

1
2
3
4 Orthogonal neural encoding of targets and distractors
5 supports multivariate cognitive control
6
7 Harrison Ritz^{*1-3} & Amitai Shenhav^{1,2}
8
9
10

11
12 1. *Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA*
13 2. *Carney Institute for Brain Science, Brown University, Providence, RI, USA*
14 3. *Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA*
15
16 * *Corresponding author: hritz@princeton.edu*
17
18

1 Abstract

2 The complex challenges of our mental life require us to coordinate multiple forms of neural
3 information processing. Recent behavioral studies have found that people can coordinate
4 multiple forms of attention, but the underlying neural control process remains obscure. We
5 hypothesized that the brain implements multivariate control by independently monitoring
6 feature-specific difficulty and independently prioritizing feature-specific processing. During
7 fMRI, participants performed a parametric conflict task that separately tags target and distractor
8 processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially
9 segregated encoding of target and distractor difficulty in dorsal anterior cingulate cortex.
10 Consistent with feature-specific attentional priority, our Encoding Geometry Analysis revealed
11 overlapping, but orthogonal, representations of target and distractor coherence in intraparietal
12 sulcus. Coherence representations were mediated by control demands and aligned with both
13 performance and frontoparietal activity, consistent with top-down attention. Together, these
14 findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive
15 control.

16
17 Keywords: cognitive control, attention, decision-making, fMRI

1 Introduction

2 We have remarkable flexibility in how we think and act. This flexibility is enabled by the array
3 of mental tools we can bring to bear on challenges to our goal pursuit^{1–6}. For example, someone
4 may respond to a mistake by becoming more cautious, enhancing task-relevant processing, or
5 suppressing task-irrelevant processing⁷, and previous work has shown that people
6 simultaneously deploy multiple such strategies at the same time in response to different task
7 demands^{3,8–10}. Flexibly coordinating multiple cognitive processes requires a control system that
8 can monitor multiple forms of task demands and deploy multiple forms of control (also referred
9 to as the necessity for *observability* and *controllability*;¹¹). These monitoring and regulation
10 processes are fundamental to control, and are thought to be underpinned by distinct cingulo-
11 opercular and frontoparietal neural systems^{12–19}. However, much is still unknown about how
12 multiple forms of control are represented across these domains.
13

14 Past research on the neural mechanisms of cognitive control has often sought to identify
15 representations that integrate over multiple different sources of task demands (i.e., represent
16 these different sources in *alignment*). For instance, previous studies has proposed that dorsal
17 anterior cingulate cortex (dACC) tracks integrative features like response conflict, effort, value,
18 error likelihood, and time-on-task^{20–27}. Because they integrate over different task features
19 instead of differentiating between them, these forms of ‘aligned encoding’ (Figure 1a) are ill-
20 suited for carrying out multidimensional control. Multidimensional cognitive control requires
21 independent representations that can track multiple sources of difficulty and regulate multiple
22 cognitive processes (e.g., prioritize multiple sources of information²⁸).
23

24 An alternative to aligned encoding – one that would allow the brain to separately control
25 multiple processes – is *independent* encoding, which can come in at least two forms. One way
26 the brain can have independent representations is by encoding different task features in spatially
27 segregated neural populations (‘segregated encoding’; Figure 1b). For example, past work has
28 shown that different subregions within dACC encode distinct task demands, including various
29 forms of errors and processing conflict^{29–34}. The brain can instead have independent
30 representations that are distributed across units within the same population, as has also been
31 observed in dACC^{35–37}. Within a shared population, independent encoding of information occurs
32 along a set of orthogonal dimensions or *subspaces* (Figure 1c, ‘subspace encoding’;^{38–41}).
33 Despite this exciting recent work, it remains unclear to what extent different components of the
34 cognitive control system leverage these aligned, segregated, or orthogonal encoding strategies
35 for monitoring multiple task demands and prioritizing multiple sources of information.
36

37 To gain new insight into the representations supporting cognitive control, we drew upon two key
38 innovations. First, we leveraged an experimental paradigm we developed to tag multiple control
39 processes¹⁰. Building on prior work^{3,30,41,42}, this task incorporates elements of perceptual
40 decision-making (discrimination of a target feature) and inhibitory control (overcoming a salient
41 and prepotent distractor). We have previously shown that we can separately tag target and
42 distractor processing from participants’ performance on this task, and that target and distractor
43 processing are independently controlled. For example, participants adjust target and distractor
44 sensitivity in response to distinct task demands (e.g., previous conflict or incentives;¹⁰). In
45 conjunction with this process-tagging approach, our second innovation was to develop a

1 multivariate fMRI analysis for measuring relationships between feature encoding (i.e., *encoding*
2 *geometry*). Extending recent statistical approaches in systems neuroscience^{35,43,44}, we combined
3 the strengths of multivariate encoding analyses and representation similarity analyses into a
4 method we call ‘Encoding Geometry Analysis’ (EGA). We used EGA to characterize whether
5 putative markers of monitoring and prioritization leverage independent representations for
6 targets and distractors.

7
8 In brief, we found that key nodes within the cognitive control network use orthogonal
9 representations of target and distractor information to support cognitive control. In the dorsal
10 anterior cingulate cortex (dACC), encoding of target and distractor difficulty was spatially
11 segregated and arranged along a rostrocaudal gradient. By contrast, in the intraparietal sulcus
12 (IPS), encoding of target and distractor coherence was encoded along orthogonal neural
13 subspaces. These regional distinctions are consistent with hypothesized roles in planning and
14 implementing (multivariate) attentional policies^{12,17}. Furthermore, we found that coherence
15 encoding depended on control demands, and was aligned with both task performance and
16 frontoparietal activity, consistent with these coherence representations playing a critical role in
17 cognitive control (e.g., feature prioritization). Together, these results suggest that cognitive
18 control uses representational formats that allow the brain to monitor and control multiple streams
19 of information processing.

21 Results

22 Task overview

23 Twenty-nine human participants performed the Parametric Attentional Control Task (PACT¹⁰)
24 during fMRI. On each trial, participants responded to an array of colored moving dots (colored
25 random dot kinematogram; Figure 1d). In the critical condition (Attend-Color), participants
26 respond with a left/right keypress based on which of two colors were in the majority. In
27 alternating scanner runs, participants instead responded based on motion (Attend-Motion), which
28 was designed to be less control-demanding due to the (Simon-like) congruence between motion
29 direction and response hand^{3,10}. Across trials, we independently and parametrically manipulated
30 target and distractor information across five levels of target coherence (e.g., percentage of dots in
31 the majority color, regardless of which color) and distractor congruence (e.g., percentage of dots
32 moving either in the congruent or incongruent direction relative to the correct color response;
33 Figure 1e). This task allowed us to ‘tag’ participants’ sensitivity to each dimension by measuring
34 behavioral and neural responses to independently manipulated target and distractor features.
35 Unlike a similar task used to study post-error adjustments³, our parametric manipulation of
36 target and distractor coherence allows us to better measure feature-specific representations.
37 Unlike similar tasks used to study contextual decision-making^{30,41,45}, this task pits more control-
38 demanding responses (towards color) against more automatic responses (towards motion),
39 allowing comparisons between Attend-Color and Attend-Motion tasks to isolate the
40 contributions of cognitive control^{46,47}.

1 Performance depends on targets and distractors

2 Participants had overall good performance on the task, with a high level of accuracy (median
3 Accuracy = 89%, IQR = [84% - 92%]), and a low rate of missed responses (median lapse rate =
4 2%, IQR = [0% - 5%]). We used mixed effects regressions to characterize how target coherence
5 and distractor congruence influenced participants' accuracy and log-transformed correct reaction
6 times. Replicating previous behavioral findings using this task, participants were sensitive to
7 both target and distractor information ¹⁰. When target coherence was weaker, participants
8 responded slower ($t_{(27.6)} = 16.1, p < .001, d = 3.01, 95\% \text{ CI } [0.0248, 0.0310]$) and less accurately
9 ($t_{(28)} = -8.90, p < .001, d = -1.65, 95\% \text{ CI } [-0.365, -0.233]$; Figure 1f). When distractors were
10 more incongruent, participants also responded slower ($t_{(28.8)} = 5.09, p < .001, d = .942, 95\% \text{ CI }$
11 $[0.00603, 0.0141]$); and less accurately ($t_{(28)} = -4.66, p < .001, d = -0.865, 95\% \text{ CI } [-0.220,$
12 $0.0896]$; Figure 1g). Also replicating prior findings with this task, interactions between targets
13 and distractors were not significant for reaction time ($t_{(28.2)} = 0.143, p = .887, d = 0.0265, 95\% \text{ CI }$
14 $[-0.00181, 0.00208]$) and had a weak influence on accuracy ($t_{(28)} = 2.36, p = .0257, d = .437, 95\% \text{ CI }$
15 $[0.00581, 0.0634]$). Models omitting target-distractor interactions provided a better
16 complexity-penalized fit (RT $\Delta\text{AIC} = 17.7$, Accuracy $\Delta\text{AIC} = 1.38$).
17

18 [Figure 1]

19 Segregated encoding of target and distractor difficulty

20 Past work has separately shown that the dACC tracks task demands related to perceptual
21 discrimination (induced in our task when target information is weaker) and related to the need to
22 suppress a salient distractor (induced in our task when distractor information is more strongly
23 incongruent with the target ^{12,30-32,48}). Our task allowed us to test whether these two sources of
24 increasing control demand are tracked within common regions of dACC (reflecting an
25 aggregated representation of multiple sources of task demands), or whether they are tracked by
26 separate regions (potentially reflecting a specialized representation according to the nature of the
27 demands).
28

29 Targeting a large region of dACC – a conjunction of a cortical parcellation with a meta-analytic
30 mask for ‘cognitive control’ (see ‘fMRI univariate analyses’ in Methods) – we found spatially
31 distinct signatures of target difficulty and distractor congruence within dACC. In caudal dACC,
32 we found significant clusters encoding the parametric effect of target difficulty (Figure 2a;
33 negative effect of target coherence in green), and in more rostral dACC we found clusters
34 encoding parametric distractor incongruence (negative effect of distractor congruence in blue).
35 Supporting this dissociation, the spatial patterns of target and distractor regression weights were
36 uncorrelated across dACC voxels ($t_{(28.0)} = 1.32, p = .197, \text{logBF} = -0.363, 95\% \text{ CI } [-.111, .515]$).
37 These analyses control for omission errors, and additionally controlling for commission errors
38 produced the same whole-brain pattern at a reduced threshold (see Extended Data Figure 1). We
39 additionally found the most rostral portion of our dACC mask responded to target ease
40 (Extended Data Figure 2).
41

42 [Figure 2]
43

1 To further quantify how feature encoding changed along the longitudinal axis of dACC, we used
2 principal component analysis to extract the axis position of dACC voxels (see ‘dACC
3 longitudinal axis analyses’ in Methods), and then regressed target and distractor beta weights
4 onto these axis scores. We found that targets had stronger difficulty coding in more caudal
5 voxels ($t_{(27.9)} = 3.40, p = .00204, d = .631, 95\% \text{ CI} [10.6, 42.8]$), with a quadratic trend ($t_{(26.5)} =$
6 $4.48, p < .001, d = .85, [38.2, 103]$; Figure 2b). In line with previous work on both perceptual
7 and value-based decision-making^{30,49–52}, we found that signatures of target discrimination
8 difficulty (negative correlation with target coherence) in caudal dACC were paralleled by signals
9 of target discrimination *ease* (positive correlation with target coherence) within the rostral-most
10 extent of our dACC ROI (Extended Data Figure 3). In contrast to targets, distractors had stronger
11 incongruence coding in more rostral voxel ($t_{(28.0)} = -2.87, p = .00781, d = -.533, 95\% \text{ CI} [-55.6, -$
12 $9.25]$), without a significant quadratic trend. We used participants’ random effects terms to
13 estimate the gradient location where target and distractor coding were at their most negative,
14 finding that the target minimum was significantly more caudal than the distractor minimum
15 (signed-rank test, $z_{(28)} = 2.41, p = .0159$). Target and distractor minima were uncorrelated across
16 subjects ($r_{(27)} = .0282, p = .880, \text{logBF} = -0.839$), again consistent with independent encoding of
17 targets and distractors.

18
19 As additional evidence that target-related and distractor-related demands have a dissociable
20 encoding profile, we found that the crossover between target and distractor encoding in dACC
21 occurred at the boundary between two well-characterized functional networks^{53–55}. Whereas
22 distractor-related demands were more strongly encoded rostrally in the Control Network
23 (particularly within regions of dACC and insula corresponding to the ‘Control C’ Sub-Network;
24 ^{54,56}), target-related demands were more strongly encoded caudally within the ‘Salience / Ventral
25 Attention (SVA)’ Network (Figure 2C-D). Including network membership alongside long axis
26 location predicted target and distractor encoding better than models with either network
27 membership or axis location alone ($\Delta\text{BIC} > 1675$).

28 Independent encoding of target and distractor coherence

29 We found that dACC appeared to dissociably encode target and distractor difficulty through
30 spatially segregated encoding, consistent with a role in monitoring different task demands and/or
31 specifying different control signals¹². To identify neural mechanisms for the implementation of
32 this control through the prioritization targets versus distractors, we next tested for regions that
33 encode target and distractor coherence (the amount of information in a feature, regardless of
34 which response it supports). Based on previous research, we might expect to find this form of
35 selective attention in posterior parietal cortex^{17,57,58}. We explored whether target and distractor
36 coherence share a common neural code (e.g., as a global index of spatial salience), compared to
37 where these features are encoded distinctly (e.g., as separate targets of control).

38
39 An initial whole-brain univariate analysis showed that overlapping regions throughout occipital,
40 parietal, and prefrontal cortices track the feature coherence (proportion of dots in the majority
41 category) for both targets and distractors (Figure 3a; conjunction in orange). These regions
42 showed elevated responses to lower target coherence and higher distractor coherence, potentially
43 reflecting the relevance of each feature for task performance. Note that in contrast to distractor
44 congruence, distractor *coherence* had an inconsistent relationship with task performance (RT:

1 $t_{(27,0)} = 2.08, p = .0468, d = .394, 95\% \text{ CI} [8.33 \times 10^{-5}, 0.0107]$; Accuracy: $t_{(28)} = -0.845, p = .406, d = -0.157, 95\% \text{ CI} [-0.085, 0.0338]$), suggesting that these neural responses are unlikely to reflect task difficulty per se.

5 While these univariate activations point towards widespread and coarsely overlapping encoding
6 of the feature coherence (potentially consistent with aligned encoding; Figure 1a), they lack
7 information about how these features are encoded at finer spatial scales. To interrogate the
8 relationship between target and distractor encoding, we developed a multivariate analysis that
9 combines multivariate encoding analyses with pattern similarity analyses, which we term
10 Encoding Geometry Analysis (EGA). Whereas pattern similarity analyses typically quantify
11 relationships between representations of specific stimuli or responses (e.g., whether they could
12 be classified,⁵⁹), EGA characterizes relationships between encoding subspaces (patterns of
13 contrast weights) across different task features, consistent with recent analyses trends in systems
14 neuroscience^{35,36,43,60–62}. A stronger correlation between encoding subspaces (either positive or
15 negative) indicates that features are similarly encoded (i.e., that their representations are aligned
16 and thus confusable by a linear decoder; Figure 1a), whereas weak correlation indicate that these
17 representations are orthogonal (and thus distinguishable by a linear decoder;⁵⁹). In contrast to
18 standard pattern similarity, the sign of these relationships is interpretable in EGA, reflecting how
19 features are coded relative to one another. Compared to standard encoding analyses, EGA is less
20 sensitive to noise (Extended Data Figure 3). We estimated this encoding alignment within each
21 parcel, correlating unsmoothed and spatially pre-whitened patterns of parametric regression betas
22 across scanner runs to minimize spatiotemporal autocorrelation^{63–65}. This cross-validated
23 similarity further allowed us to anchor our analysis on the measurement reliability of encoding
24 profiles (i.e., the self-correlation of encoding patterns across cross-validation folds^{66,67}).

25
26 Focusing on regions that encoded both target and distractor information (parcels where both
27 group-level $p < .001$), EGA revealed clear dissociations between regions that represent these
28 features in alignment versus orthogonally. Within visual cortex and the superior parietal lobule
29 (SPL), target and distractor representations demonstrated significant negative correlations
30 (Figure 3b, red), reflecting (negatively) aligned encoding. In contrast, early visual cortex and
31 intraparietal sulcus (IPS; see Figure 3c for anatomical boundaries) demonstrated target-distractor
32 correlations near zero (Figure 3b, black), suggesting encoding along orthogonal subspaces.

33
34 To bolster our interpretation of the latter findings as reflecting orthogonal (i.e., uncorrelated)
35 representations rather than merely small but non-significant correlations, we employed Bayesian
36 t-tests at the group level to estimate the relative (log-10) likelihood that these encoding
37 dimensions were orthogonal or correlated. Consistent with our previous analyses, we found
38 strong evidence for correlation (positive log bayes factors) in more medial regions of occipital
39 and posterior parietal cortex (e.g., SPL), and strong evidence for orthogonality (negative log
40 bayes factors) in more lateral regions of occipital and posterior parietal cortex (e.g., IPS; Figure
41 3D). Control analyses confirmed that coherence orthogonality was not due to encoding
42 reliability, as a similar topography was observed with disattenuated correlations (normalizing
43 correlations by their reliability; see Supplementary Figure 1). Further supporting these results,
44 our Bayes factor analyses were robust to the choice of priors (see Supplementary Figure 2).

45
46 [Figure 3]
47

1 While our analyses support independent encoding of targets and distractors within the same
2 parcel, we further explored whether feature information is reflected in overlapping voxels (i.e.,
3 voxel-level mixed selectivity⁴⁰). Simulations revealed that the alignment between absolute
4 encoding weights can differentiate between pure and mixed selectivity, and parietal coherence
5 representations bore this signature of voxel-level mixed selectivity (Extended Data Figure 4),
6 consistent with the subspace encoding hypothesis.

7
8 These results have focused on the coherence of different features regardless of the response they
9 support, demonstrating that SPL exhibits aligned representations of target and distractor
10 coherence. Past decision-making research has separately demonstrated that SPL tracks the
11 amount of evidence supporting specific response^{42,68,69}, which we found was also true for our
12 task. In addition to encoding target and distractor coherence, SPL and visual cortex also tracked
13 target and distractor ‘evidence’ (proportion of dots supporting a rightward vs leftward response;
14 Figure 3e). EGA revealed orthogonal evidence representations between targets and distractors, in
15 the same areas with aligned coherence representations (compare Figure 3d and 3e), consistent
16 with previous observations of multiple decision-related signals in SPL⁶⁸. We confirmed that
17 these representations

18 [Figure 4]

19
20 We complemented our whole-brain analyses with ROI analyses in areas exhibiting reliable
21 encoding of key variables, focusing on core frontal regions linked with cognitive control (dACC
22 and lateral PFC [lPFC]), and parietal regions linked with decision-making and attention (SPL
23 and IPS^{12,15}). Consistent with our analyses above, we found that target and distractor coherence
24 encoding was aligned in SPL, but not in IPS (Figure 4a, compare to Figure 3d), whereas SPL
25 encoded target and distractor evidence. Directly comparing these regions (see Supplementary
26 Table 1), we found stronger encoding of target evidence in SPL, stronger encoding of target
27 coherence in IPS, and stronger alignment between target-distractor coherence alignment in SPL.
28 Unlike our univariate results, we did not find distractor congruence encoding in dACC (though
29 this was found in lPFC and IPS). Instead, dACC showed multivariate encoding of target
30 coherence and evidence.

31
32 To further characterize how feature coherence and evidence are encoded across these regions, we
33 performed multidimensional scaling over each regions task representations (Figure 4b;^{64,70}).
34 Briefly, this method allows us to visualize – in a non-parametric manner – the relationships
35 between representations of different feature levels (e.g., levels of target coherence), by
36 estimating each feature level separately within a GLM and then using singular value
37 decomposition to project these patterns into a 2D space (see Methods for additional details). We
38 found that coherence and evidence axes naturally emerge in the top two principal components in
39 this analysis within dACC, SPL, and IPS. Coherence axes (light to dark shading) are parallel
40 between left (blue) and right (brown) responses, suggesting a response-independent encoding. In
41 these components, evidence encoding appeared to be binary, in contrast to parametric coherence
42 encoding (we found similar whole-brain encoding maps for binary-coded evidence; see
43 Supplementary Figure 3). Critically, whereas coherence encoding axes within SPL were aligned
44 between targets (circles) and distractors (diamonds; confirming aligned encoding), in IPS these
45 representations form perpendicular lines (confirming orthogonal encoding). When we visualized
46

1 higher dimensions, we found that IPS did appear to have weak encoding alignment between
2 target and distractor coherence in higher dimensions (Extended Data Figure 5). Nevertheless, the
3 orthogonal encoding in the first two principal components is sufficient for a downstream region
4 to have an independent read-out of feature-specific coherence. These analyses both help to
5 visualize cross-region dissociations in encoding profiles and validate that task features are
6 encoded in a monotonic fashion.

7
8
9 Finally, to explore the divisions between SVA and Control networks evident in the univariate
10 analyses, we split up our two prefrontal ROIs by their network membership (Extended Data
11 Figure 6). In dACC, we found that SVA parcels tended to have stronger feature encoding than
12 Control parcels. Interestingly, in these SVA parcels several features were aligned with the target
13 evidence dimension, consistent with recent human electrophysiology findings³⁵. In IPFC, we
14 found that Control parcels, but not SVA parcels, encoded distractor congruence (Control: $t_{(28)} = 3.60$, two-tailed $p = .0012$, $\log BF = 1.45$, 95% CI [0.0037, 0.0135]; SVA: $t_{(28)} = 0.57$, $p = .57$,
15 $\log BF = -0.64$, 95% CI [-0.0046, 0.0082]; Control – SVA: $t_{(28)} = 3.27$, $p = .0029$, $\log BF = 1.12$,
16 95% CI [0.0025, 0.0111]). This distractor congruence encoding was present in IPFC in ‘Control
17 A/B’ parcels ($t_{(28)} = 3.66$, $p = .001$, $\log BF = 1.51$, 95% CI [0.0041, 0.0146]), but not significantly
18 in ‘Control C’ parcels ($t_{(28)} = 1.86$, $p = .073$, $\log BF = -0.0448$, 95% CI [-0.0006, 0.0136]),). This
19 network-selective encoding of congruence is consistent with the univariate results in dACC (see
20 Figure 2).
21

23 Control demands dissociate coherence and evidence encoding

24 Our findings thus far demonstrate two sets of dissociations within and across brain regions. In
25 dACC, we find that distinct regions encode the control demands related to discriminating targets
26 (caudal dACC) versus overcoming distractor incongruence (rostral dACC). In posterior parietal
27 cortex, we find that overlapping regions track the coherence of these two stimulus features, but
28 that distinct regions represent these features in alignment (SPL) versus orthogonally (IPS). While
29 these findings suggest that this set of regions was involved in translating between feature
30 information and goal-directed responding, they only focus on the information that was presented
31 to the participant on a given trial. To provide a more direct link between feature-specific
32 encoding and control, we examined how the encoding of feature coherence differed between
33 matched task that placed stronger or weaker demands on cognitive control. So far, our analyses
34 have focused on conditions in which participants needed to respond to the color feature while
35 ignoring the motion feature (Attend-Color task), but on alternating scanner runs participants
36 instead responded to the motion dimension and ignored the color dimension (Attend-Motion
37 task). These tasks were matched in their visual properties (identical stimuli) and motor outputs
38 (left/right responses), but critically differed in their control demands. Attend-Motion was
39 designed to be much easier than Attend-Color, as the left/right motion directions are compatible
40 with the left/right response directions (i.e., Simon facilitation;^{3,10}). Comparing these tasks allows
41 us to disambiguate bottom-up attentional salience from the top-down contributions to attentional
42 priority^{47,71–73}.
43

1 Consistent with previous work ¹⁰, performance on the Attend-Motion task was better overall
2 (mean RT: 565ms vs 725ms, sign-rank $p < .001$; mean Accuracy: 93.7% vs 87.5%, sign-rank $p <$
3 .001). Unlike the Attend-Color task, performance was not impaired by distractor incongruence
4 (i.e., color distractors; RT: $t_{(28)} = -1.39$, $p = .176$, $d = -.0438$, 95% CI [-0.00629, 0.000577];
5 Accuracy: $t_{(28)} = 0.674$, $p = .506$, $d = 0.0847$, 95% CI [-0.0913, 0.147]). To investigate these task-
6 dependent feature representations, we fit a GLM that included both tasks. To control for
7 performance differences across tasks, we only analyzed accurate trials and included trial-wise
8 RT as a nuisance covariate, concatenating RT across tasks.

9
10 [Figure 5]

11 Whereas the encoding of both color and motion coherence was widespread during the Attend-
12 Color task (Figure 3), coherence encoding was consistently weaker during the less demanding
13 Attend-Motion task (Figure 5A). Coherence encoding was weaker during Attend-Motion
14 whether classifying according to goal-relevance (comparing targets or distractors) or the features
15 themselves (comparing motion or color). Task-relevant ROIs revealed that coherence encoding
16 was effectively absent during the easy Attend-Motion task (Figure 5B), suggesting that they
17 depend on the control demands of the Attend-Color task ^{47,74}.

18
19 In contrast to these stark task-related differences in coherence encoding, we found that neural
20 encoding of the target evidence (color evidence in the Attend-Color task and motion evidence in
21 the Attend-Motion task) was preserved across tasks, including within dACC, IPFC, SPL, and IPS
22 (Figure 5B). Consistent with previous experiments examining context-dependent decision-
23 making ^{36,41,42,45,73,75,76}, we found stronger target evidence encoding relative to distractor
24 evidence encoding, in our case in the evidence-encoding SPL (Attend-Color: $t_{(28)} = 4.26$, right-
25 tailed $p < .001$, $d = 0.790$; Attend-Motion: $t_{(28)} = 2.37$, right-tailed $p = 0.0124$, $d = 0.4403$). We
26 also found that target evidence encoding during Attend-Motion was aligned with Attend-Color,
27 both for *motion* evidence encoding ('stimulus axis'; SPL: $t_{(28)} = 2.08$, right-tailed $p = .0236$, $d =$
28 0.386, 95% CI [0.0009, 0.0095]; IPS: $t_{(28)} = 2.24$, right-tailed $p = .0167$, $d = 0.416$, 95% CI
29 [0.0016, 0.0114]) and *target* evidence encoding ('decision axis'; SPL: $t_{(28)} = 5.87$, right-tailed $p <$
30 .001, $d = 1.09$, 95% CI [0.0109, 0.0199]; IPS: $t_{(28)} = 3.64$, right-tailed $p = .0011$, $d = 0.676$, 95%
31 CI [0.0056, 0.0154]). These axis alignments are again in agreement with previous experiments,
32 though note that target evidence is often manipulated separately from the motor response.
33 Whereas our experiment replicates previous observations of the neural representations
34 supporting contextual decision-making, we now extended these findings to understand how
35 putative attention signals (i.e., feature coherence) are encoded in response to the asymmetric
36 inference that is characteristic of cognitive control ⁷⁷.

37
38

Feature coherence aligns with task performance

39 Feature coherence encoding (i.e., feature strength, regardless of response or congruence) depends
40 on task demands, consistent with a role in cognitive control. To further understand this
41 relationship between coherence encoding and control, we next explored how coherence encoding
42 was related to task performance. We tested this question by determining whether feature
43 coherence representations were aligned with performance representations (i.e., alignment
44 between stimulus and behavioral subspaces ⁷⁸). Specifically, we included trial-level reaction time

1 and accuracy in our first-level GLMs. Encoding of performance was itself highly robust: most
2 parcels encoded reaction time and accuracy, with the strongest encoding in cognitive control
3 regions (Extended Data Figure 7). Across cortex, reaction time and accuracy were negatively
4 correlated, again most prominently across the cognitive control network. To explore the
5 behavioral relevance of coherence representations, we tested whether coherence encoding was
6 aligned with the voxel patterns encoding task performance.

7 [Figure 6]

8
9 We found that the encoding of target and distractor coherence was aligned with performance
10 across frontoparietal and visual regions (Figure 6a-b). If a regions' encoding of target coherence
11 reflects how sensitive the participant was to target information on that trial (e.g., due to top-down
12 priority), we would expect target encoding to be positively aligned with performance on a given
13 trial, such that stronger target coherence encoding is associated with better performance and
14 weaker target coherence encoding is associated with poorer performance. We would also expect
15 distractor encoding to demonstrate the opposite pattern – stronger encoding associated with
16 poorer performance and weaker encoding associated with better performance. We found
17 evidence for both patterns of feature-performance alignment across visual and frontoparietal
18 cortex: target encoding was aligned with better performance (faster RTs and higher accuracy;
19 Figure 6a), whereas distractor encoding was aligned with worse performance (slower RTs and
20 lower accuracy; Figure 6b).

21
22 Next, we examined whether performance-coherence alignment reflected individual differences in
23 participants' task performance in our main task-related ROIs (see Figures 3-4). In particular, we
24 tested whether the alignment between features and behavior reflects specific relationships with
25 speed or accuracy, or whether they reflected overall increases in evidence accumulation (e.g.,
26 faster responding and higher accuracy). Within each ROI, we correlated feature-RT alignment
27 with feature-accuracy alignment across subjects. We found that in dACC and IPS, participants
28 showed the negative correlation between performance alignment measures predicted by an
29 increase in processing speed (Figure 6c). People with stronger alignment between target
30 coherence and shorter RTs tended to have stronger alignment between target coherence and
31 higher accuracy, with the opposite found for distractors. While these between-participant
32 correlations were present within targets and distractors, we did not find any significant
33 correlations across features (between-feature: all $p > .10$), again consistent with feature-specific
34 processing. These analyses were qualitatively similar after partialing out the reliability of
35 coherence and performance encoding (see Supplementary Table 2). While between-participant
36 analyses using small sample sizes warrant a note of caution, these findings are consistent across
37 features and regions. In conjunction with our within-participant evidence that feature coherence
38 representations are aligned with performance efficiency, these findings support a role for
39 coherence encoding in adaptive control.

41 Feature coherence aligns with frontoparietal activity

42 Across frontal, parietal, and visual cortex, encoding of target and distractor coherence depended
43 on task demands and was aligned with performance. Since this widespread encoding of task
44 information likely reflects distributed network involvement in cognitive control ^{77,79,80}, we sought

1 to understand how frontal and parietal systems interact. We focused our analyses on IPS and
2 lateral PFC (lPFC), linking the core parietal site of orthogonal coherence encoding (IPS) to an
3 prefrontal site previous work suggests provides top-down feedback during cognitive control
4 58,79,81,82. Previous work has found that IPS attentional biases lower-level stimulus encoding in
5 visual cortices 83,84, and that IPS mediates directed connectivity between lPFC and visual cortex
6 during perceptual decision-making 42. Here, we extended these experiments to test how IPS
7 mediates the relationship between prefrontal feedback and stimulus encoding.
8

9 To investigate these putative cortical interactions, we developed a multivariate connectivity
10 analysis to test whether coherence encoding was aligned with prefrontal activity, and whether
11 this lPFC-coherence alignment was mediated by IPS. We first estimated the voxel-averaged
12 residual timeseries in lPFC (SPM12's eigenvariate), and then included this residual timeseries
13 alongside task predictors in a whole-brain regression analysis (Extended Data Figure 8). This
14 analysis can be schematized as:

$$\beta_{seed} = GLM(Y_{seed}, X) \quad (1)$$

$$e_{seed} = PCA(Y_{seed} - X\beta_{seed}) \quad (2)$$

$$\beta_{all} = GLM(Y_{all}, [X, e_{seed}]) \quad (3)$$

20 The GLM function performs regression on multivariate voxel timeseries Y using design matrix
21 X, and the PCA function extracts the first principal component of the residuals. Finally, we used
22 EGA to test whether there was alignment between patterns encoding lPFC functional
23 connectivity (i.e., betas from the residual timeseries predictor e_{seed}) and patterns encoding target
24 and distractor coherence. Note that these analyses depend on functional connectivity, a
25 correlational measure that can be subject to confounding 85.

27 We found that lPFC connectivity patterns were aligned with coherence-encoding patterns in
28 visual cortex (Figure 7A). Stronger prefrontal functional connectivity was aligned with weaker
29 target coherence and stronger distractor coherence, consistent with prefrontal recruitment during
30 difficult trials. Notably, IPS connectivity was also aligned with target and distractor coherence in
31 overlapping parcels, even when controlling for lPFC connectivity. These effects were liberally
32 thresholded for visualization, as significant direct and indirect effects are not necessary for
33 significant mediation 86.

35 Our critical test was whether IPS mediated the relationship between lPFC activity and coherence
36 encoding. We compared regression estimates between a model that only included lPFC residuals
37 ('solo' model) to a model that included both lPFC and IPS residuals ('both' model). Comparing
38 the strength of lPFC-coherence alignment with and without IPS is a test of whether parietal
39 cortex mediates lPFC-coherence alignment (MacKinnon et al., 2007). These models can be
40 schematized as:

$$\beta_{solo} = GLM(Y_{all}, [X, e_{lPFC}]) \quad (4)$$

$$\beta_{both} = GLM(Y_{all}, [X, e_{lPFC}, e_{IPS}]) \quad (5)$$

45 We found that this mediation was strongest in early visual cortex, where the alignment between
46 lPFC and feature coherence was reduced in a model that included IPS relative to a model without

1 IPS (Figure 7B). The negatively correlated target-lPFC relationship became more positive when
2 IPS was included (top), and the positively correlated distractor-PFC relationship became more
3 negative when IPS was included (bottom). Critically, we found that IPS reduced prefrontal-
4 coherence alignment in early visual cortex more than lPFC reduced parietal-coherence alignment
5 (Figure 7B inset; Supplementary Figure 4A-B), consistent with frontal-to-parietal directed
6 connectivity in previous research^{42,81}. Looking within color- and motion-sensitive parcels,
7 determined using task-free localizer runs (see Methods), we found this mediation was significant
8 in color-sensitive cortex. The opposite relationship, lPFC mediation of IPS connectivity,
9 appeared in higher-level visual cortex for distractor coherence (Supplementary Figure 4C-D),
10 though these effects were not reliable in explicit contrasts and may reflect projections from both
11 regions. Note that we did not see any significant mediation of first-order target or distractor
12 coherence encoding by IPS.

13

14 [Figure 7]

15

16 While we were primarily interested in alignment with lPFC due to previous work implicating
17 these regions in top-down control (for reviews, see^{12,87}), for completeness we also examined
18 how different subnetworks in both lPFC and dACC aligned with coherence encoding. In lPFC,
19 we found that SVA and Control subnetworks had similar patterns of alignment (Supplementary
20 Figure 5). In dACC we found that the SVA subnetwork had a qualitatively similar profile of
21 coherence alignment as lPFC, but this alignment was absent in the Control subnetwork. Whereas
22 this seed-coherence alignment was similar across lPFC and SVA dACC, unlike lPFC we found
23 that SVA dACC failed to demonstrate strong evidence for mediation by IPS (Supplementary
24 Figure 6).

25

26 A final set of analyses examined whether SPL and IPS demonstrated different patterns of task-
27 related functional connectivity with other regions, given that we found that these regions
28 differentially encoded evidence and coherence. When seeding our connectivity analyses with
29 SPL activity, we found that SPL activity aligned with evidence encoding in bilateral motor
30 cortex (Extended Data Figure 9). In contrast, IPS activity did not significantly align with
31 evidence encoding, and this seed-evidence alignment in motor cortex was stronger for SPL than
32 IPS, consistent with a putative role for SPL in response selection⁶⁸.

33

34 Discussion

35 In this experiment, we explored whether neural control systems use representations with the
36 same dimensionality as the processes they regulate^{2,5,11}. Inspired by behavioral evidence that
37 participants can independently control their sensitivity to targets and distractors¹⁰, we set out to
38 understand whether the neural correlates of monitoring and prioritization leverage independent
39 encoding for feature-selective control (Figures 1a-c). We found that key nodes of canonical
40 cognitive control networks had orthogonal neural representations of targets and distractors.
41 Within dACC, orthogonal representations of target and distractor difficulty arose from
42 segregated encoding along a rostrocaudal axis. Within IPS, orthogonal representations of target
43 and distractor coherence arose from orthogonal subspaces in overlapping voxels. Consistent with
44 a role in attentional priority, coherence representations depended on control demands, task

1 performance, and frontoparietal activity. Together, these results reveal a neural mechanism for
2 how cognitive control prioritizes multiple streams of information during decision-making.
3

4 Neurocomputational theories have proposed that dACC is involved in planning control across
5 multiple levels of abstraction ^{12,88–90}. Past work has found that control abstraction is
6 hierarchically organized along dACC’s rostrocaudal axis, with more caudal dACC involved in
7 lower-level action control, and more rostral dACC involved in higher-level strategy control ^{30–}
8 ^{32,34}, an organization that may reflect a more general hierarchy of abstraction within PFC ^{31,91–93}.
9 Consistent with this account, we found that caudal dACC tracked the coherence of the target and
10 distractor dimensions, especially within the SVA network. In contrast, more rostral dACC
11 tracked incongruence between targets and distractors, especially within the Control network.
12 Speculatively, our results are consistent with caudal dACC tracking the first-order difficulty
13 arising from the relative salience of feature-specific information, and more rostral dACC
14 tracking the second-order difficulty arising from cross-feature (in)compatibility ⁹², the latter of
15 which may require additional disengagement from distractor-dependent attentional capture.
16

17 Whereas dACC encoded feature difficulty (e.g., distractor incongruence), in parietal cortex we
18 found overlapping representations of feature coherence (e.g., distractor coherence). In SPL,
19 features had correlated coherence encoding (similarly representing low target coherence and high
20 distractor coherence), consistent with this region’s transient and non-selective role in attentional
21 control ^{94–99}. In contrast, IPS had orthogonal representations of feature coherence, consistent with
22 selective prioritization of task-relevant information ^{47,71–73,81,83,94–96,99,100}. While IPS primarily
23 encoded features orthogonally (i.e., in the largest components of our multidimensional scaling
24 analysis), the total coherence across features could also be read out at higher dimensions. The
25 ability of IPS to communicate both orthogonal and aligned coherence representations is
26 consistent with the diverse roles of IPS in attentional control.
27

28 Our previous work has demonstrated behavioral evidence for independent control over target and
29 distractor attentional priority in this task ¹⁰, with different task variables selectively enhancing
30 target or distractor sensitivity (see also ^{4,101}). Orthogonal feature representation in IPS may offer
31 a mechanism for this feature-selective control, consistent with theoretical accounts of IPS
32 implementing a priority map that combines stimulus- or value-dependent salience with goal-
33 dependent feedback from PFC ^{17,57,58,80,102}.
34

35 In dACC, we found that target and distractor difficulty encoding was consistent with the
36 segregated encoding hypothesis, with features evoking univariate responses in distinct but
37 adjacent regions. Interestingly, we did not find corresponding encoding of distractor congruence
38 in our multivariate analyses within dACC, potentially reflecting the spatial smoothness of this
39 response. However, we did find multivariate encoding of distractor congruence in lPFC, and
40 multivariate encoding of target and distractor coherence in IPS. These multivariate profiles were
41 consistent with our subspace encoding hypothesis. The reasons for a mix of segregated and
42 subspace encoding across cortex is unclear, but this may speculatively reflect the segregation
43 across functional networks. Like in dACC, distractor congruence had stronger encoding within
44 the lPFC Control network, albeit without the feature segregation (lPFC Control parcels also
45 encoded target coherence in an orthogonal subspace). It is possible that these network

1 segregations help bind related control processes ^{15,18,80}, a hypothesis that future experiments
2 should test with targeted paradigms (e.g., with subject-specific functional networks).

3
4 By comparing two different task goals (Attend-Color vs. Attend-Motion), our study was able to
5 test whether coherence representations reflect control-dependent prioritization of information
6 processing. Previous research has shown that these tasks differ dramatically in their control
7 demands ¹⁰. As in previous work, task performance was much better in Attend-Motion runs than
8 Attend-Color runs, and participants were not sensitive to color distractors. Consistent with
9 previous work on context-dependent decision-making, target evidence had similarly strong
10 encoding across tasks, with generalizable encoding dimensions for choice and motion directions
11 ^{36,41,45}. In contrast to these putative decision representations, we found that coherence
12 representations disappeared in the easier Attend-Motion task. On its own, weaker encoding of
13 color distractors in Attend-Motion could be explained by the weaker bottom-up salience of the
14 color dimension. However, the stark drop in the encoding of target (motion) coherence in these
15 blocks cannot be similarly accounted for – these differences in target coherence encoding
16 showed the opposite relationship expected from salience: better encoding of low-salience color
17 targets (hard Attend-Color task) and weaker encoding of high-salience motion targets (easy
18 Attend-Motion task). Instead, this encoding profile is consistent with previous research finding
19 that feature decoding is stronger for more difficult tasks ^{47,71,72,103} or when people are
20 incentivized to use cognitive control ^{104,105}.

21
22 Critically, stimuli and responses were matched across tasks, helping to rule out alternative
23 accounts of coherence encoding based on ‘bottom-up’ stimulus salience, decision-making, or eye
24 movements. Difficulty-dependent coherence encoding may instead reflect the involvement of an
25 attention control system that can separately regulate target and distractor processing,
26 speculatively indexing the top-down ‘gain’ or ‘priority’ on these features ^{17,58,102}. Supporting this
27 account, coherence representations in cognitive control regions like IPS were aligned with
28 performance representations, with target encoding strength aligned with better performance and
29 distractor encoding strength aligned with poorer performance. Individual difference in feature-
30 performance alignment was correlated across features, consistent with these representations
31 reflecting the underlying processes (e.g., priority) that give rise to behavior, rather than
32 performance monitoring or surprise (which would likely have the opposite relationship, e.g., high
33 target coherence aligned with poorer performance).

34
35 Classic models of prefrontal involvement in cognitive control ^{77,82,106} propose that prefrontal
36 cortex biases information processing in sensory regions. In line with this macro-scale
37 organization, we found that coherence encoding in visual cortex was related to functional
38 connectivity with the frontoparietal network. In particular, coherence encoding in visual cortex
39 was aligned with patterns of functional connectivity to lateral prefrontal cortex, and this feature-
40 seed relationship was mediated by IPS. The results of this multivariate connectivity analysis are
41 consistent with previous research supporting a role for IPS in top-down control of visual
42 encoding ^{83,84,107}, as well as a granger-causal PFC-IPS-visual pathway during a similar decision-
43 making task ⁴². Here, we demonstrate stable ‘communication subspaces’ between visual cortex
44 and PFC ^{108,109}, which can plausibly communicate feedback adjustments to feature gain. With
45 that said, while our interpretation of the direction of communication is therefore supported by
46 prior work, these connectivity methods are correlational ⁸⁵, and cannot rule out the possibility

1 that our mediation findings reflect a bottom-up pattern of communication (e.g., visual-IPS-PFC).
2 The asymmetric mediation between regions (i.e., IPS mediates IPFC more than IPFC mediates
3 IPS; Supplementary Figure 4) rules out a range of potential confounders, and these regions were
4 selected based on the anatomical connectivity within the frontoparietal network, notably
5 through the superior longitudinal fasciculus¹¹⁰. Future research should use temporally precise
6 neuroimaging to account for directionality, causal manipulations to account for causality (e.g.,
7 ¹¹¹), and should explore the higher dimensional connectivity subspaces that link different regions
8 ^{103,109}. These considerations notwithstanding, our findings are consistent with IPS, a critical site
9 for orthogonal feature representations, playing a key role in linking prefrontal cortex with early
10 perceptual processing.

11
12 Collectively, our findings provide new insights into how the brain may control multiple streams
13 of information processing. While evidence for multivariate control has a long history in
14 attentional tracking^{28,112}, including parametric relationships between attentional load and IPS
15 activity^{113–117}, little is known about how the brain coordinates multiple control signals^{2,5}. Future
16 experiments should further elaborate on this frontoparietal control circuit, for instance by
17 interrogating how incentives influence different task representations^{104,105,118–120}, or how neural
18 and behavioral indices of control causally depend on perturbations of neural activity¹¹¹. Future
19 experiments should also use fast timescale neural recording technologies like (i)EEG or (OP-
20)MEG to better understand the within-trial dynamics of multivariate control^{10,121}. In sum, this
21 experiment provides new insights into the large-scale neural networks involved in multivariate
22 cognitive control, and points towards new avenues for developing a richer understanding of goal-
23 directed attention.

24

1 **Methods**

2 **Participants**

3 Twenty-nine individuals (17 females, Age: $M = 21.2$, $SD = 3.4$) provided informed consent and
4 participated in this experiment for compensation (\$40 USD; IRB approval code: 1606001539).
5 All participants had self-reported normal color vision and no history of neurological disorders.
6 Two participants missed one Attend-Color block (see below) due to a scanner removal, and one
7 participant missed a motion localizer due to a technical failure, but all participants were retained
8 for analysis. This study was approved by Brown University's institutional review board.

9 **Task**

10 The main task closely followed our previously reported behavioral experiment ¹⁰. On each trial,
11 participants saw a random dot kinematogram (RDK) against a black background. This RDK
12 consisted of colored dots that moved left or right, and participants responded to the stimulus with
13 button presses using their left or right thumbs.

14 In Attend-Color blocks (six blocks of 150 trials), participants responded depending on which
15 color was in the majority. Two colors were mapped to each response (four colors total), and dots
16 were a mixture of one color from each possible response. Dots colors were approximately
17 isolument (uncalibrated RGB: [239, 143, 143], [191, 239, 143], [143, 239, 239], [191, 143,
18 239]), and we counterbalanced their assignment to responses across participants.

20 In Attend-Motion blocks (six blocks of 45 trials), participants responded based on the dot motion
21 instead of the dot color. Dot motion consisted of a mixture between dots moving coherently
22 (either left or right) and dots moving in a random direction. Attend-Motion blocks were shorter
23 because they acted to reinforce motion sensitivity and provide a test of stimulus-dependent
24 effects.

26 Critically, dots always had color and motion, and we varied the strength of color coherence
27 (percentage of dots in the majority) and motion coherence (percentage of dots moving
28 coherently) across trials. Our previous experiments have found that in Attend-Color blocks,
29 participants are still influenced by motion information, introducing a response conflict when
30 color and motion are associated with different responses ¹⁰. Target coherence (e.g., color
31 coherence during Attend-Color) was linearly spaced between 65% and 95% with 5 levels, and
32 distractor congruence (signed coherence relative to the target response) was linearly spaced
33 between -95% and 95% with 5 levels. In order to increase the salience of the motion dimension
34 relative to the color dimension, the display was large (~10 degrees of visual angle) and dots
35 moved quickly (~10 degrees of visual angle per second).

37 Participants had 1.5 seconds from the onset of the stimulus to make their response, and the RDK
38 stayed on the screen for this full duration to avoid confusing reaction time and visual stimulation
39 (the fixation cross changed from white to gray to register the response). The inter-trial interval
40 was uniformly sampled from 1.0, 1.5, or 2.0 seconds. This ITI was relatively short in order to

1 maximize the behavioral effect, and because efficiency simulations showed that it increased
2 power to detect parametric effects of target and distractor coherence (e.g., relative to a more
3 standard 5 second ITI). The fixation cross changed from gray to white for the last 0.5 seconds
4 before the stimulus to provide an alerting cue.

5 Procedure

6 Before the scanning session, participants provided consent and practiced the task in a mock MRI
7 scanner. First, participants learned to associate four colors with two button presses (two colors
8 for each response). After being instructed on the color-button mappings, participants practiced
9 the task with feedback (correct, error, or 1.5 second time-out). Errors or time-out feedback were
10 accompanied with a diagram of the color-button mappings. Participants performed 50 trials with
11 full color coherence, and then 50 trials with variable color coherence, all with 0% motion
12 coherence. Next, participants practiced the motion task. After being shown the motion mappings,
13 participants performed 50 trials with full motion coherence, and then 50 trials with variable
14 motion coherence, all with 0% color coherence. Finally, participants practiced 20 trials of the
15 Attend-Color task and 20 trials of Attend-Motion tasks with variable color and motion coherence
16 (same as scanner task).

17
18 Following the twelve blocks of the scanner task, participants underwent localizers for color and
19 motion, based on the tasks used in our previous experiments ³⁰. Both localizers were block
20 designs, alternating between 16 seconds of feature present and 16 seconds of feature absent for
21 seven cycles. For the color localizer, participants saw an aperture the same size as the task, either
22 filled with colored squares that were resampled every second during stimulus-on ('Mondrian
23 stimulus'), or luminance-matched gray squares that were similarly resampled during stimulus-
24 off. For the motion localizer, participants saw white dots that were moving with full coherence in
25 a different direction every second during stimulus-on, or still dots for stimulus-off. No responses
26 were required during the localizers.

27 MRI sequence

28 We scanned participants with a Siemens Prisma 3T MR system. We used the following sequence
29 parameters for our functional runs: field of view (FOV) = 211 mm × 211 mm (60 slices), voxel
30 size = 2.4 mm³, repetition time (TR) = 1.2 sec with interleaved multiband acquisitions
31 (acceleration factor 4), echo time (TE) = 33 ms, and flip angle (FA) = 62°. Slices were acquired
32 anterior to posterior, with an auto-aligned slice orientation tilted 15° relative to the AC/PC plane.
33 At the start of the imaging session, we collected a high-resolution structural MPRAGE with the
34 following sequence parameters: FOV = 205 mm × 205 mm (192 slices), voxel size = 0.8 mm³,
35 TR = 2.4 sec, TE1 = 1.86 ms, TE2 = 3.78 ms, TE3 = 5.7 ms, TE4 = 7.62, and FA = 7°. At the
36 end of the scan, we collected a field map for susceptibility distortion correction (TR = 588ms,
37 TE1 = 4.92 ms, TE2 = 7.38 ms, FA = 60°).

1 fMRI preprocessing

2 We preprocessed our structural and functional data using fMRIprep (v20.2.6; ¹²² based on the
3 Nipype platform ¹²³. We used FreeSurfer and ANTs to nonlinearly register structural T1w
4 images to the MNI152NLin6Asym template (resampling to 2mm). To preprocess functional T2w
5 images, we applied susceptibility distortion correction using fMRIprep, co-registered our
6 functional images to our T1w images using FreeSurfer, and slice-time corrected to the midpoint
7 of the acquisition using AFNI. We then registered our images into MNI152NLin6Asym space
8 using the transformation that ANTs computed for the T1w images, resampling our functional
9 images in a single step. For univariate analyses, we smoothed our functional images using a
10 Gaussian kernel (8mm FWHM, as dACC responses often have a large spatial extent). For
11 multivariate analyses, we worked in the unsmoothed template space (see below).

12 fMRI univariate analyses

13 We used SPM12 (v7771) for our univariate general linear model (GLM) analyses. Due to high
14 trial-to-trial collinearity from to our short ITIs, we performed all analyses across trials, rather
15 than extracting single-trial estimates. Our regression models used whole trials as events (i.e., a
16 1.5 second boxcar aligned to the stimulus onset). We parametrically modulated these events with
17 standardized trial-level predictors (e.g., linear-coded target coherence, or contrast-coded errors),
18 and then convolved these predictors with SPM's canonical HRF, concatenating our voxel
19 timeseries across runs. We included nuisance regressors to capture 1) run intercepts and 2) the
20 average timeseries across white matter and CSF (as segmented by fMIRPrep). To reduce the
21 influence of motion artifacts, we used robust weighted least-squares ^{124,125}, a procedure for
22 optimally down-weighting noisy TRs.

23 We estimated contrast maps at the subject-level, which we then used for one-sample t-tests at the
24 group-level. We controlled for family-wise error rate using threshold-free cluster enhancement
25 ¹²⁶, testing whether voxels have an unlikely degree of clustering under a randomized null
26 distribution (Implemented in PALM ¹²⁷; 10,000 randomizations). To improve the specificity of
27 our coverage (e.g., reducing white-matter contributions) and to facilitate our inference about
28 functional networks (see below), we limited these analyses to voxels within the Kong2022
29 whole-brain parcellation ^{54,55}. This parcellation assigns regional labels to parcels (e.g., whether
30 parcels are in 'SPL' or 'IPS'), which was used through-out to generate ROIs. Surface renders
31 were generated using surfplot ^{128,129}, projecting from MNI space to the Human Connectome
32 Project's fsLR space (164,000 vertices).

34 dACC longitudinal axis analyses

35 To characterize the spatial organization of target difficulty and distractor congruence signals in
36 dACC, we constructed an analysis mask that provided broad coverage across cingulate cortex
37 and preSMA. This mask was constructed by 1) getting a meta-analytic mask of cingulate
38 responses co-occurring with 'cognitive control' (Neurosynth uniformity test; ¹³⁰, and taking any
39 parcels from the whole-brain Schaefer parcellation (400 parcels; ^{54,55} that had a 50 voxel overlap
40 with this meta-analytic mask. We used this parcellation because it provided more selective gray

1 matter coverage than the Neurosynth mask alone and it allowed us to categorize voxels
2 membership in putative functional networks.

3
4 To characterize the spatial organization within dACC, we first performed PCA on the masked
5 voxel coordinates (y and z), getting a score for each voxel's position on the longitudinal axis of
6 this ROI. We then regressed voxel's gradient scores against their regression weights from a
7 model including linear target coherence and distractor congruence (both coded -1 to 1 across
8 difficulty levels). We used linear mixed effects analysis to partially pool across subjects and
9 accommodate within-subject correlations between voxels. Our model predicted gradient score
10 from the linear and quadratic expansions of the target and distractor betas (gradientScore ~ 1 +
11 target + target² + distractor + distractor² + (1 + target + target² + distractor + distractor² |
12 subject)). To characterize the network-dependent organization of target and distractor encoding,
13 we complexity-penalized fits between models that either 1) predicted target or distractor betas
14 from linear and quadratic expansions of gradient scores, or 2) predicted target/distractor betas
15 from dummy-coded network assignment from the Schaefer parcellation, comparing these models
16 against a model that used both network and gradient information.

17 Encoding Geometry Analysis (EGA)

18 We adapted functions from the pcm-toolbox and rsatoolbox packages for our multivariate
19 analyses^{65,131}. We first fit whole-brain GLMs without spatial smoothing, separately for each
20 scanner run. These GLMs estimated the parametric relationship between task variables and
21 BOLD response (e.g., linearly coded target coherence), with a pattern of these parametric betas
22 across voxels reflecting linear encoding subspace⁵⁹. Within each Schaefer parcel (n=400), we
23 spatially pre-whitened these beta maps, reducing noise correlations between voxels that can
24 inflate pattern similarity and reduce reliability⁶³. We then computed the cross-validated Pearson
25 correlation, estimating the similarity of whitened patterns across scanner runs. We used a
26 correlation metric to estimate the alignment between encoding subspaces, rather than distances
27 between condition patterns, to normalize biases and scaling across stimuli (e.g., greater
28 sensitivity to targets vs distractors) and across time (e.g., representational drift). Note that this
29 analysis approach is related to 'Parallelism Scores'⁴³, but here we use parametric encoding
30 models and emphasize not only deviations from parallel/orthogonal, but also the direction of
31 alignment between features (e.g., Figures 5 and 7).

32
33 We computed subspace alignment between contrasts of interest within each participant, and then
34 tested these against zero at the group level. Since our correlations were less than $r = |0.5|$, we did
35 not transform correlations before analysis. We used a Bayesian t-test to test for orthogonality
36 (bayesFactor toolbox in MATLAB, based on¹³²). The Bayes factor from this t-test gives
37 evidence for either non-orthogonality (BF_{10} further from zero) or orthogonality (BF_{10} closer to
38 zero, often defined as the reciprocal BF_{01}). Using a standard prior (Cauchy, width = 0.707), our
39 strongest possible evidence for the orthogonality is $BF_{01} = 5.07$ or equivalently $\log BF = -0.705$
40 (i.e., the Bayes factor when $t_{(28)} = 0$).

41
42 Our measure of encoding strength was whether encoding subspaces were reliable across blocks
43 (i.e., whether within-feature encoding pattern correlations across runs were significantly above
44 zero at the group level). We used pattern reliability as a geometric proxy for how well a linear

1 encoder would predict held-out brain data, as reliability provides the similarity between the
2 cross-validated model and the best linear unbiased estimator of the within-sample data. We
3 confirmed through simulations that pattern reliability is a good proxy for the traditional encoding
4 metric of predicting held-out timeseries⁵⁹. However, we found that pattern reliability is more
5 powerful, due to it being much less sensitive to the magnitude of residual variance (these two
6 methods are identical in the noise-free case; see Extended Data Figure 3).

7
8 When looking at alignment between two subspaces across parcels, we first selected parcels that
9 significantly encoded both factors ('jointly reliable parcels', both $p < .001$ uncorrected). This
10 selection process acts as a thresholded version of classical correlation disattenuation^{66,67}, and we
11 confirmed through simulations this selection procedure does not increase type 1 error rate. We
12 corrected for multiple comparisons using non-parametric max-statistic randomization tests across
13 parcels¹³³. These randomization tests determine the likelihood of an observed effects under a
14 null distribution generated by randomizing the sign of alignment correlations across participants
15 and parcels 10,000 times. Within each randomization, we saved the max and min group-level
16 effect sizes across all parcels, estimating the strongest parcel-wise effect we'd expect if there
17 wasn't a systematic group-level effect.

18
19 Some of our first-level models had non-zero levels of multicollinearity, due to conditioning on
20 trials without omission errors or when including feature coherence and performance in the same
21 model. Multicollinearity was far below standard thresholds for concern, generally (much) less
22 than 5 for a standard threshold is 30 (ratio between largest and smallest singular values in the
23 design matrix, using MATLAB colintest;¹³⁴). However, we wanted to confirm that predictor
24 correlations wouldn't bias our estimates of encoding alignment. We simulated data from a
25 pattern component model¹³¹ in which two variables were orthogonal (generated by separate
26 variance components with no covariance), but were generated from a design matrix with
27 correlated predictors. These simulations confirmed that cross-validated similarity measures were
28 not biased by predictor correlations (Extended Data Figure 10).

29
30 To provide further validation for our parametric analyses, we estimated encoding profiles using
31 an analysis with fewer parametric assumptions. First, we fit a GLM with separate predictors for
32 levels of target and distractor evidence ('Evidence Levels' GLM in Table 1). Next, we estimated
33 a traditional (cross-validated) representational dissimilarity matrix across all feature levels.
34 Finally, we visualized these encoding profiles using classical multidimensional scaling
35 (eigenvalue decomposition; see Figure 4B and Extended Data Figure 5).

36 Multivariate Connectivity Analysis

37 To estimate what information is plausibly communicated between cortical areas, we measured
38 the alignment between multivariate connectivity patterns (i.e., the 'communication subspace'
39 with a seed region,¹⁰⁸) and local feature encoding patterns. First, we residualized our
40 Performance GLM (see Table 1) from a seed region's timeseries, and then extracted the
41 variance-weighted average timecourse (i.e., the leading eigenvariate from SPM12's volume of
42 interest function). We then re-estimated our Performance GLM, including the block-specific
43 seed timeseries as a covariate, and performed EGA between seed and coherence patterns (see
44 Equations 1-3). We found convergent results when we residualized a quadratic expansion of our

1 Performance GLM from our seed region, helping to confirm that connectivity alignment wasn't
2 due to underfitting. Note that our cross-validated EGA helps avoid false positives due to any
3 correlations in the design matrix (see above). We localized this connectivity analysis to color-
4 and motion-sensitive cortex by finding the bilateral Kong22 parcels that roughly covered the area
5 of strongest block-level contrast during our localizer runs. Note that these analyses reflect
6 'functional connectivity', which is susceptible to unmodelled confounders⁸⁵.

7
8 To estimate the mediation of IPFC connectivity by IPS, we compared models in which just IPFC
9 or just IPS were used for EGA against a model where both seeds were included as covariates in
10 the same model⁸⁶; see Equations 4-5). Our test of mediation was the group-level difference in
11 IPFC seed-coherence alignment before and after including IPS. While these analyses are
12 inherently cross-sectional (i.e., IPFC and IPS are measured at the same time), we supplemented
13 these analyses by showing that the mediating effect of IPS on IPFC was much larger than the
14 mediating effect of IPFC on IPS (see Figure 7B; Supplementary Figure 4). Unlike traditional
15 mediation analyses looking at the first-order change in regression estimates, our analysis looks at
16 the second-order change in the multivariate alignment between regression estimates, using the
17 same core rationale.

18 **Data Availability:** Unprocessed fMRI data is available at
19 <https://doi.org/10.18112/openneuro.ds004909.v1.1.0>. Behavioral data, event timing, and analysis
20 code are available at: https://github.com/shenhavlab/PACT_fMRI_public.

21 **Code Availability:** Analysis pipeline is available at
22 https://github.com/shenhavlab/PACT_fMRI_public. Software versions: MATLAB 2020a;
23 fMRIPrep 20.2.6; SPM12 (v7771); rwls 4.1; PALM a119; rsatoolbox_matlab 1.0; bayesFactor
24 1.1; surfplot 0.1.0; ScientificColourMaps7.

25 **Acknowledgements:** This work was supported by NIH grant R01MH124849 (A.S.), NSF
26 CAREER Award 2046111 (A.S.), NIH grant S10OD025181 (A.S.), and the C.V. Starr
27 Postdoctoral Fellowship (H.R.). The funders had no role in study design, data collection and
28 analysis, decision to publish or preparation of the manuscript. We are grateful to Joonhwa Kim
29 for her assistance in data collection, and to Michael J. Frank, Matthew N. Nassar, Jonathan
30 Cohen, Michael Esterman, Romy Frömer, Jörn Diedrichsen, Apoorva Bhandari, Debbie Yee,
31 Sam Nastase, Caroline Jahn, and the Shenhav Lab for helpful discussions.

32 **Author Contributions:** Both authors designed the experiment, planned the analyses, and wrote
33 the manuscript. H.R. collected the data and conducted the analyses.

34 **Conflicts of Interest:** The authors declare no competing interests.

35

36

1 **Tables**

Model Name	Trial selection	Predictors (z-scored)
Feature UV	No omission errors; run-concatenated	target coherence, distractor coherence, target evidence, distractor evidence, distractor congruence; omission errors (run-concatenated)
Difficulty Levels	No omission errors; run-concatenated	Separate levels (1,2,4,5) of target coherence, separate levels (1,2,4,5) of distractor congruence; omission errors (run-concatenated)
Feature MV	No errors; run-separated	target coherence, distractor coherence, target evidence, distractor evidence, distractor congruence; errors (run-concatenated)
Evidence Levels	No errors; run-separated	Levels (1-5, 6-10) of target evidence, Levels (1,2,4,5) of distractor evidence; errors (run-concatenated)
Between-Task	No errors; run-separated	target coherence, distractor coherence, target evidence, distractor evidence, distractor congruence; errors (run-concatenated); reaction time (run-concatenated)
Performance	No omission errors; run-separated	target coherence, distractor coherence, target evidence, distractor evidence, distractor congruence, reaction time, accuracy; omission errors (run-concatenated)
Performance CX	No omission errors; run-separated	target coherence, distractor coherence, target evidence, distractor evidence, distractor congruence, reaction time, accuracy; omission errors (run-concatenated); seed timeseries (run-separated)

2 **Table 1. fMRI models.** First-level general linear models used for univariate and multivariate fMRI analyses.
3 Coherence: percentage of dots supporting the same response ('unsigned coherence'). Evidence: % dots supporting a
4 rightwards vs leftwards response ('signed coherence'). Distractor Congruence: % dots supporting the same response
5 as the target dimension. All predictors were z-scored within their run. For difficulty and feature levels, we included
6 each level as a separate predictor, with collinearity with the block intercept preventing all levels from being
7 included. For Evidence Levels, targets had greater granularity due to distractors being coded relative to targets (5
8 levels of congruence led to 5 levels of coherence). For Performance CX, seed timeseries were included as run-
9 separated regressors (see Multivariate Connectivity Analysis in Methods).
10

Figure Captions

Figure 1. Task and Behavior. **A-C**) Three hypothesized encoding schemes. **A)** In *aligned encoding* features are represented similarly, e.g., encode performance variables like error likelihood or time-on-task. **B)** In *segregated encoding* features are encoded independently, in distinct voxel populations (i.e., voxel-level pure selectivity⁴⁰). **C)** In *subspace encoding*, features are encoding independently, in overlapping voxel populations (i.e., voxel-level mixed selectivity). **D)** Participants responded to a color-motion random dot kinematogram (RDK) with a button press. Participants either responded to the left/right motion direction of the RDK (Attend-Motion runs) or based on the majority color (Attend-Color runs; critical condition). **E)** We parametrically and independently manipulated target coherence (% of dots in the majority color) and distractor congruence (motion coherence signed relative to the target response). **F)** Participants were faster and more accurate when the target was more coherent. **G)** Participants were faster and more accurate when the distractor was more congruent with the target. Error bars on line plots reflect mean and within-participant SEM, error bars for regression fixed-effect betas reflect 95% CI (N=29 for all figures).

Figure 2. Distinct coding of target and distractor difficulty in dACC. **A)** We looked for linear target coherence and distractor congruence signals within an *a priori* dACC mask (white outline; overlapping Kong22 parcels and medial ‘cognitive control’ Neurosynth mask). We found that voxels in the most caudal dACC reflected target difficulty (green), more rostral voxels reflected distractor incongruence (blue). Note that these maps only show difficulty-coded effects; the most rostral portion of dACC responded to target ease (Extended Data Figure 2). Shading reflects two-tailed t-stats, corrected for multiple comparisons using non-parametric threshold-free cluster enhancement. **B)** We extracted the long axis of the dACC using a PCA of the voxel coordinates. We plotted the target coherence (green) and distractor congruence (blue) along the deciles of this long axis. Fit lines are the quantized predictions from a second-order polynomial regression. We used these regression betas to estimate the minima for target and distractor tuning (i.e., location of strongest difficulty effects), finding that the target difficulty peak (vertical green line) was more caudal than the distractor incongruence peak (vertical blue line). **C)** Plotting the uncorrected whole-brain response, distractor incongruence responses (blue) were strongest within the ‘Control C’ sub-network (red), both in dACC and anterior insula. **D)** BOLD responses across levels of target coherence and distractor congruence, plotted within the whole dACC ROI (left), or the ‘Salience/Ventral Attention (SVA)’ network and ‘Control’ network parcels within the dACC ROI (right). GLMs: A-C: Feature UV, D: Difficulty Levels, see Table 1. Throughout, error bars reflect mean and within-participant SEM (N=29).

Figure 3. Encoding Geometry Analysis (EGA) dissociates target and distractor encoding. **A)** Parametric univariate responses to weak target coherence (green; percentage of dots in majority color), strong distractor coherence (orange; percentage of dots with coherent motion), and their conjunction (yellow). Statistical tests (two-tailed t-tests) are corrected for multiple comparisons using non-parametric threshold-free cluster enhancement (TFCE). **B)** Alignment between target and distractor coherence (two-tailed t-test on correlation values), within parcels where both were jointly reliable (two-tailed $p < .001$, uncorrelated). Representations were negatively correlated within Superior Parietal Lobule (SPL in gold; Kong22 labels), and uncorrelated within Intraparietal Sulcus (IPS in white; Kong22 labels). **C)** Anatomical labels for parietal regions, based on the labels in the Kong22 parcellation. **D)** Bayesian analyses provide explicit evidence for orthogonality within IPS (i.e., negative BF; theoretical minima: -0.71). **E)** Coherence coded in terms of evidence (i.e., supporting a left vs right choice). Target and distractor evidence encoding overlapped in visual cortex and SPL and was represented orthogonally. GLMs: A: Feature UV, B-E: Feature MV, see Table 1.

Figure 4. Region-specific feature encoding. **A)** Similarity matrices for dACC, IPFC, SPL, and IPS, correlating feature evidence (‘Evid’), feature coherence (‘Coh’), and feature congruence (‘Cong’). Encoding strength on diagonal (right-tailed t-test), encoding alignment on off-diagonal (two-tailed t-test). No correction for multiple comparisons. **B)** Classical MDS embedding of target (circle) and distractor (diamond) representations at different levels of evidence. Colors denote responses, hues denote coherence. GLMs: A: Feature MV, B: Evidence Levels, see Table 1.

1 **Figure 5. Task-dependent encoding strength.** **A)** Across cortex, feature coherence encoding was stronger during
2 Attend-Color than Attend-Motion, matched for the same number of trials. Attend-Color had stronger encoding when
3 comparing target coherence (top left), distractor coherence (top right), color coherence (bottom left) and motion
4 coherence (bottom right). Parcels are thresholded at $p < .001$ (two-tailed, uncorrected); outlined parcels are
5 significant at $p < .05$ (two-tailed max-statistic randomization test across all parcels). Condition labels in title
6 parentheses are coded ‘FeatureTask’. **B)** Target and distractor coherence information was encoded more strongly
7 during Attend-Color than Attend-Motion in dACC, IPFC, SPL and IPS. Attend-Color encoding plotted from the
8 whole sample (blue fill) and a trial-matched sample (first 45 trials of each run; white fill) In Attend-Motion runs,
9 only target evidence was significantly encoded (magenta). Error bars reflect mean and within-participant SEM
10 (N=29). GLM: Between-Task, see Table 1.

11
12 **Figure 6. Alignment between feature and performance encoding.** **A)** Alignment between encoding of target
13 coherence and performance (top row: Accuracy, bottom row: RT). **B)** Alignment between encoding of distractor
14 coherence and performance (top row: Accuracy, bottom row: RT). Across A and B, parcels are thresholded at $p <$
15 $.001$ (two-tailed uncorrected t-test, in jointly reliable parcels at $p < .001$). Outlined parcels are significant at $p < .05$
16 (two-tailed max-statistic randomization test across jointly reliable parcels). **C)** Individual differences in feature-RT
17 alignment correlated with feature-accuracy alignment across regions (Pearson correlation values in top right; $p < .05$
18 in red). See Supplementary Table 2 for partial correlations controlling for reliability. GLM: Performance, see Table
19 1.

20
21 **Figure 7. IPS mediates alignment between IPFC and feature encoding.** **A)** Connectivity patterns from IPFC (color)
22 and IPS (red outline) were aligned with target and distractor coherence patterns (two-tailed $p < .001$ uncorrected, in
23 jointly reliable parcels at $p < .001$). IPS effects are outlined to show overlap, with all effects in a consistent direction
24 to IPFC. **B)** IPFC-feature alignment contrasted between IPFC-only model (‘Solo’) and IPFC + IPS model (‘Both’).
25 Including IPS reduced the alignment between IPFC and feature encoding (compare the sign of the main effect in A
26 to the contrast in B). Parcels are thresholded at two-tailed $p < .001$ (uncorrected, jointly reliable parcels), and
27 outlined parcels are significant at $p < .05$ (two-tailed max-statistic randomization test across jointly reliable parcels).
28 Insets graphs: seed-coherence alignment in Solo models (black) and Both model (orange) across visual regions.
29 ‘Visual C’ is defined by our parcellation⁵⁴; Color and Motion localizers are parcels near the peak response
30 identified during feature localizer runs (see Methods). In general, IPFC alignment was more affected by IPS than
31 IPS alignment was affected by IPFC. Throughout, error bars reflect mean and within-participant SEM (N=29).
32 GLM: Performance CX, see Table 1.

33
34

35

1 References

- 2 1. Musslick, S., Shenhav, A., Botvinick, M. & Cohen, J. A Computational Model of Control
- 3 Allocation based on the Expected Value of Control. in *2nd Multidisciplinary Conference on*
- 4 *Reinforcement Learning and Decision Making* (2015).
- 5 2. Badre, D., Bhandari, A., Keglovits, H. & Kikumoto, A. The dimensionality of neural
- 6 representations for control. *Curr Opin Behav Sci* **38**, 20–28 (2021).
- 7 3. Danielmeier, C., Eichele, T., Forstmann, B. U., Tittgemeyer, M. & Ullsperger, M. Posterior
- 8 medial frontal cortex activity predicts post-error adaptations in task-related visual and motor
- 9 areas. *J. Neurosci.* **31**, 1780–1789 (2011).
- 10 4. Egner, T. Multiple conflict-driven control mechanisms in the human brain. *Trends Cogn.*
- 11 *Sci.* **12**, 374–380 (2008).
- 12 5. Ritz, H., Leng, X. & Shenhav, A. Cognitive Control as a Multivariate Optimization
- 13 Problem. *J. Cogn. Neurosci.* **34**, 569–591 (2022).
- 14 6. Friedman, N. P. & Miyake, A. Unity and diversity of executive functions: Individual
- 15 differences as a window on cognitive structure. *Cortex* **86**, 186–204 (2017).
- 16 7. Danielmeier, C. & Ullsperger, M. Post-error adjustments. *Front. Psychol.* **2**, 233 (2011).
- 17 8. Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C. & Ullsperger, M. Cortical beta
- 18 power reflects decision dynamics and uncovers multiple facets of post-error adaptation. *Nat.*
- 19 *Commun.* **9**, 5038 (2018).
- 20 9. Leng, X., Yee, D., Ritz, H. & Shenhav, A. Dissociable influences of reward and punishment
- 21 on adaptive cognitive control. *PLoS Comput. Biol.* **17**, e1009737 (2021).
- 22 10. Ritz, H. & Shenhav, A. Humans reconfigure target and distractor processing to address
- 23 distinct task demands. *bioRxiv* 2021.09.08.459546 (2021) doi:10.1101/2021.09.08.459546.

1 11. Kalman, R. E. On the general theory of control systems. *IFAC Proceedings Volumes* **1**,
2 491–502 (1960).

3 12. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative
4 theory of anterior cingulate cortex function. *Neuron* **79**, 217–240 (2013).

5 13. MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role
6 of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. *Science* **288**,
7 1835–1838 (2000).

8 14. Smith, E. H. *et al.* Widespread temporal coding of cognitive control in the human prefrontal
9 cortex. *Nat. Neurosci.* **66**, 83 (2019).

10 15. Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive
11 function. *Neuropsychopharmacology* 1–14 (2021) doi:10.1038/s41386-021-01152-w.

12 16. Kerns, J. G. *et al.* Anterior cingulate conflict monitoring and adjustments in control. *Science*
13 **303**, 1023–1026 (2004).

14 17. Gottlieb, J., Cohanpour, M., Li, Y., Singletary, N. & Zabeh, E. Curiosity, information
15 demand and attentional priority. *Current Opinion in Behavioral Sciences* **35**, 83–91 (2020).

16 18. Gordon, E. M. *et al.* Precision Functional Mapping of Individual Human Brains. *Neuron* **95**,
17 791-807.e7 (2017).

18 19. Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B. & Petersen, S. E. Evidence for
19 Two Independent Factors that Modify Brain Networks to Meet Task Goals. *Cell Rep.* **17**,
20 1276–1288 (2016).

21 20. Kragel, P. A. *et al.* Generalizable representations of pain, cognitive control, and negative
22 emotion in medial frontal cortex. *Nat. Neurosci.* **21**, 283–289 (2018).

1 21. Fu, Z. *et al.* The geometry of domain-general performance monitoring in the human medial
2 frontal cortex. *Science* **376**, eabm9922 (2022).

3 22. Vermeylen, L. *et al.* Shared Neural Representations of Cognitive Conflict and Negative
4 Affect in the Medial Frontal Cortex. *J. Neurosci.* **40**, 8715–8725 (2020).

5 23. Brown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior
6 cingulate cortex. *Science* **307**, 1118–1121 (2005).

7 24. Rushworth, M. F. & Behrens, T. E. Choice, uncertainty and value in prefrontal and
8 cingulate cortex. *Nat. Neurosci.* **11**, 389–397 (2008).

9 25. Grinband, J. *et al.* The dorsal medial frontal cortex is sensitive to time on task, not response
10 conflict or error likelihood. *Neuroimage* **57**, 303–311 (2011).

11 26. Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E. & Braver, T. S. BOLD correlates of
12 trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis.
13 *PLoS One* **4**, e4257 (2009).

14 27. Mumford, J. A. *et al.* The response time paradox in functional magnetic resonance imaging
15 analyses. *bioRxiv* 2023.02.15.528677 (2023) doi:10.1101/2023.02.15.528677.

16 28. Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a
17 parallel tracking mechanism. *Spat. Vis.* **3**, 179–197 (1988).

18 29. Beldzik, E. & Ullsperger, M. A thin line between conflict and reaction time effects on EEG
19 and fMRI brain signals. *bioRxiv* 2023.02.14.528515 (2023)
20 doi:10.1101/2023.02.14.528515.

21 30. Shenhav, A., Straccia, M. A., Musslick, S., Cohen, J. D. & Botvinick, M. M. Dissociable
22 neural mechanisms track evidence accumulation for selection of attention versus action.
23 *Nat. Commun.* **9**, 2485 (2018).

1 31. Taren, A. A., Venkatraman, V. & Huettel, S. A. A parallel functional topography between
2 medial and lateral prefrontal cortex: evidence and implications for cognitive control. *J.*
3 *Neurosci.* **31**, 5026–5031 (2011).

4 32. Venkatraman, V., Rosati, A. G., Taren, A. A. & Huettel, S. A. Resolving response,
5 decision, and strategic control: evidence for a functional topography in dorsomedial
6 prefrontal cortex. *J. Neurosci.* **29**, 13158–13164 (2009).

7 33. Fu, Z. *et al.* Single-Neuron Correlates of Error Monitoring and Post-Error Adjustments in
8 Human Medial Frontal Cortex. *Neuron* **101**, 165-177.e5 (2019).

9 34. Zarr, N. & Brown, J. W. Hierarchical error representation in medial prefrontal cortex.
10 *Neuroimage* **124**, 238–247 (2016).

11 35. Ebitz, B. R. *et al.* Human dorsal anterior cingulate neurons signal conflict by amplifying
12 task-relevant information. *bioRxiv* 2020.03.14.991745 (2020)
13 doi:10.1101/2020.03.14.991745.

14 36. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal
15 representations for robust context-dependent task performance in brains and neural
16 networks. *Neuron* **0**, (2022).

17 37. Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of
18 memory-based choice representations by the human medial frontal cortex. *Science* **368**,
19 (2020).

20 38. Ebitz, R. B. & Hayden, B. Y. The population doctrine in cognitive neuroscience. *Neuron*
21 (2021) doi:10.1016/j.neuron.2021.07.011.

22 39. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings.
23 *Nat. Neurosci.* **17**, 1500–1509 (2014).

1 40. Rigotti, M. *et al.* The importance of mixed selectivity in complex cognitive tasks. *Nature*
2 **497**, 585–590 (2013).

3 41. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation
4 by recurrent dynamics in prefrontal cortex. *Nature* **503**, 78–84 (2013).

5 42. Kayser, A. S., Erickson, D. T., Buchsbaum, B. R. & D’Esposito, M. Neural representations
6 of relevant and irrelevant features in perceptual decision making. *J. Neurosci.* **30**, 15778–
7 15789 (2010).

8 43. Bernardi, S. *et al.* The Geometry of Abstraction in the Hippocampus and Prefrontal Cortex.
9 *Cell* **0**, (2020).

10 44. Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working
11 memory and attention. *Nature* 1–5 (2021) doi:10.1038/s41586-021-03390-w.

12 45. Takagi, Y., Hunt, L. T., Woolrich, M. W., Behrens, T. E. & Klein-Flügge, M. C. Adapting
13 non-invasive human recordings along multiple task-axes shows unfolding of spontaneous
14 and over-trained choice. *Elife* **10**, (2021).

15 46. Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a
16 parallel distributed processing account of the Stroop effect. *Psychol. Rev.* **97**, 332–361
17 (1990).

18 47. Woolgar, A., Hampshire, A., Thompson, R. & Duncan, J. Adaptive coding of task-relevant
19 information in human frontoparietal cortex. *J. Neurosci.* **31**, 14592–14599 (2011).

20 48. Nee, D. E., Wager, T. D. & Jonides, J. Interference resolution: insights from a meta-analysis
21 of neuroimaging tasks. *Cogn. Affect. Behav. Neurosci.* **7**, 1–17 (2007).

1 49. Shenhav, A., Straccia, M. A., Botvinick, M. M. & Cohen, J. D. Dorsal anterior cingulate
2 and ventromedial prefrontal cortex have inverse roles in both foraging and economic
3 choice. *Cogn. Affect. Behav. Neurosci.* 1127–1139 (2016) doi:10.3758/s13415-016-0458-8.

4 50. Fleming, S. M., van der Putten, E. J. & Daw, N. D. Neural mediators of changes of mind
5 about perceptual decisions. *Nat. Neurosci.* **21**, 617–624 (2018).

6 51. Shenhav, A. & Karmarkar, U. R. Dissociable components of the reward circuit are involved
7 in appraisal versus choice. *Sci. Rep.* **9**, 1958 (2019).

8 52. Clairis, N. & Pessiglione, M. Value, confidence, deliberation: a functional partition of the
9 medial prefrontal cortex demonstrated across rating and choice tasks. *J. Neurosci.* **42**, 5580–
10 5592 (2022).

11 53. Yeo, B. T. T. *et al.* The organization of the human cerebral cortex estimated by intrinsic
12 functional connectivity. *J. Neurophysiol.* **106**, 1125–1165 (2011).

13 54. Kong, R. *et al.* Individual-Specific Areal-Level Parcellations Improve Functional
14 Connectivity Prediction of Behavior. *Cereb. Cortex* **31**, 4477–4500 (2021).

15 55. Schaefer, A. *et al.* Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
16 Functional Connectivity MRI. *Cereb. Cortex* **28**, 3095–3114 (2018).

17 56. Kong, R. *et al.* Spatial Topography of Individual-Specific Cortical Networks Predicts
18 Human Cognition, Personality, and Emotion. *Cereb. Cortex* **29**, 2533–2551 (2019).

19 57. Bisley, J. W. & Mirpour, K. The neural instantiation of a priority map. *Curr. Opin. Psychol.*
20 **29**, 108–112 (2019).

21 58. Yantis, S. & Serences, J. T. Cortical mechanisms of space-based and object-based
22 attentional control. *Curr. Opin. Neurobiol.* **13**, 187–193 (2003).

1 59. Kriegeskorte, N. & Diedrichsen, J. Peeling the Onion of Brain Representations. *Annu. Rev.*
2 *Neurosci.* **42**, 407–432 (2019).

3 60. Cohen, M. R. & Maunsell, J. H. R. A neuronal population measure of attention predicts
4 behavioral performance on individual trials. *J. Neurosci.* **30**, 15241–15253 (2010).

5 61. Libby, A. & Buschman, T. J. Rotational dynamics reduce interference between sensory and
6 memory representations. *Nat. Neurosci.* 1–12 (2021) doi:10.1038/s41593-021-00821-9.

7 62. Kimmel, D. L., Elsayed, G. F., Cunningham, J. P. & Newsome, W. T. Value and choice as
8 separable and stable representations in orbitofrontal cortex. *Nat. Commun.* **11**, 3466 (2020).

9 63. Walther, A. *et al.* Reliability of dissimilarity measures for multi-voxel pattern analysis.
10 *Neuroimage* **137**, 188–200 (2016).

11 64. Diedrichsen, J. & Kriegeskorte, N. Representational models: A common framework for
12 understanding encoding, pattern-component, and representational-similarity analysis. *PLoS*
13 *Comput. Biol.* **13**, e1005508 (2017).

14 65. Nili, H. *et al.* A toolbox for representational similarity analysis. *PLoS Comput. Biol.* **10**,
15 e1003553 (2014).

16 66. Spearman, C. The Proof and Measurement of Association between Two Things. *Am. J.*
17 *Psychol.* **100**, 441–471 (1987).

18 67. Thornton, M. A. & Mitchell, J. P. Consistent Neural Activity Patterns Represent Personally
19 Familiar People. *J. Cogn. Neurosci.* **29**, 1583–1594 (2017).

20 68. Hunt, L. T. *et al.* Mechanisms underlying cortical activity during value-guided choice. *Nat.*
21 *Neurosci.* **15**, 470–6, S1-3 (2012).

1 69. Kayser, A. S., Buchsbaum, B. R., Erickson, D. T. & D'Esposito, M. The functional
2 anatomy of a perceptual decision in the human brain. *J. Neurophysiol.* **103**, 1179–1194
3 (2010).

4 70. Kriegeskorte, N., Goebel, R. & Bandettini, P. Information-based functional brain mapping.
5 *Proc. Natl. Acad. Sci. U. S. A.* **103**, 3863–3868 (2006).

6 71. Woolgar, A., Williams, M. A. & Rich, A. N. Attention enhances multi-voxel representation
7 of novel objects in frontal, parietal and visual cortices. *Neuroimage* **109**, 429–437 (2015).

8 72. Woolgar, A., Afshar, S., Williams, M. A. & Rich, A. N. Flexible Coding of Task Rules in
9 Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control. *J. Cogn.*
10 *Neurosci.* **27**, 1895–1911 (2015).

11 73. Jackson, J., Rich, A. N., Williams, M. A. & Woolgar, A. Feature-selective Attention in
12 Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information. *J.*
13 *Cogn. Neurosci.* **29**, 310–321 (2017).

14 74. Woolgar, A., Thompson, R., Bor, D. & Duncan, J. Multi-voxel coding of stimuli, rules, and
15 responses in human frontoparietal cortex. *Neuroimage* **56**, 744–752 (2011).

16 75. Aoi, M. C., Mante, V. & Pillow, J. W. Prefrontal cortex exhibits multidimensional dynamic
17 encoding during decision-making. *Nat. Neurosci.* (2020) doi:10.1038/s41593-020-0696-5.

18 76. Pagan, M. *et al.* A new theoretical framework jointly explains behavioral and neural
19 variability across subjects performing flexible decision-making. *bioRxiv* 2022.11.28.518207
20 (2022) doi:10.1101/2022.11.28.518207.

21 77. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. *Annu. Rev.*
22 *Neurosci.* **24**, 167–202 (2001).

1 78. Stringer, C. *et al.* Spontaneous behaviors drive multidimensional, brainwide activity.

2 *Science* **364**, 255 (2019).

3 79. Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate

4 association cortex. *Annu. Rev. Neurosci.* **11**, 137–156 (1988).

5 80. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the

6 brain. *Nat. Rev. Neurosci.* **3**, 201–215 (2002).

7 81. Suzuki, M. & Gottlieb, J. Distinct neural mechanisms of distractor suppression in the frontal

8 and parietal lobe. *Nat. Neurosci.* **16**, 98–104 (2013).

9 82. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. *Annu.*

10 *Rev. Neurosci.* **23**, 315–341 (2000).

11 83. Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and face-

12 selective cortex. *Elife* **6**, (2017).

13 84. Saalmann, Y. B., Pigarev, I. N. & Vidyasagar, T. R. Neural mechanisms of visual attention:

14 how top-down feedback highlights relevant locations. *Science* **316**, 1612–1615 (2007).

15 85. Reid, A. T. *et al.* Advancing functional connectivity research from association to causation.

16 *Nat. Neurosci.* **22**, 1751–1760 (2019).

17 86. MacKinnon, D. P., Fairchild, A. J. & Fritz, M. S. Mediation analysis. *Annu. Rev. Psychol.*

18 **58**, 593–614 (2007).

19 87. Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and

20 executive function. *Neuropsychopharmacology* 1–18 (2021) doi:10.1038/s41386-021-

21 01132-0.

22 88. Holroyd, C. B. & McClure, S. M. Hierarchical control over effortful behavior by rodent

23 medial frontal cortex: A computational model. *Psychol. Rev.* **122**, 54–83 (2015).

1 89. Holroyd, C. B. & Yeung, N. An Integrative Theory of Anterior Cingulate Cortex Function:
2 Option Selection in Hierarchical Reinforcement Learning. *Neural Basis of Motivational and*
3 *Cognitive Control* 332–349 Preprint at
4 <https://doi.org/10.7551/mitpress/9780262016438.003.0018> (2011).

5 90. Vassena, E., Deraeve, J. & Alexander, W. H. Predicting Motivation: Computational Models
6 of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in
7 Health and Disease. *J. Cogn. Neurosci.* **29**, 1633–1645 (2017).

8 91. Koechlin, E. & Summerfield, C. An information theoretical approach to prefrontal
9 executive function. *Trends Cogn. Sci.* **11**, 229–235 (2007).

10 92. Badre, D. & D'Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? *Nat.*
11 *Rev. Neurosci.* **10**, 659–669 (2009).

12 93. Badre, D. & Nee, D. E. Frontal Cortex and the Hierarchical Control of Behavior. *Trends*
13 *Cogn. Sci.* **22**, 170–188 (2018).

14 94. Serences, J. T. & Yantis, S. Spatially selective representations of voluntary and stimulus-
15 driven attentional priority in human occipital, parietal, and frontal cortex. *Cereb. Cortex* **17**,
16 284–293 (2007).

17 95. Yantis, S. *et al.* Transient neural activity in human parietal cortex during spatial attention
18 shifts. *Nat. Neurosci.* **5**, 995–1002 (2002).

19 96. Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T. & Yantis, S. Control of spatial
20 and feature-based attention in frontoparietal cortex. *J. Neurosci.* **30**, 14330–14339 (2010).

21 97. Esterman, M., Chiu, Y.-C., Tamber-Rosenau, B. J. & Yantis, S. Decoding cognitive control
22 in human parietal cortex. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 17974–17979 (2009).

1 98. Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X. & Yantis, S. Control of object-
2 based attention in human cortex. *Cereb. Cortex* **14**, 1346–1357 (2004).

3 99. Molenberghs, P., Mesulam, M. M., Peeters, R. & Vandenberghe, R. R. C. Remapping
4 attentional priorities: differential contribution of superior parietal lobule and intraparietal
5 sulcus. *Cereb. Cortex* **17**, 2703–2712 (2007).

6 100. Adam, K. C. S. & Serences, J. T. History modulates early sensory processing of salient
7 distractors. *J. Neurosci.* (2021) doi:10.1523/JNEUROSCI.3099-20.2021.

8 101. Soutschek, A., Stelzel, C., Paschke, L., Walter, H. & Schubert, T. Dissociable effects of
9 motivation and expectancy on conflict processing: an fMRI study. *J. Cogn. Neurosci.* **27**,
10 409–423 (2015).

11 102. Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. *Annu.*
12 *Rev. Neurosci.* **33**, 1–21 (2010).

13 103. Rust, N. C. & Cohen, M. R. Priority coding in the visual system. *Nat. Rev. Neurosci.* 1–13
14 (2022) doi:10.1038/s41583-022-00582-9.

15 104. Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N. & Braver, T. S. Reward Motivation
16 Enhances Task Coding in Frontoparietal Cortex. *Cereb. Cortex* **26**, 1647–1659 (2016).

17 105. Hall-McMaster, S., Muhle-Karbe, P. S., Myers, N. E. & Stokes, M. G. Reward Boosts
18 Neural Coding of Task Rules to Optimize Cognitive Flexibility. *J. Neurosci.* **39**, 8549–8561
19 (2019).

20 106. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. *Annu. Rev.*
21 *Neurosci.* **18**, 193–222 (1995).

22 107. Lauritzen, T. Z., D’Esposito, M., Heeger, D. J. & Silver, M. A. Top–down flow of visual
23 spatial attention signals from parietal to occipital cortex. *J. Vis.* **9**, 18–18 (2009).

1 108. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical Areas
2 Interact through a Communication Subspace. *Neuron* **102**, 249-259.e4 (2019).

3 109. Srinath, R., Ruff, D. A. & Cohen, M. R. Attention improves information flow between
4 neuronal populations without changing the communication subspace. *bioRxiv*
5 2021.03.31.437940 (2021) doi:10.1101/2021.03.31.437940.

6 110. Petrides, M. & Pandya, D. N. Efferent association pathways originating in the caudal
7 prefrontal cortex in the macaque monkey. *J. Comp. Neurol.* **498**, 227–251 (2006).

8 111. Jackson, J. B., Feredoes, E., Rich, A. N., Lindner, M. & Woolgar, A. Concurrent
9 neuroimaging and neurostimulation reveals a causal role for dlPFC in coding of task-
10 relevant information. *Commun Biol* **4**, 588 (2021).

11 112. Vul, E., Alvarez, G., Tenenbaum, J. & Black, M. Explaining human multiple object
12 tracking as resource-constrained approximate inference in a dynamic probabilistic model. in
13 *Advances in Neural Information Processing Systems* (eds. Bengio, Y., Schuurmans, D.,
14 Lafferty, J., Williams, C. & Culotta, A.) vol. 22 (Curran Associates, Inc., 2009).

15 113. Ritz, H., Wild, C. J. & Johnsrude, I. S. Parametric Cognitive Load Reveals Hidden Costs in
16 the Neural Processing of Perfectly Intelligible Degraded Speech. *J. Neurosci.* **42**, 4619–
17 4628 (2022).

18 114. Culham, J. C., Cavanagh, P. & Kanwisher, N. G. Attention response functions:
19 characterizing brain areas using fMRI activation during parametric variations of attentional
20 load. *Neuron* **32**, 737–745 (2001).

21 115. Culham, J. C. *et al.* Cortical fMRI activation produced by attentive tracking of moving
22 targets. *J. Neurophysiol.* **80**, 2657–2670 (1998).

1 116. Howe, P. D., Horowitz, T. S., Morocz, I. A., Wolfe, J. & Livingstone, M. S. Using fMRI to
2 distinguish components of the multiple object tracking task. *J. Vis.* **9**, 10.1-11 (2009).

3 117. Jovicich, J. *et al.* Brain areas specific for attentional load in a motion-tracking task. *J. Cogn.*
4 *Neurosci.* **13**, 1048–1058 (2001).

5 118. Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R. & Gottlieb, J. Reward modulates attention
6 independently of action value in posterior parietal cortex. *J. Neurosci.* **29**, 11182–11191
7 (2009).

8 119. Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, T. & Haynes, J.-D. The Role of the
9 Parietal Cortex in the Representation of Task–Reward Associations. *J. Neurosci.* **35**,
10 12355–12365 (2015).

11 120. Parro, C., Dixon, M. L. & Christoff, K. The neural basis of motivational influences on
12 cognitive control. *Hum. Brain Mapp.* **39**, 5097–5111 (2018).

13 121. Weichart, E. R., Turner, B. M. & Sederberg, P. B. A model of dynamic, within-trial conflict
14 resolution for decision making. *Psychol. Rev.* (2020) doi:10.1037/rev0000191.

15 122. Esteban, O. *et al.* fMRIprep: a robust preprocessing pipeline for functional MRI. *Nat.*
16 *Methods* **16**, 111–116 (2019).

17 123. Gorgolewski, K. *et al.* Nipype: a flexible, lightweight and extensible neuroimaging data
18 processing framework in python. *Front. Neuroinform.* **5**, 13 (2011).

19 124. Diedrichsen, J. & Shadmehr, R. Detecting and adjusting for artifacts in fMRI time series
20 data. *Neuroimage* **27**, 624–634 (2005).

21 125. Jones, M. S., Zhu, Z., Bajracharya, A., Luor, A. & Peelle, J. E. A multi-dataset evaluation
22 of frame censoring for task-based fMRI. *bioRxiv* 2021.10.12.464075 (2021)
23 doi:10.1101/2021.10.12.464075.

1 126. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of
2 smoothing, threshold dependence and localisation in cluster inference. *Neuroimage* **44**, 83–
3 98 (2009).

4 127. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E.
5 Permutation inference for the general linear model. *Neuroimage* **92**, 381–397 (2014).

6 128. Vos de Wael, R. *et al.* BrainSpace: a toolbox for the analysis of macroscale gradients in
7 neuroimaging and connectomics datasets. *Commun Biol* **3**, 103 (2020).

8 129. Gale, D. J., Vos de Wael, R., Benkarim, O. & Bernhardt, B. *Surfplot: Publication-ready
9 brain surface figures*. (2021). doi:10.5281/zenodo.5567926.

10 130. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale
11 automated synthesis of human functional neuroimaging data. *Nat. Methods* **8**, 665–670
12 (2011).

13 131. Diedrichsen, J., Yokoi, A. & Arbuckle, S. A. Pattern component modeling: A flexible
14 approach for understanding the representational structure of brain activity patterns.
15 *Neuroimage* **180**, 119–133 (2018).

16 132. Rouder, J. N., Morey, R. D., Speckman, P. L. & Province, J. M. Default Bayes factors for
17 ANOVA designs. *J. Math. Psychol.* **56**, 356–374 (2012).

18 133. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional
19 neuroimaging: a primer with examples. *Hum. Brain Mapp.* **15**, 1–25 (2002).

20 134. Belsley, D. A., Kuh, E. & Welsch, R. E. Wiley Series in Probability and Statistics.
21 *Regression Diagnostics: Identifying Influential Data and Sources of Collinearity* 293–300
22 (1980).

23