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Abstract 1 

The complex challenges of our mental life require us to coordinate multiple forms of neural 2 
information processing. Recent behavioral studies have found that people can coordinate 3 
multiple forms of attention, but the underlying neural control process remains obscure. We 4 
hypothesized that the brain implements multivariate control by independently monitoring 5 
feature-specific difficulty and independently prioritizing feature-specific processing. During 6 
fMRI, participants performed a parametric conflict task that separately tags target and distractor 7 
processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially 8 
segregated encoding of target and distractor difficulty in dorsal anterior cingulate cortex. 9 
Consistent with feature-specific attentional priority, our Encoding Geometry Analysis revealed 10 
overlapping, but orthogonal, representations of target and distractor coherence in intraparietal 11 
sulcus. Coherence representations were mediated by control demands and aligned with both 12 
performance and frontoparietal activity, consistent with top-down attention. Together, these 13 
findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive 14 
control. 15 
 16 
Keywords: cognitive control, attention, decision-making, fMRI  17 
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Introduction 1 

We have remarkable flexibility in how we think and act. This flexibility is enabled by the array 2 
of mental tools we can bring to bear on challenges to our goal pursuit 1–6. For example, someone 3 
may respond to a mistake by becoming more cautious, enhancing task-relevant processing, or 4 
suppressing task-irrelevant processing 7, and previous work has shown that people 5 
simultaneously deploy multiple such strategies at the same time in response to different task 6 
demands 3,8–10. Flexibly coordinating multiple cognitive processes requires a control system that 7 
can monitor multiple forms of task demands and deploy multiple forms of control (also referred 8 
to as the necessity for observability and controllability; 11). These monitoring and regulation 9 
processes are fundamental to control, and are thought to be underpinned by distinct cingulo-10 
opercular and frontoparietal neural systems 12–19. However, much is still unknown about how 11 
multiple forms of control are represented across these domains.  12 
 13 
Past research on the neural mechanisms of cognitive control has often sought to identify 14 
representations that integrate over multiple different sources of task demands (i.e., represent 15 
these different sources in alignment). For instance, previous studies has proposed that dorsal 16 
anterior cingulate cortex (dACC) tracks integrative features like response conflict, effort, value, 17 
error likelihood, and time-on-task 20–27. Because they integrate over different task features 18 
instead of differentiating between them, these forms of ‘aligned encoding’ (Figure 1a) are ill-19 
suited for carrying out multidimensional control. Multidimensional cognitive control requires 20 
independent representations that can track multiple sources of difficulty and regulate multiple 21 
cognitive processes (e.g., prioritize multiple sources of information 28). 22 
 23 
An alternative to aligned encoding – one that would allow the brain to separately control 24 
multiple processes – is independent encoding, which can come in at least two forms. One way 25 
the brain can have independent representations is by encoding different task features in spatially 26 
segregated neural populations (‘segregated encoding’; Figure 1b). For example, past work has 27 
shown that different subregions within dACC encode distinct task demands, including various 28 
forms of errors and processing conflict 29–34. The brain can instead have independent 29 
representations that are distributed across units within the same population, as has also been 30 
observed in dACC 35–37. Within a shared population, independent encoding of information occurs 31 
along a set of orthogonal dimensions or subspaces (Figure 1c, ‘subspace encoding’; 38–41). 32 
Despite this exciting recent work, it remains unclear to what extent different components of the 33 
cognitive control system leverage these aligned, segregated, or orthogonal encoding strategies 34 
for monitoring multiple task demands and prioritizing multiple sources of information. 35 
 36 
To gain new insight into the representations supporting cognitive control, we drew upon two key 37 
innovations. First, we leveraged an experimental paradigm we developed to tag multiple control 38 
processes 10. Building on prior work 3,30,41,42, this task incorporates elements of perceptual 39 
decision-making (discrimination of a target feature) and inhibitory control (overcoming a salient 40 
and prepotent distractor). We have previously shown that we can separately tag target and 41 
distractor processing from participants’ performance on this task, and that target and distractor 42 
processing are independently controlled. For example, participants adjust target and distractor 43 
sensitivity in response to distinct task demands (e.g., previous conflict or incentives; 10). In 44 
conjunction with this process-tagging approach, our second innovation was to develop a 45 
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multivariate fMRI analysis for measuring relationships between feature encoding (i.e., encoding 1 
geometry). Extending recent statistical approaches in systems neuroscience 35,43,44, we combined 2 
the strengths of multivariate encoding analyses and representation similarity analyses into a 3 
method we call ‘Encoding Geometry Analysis’ (EGA). We used EGA to characterize whether 4 
putative markers of monitoring and prioritization leverage independent representations for 5 
targets and distractors.  6 
 7 
In brief, we found that key nodes within the cognitive control network use orthogonal 8 
representations of target and distractor information to support cognitive control. In the dorsal 9 
anterior cingulate cortex (dACC), encoding of target and distractor difficulty was spatially 10 
segregated and arranged along a rostrocaudal gradient. By contrast, in the intraparietal sulcus 11 
(IPS), encoding of target and distractor coherence was encoded along orthogonal neural 12 
subspaces. These regional distinctions are consistent with hypothesized roles in planning and 13 
implementing (multivariate) attentional policies 12,17. Furthermore, we found that coherence 14 
encoding depended on control demands, and was aligned with both task performance and 15 
frontoparietal activity, consistent with these coherence representations playing a critical role in 16 
cognitive control (e.g., feature prioritization). Together, these results suggest that cognitive 17 
control uses representational formats that allow the brain to monitor and control multiple streams 18 
of information processing. 19 
 20 

Results 21 

Task overview 22 

Twenty-nine human participants performed the Parametric Attentional Control Task (PACT 10) 23 
during fMRI. On each trial, participants responded to an array of colored moving dots (colored 24 
random dot kinematogram; Figure 1d). In the critical condition (Attend-Color), participants 25 
respond with a left/right keypress based on which of two colors were in the majority. In 26 
alternating scanner runs, participants instead responded based on motion (Attend-Motion), which 27 
was designed to be less control-demanding due to the (Simon-like) congruence between motion 28 
direction and response hand 3,10. Across trials, we independently and parametrically manipulated 29 
target and distractor information across five levels of target coherence (e.g., percentage of dots in 30 
the majority color, regardless of which color) and distractor congruence (e.g., percentage of dots 31 
moving either in the congruent or incongruent direction relative to the correct color response; 32 
Figure 1e). This task allowed us to ‘tag’ participants’ sensitivity to each dimension by measuring 33 
behavioral and neural responses to independently manipulated target and distractor features. 34 
Unlike a similar task used to study post-error adjustments 3, our parametric manipulation of 35 
target and distractor coherence allows us to better measure feature-specific representations. 36 
Unlike similar tasks used to study contextual decision-making 30,41,45, this task pits more control-37 
demanding responses (towards color) against more automatic responses (towards motion), 38 
allowing comparisons between Attend-Color and Attend-Motion tasks to isolate the 39 
contributions of cognitive control 46,47. 40 
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Performance depends on targets and distractors 1 

Participants had overall good performance on the task, with a high level of accuracy (median 2 
Accuracy = 89%, IQR = [84% - 92%]), and a low rate of missed responses (median lapse rate = 3 
2%, IQR = [0% - 5%]). We used mixed effects regressions to characterize how target coherence 4 
and distractor congruence influenced participants’ accuracy and log-transformed correct reaction 5 
times. Replicating previous behavioral findings using this task, participants were sensitive to 6 
both target and distractor information 10. When target coherence was weaker, participants 7 
responded slower (t(27.6) = 16.1, p < .001, d = 3.01, 95% CI [0.0248, 0.0310]) and less accurately 8 
(t(28) = -8.90, p < .001, d = -1.65, CI 95% [-0.365, -0.233]; Figure 1f). When distractors were 9 
more incongruent, participants also responded slower (t(28.8) = 5.09, p < .001, d = .942, 95% CI 10 
[0.00603, 0.0141]);   and less accurately (t(28) = -4.66, p < .001, d = -0.865, 95% CI [-0.220, 11 
0.0896];  Figure 1g).  Also replicating prior findings with this task, interactions between targets 12 
and distractors were not significant for reaction time (t(28.2) = 0.143, p = .887, d = 0.0265, 95% CI 13 
[-0.00181 0.00208]) and had a weak influence on accuracy (t(28) = 2.36, p = .0257, d = .437, 95% 14 
CI [0.00581, 0.0634]). Models omitting target-distractor interactions provided a better 15 
complexity-penalized fit (RT ΔAIC = 17.7, Accuracy ΔAIC = 1.38). 16 
  17 
[Figure 1] 18 

Segregated encoding of target and distractor difficulty 19 

Past work has separately shown that the dACC tracks task demands related to perceptual 20 
discrimination (induced in our task when target information is weaker) and related to the need to 21 
suppress a salient distractor (induced in our task when distractor information is more strongly 22 
incongruent with the target 12,30–32,48). Our task allowed us to test whether these two sources of 23 
increasing control demand are tracked within common regions of dACC (reflecting an 24 
aggregated representation of multiple sources of task demands), or whether they are tracked by 25 
separate regions (potentially reflecting a specialized representation according to the nature of the 26 
demands).  27 
 28 
Targeting a large region of dACC – a conjunction of a cortical parcellation with a meta-analytic 29 
mask for ‘cognitive control’ (see ‘fMRI univariate analyses’ in Methods) – we found spatially 30 
distinct signatures of target difficulty and distractor congruence within dACC. In caudal dACC, 31 
we found significant clusters encoding the parametric effect of target difficulty (Figure 2a; 32 
negative effect of target coherence in green), and in more rostral dACC we found clusters 33 
encoding parametric distractor incongruence (negative effect of distractor congruence in blue). 34 
Supporting this dissociation, the spatial patterns of target and distractor regression weights were 35 
uncorrelated across dACC voxels (t(28.0) = 1.32, p = .197, logBF = -0.363, 95% CI [-.111, .515]).  36 
These analyses control for omission errors, and additionally controlling for commission errors 37 
produced the same whole-brain pattern at a reduced threshold (see Extended Data Figure 1). We 38 
additionally found the most rostral portion of our dACC mask responded to target ease 39 
(Extended Data Figure 2). 40 
 41 
[Figure 2] 42 
 43 
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To further quantify how feature encoding changed along the longitudinal axis of dACC, we used 1 
principal component analysis to extract the axis position of dACC voxels (see ‘dACC 2 
longitudinal axis analyses’ in Methods), and then regressed target and distractor beta weights 3 
onto these axis scores. We found that targets had stronger difficulty coding in more caudal 4 
voxels (t(27.9) = 3.40, p = .00204, d = .631, 95% CI [10.6, 42.8]), with a quadratic trend (t(26.5) = 5 
4.48, p < .001, d = .85, [38.2, 103]; Figure 2b). In line with previous work on both perceptual 6 
and value-based decision-making 30,49–52, we found that signatures of target discrimination 7 
difficulty (negative correlation with target coherence) in caudal dACC were paralleled by signals 8 
of target discrimination ease (positive correlation with target coherence) within the rostral-most 9 
extent of our dACC ROI (Extended Data Figure 3). In contrast to targets, distractors had stronger 10 
incongruence coding in more rostral voxel (t(28.0) = -2.87, p = .00781, d = -.533, 95% CI [-55.6, -11 
9.25]), without a significant quadratic trend. We used participants’ random effects terms to 12 
estimate the gradient location where target and distractor coding were at their most negative, 13 
finding that the target minimum was significantly more caudal than the distractor minimum 14 
(signed-rank test, z(28) = 2.41, p = .0159). Target and distractor minima were uncorrelated across 15 
subjects (r(27) = .0282, p = .880, logBF = -0.839), again consistent with independent encoding of 16 
targets and distractors. 17 
 18 
As additional evidence that target-related and distractor-related demands have a dissociable 19 
encoding profile, we found that the crossover between target and distractor encoding in dACC 20 
occurred at the boundary between two well-characterized functional networks 53–55. Whereas 21 
distractor-related demands were more strongly encoded rostrally in the Control Network 22 
(particularly within regions of dACC and insula corresponding to the ‘Control C’ Sub-Network; 23 
54,56), target-related demands were more strongly encoded caudally within the ‘Salience / Ventral 24 
Attention (SVA)’ Network (Figure 2C-D). Including network membership alongside long axis 25 
location predicted target and distractor encoding better than models with either network 26 
membership or axis location alone (𝛥BIC > 1675). 27 

Independent encoding of target and distractor coherence 28 

We found that dACC appeared to dissociably encode target and distractor difficulty through 29 
spatially segregated encoding, consistent with a role in monitoring different task demands and/or 30 
specifying different control signals 12. To identify neural mechanisms for the implementation of 31 
this control through the prioritization targets versus distractors, we next tested for regions that 32 
encode target and distractor coherence (the amount of information in a feature, regardless of 33 
which response it supports). Based on previous research, we might expect to find this form of 34 
selective attention in posterior parietal cortex 17,57,58. We explored whether target and distractor 35 
coherence share a common neural code (e.g., as a global index of spatial salience), compared to 36 
where these features are encoded distinctly (e.g., as separate targets of control).  37 
 38 
An initial whole-brain univariate analysis showed that overlapping regions throughout occipital, 39 
parietal, and prefrontal cortices track the feature coherence (proportion of dots in the majority 40 
category) for both targets and distractors (Figure 3a; conjunction in orange). These regions 41 
showed elevated responses to lower target coherence and higher distractor coherence, potentially 42 
reflecting the relevance of each feature for task performance. Note that in contrast to distractor 43 
congruence, distractor coherence had an inconsistent relationship with task performance (RT: 44 
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t(27.0) = 2.08, p = .0468, d = .394, 95% CI [8.33 × 10-5, 0.0107]; Accuracy: t(28) = -0.845, p = .406, 1 
d = -0.157, 95% CI [-0.085, 0.0338]), suggesting that these neural responses are unlikely to 2 
reflect task difficulty per se. 3 
 4 
While these univariate activations point towards widespread and coarsely overlapping encoding 5 
of the feature coherence (potentially consistent with aligned encoding; Figure 1a), they lack 6 
information about how these features are encoded at finer spatial scales. To interrogate the 7 
relationship between target and distractor encoding, we developed a multivariate analysis that 8 
combines multivariate encoding analyses with pattern similarity analyses, which we term 9 
Encoding Geometry Analysis (EGA). Whereas pattern similarity analyses typically quantify 10 
relationships between representations of specific stimuli or responses (e.g., whether they could 11 
be classified, 59), EGA characterizes relationships between encoding subspaces (patterns of 12 
contrast weights) across different task features, consistent with recent analyses trends in systems 13 
neuroscience 35,36,43,60–62. A stronger correlation between encoding subspaces (either positive or 14 
negative) indicates that features are similarly encoded (i.e., that their representations are aligned 15 
and thus confusable by a linear decoder; Figure 1a), whereas weak correlation indicate that these 16 
representations are orthogonal (and thus distinguishable by a linear decoder; 59). In contrast to 17 
standard pattern similarity, the sign of these relationships is interpretable in EGA, reflecting how 18 
features are coded relative to one another. Compared to standard encoding analyses, EGA is less 19 
sensitive to noise (Extended Data Figure 3). We estimated this encoding alignment within each 20 
parcel, correlating unsmoothed and spatially pre-whitened patterns of parametric regression betas 21 
across scanner runs to minimize spatiotemporal autocorrelation 63–65. This cross-validated 22 
similarity further allowed us to anchor our analysis on the measurement reliability of encoding 23 
profiles (i.e., the self-correlation of encoding patterns across cross-validation folds 66,67). 24 
 25 
Focusing on regions that encoded both target and distractor information (parcels where both 26 
group-level p < .001), EGA revealed clear dissociations between regions that represent these 27 
features in alignment versus orthogonally. Within visual cortex and the superior parietal lobule 28 
(SPL), target and distractor representations demonstrated significant negative correlations 29 
(Figure 3b, red), reflecting (negatively) aligned encoding. In contrast, early visual cortex and 30 
intraparietal sulcus (IPS; see Figure 3c for anatomical boundaries) demonstrated target-distractor 31 
correlations near zero (Figure 3b, black), suggesting encoding along orthogonal subspaces.  32 
 33 
To bolster our interpretation of the latter findings as reflecting orthogonal (i.e., uncorrelated) 34 
representations rather than merely small but non-significant correlations, we employed Bayesian 35 
t-tests at the group level to estimate the relative (log-10) likelihood that these encoding 36 
dimensions were orthogonal or correlated. Consistent with our previous analyses, we found 37 
strong evidence for correlation (positive log bayes factors) in more medial regions of occipital 38 
and posterior parietal cortex (e.g., SPL), and strong evidence for orthogonality (negative log 39 
bayes factors) in more lateral regions of occipital and posterior parietal cortex (e.g., IPS; Figure 40 
3D). Control analyses confirmed that coherence orthogonality was not due to encoding 41 
reliability, as a similar topography was observed with disattenuated correlations (normalizing 42 
correlations by their reliability; see Supplementary Figure 1). Further supporting these results, 43 
our Bayes factor analyses were robust to the choice of priors (see Supplementary Figure 2).  44 
 45 
[Figure 3] 46 
 47 
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While our analyses support independent encoding of targets and distractors within the same 1 
parcel, we further explored whether feature information is reflected in overlapping voxels (i.e., 2 
voxel-level mixed selectivity 40). Simulations revealed that the alignment between absolute 3 
encoding weights can differentiate between pure and mixed selectivity, and parietal coherence 4 
representations bore this signature of voxel-level mixed selectivity (Extended Data Figure 4), 5 
consistent with the subspace encoding hypothesis. 6 
 7 
These results have focused on the coherence of different features regardless of the response they 8 
support, demonstrating that SPL exhibits aligned representations of target and distractor 9 
coherence. Past decision-making research has separately demonstrated that SPL tracks the 10 
amount of evidence supporting specific response 42,68,69, which we found was also true for our 11 
task. In addition to encoding target and distractor coherence, SPL and visual cortex also tracked 12 
target and distractor ‘evidence’ (proportion of dots supporting a rightward vs leftward response; 13 
Figure 3e). EGA revealed orthogonal evidence representations between targets and distractors, in 14 
the same areas with aligned coherence representations (compare Figure 3d and 3e), consistent 15 
with previous observations of multiple decision-related signals in SPL 68. We confirmed that 16 
these representations 17 
 18 
[Figure 4] 19 
 20 
We complemented our whole-brain analyses with ROI analyses in areas exhibiting reliable 21 
encoding of key variables, focusing on core frontal regions linked with cognitive control (dACC 22 
and lateral PFC [lPFC]), and parietal regions linked with decision-making and attention (SPL 23 
and IPS 12,15). Consistent with our analyses above, we found that target and distractor coherence 24 
encoding was aligned in SPL, but not in IPS (Figure 4a, compare to Figure 3d), whereas SPL 25 
encoded target and distractor evidence. Directly comparing these regions (see Supplementary 26 
Table 1), we found stronger encoding of target evidence in SPL, stronger encoding of target 27 
coherence in IPS, and stronger alignment between target-distractor coherence alignment in SPL. 28 
Unlike our univariate results, we did not find distractor congruence encoding in dACC (though 29 
this was found in lPFC and IPS). Instead, dACC showed multivariate encoding of target 30 
coherence and evidence. 31 
 32 
To further characterize how feature coherence and evidence are encoded across these regions, we 33 
performed multidimensional scaling over each regions task representations (Figure 4b; 64,70). 34 
Briefly, this method allows us to visualize – in a non-parametric manner – the relationships 35 
between representations of different feature levels (e.g., levels of target coherence), by 36 
estimating each feature level separately within a GLM and then using singular value 37 
decomposition to project these patterns into a 2D space (see Methods for additional details). We 38 
found that coherence and evidence axes naturally emerge in the top two principal components in 39 
this analysis within dACC, SPL, and IPS. Coherence axes (light to dark shading) are parallel 40 
between left (blue) and right (brown) responses, suggesting a response-independent encoding. In 41 
these components, evidence encoding appeared to be binary, in contrast to parametric coherence 42 
encoding (we found similar whole-brain encoding maps for binary-coded evidence; see 43 
Supplementary Figure 3). Critically, whereas coherence encoding axes within SPL were aligned 44 
between targets (circles) and distractors (diamonds; confirming aligned encoding), in IPS these 45 
representations form perpendicular lines (confirming orthogonal encoding). When we visualized 46 
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higher dimensions, we found that IPS did appear to have weak encoding alignment between 1 
target and distractor coherence in higher dimensions (Extended Data Figure 5). Nevertheless, the 2 
orthogonal encoding in the first two principal components is sufficient for a downstream region 3 
to have an independent read-out of feature-specific coherence. These analyses both help to 4 
visualize cross-region dissociations in encoding profiles and validate that task features are 5 
encoded in a monotonic fashion. 6 
 7 
 8 
Finally, to explore the divisions between SVA and Control networks evident in the univariate 9 
analyses, we split up our two prefrontal ROIs by their network membership (Extended Data 10 
Figure 6). In dACC, we found that SVA parcels tended to have stronger feature encoding than 11 
Control parcels. Interestingly, in these SVA parcels several features were aligned with the target 12 
evidence dimension, consistent with recent human electrophysiology findings 35. In lPFC, we 13 
found that Control parcels, but not SVA parcels, encoded distractor congruence (Control: t(28) = 14 
3.60, two-tailed p = .0012, logBF = 1.45, 95% CI [0.0037, 0.0135]; SVA: t(28) = 0.57, p = .57, 15 
logBF = -0.64, 95% CI [-0.0046, 0.0082]; Control – SVA: t(28) = 3.27, p = .0029, logBF = 1.12, 16 
95% CI [0.0025, 0.0111]). This distractor congruence encoding was present in lPFC in ‘Control 17 
A/B’ parcels (t(28) = 3.66, p = .001, logBF = 1.51, 95% CI [0.0041, 0.0146]), but not significantly 18 
in ‘Control C’ parcels (t(28) = 1.86, p = .073, logBF = -0.0448, 95% CI [-0.0006, 0.0136]),). This 19 
network-selective encoding of congruence is consistent with the univariate results in dACC (see 20 
Figure 2). 21 
 22 

Control demands dissociate coherence and evidence encoding 23 

Our findings thus far demonstrate two sets of dissociations within and across brain regions. In 24 
dACC, we find that distinct regions encode the control demands related to discriminating targets 25 
(caudal dACC) versus overcoming distractor incongruence (rostral dACC). In posterior parietal 26 
cortex, we find that overlapping regions track the coherence of these two stimulus features, but 27 
that distinct regions represent these features in alignment (SPL) versus orthogonally (IPS). While 28 
these findings suggest that this set of regions was involved in translating between feature 29 
information and goal-directed responding, they only focus on the information that was presented 30 
to the participant on a given trial. To provide a more direct link between feature-specific 31 
encoding and control, we examined how the encoding of feature coherence differed between 32 
matched task that placed stronger or weaker demands on cognitive control. So far, our analyses 33 
have focused on conditions in which participants needed to respond to the color feature while 34 
ignoring the motion feature (Attend-Color task), but on alternating scanner runs participants 35 
instead responded to the motion dimension and ignored the color dimension (Attend-Motion 36 
task). These tasks were matched in their visual properties (identical stimuli) and motor outputs 37 
(left/right responses), but critically differed in their control demands. Attend-Motion was 38 
designed to be much easier than Attend-Color, as the left/right motion directions are compatible 39 
with the left/right response directions (i.e., Simon facilitation; 3,10). Comparing these tasks allows 40 
us to disambiguate bottom-up attentional salience from the top-down contributions to attentional 41 
priority 47,71–73.  42 
 43 
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Consistent with previous work 10, performance on the Attend-Motion task was better overall 1 
(mean RT: 565ms vs 725ms, sign-rank p < .001; mean Accuracy: 93.7% vs 87.5%, sign-rank p < 2 
.001). Unlike the Attend-Color task, performance was not impaired by distractor incongruence 3 
(i.e., color distractors; RT: t(28) = -1.39, p = .176, d = -.0438, 95% CI [-0.00629, 0.000577]; 4 
Accuracy: t(28) = 0.674, p = .506, d = 0.0847, 95% CI [-0.0913, 0.147]). To investigate these task-5 
dependent feature representations, we fit a GLM that included both tasks. To control for 6 
performance differences across tasks, we only analyzed accurate trials and included trial-wise 7 
RT as a nuisance covariate, concatenating RT across tasks.  8 
 9 
[Figure 5] 10 
 11 
Whereas the encoding of both color and motion coherence was widespread during the Attend-12 
Color task (Figure 3), coherence encoding was consistently weaker during the less demanding 13 
Attend-Motion task (Figure 5A). Coherence encoding was weaker during Attend-Motion 14 
whether classifying according to goal-relevance (comparing targets or distractors) or the features 15 
themselves (comparing motion or color). Task-relevant ROIs revealed that coherence encoding 16 
was effectively absent during the easy Attend-Motion task (Figure 5B), suggesting that they 17 
depend on the control demands of the Attend-Color task 47,74.  18 
 19 
In contrast to these stark task-related differences in coherence encoding, we found that neural 20 
encoding of the target evidence (color evidence in the Attend-Color task and motion evidence in 21 
the Attend-Motion task) was preserved across tasks, including within dACC, lPFC, SPL, and IPS 22 
(Figure 5B). Consistent with previous experiments examining context-dependent decision-23 
making 36,41,42,45,73,75,76, we found stronger target evidence encoding relative to distractor 24 
evidence encoding, in our case in the evidence-encoding SPL (Attend-Color: t(28) = 4.26, right-25 
tailed p < .001, d = 0.790; Attend-Motion: t(28) = 2.37, right-tailed p = 0.0124, d = 0.4403). We 26 
also found that target evidence encoding during Attend-Motion was aligned with Attend-Color, 27 
both for motion evidence encoding (‘stimulus axis’; SPL: t(28) = 2.08,  right-tailed p = .0236, d = 28 
0.386, 95% CI [0.0009, 0.0095];  IPS: t(28) = 2.24,  right-tailed p = .0167, d = 0.416, 95% CI 29 
[0.0016, 0.0114]) and target evidence encoding (‘decision axis’; SPL: t(28) = 5.87, right-tailed p < 30 
.001, d = 1.09, 95% CI [0.0109, 0.0199]; IPS: t(28) = 3.64, right-tailed p = .0011, d = 0.676, 95% 31 
CI [0.0056, 0.0154]). These axis alignments are again in agreement with previous experiments, 32 
though note that target evidence is often manipulated separately from the motor response. 33 
Whereas our experiment replicates previous observations of the neural representations 34 
supporting contextual decision-making, we now extended these findings to understand how 35 
putative attention signals (i.e., feature coherence) are encoded in response to the asymmetric 36 
inference that is characteristic of cognitive control 77. 37 

Feature coherence aligns with task performance 38 

Feature coherence encoding (i.e., feature strength, regardless of response or congruence) depends 39 
on task demands, consistent with a role in cognitive control. To further understand this 40 
relationship between coherence encoding and control, we next explored how coherence encoding 41 
was related to task performance. We tested this question by determining whether feature 42 
coherence representations were aligned with performance representations (i.e., alignment 43 
between stimulus and behavioral subspaces 78). Specifically, we included trial-level reaction time 44 
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and accuracy in our first-level GLMs. Encoding of performance was itself highly robust: most 1 
parcels encoded reaction time and accuracy, with the strongest encoding in cognitive control 2 
regions (Extended Data Figure 7). Across cortex, reaction time and accuracy were negatively 3 
correlated, again most prominently across the cognitive control network. To explore the 4 
behavioral relevance of coherence representations, we tested whether coherence encoding was 5 
aligned with the voxel patterns encoding task performance. 6 
 7 
[Figure 6] 8 
 9 
We found that the encoding of target and distractor coherence was aligned with performance 10 
across frontoparietal and visual regions (Figure 6a-b). If a regions’ encoding of target coherence 11 
reflects how sensitive the participant was to target information on that trial (e.g., due to top-down 12 
priority), we would expect target encoding to be positively aligned with performance on a given 13 
trial, such that stronger target coherence encoding is associated with better performance and 14 
weaker target coherence encoding is associated with poorer performance. We would also expect 15 
distractor encoding to demonstrate the opposite pattern – stronger encoding associated with 16 
poorer performance and weaker encoding associated with better performance. We found 17 
evidence for both patterns of feature-performance alignment across visual and frontoparietal 18 
cortex: target encoding was aligned with better performance (faster RTs and higher accuracy; 19 
Figure 6a), whereas distractor encoding was aligned with worse performance (slower RTs and 20 
lower accuracy; Figure 6b).  21 
 22 
Next, we examined whether performance-coherence alignment reflected individual differences in 23 
participants’ task performance in our main task-related ROIs (see Figures 3-4). In particular, we 24 
tested whether the alignment between features and behavior reflects specific relationships with 25 
speed or accuracy, or whether they reflected overall increases in evidence accumulation (e.g., 26 
faster responding and higher accuracy). Within each ROI, we correlated feature-RT alignment 27 
with feature-accuracy alignment across subjects. We found that in dACC and IPS, participants 28 
showed the negative correlation between performance alignment measures predicted by an 29 
increase in processing speed (Figure 6c). People with stronger alignment between target 30 
coherence and shorter RTs tended to have stronger alignment between target coherence and 31 
higher accuracy, with the opposite found for distractors. While these between-participant 32 
correlations were present within targets and distractors, we did not find any significant 33 
correlations across features (between-feature: all ps > .10), again consistent with feature-specific 34 
processing. These analyses were qualitatively similar after partialing out the reliability of 35 
coherence and performance encoding (see Supplementary Table 2). While between-participant 36 
analyses using small sample sizes warrant a note of caution, these findings are consistent across 37 
features and regions. In conjunction with our within-participant evidence that feature coherence 38 
representations are aligned with performance efficiency, these findings support a role for 39 
coherence encoding in adaptive control.  40 

Feature coherence aligns with frontoparietal activity 41 

Across frontal, parietal, and visual cortex, encoding of target and distractor coherence depended 42 
on task demands and was aligned with performance. Since this widespread encoding of task 43 
information likely reflects distributed network involvement in cognitive control 77,79,80, we sought 44 
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to understand how frontal and parietal systems interact. We focused our analyses on IPS and 1 
lateral PFC (lPFC), linking the core parietal site of orthogonal coherence encoding (IPS) to an 2 
prefrontal site previous work suggests provides top-down feedback during cognitive control 3 
58,79,81,82. Previous work has found that IPS attentional biases lower-level stimulus encoding in 4 
visual cortices 83,84, and that IPS mediates directed connectivity between lPFC and visual cortex 5 
during perceptual decision-making 42. Here, we extended these experiments to test how IPS 6 
mediates the relationship between prefrontal feedback and stimulus encoding. 7 
 8 
To investigate these putative cortical interactions, we developed a multivariate connectivity 9 
analysis to test whether coherence encoding was aligned with prefrontal activity, and whether 10 
this lPFC-coherence alignment was mediated by IPS. We first estimated the voxel-averaged 11 
residual timeseries in lPFC (SPM12’s eigenvariate), and then included this residual timeseries 12 
alongside task predictors in a whole-brain regression analysis (Extended Data Figure 8). This 13 
analysis can be schematized as: 14 
 15 

β!""# = 	𝐺𝐿𝑀(𝑌!""# , 𝑋)	 (1)	16 
𝑒!""# = 𝑃𝐶𝐴(𝑌!""# − 	𝑋𝛽!""#)	 (2)	17 
𝛽$%% = 𝐺𝐿𝑀(𝑌$%% , [𝑋, 𝑒!""#])	 (3) 18 

 19 
The GLM function performs regression on multivariate voxel timeseries Y using design matrix 20 
X, and the PCA function extracts the first principal component of the residuals. Finally, we used 21 
EGA to test whether there was alignment between patterns encoding lPFC functional 22 
connectivity (i.e., betas from the residual timeseries predictor 𝑒!""#) and patterns encoding target 23 
and distractor coherence. Note that these analyses depend on functional connectivity, a 24 
correlational measure that can be subject to confounding 85. 25 
 26 
We found that lPFC connectivity patterns were aligned with coherence-encoding patterns in 27 
visual cortex (Figure 7A). Stronger prefrontal functional connectivity was aligned with weaker 28 
target coherence and stronger distractor coherence, consistent with prefrontal recruitment during 29 
difficult trials. Notably, IPS connectivity was also aligned with target and distractor coherence in 30 
overlapping parcels, even when controlling for lPFC connectivity. These effects were liberally 31 
thresholded for visualization, as significant direct and indirect effects are not necessary for 32 
significant mediation 86.  33 
 34 
Our critical test was whether IPS mediated the relationship between lPFC activity and coherence 35 
encoding. We compared regression estimates between a model that only included lPFC residuals 36 
(‘solo’ model) to a model that included both lPFC and IPS residuals (‘both’ model). Comparing 37 
the strength of lPFC-coherence alignment with and without IPS is a test of whether parietal 38 
cortex mediates lPFC-coherence alignment (MacKinnon et al., 2007). These models can be 39 
schematized as: 40 
	41 

𝛽!&%& = 𝐺𝐿𝑀(𝑌$%% , [𝑋, 𝑒%'()])	 (4) 42 
𝛽*&+, = 𝐺𝐿𝑀(𝑌$%% , [𝑋, 𝑒%(') , 𝑒-'.])	 (5) 43 

 44 
We found that this mediation was strongest in early visual cortex, where the alignment between 45 
lPFC and feature coherence was reduced in a model that included IPS relative to a model without 46 
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IPS (Figure 7B).  The negatively correlated target-lPFC relationship became more positive when 1 
IPS was included (top), and the positively correlated distractor-PFC relationship became more 2 
negative when IPS was included (bottom). Critically, we found that IPS reduced prefrontal-3 
coherence alignment in early visual cortex more than lPFC reduced parietal-coherence alignment 4 
(Figure 7B inset; Supplementary Figure 4A-B), consistent with frontal-to-parietal directed 5 
connectivity in previous research 42,81. Looking within color- and motion-sensitive parcels, 6 
determined using task-free localizer runs (see Methods), we found this mediation was significant 7 
in color-sensitive cortex. The opposite relationship, lPFC mediation of IPS connectivity, 8 
appeared in higher-level visual cortex for distractor coherence (Supplementary Figure 4C-D), 9 
though these effects were not reliable in explicit contrasts and may reflect projections from both 10 
regions. Note that we did not see any significant mediation of first-order target or distractor 11 
coherence encoding by IPS. 12 
 13 
[Figure 7] 14 
 15 
While we were primarily interested in alignment with lPFC due to previous work implicating 16 
these regions in top-down control (for reviews, see 12,87), for completeness we also examined 17 
how different subnetworks in both lPFC and dACC aligned with coherence encoding. In lPFC, 18 
we found that SVA and Control subnetworks had similar patterns of alignment (Supplementary 19 
Figure 5). In dACC we found that the SVA subnetwork had a qualitatively similar profile of 20 
coherence alignment as lPFC, but this alignment was absent in the Control subnetwork. Whereas 21 
this seed-coherence alignment was similar across lPFC and SVA dACC, unlike lPFC we found 22 
that SVA dACC failed to demonstrate strong evidence for mediation by IPS (Supplementary 23 
Figure 6). 24 
 25 
A final set of analyses examined whether SPL and IPS demonstrated different patterns of task-26 
related functional connectivity with other regions, given that we found that these regions 27 
differentially encoded evidence and coherence. When seeding our connectivity analyses with 28 
SPL activity, we found that SPL activity aligned with evidence encoding in bilateral motor 29 
cortex (Extended Data Figure 9). In contrast, IPS activity did not significantly align with 30 
evidence encoding, and this seed-evidence alignment in motor cortex was stronger for SPL than 31 
IPS, consistent with a putative role for SPL in response selection 68. 32 
 33 

Discussion 34 

In this experiment, we explored whether neural control systems use representations with the 35 
same dimensionality as the processes they regulate 2,5,11. Inspired by behavioral evidence that 36 
participants can independently control their sensitivity to targets and distractors 10, we set out to 37 
understand whether the neural correlates of monitoring and prioritization leverage independent 38 
encoding for feature-selective control (Figures 1a-c). We found that key nodes of canonical 39 
cognitive control networks had orthogonal neural representations of targets and distractors. 40 
Within dACC, orthogonal representations of target and distractor difficulty arose from 41 
segregated encoding along a rostrocaudal axis. Within IPS, orthogonal representations of target 42 
and distractor coherence arose from orthogonal subspaces in overlapping voxels. Consistent with 43 
a role in attentional priority, coherence representations depended on control demands, task 44 
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performance, and frontoparietal activity. Together, these results reveal a neural mechanism for 1 
how cognitive control prioritizes multiple streams of information during decision-making. 2 
 3 
Neurocomputational theories have proposed that dACC is involved in planning control across 4 
multiple levels of abstraction 12,88–90. Past work has found that control abstraction is 5 
hierarchically organized along dACC’s rostrocaudal axis, with more caudal dACC involved in 6 
lower-level action control, and more rostral dACC involved in higher-level strategy control 30–7 
32,34, an organization that may reflect a more general hierarchy of abstraction within PFC 31,91–93. 8 
Consistent with this account, we found that caudal dACC tracked the coherence of the target and 9 
distractor dimensions, especially within the SVA network. In contrast, more rostral dACC 10 
tracked incongruence between targets and distractors, especially within the Control network. 11 
Speculatively, our results are consistent with caudal dACC tracking the first-order difficulty 12 
arising from the relative salience of feature-specific information, and more rostral dACC 13 
tracking the second-order difficulty arising from cross-feature (in)compatibility 92, the latter of 14 
which may require additional disengagement from distractor-dependent attentional capture.  15 
 16 
Whereas dACC encoded feature difficulty (e.g., distractor incongruence), in parietal cortex we 17 
found overlapping representations of feature coherence (e.g., distractor coherence). In SPL, 18 
features had correlated coherence encoding (similarly representing low target coherence and high 19 
distractor coherence), consistent with this region’s transient and non-selective role in attentional 20 
control 94–99. In contrast, IPS had orthogonal representations of feature coherence, consistent with 21 
selective prioritization of task-relevant information 47,71–73,81,83,94–96,99,100. While IPS primarily 22 
encoded features orthogonally (i.e., in the largest components of our multidimensional scaling 23 
analysis), the total coherence across features could also be read out at higher dimensions. The 24 
ability of IPS to communicate both orthogonal and aligned coherence representations is 25 
consistent with the diverse roles of IPS in attentional control. 26 
 27 
Our previous work has demonstrated behavioral evidence for independent control over target and 28 
distractor attentional priority in this task 10, with different task variables selectively enhancing 29 
target or distractor sensitivity (see also 4,101). Orthogonal feature representation in IPS may offer 30 
a mechanism for this feature-selective control, consistent with theoretical accounts of IPS 31 
implementing a priority map that combines stimulus- or value-dependent salience with goal-32 
dependent feedback from PFC  17,57,58,80,102.  33 
 34 
In dACC, we found that target and distractor difficulty encoding was consistent with the 35 
segregated encoding hypothesis, with features evoking univariate responses in distinct but 36 
adjacent regions. Interestingly, we did not find corresponding encoding of distractor congruence 37 
in our multivariate analyses within dACC, potentially reflecting the spatial smoothness of this 38 
response. However, we did find multivariate encoding of distractor congruence in lPFC, and 39 
multivariate encoding of target and distractor coherence in IPS. These multivariate profiles were 40 
consistent with our subspace encoding hypothesis. The reasons for a mix of segregated and 41 
subspace encoding across cortex is unclear, but this may speculatively reflect the segregation 42 
across functional networks. Like in dACC, distractor congruence had stronger encoding within 43 
the lPFC Control network, albeit without the feature segregation (lPFC Control parcels also 44 
encoded target coherence in an orthogonal subspace). It is possible that these network 45 
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segregations help bind related control processes 15,18,80, a hypothesis that future experiments 1 
should test with targeted paradigms (e.g., with subject-specific functional networks).  2 
 3 
By comparing two different task goals (Attend-Color vs. Attend-Motion), our study was able to 4 
test whether coherence representations reflect control-dependent prioritization of information 5 
processing. Previous research has shown that these tasks differ dramatically in their control 6 
demands 10. As in previous work, task performance was much better in Attend-Motion runs than 7 
Attend-Color runs, and participants were not sensitive to color distractors. Consistent with 8 
previous work on context-dependent decision-making, target evidence had similarly strong 9 
encoding across tasks, with generalizable encoding dimensions for choice and motion directions 10 
36,41,45. In contrast to these putative decision representations, we found that coherence 11 
representations disappeared in the easier Attend-Motion task. On its own, weaker encoding of 12 
color distractors in Attend-Motion could be explained by the weaker bottom-up salience of the 13 
color dimension. However, the stark drop in the encoding of target (motion) coherence in these 14 
blocks cannot be similarly accounted for – these differences in target coherence encoding 15 
showed the opposite relationship expected from salience: better encoding of low-salience color 16 
targets (hard Attend-Color task) and weaker encoding of high-salience motion targets (easy 17 
Attend-Motion task). Instead, this encoding profile is consistent with previous research finding 18 
that feature decoding is stronger for more difficult tasks 47,71,72,103 or when people are 19 
incentivized to use cognitive control 104,105.  20 
 21 
Critically, stimuli and responses were matched across tasks, helping to rule out alternative 22 
accounts of coherence encoding based on ‘bottom-up’ stimulus salience, decision-making, or eye 23 
movements. Difficulty-dependent coherence encoding may instead reflect the involvement of an 24 
attention control system that can separately regulate target and distractor processing, 25 
speculatively indexing the top-down ‘gain’ or ‘priority’ on these features 17,58,102. Supporting this 26 
account, coherence representations in cognitive control regions like IPS were aligned with 27 
performance representations, with target encoding strength aligned with better performance and 28 
distractor encoding strength aligned with poorer performance. Individual difference in feature-29 
performance alignment was correlated across features, consistent with these representations 30 
reflecting the underlying processes (e.g., priority) that give rise to behavior, rather than 31 
performance monitoring or surprise (which would likely have the opposite relationship, e.g., high 32 
target coherence aligned with poorer performance). 33 
 34 
Classic models of prefrontal involvement in cognitive control 77,82,106 propose that prefrontal 35 
cortex biases information processing in sensory regions. In line with this macro-scale 36 
organization, we found that coherence encoding in visual cortex was related to functional 37 
connectivity with the frontoparietal network. In particular, coherence encoding in visual cortex 38 
was aligned with patterns of functional connectivity to lateral prefrontal cortex, and this feature-39 
seed relationship was mediated by IPS. The results of this multivariate connectivity analysis are 40 
consistent with previous research supporting a role for IPS in top-down control of visual 41 
encoding 83,84,107, as well as a granger-causal PFC-IPS-visual pathway during a similar decision-42 
making task 42. Here, we demonstrate stable ‘communication subspaces’ between visual cortex 43 
and PFC 108,109, which can plausibly communicate feedback adjustments to feature gain. With 44 
that said, while our interpretation of the direction of communication is therefore supported by 45 
prior work, these connectivity methods are correlational 85, and cannot rule out the possibility 46 
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that our mediation findings reflect a bottom-up pattern of communication (e.g., visual-IPS-PFC). 1 
The asymmetric mediation between regions (i.e., IPS mediates lPFC more than lPFC mediates 2 
IPS; Supplementary Figure 4) rules out a range of potential confounders, and these regions were 3 
selected based on the anatomical connectivity within the frontoparietal network, notably 4 
through  the superior longitudinal fasciculus 110. Future research should use temporally precise 5 
neuroimaging to account for directionality, causal manipulations to account for causality (e.g., 6 
111), and  should explore the higher dimensional connectivity subspaces that link different regions 7 
103,109. These considerations notwithstanding, our findings are consistent with IPS, a critical site 8 
for orthogonal feature representations, playing a key role in linking prefrontal cortex with early 9 
perceptual processing. 10 
 11 
Collectively, our findings provide new insights into how the brain may control multiple streams 12 
of information processing. While evidence for multivariate control has a long history in 13 
attentional tracking 28,112, including parametric relationships between attentional load and IPS 14 
activity 113–117, little is known about how the brain coordinates multiple control signals 2,5. Future 15 
experiments should further elaborate on this frontoparietal control circuit, for instance by 16 
interrogating how incentives influence different task representations 104,105,118–120, or how neural 17 
and behavioral indices of control causally depend on perturbations of neural activity 111. Future 18 
experiments should also use fast timescale neural recording technologies like (i)EEG or (OP-19 
)MEG to better understand the within-trial dynamics of multivariate control 10,121. In sum, this 20 
experiment provides new insights into the large-scale neural networks involved in multivariate 21 
cognitive control, and points towards new avenues for developing a richer understanding of goal-22 
directed attention. 23 

  24 
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Methods 1 

Participants 2 

Twenty-nine individuals (17 females, Age: M = 21.2, SD = 3.4) provided informed consent and 3 
participated in this experiment for compensation ($40 USD; IRB approval code: 1606001539). 4 
All participants had self-reported normal color vision and no history of neurological disorders. 5 
Two participants missed one Attend-Color block (see below) due to a scanner removal, and one 6 
participant missed a motion localizer due to a technical failure, but all participants were retained 7 
for analysis. This study was approved by Brown University’s institutional review board. 8 

Task 9 

The main task closely followed our previously reported behavioral experiment 10. On each trial, 10 
participants saw a random dot kinematogram (RDK) against a black background. This RDK 11 
consisted of colored dots that moved left or right, and participants responded to the stimulus with 12 
button presses using their left or right thumbs.  13 
 14 
In Attend-Color blocks (six blocks of 150 trials), participants responded depending on which 15 
color was in the majority. Two colors were mapped to each response (four colors total), and dots 16 
were a mixture of one color from each possible response. Dots colors were approximately 17 
isolument (uncalibrated RGB: [239, 143, 143], [191, 239, 143], [143, 239, 239], [191, 143, 18 
239]), and we counterbalanced their assignment to responses across participants.  19 
 20 
In Attend-Motion blocks (six blocks of 45 trials), participants responded based on the dot motion 21 
instead of the dot color. Dot motion consisted of a mixture between dots moving coherently 22 
(either left or right) and dots moving in a random direction. Attend-Motion blocks were shorter 23 
because they acted to reinforce motion sensitivity and provide a test of stimulus-dependent 24 
effects. 25 
 26 
Critically, dots always had color and motion, and we varied the strength of color coherence 27 
(percentage of dots in the majority) and motion coherence (percentage of dots moving 28 
coherently) across trials. Our previous experiments have found that in Attend-Color blocks, 29 
participants are still influenced by motion information, introducing a response conflict when 30 
color and motion are associated with different responses 10. Target coherence (e.g., color 31 
coherence during Attend-Color) was linearly spaced between 65% and 95% with 5 levels, and 32 
distractor congruence (signed coherence relative to the target response) was linearly spaced 33 
between -95% and 95% with 5 levels. In order to increase the salience of the motion dimension 34 
relative to the color dimension, the display was large (~10 degrees of visual angle) and dots 35 
moved quickly (~10 degrees of visual angle per second).  36 
 37 
Participants had 1.5 seconds from the onset of the stimulus to make their response, and the RDK 38 
stayed on the screen for this full duration to avoid confusing reaction time and visual stimulation 39 
(the fixation cross changed from white to gray to register the response). The inter-trial interval 40 
was uniformly sampled from 1.0, 1.5, or 2.0 seconds. This ITI was relatively short in order to 41 
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maximize the behavioral effect, and because efficiency simulations showed that it increased 1 
power to detect parametric effects of target and distractor coherence (e.g., relative to a more 2 
standard 5 second ITI). The fixation cross changed from gray to white for the last 0.5 seconds 3 
before the stimulus to provide an alerting cue. 4 

Procedure 5 

Before the scanning session, participants provided consent and practiced the task in a mock MRI 6 
scanner. First, participants learned to associate four colors with two button presses (two colors 7 
for each response). After being instructed on the color-button mappings, participants practiced 8 
the task with feedback (correct, error, or 1.5 second time-out). Errors or time-out feedback were 9 
accompanied with a diagram of the color-button mappings. Participants performed 50 trials with 10 
full color coherence, and then 50 trials with variable color coherence, all with 0% motion 11 
coherence. Next, participants practiced the motion task. After being shown the motion mappings, 12 
participants performed 50 trials with full motion coherence, and then 50 trials with variable 13 
motion coherence, all with 0% color coherence. Finally, participants practiced 20 trials of the 14 
Attend-Color task and 20 trials of Attend-Motion tasks with variable color and motion coherence 15 
(same as scanner task). 16 
 17 
Following the twelve blocks of the scanner task, participants underwent localizers for color and 18 
motion, based on the tasks used in our previous experiments 30. Both localizers were block 19 
designs, alternating between 16 seconds of feature present and 16 seconds of feature absent for 20 
seven cycles. For the color localizer, participants saw an aperture the same size as the task, either 21 
filled with colored squares that were resampled every second during stimulus-on (‘Mondrian 22 
stimulus’), or luminance-matched gray squares that were similarly resampled during stimulus-23 
off. For the motion localizer, participants saw white dots that were moving with full coherence in 24 
a different direction every second during stimulus-on, or still dots for stimulus-off. No responses 25 
were required during the localizers. 26 

MRI sequence  27 

We scanned participants with a Siemens Prisma 3T MR system. We used the following sequence 28 
parameters for our functional runs: field of view (FOV) = 211 mm × 211 mm (60 slices), voxel 29 
size = 2.4 mm3, repetition time (TR) = 1.2 sec with interleaved multiband acquisitions 30 
(acceleration factor 4), echo time (TE) = 33 ms, and flip angle (FA) = 62°. Slices were acquired 31 
anterior to posterior, with an auto-aligned slice orientation tilted 15° relative to the AC/PC plane. 32 
At the start of the imaging session, we collected a high-resolution structural MPRAGE with the 33 
following sequence parameters: FOV = 205 mm × 205 mm (192 slices), voxel size = 0.8 mm3, 34 
TR = 2.4 sec, TE1 = 1.86 ms, TE2 = 3.78 ms, TE3 = 5.7 ms, TE4 = 7.62, and FA = 7°. At the 35 
end of the scan, we collected a field map for susceptibility distortion correction (TR = 588ms, 36 
TE1 = 4.92 ms, TE2 = 7.38 ms, FA = 60°). 37 
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fMRI preprocessing 1 

We preprocessed our structural and functional data using fMRIprep (v20.2.6; 122 based on the 2 
Nipype platform 123. We used FreeSurfer and ANTs to nonlinearly register structural T1w 3 
images to the MNI152NLin6Asym template (resampling to 2mm). To preprocess functional T2w 4 
images, we applied susceptibility distortion correction using fMRIprep, co-registered our 5 
functional images to our T1w images using FreeSurfer, and slice-time corrected to the midpoint 6 
of the acquisition using AFNI. We then registered our images into MNI152NLin6Asym space 7 
using the transformation that ANTs computed for the T1w images, resampling our functional 8 
images in a single step. For univariate analyses, we smoothed our functional images using a 9 
Gaussian kernel (8mm FWHM, as dACC responses often have a large spatial extent). For 10 
multivariate analyses, we worked in the unsmoothed template space (see below). 11 

fMRI univariate analyses 12 

We used SPM12 (v7771) for our univariate general linear model (GLM) analyses. Due to high 13 
trial-to-trial collinearity from to our short ITIs, we performed all analyses across trials, rather 14 
than extracting single-trial estimates. Our regression models used whole trials as events (i.e., a 15 
1.5 second boxcar aligned to the stimulus onset). We parametrically modulated these events with 16 
standardized trial-level predictors (e.g., linear-coded target coherence, or contrast-coded errors), 17 
and then convolved these predictors with SPM’s canonical HRF, concatenating our voxel 18 
timeseries across runs. We included nuisance regressors to capture 1) run intercepts and 2) the 19 
average timeseries across white matter and CSF (as segmented by fMIRPrep). To reduce the 20 
influence of motion artifacts, we used robust weighted least-squares 124,125, a procedure for 21 
optimally down-weighting noisy TRs.  22 
 23 
We estimated contrast maps at the subject-level, which we then used for one-sample t-tests at the 24 
group-level. We controlled for family-wise error rate using threshold-free cluster enhancement 25 
126, testing whether voxels have an unlikely degree of clustering under a randomized null 26 
distribution (Implemented in PALM 127; 10,000 randomizations). To improve the specificity of 27 
our coverage (e.g., reducing white-matter contributions) and to facilitate our inference about 28 
functional networks (see below), we limited these analyses to voxels within the Kong2022 29 
whole-brain parcellation 54,55. This parcellation assigns regional labels to parcels (e.g., whether 30 
parcels are in ‘SPL’ or ‘IPS’), which was used through-out to generate ROIs. Surface renders 31 
were generated using surfplot 128,129, projecting from MNI space to the Human Connectome 32 
Project’s fsLR space (164,000 vertices).  33 

dACC longitudinal axis analyses 34 

To characterize the spatial organization of target difficulty and distractor congruence signals in 35 
dACC, we constructed an analysis mask that provided broad coverage across cingulate cortex 36 
and preSMA. This mask was constructed by 1) getting a meta-analytic mask of cingulate 37 
responses co-occurring with ‘cognitive control’ (Neurosynth uniformity test; 130, and taking any 38 
parcels from the whole-brain Schaefer parcellation (400 parcels; 54,55 that had a 50 voxel overlap 39 
with this meta-analytic mask. We used this parcellation because it provided more selective gray 40 



 19 

matter coverage than the Neurosynth mask alone and it allowed us to categorize voxels 1 
membership in putative functional networks. 2 
 3 
To characterize the spatial organization within dACC, we first performed PCA on the masked 4 
voxel coordinates (y and z), getting a score for eac’ voxel’s position on the longitudinal axis of 5 
this ROI. We then regressed voxel’s gradient scores against their regression weights from a 6 
model including linear target coherence and distractor congruence (both coded -1 to 1 across 7 
difficulty levels). We used linear mixed effects analysis to partially pool across subjects and 8 
accommodate within-subject correlations between voxels. Our model predicted gradient score 9 
from the linear and quadratic expansions of the target and distractor betas (gradientScore ~ 1 + 10 
target + target2 + distractor + distractor2 + (1 + target + target2 + distractor + distractor2 | 11 
subject)). To characterize the network-dependent organization of target and distractor encoding, 12 
we complexity-penalized fits between models that either 1) predicted target or distractor betas 13 
from linear and quadratic expansions of gradient scores, or 2) predicted target/distractor betas 14 
from dummy-coded network assignment from the Schaefer parcellation, comparing these models 15 
against a model that used both network and gradient information.  16 

Encoding Geometry Analysis (EGA) 17 

We adapted functions from the pcm-toolbox and rsatoolbox packages for our multivariate 18 
analyses 65,131. We first fit whole-brain GLMs without spatial smoothing, separately for each 19 
scanner run. These GLMs estimated the parametric relationship between task variables and 20 
BOLD response (e.g., linearly coded target coherence), with a pattern of these parametric betas 21 
across voxels reflecting linear encoding subspace 59. Within each Schaefer parcel (n=400), we 22 
spatially pre-whitened these beta maps, reducing noise correlations between voxels that can 23 
inflate pattern similarity and reduce reliability 63. We then computed the cross-validated Pearson 24 
correlation, estimating the similarity of whitened patterns across scanner runs. We used a 25 
correlation metric to estimate the alignment between encoding subspaces, rather than distances 26 
between condition patterns, to normalize biases and scaling across stimuli (e.g., greater 27 
sensitivity to targets vs distractors) and across time (e.g., representational drift). Note that this 28 
analysis approach is related to ‘Parallelism Scores’ 43, but here we use parametric encoding 29 
models and emphasize not only deviations from parallel/orthogonal, but also the direction of 30 
alignment between features (e.g., Figures 5 and 7). 31 
 32 
We computed subspace alignment between contrasts of interest within each participant, and then 33 
tested these against zero at the group level. Since our correlations were less than r = |0.5|, we did 34 
not transform correlations before analysis. We used a Bayesian t-test to test for orthogonality 35 
(bayesFactor toolbox in MATLAB, based on 132). The Bayes factor from this t-test gives 36 
evidence for either non-orthogonality (BF10 further from zero) or orthogonality (BF10 closer to 37 
zero, often defined as the reciprocal BF01). Using a standard prior (Cauchy, width = 0.707), our 38 
strongest possible evidence for the orthogonality is BF01 = 5.07 or equivalently logBF = -0.705 39 
(i.e., the Bayes factor when t(28) = 0). 40 
 41 
Our measure of encoding strength was whether encoding subspaces were reliable across blocks 42 
(i.e., whether within-feature encoding pattern correlations across runs were significantly above 43 
zero at the group level). We used pattern reliability as a geometric proxy for how well a linear 44 
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encoder would predict held-out brain data, as reliability provides the similarity between the 1 
cross-validated model and the best linear unbiased estimator of the within-sample data. We 2 
confirmed through simulations that pattern reliability is a good proxy for the traditional encoding 3 
metric of predicting held-out timeseries 59. However, we found that pattern reliability is more 4 
powerful, due to it being much less sensitive to the magnitude of residual variance (these two 5 
methods are identical in the noise-free case; see Extended Data Figure 3). 6 
 7 
When looking at alignment between two subspaces across parcels, we first selected parcels that 8 
significantly encoded both factors (‘jointly reliable parcels’, both p < .001 uncorrected). This 9 
selection process acts as a thresholded version of classical correlation disattenuation 66,67, and we 10 
confirmed through simulations this selection procedure does not increase type 1 error rate. We 11 
corrected for multiple comparisons using non-parametric max-statistic randomization tests across 12 
parcels 133. These randomization tests determine the likelihood of an observed effects under a 13 
null distribution generated by randomizing the sign of alignment correlations across participants 14 
and parcels 10,000 times. Within each randomization, we saved the max and min group-level 15 
effect sizes across all parcels, estimating the strongest parcel-wise effect we’d expect if there 16 
wasn’t a systematic group-level effect. 17 
 18 
Some of our first-level models had non-zero levels of multicollinearity, due to conditioning on 19 
trials without omission errors or when including feature coherence and performance in the same 20 
model. Multicollinearity was far below standard thresholds for concern, generally (much) less 21 
than 5 for a standard threshold is 30 (ratio between largest and smallest singular values in the 22 
design matrix, using MATLAB colintest; 134). However, we wanted to confirm that predictor 23 
correlations wouldn’t bias our estimates of encoding alignment. We simulated data from a 24 
pattern component model 131 in which two variables were orthogonal (generated by separate 25 
variance components with no covariance), but were generated from a design matrix with 26 
correlated predictors. These simulations confirmed that cross-validated similarity measures were 27 
not biased by predictor correlations (Extended Data Figure 10). 28 
 29 
To provide further validation for our parametric analyses, we estimated encoding profiles using 30 
an analysis with fewer parametric assumptions. First, we fit a GLM with separate predictors for 31 
levels of target and distractor evidence (‘Evidence Levels’ GLM in Table 1). Next, we estimated 32 
a traditional (cross-validated) representational dissimilarity matrix across all feature levels. 33 
Finally, we visualized these encoding profiles using classical multidimensional scaling 34 
(eigenvalue decomposition; see Figure 4B and Extended Data Figure 5). 35 

Multivariate Connectivity Analysis 36 

To estimate what information is plausibly communicated between cortical areas, we measured 37 
the alignment between multivariate connectivity patterns (i.e., the ‘communication subspace’ 38 
with a seed region, 108) and local feature encoding patterns. First, we residualized our 39 
Performance GLM (see Table 1) from a seed region’s timeseries, and then extracted the 40 
variance-weighted average timecourse (i.e., the leading eigenvariate from SPM12’s volume of 41 
interest function). We then re-estimated our Performance GLM, including the block-specific 42 
seed timeseries as a covariate, and performed EGA between seed and coherence patterns (see 43 
Equations 1-3). We found convergent results when we residualized a quadratic expansion of our 44 
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Performance GLM from our seed region, helping to confirm that connectivity alignment wasn’t 1 
due to underfitting. Note that our cross-validated EGA helps avoid false positives due to any 2 
correlations in the design matrix (see above). We localized this connectivity analysis to color- 3 
and motion-sensitive cortex by finding the bilateral Kong22 parcels that roughly covered the area 4 
of strongest block-level contrast during our localizer runs. Note that these analyses reflect 5 
‘functional connectivity’, which is susceptible to unmodelled confounders 85. 6 
 7 
To estimate the mediation of lPFC connectivity by IPS, we compared models in which just lPFC 8 
or just IPS were used for EGA against a model where both seeds were included as covariates in 9 
the same model (86; see Equations 4-5). Our test of mediation was the group-level difference in 10 
lPFC seed-coherence alignment before and after including IPS. While these analyses are 11 
inherently cross-sectional (i.e., lPFC and IPS are measured at the same time), we supplemented 12 
these analyses by showing that the mediating effect of IPS on lPFC was much larger than the 13 
mediating effect of lPFC on IPS (see Figure 7B; Supplementary Figure 4). Unlike traditional 14 
mediation analyses looking at the first-order change in regression estimates, our analysis looks at 15 
the second-order change in the multivariate alignment between regression estimates, using the 16 
same core rationale.  17 

Data Availability: Unprocessed fMRI data is available at 18 
https://doi.org/10.18112/openneuro.ds004909.v1.1.0. Behavioral data, event timing, and analysis 19 
code are available at: https://github.com/shenhavlab/PACT_fMRI_public. 20 

Code Availability: Analysis pipeline is available at 21 
https://github.com/shenhavlab/PACT_fMRI_public. Software versions: MATLAB 2020a; 22 
fMRIPrep 20.2.6; SPM12 (v7771); rwls 4.1; PALM a119; rsatoolbox_matlab 1.0; bayesFactor 23 
1.1; surfplot 0.1.0; ScientificColourMaps7. 24 

Acknowledgements: This work was supported by NIH grant R01MH124849 (A.S.), NSF 25 
CAREER Award 2046111(A.S.), NIH grant S10OD025181 (A.S.), and the C.V. Starr 26 
Postdoctoral Fellowship (H.R.). The funders had no role in study design, data collection and 27 
analysis, decision to publish or preparation of the manuscript. We are grateful to Joonhwa Kim 28 
for her assistance in data collection, and to Michael J. Frank, Matthew N. Nassar, Jonathan 29 
Cohen, Michael Esterman, Romy Frömer, Jörn Diedrichsen, Apoorva Bhandari, Debbie Yee, 30 
Sam Nastase, Caroline Jahn, and the Shenhav Lab for helpful discussions.  31 

Author Contributions: Both authors designed the experiment, planned the analyses, and wrote 32 
the manuscript. H.R. collected the data and conducted the analyses. 33 

Conflicts of Interest: The authors declare no competing interests.  34 

 35 

  36 

https://github.com/shenhavlab/PACT_fMRI_public


 22 

Tables 1 

Table 1.  fMRI models. First-level general linear models used for univariate and multivariate fMRI analyses. 2 
Coherence: percentage of dots supporting the same response ('unsigned coherence’). Evidence: % dots supporting a 3 
rightwards vs leftwards response (‘signed coherence’). Distractor Congruence: % dots supporting the same response 4 
as the target dimension. All predictors were z-scored within their run. For difficulty and feature levels, we included 5 
each level as a separate predictor, with collinearity with the block intercept preventing all levels from being 6 
included. For Evidence Levels, targets had greater granularity due to distractors being coded relative to targets (5 7 
levels of congruence led to 5 levels of coherence). For Performance CX, seed timeseries were included as run-8 
separated regressors (see Multivariate Connectivity Analysis in Methods). 9 
 10 

  11 

Model 
Name 

Trial 
selection 

Predictors (z-scored) 

Feature UV No omission 
errors;  
run-
concatenated  

target coherence, distractor coherence, target evidence, distractor evidence, 
distractor congruence;  
omission errors (run-concatenated) 

Difficulty 
Levels 

No omission 
errors;  
run-
concatenated 

Separate levels (1,2,4,5) of target coherence, separate levels (1,2,4,5) of 
distractor congruence;  
omission errors (run-concatenated) 

Feature MV No errors;  
run-separated 

target coherence, distractor coherence, target evidence, distractor evidence, 
distractor congruence;  
errors (run-concatenated) 

Evidence 
Levels 

No errors;  
run-separated 

Levels (1-5, 6-10) of target evidence, Levels (1,2,4,5) of distractor evidence; 
errors (run-concatenated) 

Between-Task No errors;  
run-separated 

target coherence, distractor coherence, target evidence, distractor evidence, 
distractor congruence;  
errors (run-concatenated);  
reaction time (run-concatenated) 

Performance No omission 
errors;  
run-separated 

target coherence, distractor coherence, target evidence, distractor evidence, 
distractor congruence, reaction time, accuracy;  
omission errors (run-concatenated) 

Performance 
CX 

No omission 
errors;  
run-separated 

target coherence, distractor coherence, target evidence, distractor evidence, 
distractor congruence, reaction time, accuracy;  
omission errors (run-concatenated); 
seed timeseries (run-separated) 
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Figure Captions 1 

Figure 1. Task and Behavior. A-C) Three hypothesized encoding schemes. A) In aligned encoding features are 2 
represented similarly, e.g., encode performance variables like error likelihood or time-on-task. B) In segregated 3 
encoding features are encoded independently, in distinct voxel populations (i.e., voxel-level pure selectivity 40). C) 4 
In subspace encoding, features are encoding independently, in overlapping voxel populations (i.e., voxel-level 5 
mixed selectivity). D) Participants responded to a color-motion random dot kinematogram (RDK) with a button 6 
press. Participants either responded to the left/right motion direction of the RDK (Attend-Motion runs) or based on 7 
the majority color (Attend-Color runs; critical condition). E) We parametrically and independently manipulated 8 
target coherence (% of dots in the majority color) and distractor congruence (motion coherence signed relative to the 9 
target response). F) Participants were faster and more accurate when the target was more coherent. G) Participants 10 
were faster and more accurate when the distractor was more congruent with the target. Error bars on line plots 11 
reflect mean and within-participant SEM, error bars for regression fixed-effect betas reflect 95% CI (N=29 for all 12 
figures). 13 
 14 
Figure 2. Distinct coding of target and distractor difficulty in dACC. A) We looked for linear target coherence and 15 
distractor congruence signals within an a priori dACC mask (white outline; overlapping Kong22 parcels and medial 16 
‘cognitive control’ Neurosynth mask). We found that voxels in the most caudal dACC reflected target difficulty 17 
(green), more rostral voxels reflected distractor incongruence (blue). Note that these maps only show difficulty-18 
coded effects; the most rostral portion of dACC responded to target ease (Extended Data Figure 2). Shading reflects 19 
two-tailed t-stats, corrected for multiple comparisons using non-parametric threshold-free cluster enhancement. B) 20 
We extracted the long axis of the dACC using a PCA of the voxel coordinates. We plotted the target coherence 21 
(green) and distractor congruence (blue) along the deciles of this long axis. Fit lines are the quantized predictions 22 
from a second-order polynomial regression. We used these regression betas to estimate the minima for target and 23 
distractor tuning (i.e., location of strongest difficulty effects), finding that the target difficulty peak (vertical green 24 
line) was more caudal than the distractor incongruence peak (vertical blue line). C) Plotting the uncorrected whole-25 
brain response, distractor incongruence responses (blue) were strongest within the ‘Control C’ sub-network (red), 26 
both in dACC and anterior insula. D) BOLD responses across levels of target coherence and distractor congruence, 27 
plotted within the whole dACC ROI (left), or the ‘Salience/Ventral Attention (SVA)’ network and ‘Control’ 28 
network parcels within the dACC ROI (right). GLMs: A-C: Feature UV, D: Difficulty Levels, see Table 1. 29 
Throughout, error bars reflect mean and within-participant SEM (N=29). 30 
 31 
Figure 3. Encoding Geometry Analysis (EGA) dissociates target and distractor encoding. A) Parametric univariate 32 
responses to weak target coherence (green; percentage of dots in majority color), strong distractor coherence 33 
(orange; percentage of dots with coherent motion), and their conjunction (yellow). Statistical tests (two-tailed t-tests) 34 
are corrected for multiple comparisons using non-parametric threshold-free cluster enhancement (TFCE). B)  35 
Alignment between target and distractor coherence (two-tailed t-test on correlation values), within parcels where 36 
both were jointly reliable (two-tailed p < .001, uncorrelated). Representations were negatively correlated within 37 
Superior Parietal Lobule (SPL in gold; Kong22 labels), and uncorrelated within Intraparietal Sulcus (IPS in white; 38 
Kong22 labels). C) Anatomical labels for parietal regions, based on the labels in the Kong22 parcellation. D) 39 
Bayesian analyses provide explicit evidence for orthogonality within IPS (i.e., negative BF; theoretical minima: -40 
0.71). E) Coherence coded in terms of evidence (i.e., supporting a left vs right choice). Target and distractor 41 
evidence encoding overlapped in visual cortex and SPL and was represented orthogonally. GLMs: A: Feature UV, 42 
B-E: Feature MV, see Table 1. 43 
 44 
Figure 4. Region-specific feature encoding. A) Similarity matrices for dACC, lPFC, SPL, and IPS, correlating 45 
feature evidence (‘Evid’), feature coherence (‘Coh’), and feature congruence (‘Cong’). Encoding strength on 46 
diagonal (right-tailed t-test), encoding alignment on off-diagonal (two-tailed t-test). No correction for multiple 47 
comparisons. B) Classical MDS embedding of target (circle) and distractor (diamond) representations at different 48 
levels of evidence. Colors denote responses, hues denote coherence. GLMs: A: Feature MV, B: Evidence Levels, 49 
see Table 1. 50 
 51 
 52 
 53 
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Figure 5. Task-dependent encoding strength. A) Across cortex, feature coherence encoding was stronger during 1 
Attend-Color than Attend-Motion, matched for the same number of trials. Attend-Color had stronger encoding when 2 
comparing target coherence (top left), distractor coherence (top right), color coherence (bottom left) and motion 3 
coherence (bottom right). Parcels are thresholded at p < .001 (two-tailed, uncorrected); outlined parcels are 4 
significant at p < .05 (two-tailed max-statistic randomization test across all parcels). Condition labels in title 5 
parentheses are coded ‘FeatureTask’. B) Target and distractor coherence information was encoded more strongly 6 
during Attend-Color than Attend-Motion in dACC, lPFC, SPL and IPS. Attend-Color encoding plotted from the 7 
whole sample (blue fill) and a trial-matched sample (first 45 trials of each run; white fill) In Attend-Motion runs, 8 
only target evidence was significantly encoded (magenta). Error bars reflect mean and within-participant SEM 9 
(N=29). GLM: Between-Task, see Table 1. 10 
 11 
Figure 6. Alignment between feature and performance encoding. A) Alignment between encoding of target 12 
coherence and performance (top row: Accuracy, bottom row:  RT). B) Alignment between encoding of distractor 13 
coherence and performance (top row: Accuracy, bottom row:  RT). Across A and B, parcels are thresholded at p < 14 
.001 (two-tailed uncorrected t-test, in jointly reliable parcels at p < .001). Outlined parcels are significant at p < .05 15 
(two-tailed max-statistic randomization test across jointly reliable parcels). C) Individual differences in feature-RT 16 
alignment correlated with feature-accuracy alignment across regions (Pearson correlation values in top right; p < .05 17 
in red). See Supplementary Table 2 for partial correlations controlling for reliability. GLM: Performance, see Table 18 
1. 19 
 20 
Figure 7. IPS mediates alignment between lPFC and feature encoding. A) Connectivity patterns from lPFC (color) 21 
and IPS (red outline) were aligned with target and distractor coherence patterns (two-tailed p < .001 uncorrected, in 22 
jointly reliable parcels at p < .001). IPS effects are outlined to show overlap, with all effects in a consistent direction 23 
to lPFC. B) lPFC-feature alignment contrasted between lPFC-only model (‘Solo’) and lPFC + IPS model (‘Both’). 24 
Including IPS reduced the alignment between lPFC and feature encoding (compare the sign of the main effect in A 25 
to the contrast in B). Parcels are thresholded at two-tailed p < .001 (uncorrected, jointly reliable parcels), and 26 
outlined parcels are significant at p < .05 (two-tailed max-statistic randomization test across jointly reliable parcels). 27 
Insets graphs: seed-coherence alignment in Solo models (black) and Both model (orange) across visual regions. 28 
‘Visual C’ is defined by our parcellation 54; Color and Motion localizers are parcels near the peak response 29 
identified during feature localizer runs (see Methods). In general, lPFC alignment was more affected by IPS than 30 
IPS alignment was affected by lPFC. Throughout, error bars reflect mean and within-participant SEM (N=29). 31 
GLM: Performance CX, see Table 1. 32 
 33 
 34 

  35 
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