietal and visual cortices. Neuroimage 109, 429-437 (2015).
Woolgar, A., Afshar, S., Williams, M. A. & Rich, A. N. Flexible Coding of Task Rules in
Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control. J. Cogn.
Neurosci. 27, 1895-1911 (2015).

Jackson, J., Rich, A. N., Williams, M. A. & Woolgar, A. Feature-selective Attention in
Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information. J.
Cogn. Neurosci. 29, 310-321 (2017).

Woolgar, A., Thompson, R., Bor, D. & Duncan, J. Multi-voxel coding of stimuli, rules, and
responses in human frontoparietal cortex. Neuroimage 56, 744—752 (2011).

Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic
encoding during decision-making. Nat. Neurosci. (2020) doi:10.1038/s41593-020-0696-5.
Pagan, M. et al. A new theoretical framework jointly explains behavioral and neural
variability across subjects performing flexible decision-making. bioRxiv 2022.11.28.518207
(2022) doi:10.1101/2022.11.28.518207.

Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev.

Neurosci. 24, 167-202 (2001).

32



10

11

12

13

14

15

16

17

18

19

20

21

22

23

78.

79.

80.

81.

82.

83.

&4.

85.

86.

87.

88.

Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity.
Science 364, 255 (2019).

Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate
association cortex. Annu. Rev. Neurosci. 11, 137-156 (1988).

Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the
brain. Nat. Rev. Neurosci. 3,201-215 (2002).

Suzuki, M. & Gottlieb, J. Distinct neural mechanisms of distractor suppression in the frontal
and parietal lobe. Nat. Neurosci. 16, 98—104 (2013).

Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu.
Rev. Neurosci. 23, 315-341 (2000).

Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and face-
selective cortex. Elife 6, (2017).

Saalmann, Y. B., Pigarev, I. N. & Vidyasagar, T. R. Neural mechanisms of visual attention:
how top-down feedback highlights relevant locations. Science 316, 1612—-1615 (2007).
Reid, A. T. et al. Advancing functional connectivity research from association to causation.
Nat. Neurosci. 22, 1751-1760 (2019).

MacKinnon, D. P., Fairchild, A. J. & Fritz, M. S. Mediation analysis. Annu. Rev. Psychol.
58, 593-614 (2007).

Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and
executive function. Neuropsychopharmacology 1-18 (2021) doi:10.1038/s41386-021-
01132-0.

Holroyd, C. B. & McClure, S. M. Hierarchical control over effortful behavior by rodent

medial frontal cortex: A computational model. Psychol. Rev. 122, 54-83 (2015).

33



10

11

12

13

14

15

16

17

18

19

20

21

22

&9.

90.

91.

92.

93.

94.

95.

96.

97.

Holroyd, C. B. & Yeung, N. An Integrative Theory of Anterior Cingulate Cortex Function:
Option Selection in Hierarchical Reinforcement Learning. Neural Basis of Motivational and
Cognitive Control 332-349 Preprint at
https://doi.org/10.7551/mitpress/9780262016438.003.0018 (2011).

Vassena, E., Deraeve, J. & Alexander, W. H. Predicting Motivation: Computational Models
of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in
Health and Disease. J. Cogn. Neurosci. 29, 1633—-1645 (2017).

Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal
executive function. Trends Cogn. Sci. 11, 229-235 (2007).

Badre, D. & D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat.
Rev. Neurosci. 10, 659—-669 (2009).

Badre, D. & Nee, D. E. Frontal Cortex and the Hierarchical Control of Behavior. Trends
Cogn. Sci. 22, 170-188 (2018).

Serences, J. T. & Yantis, S. Spatially selective representations of voluntary and stimulus-
driven attentional priority in human occipital, parietal, and frontal cortex. Cereb. Cortex 17,
284-293 (2007).

Yantis, S. et al. Transient neural activity in human parietal cortex during spatial attention
shifts. Nat. Neurosci. 5, 995-1002 (2002).

Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T. & Yantis, S. Control of spatial
and feature-based attention in frontoparietal cortex. J. Neurosci. 30, 14330-14339 (2010).
Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J. & Yantis, S. Decoding cognitive control

in human parietal cortex. Proc. Natl. Acad. Sci. U. S. A. 106, 17974—17979 (2009).

34



10

11

12

13

14

15

16

17

18

19

20

21

22

23

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X. & Yantis, S. Control of object-
based attention in human cortex. Cereb. Cortex 14, 1346—1357 (2004).

Molenberghs, P., Mesulam, M. M., Peeters, R. & Vandenberghe, R. R. C. Remapping
attentional priorities: differential contribution of superior parietal lobule and intraparietal
sulcus. Cereb. Cortex 17,2703-2712 (2007).

Adam, K. C. S. & Serences, J. T. History modulates early sensory processing of salient
distractors. J. Neurosci. (2021) doi:10.1523/JNEUROSCI.3099-20.2021.

Soutschek, A., Stelzel, C., Paschke, L., Walter, H. & Schubert, T. Dissociable effects of
motivation and expectancy on conflict processing: an fMRI study. J. Cogn. Neurosci. 27,
409-423 (2015).

Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu.
Rev. Neurosci. 33, 1-21 (2010).

Rust, N. C. & Cohen, M. R. Priority coding in the visual system. Nat. Rev. Neurosci. 1-13
(2022) doi:10.1038/s41583-022-00582-9.

Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N. & Braver, T. S. Reward Motivation
Enhances Task Coding in Frontoparietal Cortex. Cereb. Cortex 26, 1647-1659 (2016).
Hall-McMaster, S., Muhle-Karbe, P. S., Myers, N. E. & Stokes, M. G. Reward Boosts
Neural Coding of Task Rules to Optimize Cognitive Flexibility. J. Neurosci. 39, 8549-8561
(2019).

Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev.
Neurosci. 18, 193-222 (1995).

Lauritzen, T. Z., D’Esposito, M., Heeger, D. J. & Silver, M. A. Top—down flow of visual

spatial attention signals from parietal to occipital cortex. J. Vis. 9, 1818 (2009).

35



10

11

12

13

14

15

16

17

18

19

20

21

22

108.

109.

110.

I11.

112.

113.

114.

115.

Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical Areas
Interact through a Communication Subspace. Neuron 102, 249-259.e4 (2019).

Srinath, R., Ruff, D. A. & Cohen, M. R. Attention improves information flow between
neuronal populations without changing the communication subspace. bioRxiv
2021.03.31.437940 (2021) doi:10.1101/2021.03.31.437940.

Petrides, M. & Pandya, D. N. Efferent association pathways originating in the caudal
prefrontal cortex in the macaque monkey. J. Comp. Neurol. 498, 227-251 (2006).

Jackson, J. B., Feredoes, E., Rich, A. N., Lindner, M. & Woolgar, A. Concurrent
neuroimaging and neurostimulation reveals a causal role for dIPFC in coding of task-
relevant information. Commun Biol 4, 588 (2021).

Vul, E., Alvarez, G., Tenenbaum, J. & Black, M. Explaining human multiple object
tracking as resource-constrained approximate inference in a dynamic probabilistic model. in
Advances in Neural Information Processing Systems (eds. Bengio, Y., Schuurmans, D.,
Lafferty, J., Williams, C. & Culotta, A.) vol. 22 (Curran Associates, Inc., 2009).

Ritz, H., Wild, C. J. & Johnsrude, 1. S. Parametric Cognitive Load Reveals Hidden Costs in
the Neural Processing of Perfectly Intelligible Degraded Speech. J. Neurosci. 42, 4619—
4628 (2022).

Culham, J. C., Cavanagh, P. & Kanwisher, N. G. Attention response functions:
characterizing brain areas using fMRI activation during parametric variations of attentional
load. Neuron 32, 737-745 (2001).

Culham, J. C. et al. Cortical fMRI activation produced by attentive tracking of moving

targets. J. Neurophysiol. 80, 2657-2670 (1998).

36



10

11

12

13

14

15

16

17

18

19

20

21

22

23

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Howe, P. D., Horowitz, T. S., Morocz, 1. A., Wolfe, J. & Livingstone, M. S. Using fMRI to
distinguish components of the multiple object tracking task. J. Vis. 9, 10.1-11 (2009).
Jovicich, J. et al. Brain areas specific for attentional load in a motion-tracking task. J. Cogn.
Neurosci. 13, 1048—-1058 (2001).

Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R. & Gottlieb, J. Reward modulates attention
independently of action value in posterior parietal cortex. J. Neurosci. 29, 11182-11191
(2009).

Wisniewski, D., Reverberi, C., Momennejad, 1., Kahnt, T. & Haynes, J.-D. The Role of the
Parietal Cortex in the Representation of Task—Reward Associations. J. Neurosci. 35,
12355-12365 (2015).

Parro, C., Dixon, M. L. & Christoff, K. The neural basis of motivational influences on
cognitive control. Hum. Brain Mapp. 39, 5097-5111 (2018).

Weichart, E. R., Turner, B. M. & Sederberg, P. B. A model of dynamic, within-trial conflict
resolution for decision making. Psychol. Rev. (2020) doi:10.1037/rev0000191.

Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat.
Methods 16, 111-116 (2019).

Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data
processing framework in python. Front. Neuroinform. S, 13 (2011).

Diedrichsen, J. & Shadmehr, R. Detecting and adjusting for artifacts in fMRI time series
data. Neuroimage 27, 624-634 (2005).

Jones, M. S., Zhu, Z., Bajracharya, A., Luor, A. & Peelle, J. E. A multi-dataset evaluation
of frame censoring for task-based fMRI. bioRxiv 2021.10.12.464075 (2021)

doi:10.1101/2021.10.12.464075.

37



10

11

12

13

14

15

16

17

18

19

20

21

22

23

126.

127.

128.

129.

130.

131.

132.

133.

134.

Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of
smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44, 83—
98 (2009).

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E.
Permutation inference for the general linear model. Neuroimage 92, 381-397 (2014).

Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in
neuroimaging and connectomics datasets. Commun Biol 3, 103 (2020).

Gale, D. J., Vos de Wael., R., Benkarim, O. & Bernhardt, B. Surfplot: Publication-ready
brain surface figures. (2021). doi:10.5281/zenod0.5567926.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale
automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665—670
(2011).

Diedrichsen, J., Yokoi, A. & Arbuckle, S. A. Pattern component modeling: A flexible
approach for understanding the representational structure of brain activity patterns.
Neuroimage 180, 119-133 (2018).

Rouder, J. N, Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes factors for
ANOVA designs. J. Math. Psychol. 56, 356-374 (2012).

Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1-25 (2002).

Belsley, D. A., Kuh, E. & Welsch, R. E. Wiley Series in Probability and Statistics.
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity 293-300

(1980).

38



