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Abstract—Recent years have witnessed the ever-growing
interest and adoption of autonomous vehicles (AVs), thanks
to the latest advancement in sensing and artificial intelligence
(AI) technologies. The LiDAR sensor is adopted by most
AV manufacturers for its high precision and high reliability.
Unfortunately, LiDARs are susceptible to malicious spoofing
attacks, which can lead to severe safety consequences for AVs.
Most current work focuses on protecting LiDAR against spoofing
attacks by using perception model-level defense methods, whose
effectiveness unfortunately depends on the correctness of the
LiDAR’s sensing outcome. A spoofer thus can elude from these
methods as long as it fabricates points that maintain the right
contextual relationship held by the legitimate points. In this
article, we propose to use the signal’s Doppler frequency shift
to verify the sender of the signal and detect potential spoofing
attacks. To this end, we first thoroughly analyze the working
principle of LiDAR and conduct real-world experiments to deeply
understand and reveal the vulnerability of LiDAR sensors. We
then prove that the Doppler frequency shifts of legitimate and
spoofing signals present different characteristics, which can be
used to fundamentally protect the LiDAR sensing outcome. For
better demonstration purposes, we consider three attack models,
including static attacker, moving attacker, and moving attacker
with control of both velocity and signal frequency. For each of the
models, we first show how the spoofing attack is performed and
then present our countermeasures. We then propose a statistical
spoofing detection framework to jointly consider the impact of
short-term uncertainty in vehicle velocity, which can provide
more accurate spoofing detection results in realistic environments.
Extensive numerical results are provided in a wide range of
settings and road conditions.

Index Terms—Connected autonomous vehicles (CAV), Doppler
shift, light detection and ranging sensor (LiDAR) sensor, physical-
layer security, spoofing attack.

I. INTRODUCTION

I
N RECENT years, the development of autonomous vehicles

(AVs), i.e., vehicles that can drive by themselves with-

out the real-time intervention of human drivers, is rapidly
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progressing with the advancement of sensing and artificial

intelligence (AI) technologies [1], [2]. Some AVs are already

operating on public roads, e.g., Google’s Waymo One self-

driving taxis [3]. For all these AVs, driving safety is always the

No.1 requirement. To this end, all existing AVs are equipped

with certain types of environment-perception sensors, such

as cameras, mmWave radar, ultrasonic sensors, and light

detection and ranging sensor (LiDAR). With the rise of the

Internet of Things (IoT), AVs can connect to other devices

and systems, such as traffic lights and road sensors, to collect

real-time data and make more informed decisions. This can

enhance the accuracy of the AVs’ sensing and decision-

making abilities, leading to improved safety and efficiency.

Additionally, IoT-enabled AVs can communicate with each

other, allowing them to coordinate their movements and further

improve safety on the road.

Among the various environment-perception sensors used by

AVs, LiDAR sensor is adopted by almost all AV manufacturers

due to its high precision and high reliability [4], [5], [6]. The

LiDAR sensor employs highly directional laser pulses to probe

the surrounding environment. An accurate depth image of the

surrounding objects is then collected by the time of flight (ToF)

of the received pulse, on which a high-resolution 3-D point

cloud map of the environment can be built. In addition, the

usage of an infrared laser signal not only makes LiDAR less

affected by ambient light in the environment, but also enables

LiDAR to remain functional even under poor light conditions.

Ensuring correct and truthful sensing outcome from all

environment-perception sensors is essential to ensure reli-

able safety-critical decision making in autonomous driving.

Unfortunately, recent studies have found that LiDARs are

susceptible to malicious spoofing attacks that aim to alter

LiDAR’s sensing outcome by adding fake objects to and

removing real objects from the LiDAR’s sensed point cloud

map, and hence leading to severe safety consequences. For

example, the feasibility of injecting fake points into the

LiDAR’s sensed point cloud was first demonstrated in [7].

They showed that LiDAR sensing results can be easily

manipulated by a black-box attack using low-cost commodity

hardware (less than 60 U.S. dollars). Subsequent work in [8]

launched LiDAR spoofing attacks that successfully fooled a

real-world AV perception system, Baidu Apollo 2.5, to detect

(faked) objects that do not actually exist in reality. The work

in [9] further demonstrated that by spoofing only a small num-

ber of points (up to 100), the LiDAR object detection system

can be fooled to detect nonexisting objects. Their work shows

the severity of the threats posed by spoofing attacks on AV
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LiDARs, which urgently calls for promising countermeasures

that can better guarantee the safety of autonomous driving, so

as to offer a peace of mind to users when they are using the

technology.

In the last couple of years, many works have been focused

on mitigating the effect of LiDAR spoofing attack using per-

ception model-level defense methods [10], [11], [12], [13]. For

example, the work in [9] proposed CARLO, which harnesses

occlusion patterns between objects in the LiDAR point cloud

for spoofed vehicle detection. The intuition is that, if there

are many LiDAR points appearing to pass through a detected

object, the object is likely to be a fake object Another anomaly

detection system, Shadow-Catcher [14], identifies spoofed

ghost objects by checking the contextual consistency between

the object and its shadow. Treating the LiDAR’s sensed point

cloud as a depth image, these methods essentially follow the

image-recognition research ideas in AI, which mainly consider

the high-level contextual relationship, i.e., the perception,

between the points to decide the presence of a spoofer. A

critical weakness of these post-sensing methods is that their

effectiveness fully depends on the correctness/truthfulness of

their input, i.e., the LiDAR’s sensing outcome (the point

cloud). Therefore, a spoofer will be able to elude from these

methods as long as it fabricates/fakes points that maintain the

right contextual relationship among them.

Keeping the weakness of the above model-level methods in

mind, another category of work is dedicated to fundamentally

protect LiDAR from spoofing attacks based on physical-

layer authentication (PLA). These methods work on the

signal level, and try to authenticate LiDAR’s signal based

on some physical properties of the light so as to ensure the

correctness of LiDAR’s sensing outcome. For example, the

work in [15] uses amplitude modulation (AM) to directly

encrypt LiDAR signals with side channel information leaked

from a cryptographic device. Since side channel information

cannot be recreated without the knowledge of the secret

key, attackers cannot inject spoofing signals while remaining

undetected. Meshcheryakov et al. [16] used the signal-to-noise

ratio (SNR) of the received signal as an authentication metric

and developed a probabilistic approach based on the Neyman–

Pearson criterion to select the best SNR threshold for spoofing

attack detection. However, a major limitation of their methods

is that they use the intensity of the received signal for spoofing

detection, which is not a robust metric for LiDARs. In LiDAR

sensing, the intensity of the reflected signal faces complicated

distortions that are related to the material, size, and roughness

of the reflector. Therefore, the sensing signals encrypted by the

method in [15] may become unrecognizable after reflections.

Furthermore, the SNR of the sensing signal used in [16]

has a large variance due to the dynamics of the environment

(e.g., reflectors are moving), making it difficult to accurately

identify the spoofing signal.

In this article, we find that the intrinsic vulnerability of

LiDAR is caused by the fact that current LiDAR sensors

blindly accept incoming signals without verifying the sender

of the signal. Therefore, we propose to use the signal’s

Doppler frequency shift to verify the sender of the signal

and detect potential spoofing attacks. The fundamental dif-

ference between a spoofing signal and a legitimate signal

is that the spoofing signal is generated by the attacker and

directly sent to the LiDAR receiver, while the legitimate

signal is originally sent by the LiDAR transmitter and then

echoed/reflected by some objects. Based on this observation

and through experiments on real-world testbed, we find that

the propagation differences between legitimate and spoofing

signals can be characterized by the Doppler shift of the

received signal, which can then be used for spoofing attack

detection. Specifically, the major contributions of our work are

fourfold.

1) To have a deep understanding on the vulnerability of

today’s LiDAR sensors, we thoroughly analyze the

working principle of LiDAR and conduct real-world

experiments to demonstrate how easily a spoofing attack

can be launched against LiDAR, so as to show such

attacks are realistic to current LiDAR technology, and

hence the urgency of a promising countermeasure.

2) We prove that the Doppler frequency shifts of legitimate

and spoofing signals present different characteristics, and

this signal-level difference can be used to fundamentally

protect the sensing outcome of LiDAR. We then build

a testbed to verify the feasibility of extracting Doppler

shift from LiDAR signals with only minor modifications

to the LiDAR system. Compared to amplitude and AM-

based authentication methods [15], [16], the signal’s

Doppler frequency shift is a more robust and reliable

decision statistic for spoofing detection, because it is

decided by the motion between the LiDAR and sensed

object and is less affected by the RF environment.

3) To show how the Doppler shift can be used to detect

spoofing attacks under different scenarios of attacker

capabilities, we thoroughly consider three attack mod-

els, including static attacker, moving attacker, and

moving attacker with control of both velocity and signal

frequency. In each of these models, we first show how

spoofing attacks can be performed and then present our

countermeasures for spoofing detection.

4) We make the proposed detection mechanisms more

accurate and practical by further accounting for the

short-term variance/uncertainty in the vehicle’s veloc-

ity, caused by the vehicle’s acceleration and random

perturbation on its movement by the road condition. A

statistical spoofing detection framework is proposed to

jointly consider the impact of velocity and acceleration

on the Doppler shift, which can provide more accurate

spoofing detection in realistic application environments.

Extensive numerical results are provided in a wide range

of settings and road conditions.

The remainder of the article is as follows. We begin

by briefly reviewing related work in Section II. Then, we

analyze the working principle and vulnerability of LiDAR in

Section III. We analyze the difference in Doppler frequency

shift between legitimate and spoofing signals in Section IV.

We consider three attack models and present the spoofing

detection method in Section V. The statistic-based spoofing
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detection framework is presented in Section VI. And finally,

we conclude this article in Section VII.

II. RELATED WORK

A. Attacks Against AV Sensors

Attacks against AV sensors can be classified into three

categories according to the physical channel used by the

attacker [16], [17], namely, the regular, side, and transmission

channel attacks. Regular channel attacks use the same working

channel as the sensor (e.g., laser for LiDAR) to directly

alter the sensing results. Side channel attacks use a physical

channel other than the sensor’s working channel to attack the

LiDAR [18], [19]. Lastly, transmission channel attacks focus

on the transmission channel that connects the sensor and other

parts of the system [20], [21], [22].

B. Perception Model Level Defense Methods

Since the point cloud data generated by LiDAR is used

by the AI-based perception model for 3-D object detection,

many research works focus on mitigating the effect of spoofing

attack by the perception model level defense methods. For

example, Hau et al. [14] proposed Shadow-Catcher, which

validates object identities by examining the shadow of the

object in the LiDAR point cloud. The idea is that, for the

genuine object representations in the LiDAR point cloud,

they are closely followed by regions void of measurements

(shadow region). For the injected spoofed object, it is either

does not have shadow regions or its shadow regions are

inconsistent with the object’s size or shape. Zhang et al. [13]

and You et al. [23] leveraged the spatio-temporal consistency

of the genuine object for spoofing attack detection. The authors

utilized a motion prediction framework to analyze the spatio-

temporal consistency of objects across consecutive frames in a

driving scene. The spoofed object is detected if it violates the

law of temporal consistency. However, the major limitation of

the above model-level defense methods is that they rely on

the geometric formation of points in the LiDAR point cloud

and its evolution over time (i.e., the contextual relationship

between points) to detect spoofing. These mechanisms first

aggregate multiple points in the point cloud to establish

an object representation, and then check whether the object

representation remains contextually consistent over a certain

time period. Therefore, if an attacker can maintain the cor-

rect contextual relationship among the fabricated points, it

can evade from being detected by these spoofing detection

methods. In contrast, our proposed method works in the

signal space and evaluates each point in the LiDAR point

cloud individually, by testing whether the Doppler shift of the

received signal matches with the expected Doppler shift caused

by the velocity of the LiDAR. A spoofing LiDAR signal

(i.e., a point in the point cloud) causes mismatch between the

received Doppler shift and the expected Doppler shift, and

hence will be detected by the proposed method, irrespective

of its geometric relationship with the other points in the point

cloud.

TABLE I
COMPARISON BETWEEN RELATED WORK (DEF LV: DEFENSE METHOD

LEVEL, DEF STRATEGIES: DEFENSE STRATEGIES, AND PHY INVA:
PHYSICAL INVARIANTS USED)

Fig. 1. Normal LiDAR sensing.

C. Signal Level Defense Methods

The signal-level defense method mainly uses PLA for spoof-

ing detection. Unlike perception model-level defense methods,

PLA protects LiDAR sensors against spoofing attacks by iden-

tifying the malicious signal in the analog domain [24], [25].

The most widely used PLA method is to endow the probes

used by active sensors with a special designed feature and

use the feature to authenticate the responses. For example,

Shoukry et al. [26] proposed PyCRA, which identifies spoofing

attacks for magnetic sensors and radio-frequency identification

(RFID) tags. PyCRA turns off the probe signal at random

instants to verify the existence of any spoofers. If there is

no spoofer, it will receive nothing; otherwise, the spoofing

attack is identified. However, PyCRA does not meet the

high-availability requirement in safety-critical systems, such

as an autonomous driving system. When using PyCRA, an

AV LiDAR should be turned off at random times for attack

detection. As a result, the LiDAR sensor becomes unavailable

for environmental sensing during that period, which may cause

safety problems for AVs.

For better readability, we summarize the related work in

Table I, to highlight the difference between our work and other

works.

III. LIDAR WORKING PRINCIPLE AND VULNERABILITY

To defend LiDAR against spoofing attack, we first need

to understand the working principle and vulnerability of

LiDAR. In this section, we first analyze the working principle

and vulnerability of LiDAR. Then, we conduct real-world

experiments to demonstrate the practicability and easiness of

conducting spoofing attacks against LiDAR.

A. LiDAR Working Principle

LiDARs detect and localize objects by actively probing

objects with pulses of infrared laser signals between 750 nm

to 1.5 μm. Fig. 1 shows a typical LiDAR sensing scenario.

A LiDAR sensor consists of two parts: 1) a laser diode

as transmitter and 2) a photodetector as receiver. During

LiDAR sensing, the transmitter periodically emits laser pulses
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to the environment. After the pulses reach the objects in

the environment, they are reflected back and received by the

LiDAR photodetector. The reflected signals are called echo

signals. The time difference between the emitting and arriving

time of the signal, i.e., ToF, is used to calculate the distance d

between the LiDAR and the object. Let ts denote the time of

the laser pulse being sent by the transmitter, and ta denote the

time of the echo signal being received by the photodetector.

The ToF of the received signal τ is ta − ts, and the distance d

between the LiDAR and the detected object is

d = c

2n
τ (1)

where n is the refractive index of the propagation medium

(n = 1 for air) and c is the speed of light. By mechanically

or electronically steering the laser pulses toward different

directions and calculating the ToF distances of the echo

signals, LiDAR is able to generate a point cloud, which is a

high-resolution depth image of the environment.

B. Motivating LiDAR Security via Real-World Observations

Existing LiDAR only accepts the first arrival signal and

uses the signal’s arrival time for ToF distance calculation

without verifying whether that signal was sent out by the

LiDAR’s laser diode (i.e., the legitimate transmitter). This

leaves a sufficient loophole for many possible forms of

spoofing attacks. In the following, we first present a simple

toy example implemented in [8] to illustrate a basic type of

spoofing attack that fakes a point in the LiDAR point cloud

through ToF manipulation. Such a basic attack can be used as

building blocks by the attacker to create more sophisticated

spoofing attacks, e.g., those that fake an object. We then

present our real-world experiments that are built upon two

commercial YD X2L LiDARs to demonstrate how spoofing

attacks can actually take place in real-world applications. The

main purpose of this section is twofold.

1) To better motivate the LiDAR spoofing attack problem

studied in this article. In particular, by demonstrating

a real LiDAR spoofing attack over a commercially

available LiDAR system, we wish to show that such

an attack is very realistic for LiDAR systems available

in today’s market. Note that even though such attacks

have been demonstrated in the past, most of them

were based on experimental testbeds in a lab rather

than directly over a commercially available LiDAR

product. We believe that showing the spoofing attack

on a commercial LiDAR product will make the attack

more convincing, especially for readers not familiar with

LiDAR and its vulnerabilities.

2) To better show the compelling nature of the problem:

By showing how easy it is to launch a spoofing attack

against current LiDARs, we highlight the urgent need

for solutions to this compelling security problem.

1) Toy Example for Spoofing Attack: A basic point-faking

attack was proposed and implemented in [8], as illustrated

in Fig. 2. This system features a photodiode, a time delay

component, and a laser diode. The total cost of the system is

less than 50 U.S. dollars. The goal of this spoofing system is

Fig. 2. Spoofing device.

Fig. 3. Outdoor spoofing test environment and setup.

to deceive the LiDAR by sending signals with false ToF that

simulate a fake object. The spoofing signal can be injected to

LiDAR via an attacker-controlled laser diode, whose working

wavelength is the same as the victim’s LiDAR. By properly

controlling the timing of the spoofing signal, the attacker can

alter the ToF measurements of the victim LiDAR, which in

turn results in a counterfeit point at the distance that the

attacker desires. More specifically, suppose that the attacker

aims to mislead the LiDAR in detecting a counterfeit point at

distance dspoof, while the actual physical distance between the

LiDAR and the attacker is d. To achieve the attack goal, the

attacker first needs to synchronize with the victim LiDAR to

obtain the sending time of the laser pulses. The attacker then

sends a spoofing signal to LiDAR and ensures that the arrival

time of the spoofing signal t
spoof
a is

tspoof
a = ts + τspoof (2)

where τspoof = 2dspoof/c. In this case, when the spoofing signal

is received by LiDAR, the calculated ToF distance between

the LiDAR and the attacker is now manipulated to be dspoof

(instead of being d), resulting in a faked point in the LiDAR’s

point cloud.

To launch a real-world spoofing attack, the photodiode in

Fig. 2 serves as a synchronization device to trigger the delay

component whenever it captures laser signals from the victim

LiDAR. And the delay component activates the laser diode

to send a spoofing signal toward the victim LiDAR after a

specified time delay τspoof.

2) Our Real-World Experiments: To show how easily a

spoofing attack can be launched against current LiDAR

systems, we conduct the following real-world experiment.

We use two YD X2L LiDARs [27]. One of the LiDARs

acts as the victim LiDAR to generate point cloud data for

the test environment. The other LiDAR is configured as a

spoofing attacker that periodically generates spoofing signals

with random ToF to attack the victim LiDAR. We conduct

our spoofing attack experiments in an outdoor parking lot, and

the test environment and test location are shown in Fig. 3.

In the test, the victim LiDAR is running normal operation

to sense the environment and generate point cloud data, and
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Fig. 4. LiDAR point-cloud data. (a) Normal point cloud. (b) Point cloud
under attack.

the spoofing attacker is located 1.5 m away from the victim

LiDAR and shooting signals with random time delays.

Fig. 4 shows a comparison of LiDAR point cloud with and

without spoofing attack. In Fig. 4(a), the point cloud with no

spoofing attack clearly captures the shape and distance of the

surrounding objects. In contrast, in Fig. 4(b), there are multiple

spoofed points shown on the point cloud map (marked by red

squares). It can be seen that under the random attack, two

small clusters of spoofed points are generated in the LiDAR

point cloud. These clusters of spoofed points may deceive

the LiDAR system to misinterpret them as two small objects

in front of the LiDAR: one in the 12 o’clock direction and

the other in the 2 o’clock direction, which actually do not

exist at all in reality. This indeed poses a serious safety threat

for the AVs. Note that the experiment in Fig. 4 is just a

simple example. In reality, instead of a random attack, the

attacker can enhance their attack effects (i.e., generate a bigger

cluster of spoofed points in the point cloud) by launching more

sophisticated attacks.

IV. DOPPLER FREQUENCY SHIFT IN LIDAR SENSING

To fundamentally protect LiDAR against spoofing attacks

in the analog domain, it is crucial to distinguish legitimate

sensing signals and spoofing signals based on signal-level

features. However, choosing an appropriate physical feature

that can correctly represent the difference between legitimate

and spoofing signals is a challenge.

In this section, we first prove that the Doppler frequency

shift of the received signal can properly characterize the

propagation difference between the legitimate and spoofing

signal and distinguish the spoofing signal. Then, we build

a real-world testbed to show the practicability of extracting

Doppler shift from LiDAR’s laser signal.

A. Doppler Frequency Shift Difference Between Legitimate

Signal and Spoofing Signal

The Doppler effect, or Doppler frequency shift, is the

change in frequency of a signal in relation to the relative

movement between the signal’s transmitter and receiver. In

LiDAR sensing, due to the relative motion between the LiDAR

and the detected object, the echoed signal presents a frequency

shift caused by the Doppler effect.

In LiDAR sensing, the legitimate sensing signal is sent by

LiDAR’s transmitter, reflected by an object in the environment

and then received by the LiDAR’s receiver, which travels

through a round trip. Let us consider a 2-D case to derive

Fig. 5. Doppler frequency shift illustration. (a) Normal sensing (round trip).
(b) Spoofing attack (single-way).

the Doppler frequency shift of the legitimate sensing signal.

Let the velocity vector of LiDAR be �vL and the velocity

vector of the object detected be �v(ob). The Doppler shift of the

legitimate sensing signal is determined by the relative radial

speed between the LiDAR and the object, which is defined

as the rate of change of the distance between them. The

relative radial speed �v between the LiDAR and the object is

calculated as �v = (�vL−�v(ob))·�l, where · is the dot product and
�l is the Direction of Arrival (DoA) vector of the signal (i.e., the

direction along the line connecting the LiDAR and the detected

object). Due to the large magnitude of the speed of light, the

DoA of the received signal is considered to be the same as the

sending direction of the signal, which is considered as known.

Recall that the legitimate sensing signal travels through a

round trip. We introduce an intermediate signal frequency f ′
r ,

which is the frequency of the signal that reaches the object.

Let f0 be the frequency of the signal transmitted by LiDAR

and fr be the frequency of the received signal, as shown in

Fig. 5(a). In the forward trip of the round trip, the signal with

frequency f0 is sent to the object, and f ′
r is

f ′
r =

(

c

c − �v

)

f0. (3)

Then, the signal with frequency f ′
r is reflected back to

LiDAR on the same route, and the received signal frequency

fr is

fr =
(

c + �v

c

)

f ′
r . (4)

The Doppler frequency shift �f of the received signal is

calculated as the frequency difference between the transmitted

and received signals, which is

�f = fr − f0 =
(

c + �v

c − �v
− 1

)

f0 ≈ 2f0

c
�v. (5)

The approximation is valid since �v is much smaller than

the speed of light c (3 × 108 m/s).

In contrast, the spoofing signal is sent directly to LiDAR by

the attacker, which only travels one-way. Let �va be the velocity

vector of the attacker. The relative radial speed between the

LiDAR and the attacker is �va = (�vL − �va) · �l, as shown

in Fig. 5(b). Since the frequency of the transmitted spoofing

signal is also f0, the Doppler frequency shift of the spoofing

signal �fa is

�fa =
(

c

c − �va

)

f0 − f0 = �va

c − �va

f0 ≈ f0

c
�va. (6)
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Fig. 6. Testbed design. (a) Schematic. (b) Testbed layout.

Based on the above analysis, it is clear that the Doppler

shifts of the legitimate and spoofing signals are differ-

ent due to their different propagation paths: the Doppler

frequency shift of the legitimate sensing signal is twice as

much as that of the spoofing signal under the same radial

speed due to its round trip propagation. As will be elabo-

rated shortly in Section V, the above margin (a factor of

2) between the Doppler frequency shifts of legitimate and

spoofing signals can be utilized to construct reliable and

accurate spoofing detection mechanisms under various attack

conditions.

Next, we present a proof-of-concept testbed to demonstrate

the feasibility of extracting Doppler frequency shift from the

laser signal of a moving LiDAR.

B. Feasibility Study of Extracting Doppler Frequency Shift

1) Proof-of-Concept Testbed Design: We design and build

a proof-of-concept testbed to test the feasibility of extracting

the velocity-based Doppler shift from the laser similar in

nature to those used in LiDAR systems. The schematic

diagram of the testbed is shown in Fig. 6(a). The Doppler

shift is extracted by using the self-mixing effect of the signal.

Specifically, the laser signal with frequency f0 is first split into

two orthogonal beams by a 3-dB beam splitter in the middle.

Then, one beam of signal, which is called the local signal, is

reflected back by the fixed mirror M0. And the other beam

of signal, termed the modulated signal, is reflected back by

a moving mirror M2 whose velocity is v. The local signal

and the modulated signal are mixed together and received by

the photodiode to extract the Doppler frequency shift of the

modulated signal.

The Doppler shift of the modulated signal is extracted by

the homodyne detection method. The local signal YLO and the

modulated signal YM can be expressed as

YLO = ALO · e−j(2π f0t+φLO)

YM = AM · e−j(2π(f0±�f )t+φM)

where ALO, φLO, AM, φM denote the amplitude and phase

shift of the local and modulated signal, respectively. j is the

imaginary unit and �f = (2v/c)f0 is the Doppler frequency

shift caused by the movement of the mirror M1.

The output of the photodetector is the combined signal

power of YLO and YM . Due to the low-pass filtering effect of

Fig. 7. Doppler shift spectrum results. (a) �f = 24.10 KHz, v̄ = 0.75 cm/s.
(b) �f = 48.72 KHz, v̄ = 1.55 cm/s

the photodetector, the high-frequency components of YLO+YM

are filtered out, and the output power is

Pout = A2
M

2
+ A2

LO

2
+ AMALO cos (2π�ft + φM − φLO)

which is a beat signal with frequency �f . By filtering out the

direct current (DC) signal, �f can be extracted by fast Fourier

transform (FFT).

2) Testbed Implementation: Regarding the implementation

of the testbed, we use a 635 nm ThorLabs PL202 laser diode

to send laser signals. A cubic beam splitter, ThorLabs CCM1-

BS013, is used to split the beam. The photoreceiver is OPT101

from Texas Instruments. The moving mirror is attached to a

motorized camera slider for stable and continuous movement.

An oscilloscope is connected to the photoreceiver for data

collection and visualization. The layout of the testbed is shown

in Fig. 6(b).

Note that for the demonstration purpose, we use mirrors

instead of real obstacles. In real-world scenarios, the surface

roughness and color of the obstacle can affect the received

signal’s SNR. Rough surfaces can scatter laser light, and

darker colors absorb more light, resulting in weaker reflections

(i.e., smaller reflection coefficient of the obstacle) and hence

lower SNR. However, in practice, the reduced reflection

coefficient can be well compensated by using a higher power

laser emitter and filter lenses, which are commonly adopted

by vehicle LiDARs. Therefore, in real-world use cases, the

LiDAR’s SNR should be sufficient for reliable and accurate

Doppler shift extraction.

3) Test Results: We then use the above testbed to extract

the Doppler frequency shift of the received signal and estimate

M1’s velocity v. Fig. 7 shows the Fourier spectrum of the

signals for different velocities of M1. In the experiment, the

moving speed of M1 is set to 0.75 cm/s and 1.50 cm/s, respec-

tively. The estimated velocity ṽ of M1, which is calculated

from the Doppler shift �f , is ṽ = (�f /2f0)c. In Fig. 7(a), the

Doppler shift of the signal is 24.10 kHz, which corresponds to

ṽ= 0.75 cm/s and is match with the M1’s ground truth speed

v = 0.75 cm/s. In Fig. 7(b), there are two peaks found, and

the peak with the highest value is chosen as the Doppler shift

that corresponds to the real signal. In this case, the Doppler

frequency of the signal is 48.72 kHz, which corresponds
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to ṽ= 1.55 cm/s. Under real-world conditions, the Doppler

spectrum of the received signal may contain multiple peaks

due to random noise and subtle movement of the object. A

general principle of identifying the real signal is to choose

the frequency component with the highest energy, as this is

caused by the dominant movement of the object. Compared

to the ground truth speed of v = 1.50 cm/s, the small variance

between v and ṽ is caused by noise in the photodiode. This

small variance does not affect the accuracy of our proposed

spoofing attack detection method. As will be shown in later

sections, the velocity detection error [about 3% as shown in

Fig. 7(b)] caused by random noise is much smaller than the

separation between the detected velocity of a real object and

the detected velocity of a spoofed object (the former is twice as

much as the latter). Furthermore, the impact of random noise

can be reduced by our statistical spoofing detection framework

presented in Section VI.

In summary, this experiment establishes the feasibility of

extracting the Doppler shift of high-frequency LiDAR signals

over a testbed that is open for redevelopment. The same struc-

ture of the testbed can be integrated into real-world LiDAR

systems to extract the Doppler shift and detect spoofing

attacks. Specifically, the testbed is based on an interferometer

structure and can be integrated into LiDARs. The potential

challenges of incorporating our method into the LiDAR system

include:

1) Cost Issue: Implementing the structure shown in

Section IV-B requires an additional frequency mixer and

A/D converters, which increases the manufacturing cost

of LiDAR sensors.

2) Standardization Issues: The lack of industry-wide stan-

dards for LiDAR systems can cause compatibility and

interoperability issues between different AV models and

brands. At this point, all commercial LiDAR products

available on the market are proprietary and are not open

for redevelopment.

We understand that there have been numerous existing com-

mercial products on the market that are capable of extracting

Doppler shift from laser signals. However, these products are

often proprietary, and hence are not friendly to redevelopment.

The spoofing detection measures developed in the subsequent

sections can be implemented on the testbed presented in this

section.

V. DOPPLER SHIFT-BASED SPOOFING DETECTION

In the previous section, we demonstrated that the Doppler

shift of the laser signal can be used to distinguish between

a spoofing signal and a legitimate sensing signal. In this

section, we present the detailed designs that utilize the Doppler

frequency shift for LiDAR spoofing attack detection under

various attack models. Specifically, we first study the uniform-

motion scenario, where the velocities of the attacker, the

LiDAR, and genuine objects in the environment are assumed to

be constants during the window of detection (we will relax this

assumption and consider accelerations in the next section). We

consider three different spoofing attack models, respectively:

1) a static attacker; 2) a mobile attacker; and 3) a mobile

Fig. 8. Spoofing attack in Scenario 1.

attacker that controls both its velocity and signal frequency.

Each of these models can be considered as a generalization

of the model before it. We start off our detection design with

the simplest attack model—the static attacker, and gradually

make the design more general by considering more realistic

conditions in the attack. For each attack model, we first show

how the spoofing attacks are performed. Then, we illustrate the

countermeasure that uses the signal Doppler shift to identify

the spoofing attack.

We need to point out that the spoofing attack models

adopted by the related works are essentially based on the

same assumption of the attacker’s most basic attack capability

considered in this work. In particular, no matter it is the fake

object injection attack or the target object removal attack,

they are all built upon the attacker’s foundational capability

of being able to manipulate the time-of-flight of the LiDAR

signal, so that the attacker can either inject a fake point into

or remove a real point from the LiDAR’s point cloud. Our

work considers exactly the same foundational capability of

the attacker, as shown in Fig. 2 and Section III-B1. In this

regard, the comparison between our work and those related

works is fair. In addition, our work not only considers the

same foundational capability of the attacker, but also studies

how such a foundational capability can be achieved by an

attacker and how such capability can be countered under

various realistic scenarios, e.g., when the attacker is static,

or when the attacker is mobile, or when the attacker can

control its movement and the frequency of the LiDAR signal,

etc. Because the detection methods proposed in our work

essentially target detecting the manipulation of the time-of-

flight of the LiDAR signals, they are also able to detect those

fake object injection attacks and the target object removal

attacks which are based on the above manipulations.

A. Attack Model 1 (Static Attacker and Moving LiDAR)

1) Spoofing Attack in Model 1: We first consider the case

where only LiDAR is moving with constant velocity �vL, and

any other objects and the attacker remain static. This is a

common scenario for LiDAR spoofing attacks. For example,

the attacker can place the spoofing device on the roadside

to shoot malicious laser pulses to AVs passing by. We also

assume that the LiDAR system already knows that all genuine

objects are static. In this scenario, similar to the example

illustrated in Section III-B1, the attacker aims to mislead the

LiDAR in detecting a counterfeit point at distance dspoof while

the real distance between the LiDAR and the attacker is d.

This is achieved by sending spoofing signal with time delay

τspoof to the victim LiDAR, as shown in Fig. 8.

In this attack scheme (and also the subsequent two attack

models), it is assumed that the attacker is aware of the working

frequency of the victim LiDAR, and the transmitted spoofing

signal has the same frequency as the victim LiDAR’s working

Authorized licensed use limited to: Auburn University. Downloaded on July 17,2024 at 08:10:19 UTC from IEEE Xplore.  Restrictions apply. 



20680 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

Fig. 9. Cartesian coordinate system and signal tuple.

frequency. This assumption is practical because the working

frequency of a vehicle’s LiDAR can be easily obtained through

the product specification. We also assume that the attacker

is aware of its distance to the victim LiDAR, so that it can

decide the timing of emitting the spoofing signal that misleads

the victim LiDAR to calculate dspoof. This assumption is

reasonable because the attacker can simply use its own LiDAR

to monitor its distance to the victim in real time.

2) Spoofing Detection in Attack Model 1: In Attack

Model 1, a spoofing signal can be identified by testing

whether the Doppler shift of the received signal matches the

expected Doppler shift caused by the velocity of the LiDAR.

Specifically, for the legitimate sensing signal sent to direction
�l, since only LiDAR is moving with velocity �vL, the expected

Doppler frequency shift of the reflected signal is (2f0/c)�vL · �l.
Here, due to the small field of view of LiDAR receiver

(less than 1◦), the transmission direction of the signal is the

same as the receive direction. Let the Doppler shift of the

received signal be �fr (�fr can be measured as illustrated

in Section IV-B). To detect a spoofing signal, the following

should be tested:

�fr
?= 2f0

c

(

�vL · �l
)

. (7)

For the spoofing signal sent by the attacker from direction
�l, since the attacker is static and the spoofing signal travels

one way, its Doppler shift is only (f0/c)�vL · �l—a margin of a

factor of 2. Therefore, the spoofing signal can be detected.

B. Attack Model 2 (Moving Attacker and Moving LiDAR)

Next, we consider a more general attack model, where the

LiDAR, the attacker, and the object in the environment are

moving. This scenario is more common than attack model 1.

For example, the attacker can drive a vehicle in close proximity

to the victim AV, e.g., in the same lane or adjacent lanes,

to shoot the laser pulses to the victim AV’s LiDAR. To

better present the spoofing attack and the proposed spoofing

detection in this model, we first introduce some basic notation

and definitions.

Let us consider a 2-D Cartesian coordinate system shown

in Fig. 9. Let the LiDAR’s velocity be �vL. Without loss of

generality, we assume that the direction of �vL is the same

as the y-axis, and the x-axis is perpendicular to �vL. With the

movement of the LiDAR and the object, the LiDAR receives

a series of signals emitted by the LiDAR and then reflected

by the object at different locations. In particular, at times

t1, t2, . . . , tK , let the locations of the LiDAR and the object

be LiDARt1 , Objectt1 , LiDARt2 , Objectt2 , . . ., and LiDARtK ,

ObjecttK , respectively. Denote the signal that is emitted from

the LiDAR, reflected by the object, and then received by the

LiDAR at time tk by Stk , where k = 1, 2, . . . , K. The signal Stk

can be presented as a tuple Stk = [�ftk , dtk , θtk ], where �ftk ,

dtk , and θtk represent the signal’s Doppler frequency shift, ToF

distance, and Angle of Arrival (AoA), respectively, at time tk,

as shown in Fig. 9. Let S denote the set of signals reflected by

the object and received by the LiDAR from time t1 to time tK .

Using S, we can determine the velocity of the object in

one of two ways: 1) by the signal’s Doppler shift or 2) by

the ToF distance. We refer to the velocity determined from

the ToF distance as the object’s ToF velocity, and the velocity

determined by the Doppler frequency shifts as the Doppler

velocity. More specially, these velocities can be calculated as

follows.

ToF Velocity: The ToF velocity of the object, denoted as

�vToF, can be determined based on the ToF distances of the

signals. In particular, the velocity vector can be represented

as �vToF = |�vToF|(cos φToF, sin φToF), where |�vToF| and φToF

denote the magnitude and direction angle of �vToF. Given

any two signals received at time tm and tn (tm < tn),

i.e., Stm = [�ftm, dtm , θtm ] and Stn = [�ftn , dtn , θtn ], �vToF can

be calculated as

|�vToF| =
[

(dtn sin θtn − dtm sin θtm)2

+(dtn cos θtn + |�vL|�t − dtm cos θtm)2

]
1
2

(8)

and

φToF = arctan
dtn cos θtn + |�vL|�t − dtm cos θtm

dtn sin θtn − dtm sin θtm

(9)

where �t = |tn − tm|.
Doppler Velocity: The object’s Doppler velocity �vDop, can

be represented as �vDop = |�vDop|(cos φDop, sin φDop), where

|�vDop| and φDop are the magnitude and direction angle of

the velocity. Given two signals Stm = [�ftm , dtm , θtm ], Stn =
[�ftn, dtn , θtn ] ∈ S, |�vDop| and φDop can be calculated by

solving the following set of nonlinear equations:
{

|�vL| sin (θtm) − |�vDop| cos (θtm − φDop) = c
2f0

�ftm
|�vL| sin (θtn) − |�vDop| cos (θtn − φDop) = c

2f0
�ftn .

(10)

Depending on whether the attacker controls its velocity to

facilitate the spoofing, the attacker’s spoofing attack schemes

can be divided into the following two cases.

1) Spoofing Attack When Attacker Does Not Control Its

Velocity: We first consider a simple spoofing attack in which

the attacker only manipulates the ToF distance of the probing

signal, but does not control its velocity to facilitate the

attack. Specifically, to launch a spoofing attack, the attacker

injects spoofing signals into the victim LiDAR so that the

legitimate signal set S that corresponds to a genuine object

is replaced by the spoofing signal set S
(spf), where S

(spf)
tk

=
[�f

(spf)
tk

, d
(spf)
tk

, θtk ] ∈ S
(spf). Note that due to the small field

of view of the LiDAR receiver, the spoofing signal can only

be injected when the LiDAR is transmitting to and receiving

from the attacker’s direction, and the AoAs of the spoofing
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signal can not be changed by the attacker. The goal of the

attacker is to mislead the LiDAR’s calculation of its distance

to the faked object by manipulating d
(spf)
tk

, similar to that in

Section V-A1. The ToF of the spoofing signal is determined

by the attacker according to its attack goal, i.e., how far does

it want the faked object to be from the LiDAR, based on (2).

2) Spoofing Detection When Attacker Does Not Control Its

Velocity: The key insight in the above attack model is that

�f
(spf)
tk

and d
(spf)
tk

are not independent between each other. This

is because both quantities are related to the velocity of the

attacker/faked object, and both can be used to calculated that

velocity according to (8)–(10). Since the attacker does not

adjust its velocity according to the ToF distance it claims to

be, there exists a mismatch between the Doppler velocity �vDop

and the ToF velocity �vToF. This allows us to detect spoofing

by testing the following:

�vToF
?= �vDop. (11)

For legitimate signals reflected by genuine objects, its ToF

distance is authentic (i.e., not manipulated), and therefore

�vDop = �vToF. Otherwise, a mismatch indicates the presence of

a spoofing attack.

3) Spoofing Attack When Attacker Controls Its Velocity: An

attacker can tailor its velocity to its claimed ToF distance to

ensure that the calculated Doppler velocity �vDop matches the

ToF velocity �vToF. In particular, this can be achieved according

to the following.

Proposition 1: Given the attacker’s velocity �va =
|�va|(cos φa, sin φa), where φa is the direction angle of �va, to

maintain consistency between the Doppler velocity and ToF

velocity of the spoofing signals, for any two spoofing signals

S
(spf)
tm , S

(spf)
tn ∈ S

(spf), where S
(spf)
tm = [�f

(spf)
tm , d

(spf)
tm , θtm ] and

S
(spf)
tn = [�f

(spf)
tn , d

(spf)
tn , θtn ], θtm �= θtn , d

(spf)
tm and d

(spf)
tn must

satisfy the following equation set:

d
(spf)
tm =

cos (θtn)|�vL|�t + f (θtm ) sin (θtn−�)

2 cos (θtm−φa)
�t

sin (θtn − θtm)
(12)

d
(spf)
tn =

cos (θtm)|�vL|�t + f (θtn ) sin (θtm−�)

2 cos (θtn−φa)
�t

sin (θtn − θtm)
(13)

where

f (θ) = |�vL| sin (θ) + |�va| cos (θ − φa)

� = arctan
f (θtn) ∗ cos θtm − f (θtm) ∗ cos θtn

f (θtm) ∗ sin θtn − f (θtn) ∗ sin θtm

and �t = |tn − tm|.
Proof: The ToF velocity derived from the spoofing signals

�vToF must be equal to the Doppler velocity of the spoofing

signals �vDop. Denote �vDop = |�vDop|(cos �, sin �). Since the

attacker is directly sending the spoofing signals to the victim

LiDAR, the Doppler shifts of the spoofing signals are deter-

mined by the relative radial velocity between the LiDAR and

the attacker. We also have the Doppler shifts of the spoofing

signals as

�f
(spf)
tm = f0

c
(|�vL| sin (θtm) − |�va| cos (θtm − φα))

�f
(spf)
tn = f0

c
(|�vL| sin (θtn) − |�va| cos (θtn − φα)).

And �vDop can be obtained by substituting �f
(spf)
tm and �f

(spf)
tn

into (10), which gives

|�vDop| = f (θtm)

2 cos (θtm − �)

� = arctan
f (θtn) ∗ cos θtm − f (θtm) ∗ cos θtn

f (θtm) ∗ sin θtn − f (θtn) ∗ sin θtm

(14)

where f (θ) is the function value of θ , and we have

f (θ) = |�vL| sin (θ) + |�va| cos (θ − φa).

The ToF velocity can be obtained by (8) and (9). Letting

�vToF = �vDop, we can obtain d
(spf)
tm and d

(spf)
tn as specified in the

proposition.

According to Proposition 1, given a pair of desired spoofing

ToF distances d
(spf)
tm and d

(spf)
tn at time tm and tn, the attacker can

calculate the required velocity that ensures a match between

�vToF and �vDop by solving (12) and (13), so as to elude from

being detected by the aforementioned detection mechanisms.

4) Spoofing Detection When Attacker Controls Its Velocity:

A key insight of Proposition 1 is that the attacker’s velocity

must be coordinated with the ToF of the spoofing signals for

a successful spoofing attack. Specifically, according to (12)

and (13), given a pair of desired fake ToF distances and

the victim LiDAR’s velocity, the attacker’s velocity �va is

fully determined. Therefore, when there exist two LiDARs

of different velocities, both are scanning the attacker at the

same time, then there is no way for the attacker to adjust its

velocity to satisfy the requirements from both LiDARs—one

key cannot open two locks. In this case, there will be at least

one LiDAR, whose calculated ToF velocity is inconsistent with

the Doppler velocity. Based on the above insight, we propose

a cooperative LiDAR sensing scheme [28], [29], [30], [31]

for our spoofing detection. A basic cooperative LiDAR system

is shown in Fig. 10, which consists of two LiDARs: 1) a

Coop-LiDAR and 2) an Ego-LiDAR. In cooperative LiDAR

sensing, each LiDAR independently senses the environment

and generates the data, and the generated sensing data are

shared between them [30]. Note that in this scenario, it is

essential to ensure the trustworthiness of the Cooperative

LiDAR system, which can be guaranteed by using secured

vehicle-to-vehicle (V2V) communication [32], [33], [34].

To detect the spoofing attack, we require LiDARs in the

cooperative LiDAR system to move at different velocities.

Each LiDAR computes its ToF velocity and Doppler velocity

based on its received signals. The spoofing detection is

conducted by checking whether the computed ToF velocity

is consistent with the Doppler velocity at every LiDAR.

To be more specific, suppose that we have N LiDARs in

the cooperative LiDAR system with velocities �v(1)
L , . . . , �v(N)

L ,

respectively. There exists at least a pair of LiDARs, say LiDAR

i and LiDAR j, where 1 ≤ i, j ≤ N, whose velocities are not

equal, i.e., |�v(i)
L | �= |�v(j)

L |. Each LiDAR calculates the Doppler

velocity and the ToF velocity based on its received signals,

which gives �v(1)
Dop and �v(1)

ToF,. . . , �v(N)
Dop and �v(N)

ToF, respectively.

For legitimate signals, the ToF and Doppler velocities

computed by each LiDAR are consistent, i.e., �v(1)
Dop = �v(1)

ToF =
· · · = �v(N)

Dop = �v(N)
ToF, because they all correspond to the velocity
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Fig. 10. Cooperative LiDARs.

of the same object. However, when a spoofing attacker is in

place, it faces the following dilemma: on one hand, given the

velocity of LiDAR i and the desired ToF distances to LiDAR

i at time tn and tn+1, the attacker must set its velocity to, say

�v(i)
a , where �v(i)

a is decided based on Proposition 1, in order

to elude from the detection of LiDAR i. On the other hand,

given the velocity of LiDAR j and the desired ToF distances

to LiDAR j at time t′n and t′n+1, where t′n is close to tn, and

t′n+1 is close to tn+1, the attacker must set its velocity to, say

�v(j)
a , where �v(j)

a is decided based on Proposition 1, in order to

elude from the detection of LiDAR j. Because |�v(i)
L | �= |�v(j)

L |,
we can expect that in general �v(i)

a �= �v(j)
a . Therefore, no matter

which velocity the attacker chooses, at least one of LiDAR i

and LiDAR j will be able to detect the attacker by testing the

inconsistency between its calculated ToF velocity and Doppler

velocity.

Alternatively, the attacker may just choose to move at

velocity �v(i)
a , and instead customize the spoofing ToF distances

to LiDAR j at time t′n and t′n+1 according to (12) and (13).

In this way, the ToF velocity is consistent with the Doppler

velocity at each of the LiDARs i and j, i.e., �v(i)
Dop = �v(i)

ToF

and �v(j)
Dop = �v(j)

ToF, however, it must be true that �v(i)
Dop �=

�v(j)
Dop. Therefore, by sharing their ToF velocities and Doppler

velocities with each other, LiDARs i and j can also detect

the spoofing attack based on the inconsistency between their

respective Doppler velocities.

The proposed spoofing detection can be better illustrated by

the following numerical examples. Without loss of generality,

we use the 2-LiDAR cooperative LiDAR system shown in

Fig. 10 as an example. The cooperative LiDAR system has

one ego-LiDAR and one coop-LiDAR, and their velocities are

denoted as �v(cop)
L and �v(ego)

L , respectively. The Doppler veloci-

ties and ToF velocities computed by the two LiDARs for the

same object are denoted as �v(cop)

Dop , �v(cop)

ToF and �v(ego)

Dop , �v(ego)

ToF . For

the attacker, denote its velocity by �va = |�va|(cos φa, sin φa).

The attacker sends spoofing signals S
(spf)
ego and S

(spf)
cop to ego-

LiDAR and coop-LiDAR, respectively. And the ToF distances

of S
(spf)
ego and S

(spf)
cop are designed according to Proposition 1 to

maintain that for each LiDAR, the calculated Doppler velocity

is consistent with the ToF velocity, i.e., �v(cop)

Dop = �v(cop)

ToF and

�v(ego)

Dop = �v(ego)

ToF .

The numerical results are shown in Fig. 11. In each subfig-

ure, the x axis denotes |�va|, which varies from 0 to 20 m/s.

The y axis represents the difference between the magnitudes

of the two Doppler velocities, i.e., |�v(cop)

Dop | − |�v(ego)

Dop |. Recall

that �v(cop)

Dop and �v(ego)

Dop are 2-D vectors, therefore if |�v(cop)

Dop | −
|�v(ego)

Dop | �= 0, then we must have �v(cop)

Dop �= �v(ego)

Dop . We plot

|�v(cop)

Dop | − |�v(ego)

Dop | as functions of |�va| in different combinations

Fig. 11. Numerical examples for spoofing detection when attacker control

its velocity. (a) |v(ego)
L | = 2, |v(cop)

L | = 1. (b) |v(ego)
L | = 2, |v(cop)

L | = 3.

(c) |v(ego)
L | = 2, |v(cop)

L | = 4. (d) |v(ego)
L | = 2, |v(cop)

L | = 2.

of |�v(ego)
L | and |�v(cop)

L | in the four subfigures: (a) |�v(ego)
L | =

2 m/s, |�v(cop)
L | = 1 m/s, (b) |�v(ego)

L | = 2 m/s, |�v(cop)
L | = 3 m/s.

(c) |�v(ego)
L | = 2 m/s, |�v(cop)

L | = 4 m/s, and (d) |�v(ego)
L | =

2 m/s, |�v(cop)
L | = 2 m/s. In each subfigure, we also vary

the angle of the attacker’s velocity, i.e., φa, by setting φa =
(π/2), (π/3), (π/4), 0, respectively.

In Fig. 11(a)–(c), the two LiDARs in the cooperative LiDAR

system have different velocity magnitudes, i.e., |�v(ego)
L | �=

|�v(cop)
L |. Although the spoofing attack maintains that the ToF

velocity is consistent with the Doppler velocity at each of

LiDARs (�v(cop)

Dop = �v(cop)

ToF and �v(ego)

Dop = �v(ego)

ToF ), when the Doppler

velocities are shared in the cooperative LiDAR system, ego-

LiDAR and coop-LiDAR can detect spoofing attacks because

�v(cop)

Dop �= �v(ego)

Dop (|�v(cop)

Dop |−|�v(ego)

Dop | �= 0). A special case is shown

in Fig. 11(d), when the two LiDARs have the same velocity

magnitude, that is, |�v(cop)
L | = |�v(ego)

L |, we have |�v(cop)
L | −

|�v(ego)
L | = 0 even when the spoofing attack is in place. In this

case, the cooperative LiDAR system cannot detect spoofing

attacks based on the inconsistency between their respective

Doppler velocities. Therefore, our spoofing detection scheme

requires that the LiDARs in the cooperative LiDAR system

have different velocities to successfully detect the spoofing

attack.

C. Attack Model 3 (Moving Attacker That Controls Both Its

Velocity and Signal Frequency)

A basic assumption in Attack Models 1 and 2 is that the

attacker transmits spoofing signals of the same frequency

as that of the victim LiDAR and it does not manipulate

the frequency of the spoofing signal during the attack.

Although this assumption is valid for many spoofing attack

scenarios and has been adopted by many existing studies,

e.g., [7], [8], and [35], an attacker may use frequency mod-

ulation or a tunable laser source to dynamically change the

frequency of the spoofing signal, so as to create a faked

Doppler frequency shift to mislead those spoofing detection
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mechanisms proposed in the previous sections. This is elabo-

rated as follows.

1) Spoofing Attack in Attack Model 3: When an attacker

can dynamically adjust the frequency of the spoofing signal,

besides sending spoofing ToF signals to the victim LiDAR,

the attacker also compensates for the frequency offset caused

by the Doppler effect by changing the frequency of the

transmitted spoofing signal, making the frequency offset of the

spoofing signal received by the victim LiDAR identical to the

Doppler frequency shift of the legitimate signal.

Specifically, let us consider a typical spoofing attack sce-

nario, where at the current moment the distance between the

(victim) LiDAR and the attacker is d. The relative radial

velocity between the victim LiDAR and the attacker is �va =
(�vL − �va) · �l, where �l is the unit vector along the direction

from the LiDAR to the attacker. The goal of the attacker is

to create a fake object that is d′ away from the LiDAR, in

the same direction of �l (so the LiDAR, the attacker, and the

fake object are collinear) and of a relative radial velocity of

�vspoof, where �vspoof = (�vL−�vspoof)·�l, and �vspoof denotes the

velocity of the fake object. With time continues, the trajectory

of the faked object (i.e., d′s) should be consistent with �vspoof.

To achieve the attack goal, in the time domain, the attacker

sends spoofing signals with faked ToF distance of d′. In

the frequency domain, the attacker adjusts the frequency of

the transmitted spoofing signal to mimic the Doppler shift

experienced by a legitimate signal. Specifically, if a genuine

object of velocity �vspoof is at the location of the fake object,

then the Doppler shift experienced by a legitimate signal (this

is the signal sent out by the LiDAR, reflected by the object, and

then received by the LiDAR) is given by �fr = (2f0/c)�vspoof,

where f0 is the frequency of the transmitted (legitimate) signal.

Therefore, the frequency of the received legitimate signal is

given by f0 +�fr. To mimic the legitimate signal, the attacker

chooses a frequency fa for the transmitted spoofing signal, such

that when the spoofing signal is received by the victim LiDAR,

the frequency of the received spoofing signal is identical to that

of the received legitimate signal. Since the spoofing signal is

sent directly to the LiDAR, its Doppler shift is given by �fa =
(fa/c)�va. So the frequency of the received spoofing signal

is fa + �fa. Therefore, the fa that satisfies the aforementioned

requirement is given by

fa = c + 2�vspoof

c + �va

f0. (15)

In this way, the Doppler shift measured by the victim LiDAR

happens to be �fr. As a result, the calculated Doppler velocity

is consistent with the ToF velocity (both are equivalent to

�vspoof), and hence the fake object will be accepted by the

LiDAR as a genuine one.

2) Spoofing Detection When Attacker Controls Signal

Frequency: The cooperative LiDAR system can also be used

for spoofing detection when the attacker controls its signal

frequency. Specifically, according to (15), the attacker must

adjust the frequency of the transmitted signal each time when

sending a spoofing signal to a LiDAR. When there exist

multiple LiDARs with different velocities (so they have dif-

ferent �va’s and �vspoof’s), the attacker must choose different

transmission frequencies when sending to different LiDARs to

spoof each of them.

Based on this observation, we can use the cooperative

LiDAR system and require all LiDARs in the system be

synchronized to send probing laser pulses that will hit the

object at the same time (and hence will be reflected by

the object at the same time too), so that an attacker is

not able to simultaneously change the frequency of spoofing

signals for all LiDARs at once. The key point in achieving

full synchronization among a group of cooperative LiDARs,

i.e., making them point to the same object at the same time,

is to realize that the first LiDAR that detects the object

actually can compute and then communicate the location of

that object to all other collalborating LiDARs, and hence allow

all LiDARs in the group to compute their respective angles of

departure for their laser beams in order for them to point to

the same object.

The basic idea of using multiple LiDARs for spoofing

detection is that an attacker can only send out a spoofing signal

with a certain frequency at one time. Given that our Coop-

LiDAR system synchronizes multiple LiDARs to monitor the

same object at the same time, it is hard for an attacker to

send a single spoofing signal that can simultaneously satisfy

the frequency requirements from all LiDARs. In the case

where the attacker has k coordinated dynamic-frequency laser

transmitters, at least k+1 synchronized LiDARs are needed, so

that at least one LiDAR is able to detect the spoofing by testing

the inconsistency between its calculated Doppler velocity and

ToF velocity. Note that here, the goal of the spoofing detection

mechanism is to serve as a filter (a gate-keeper) that identifies

and rejects spoofed LiDAR sensing outcomes. Therefore, a

collective decision-making process is adopted among all (k+1)

LiDARs: a sensed point in the point cloud will be accepted

only if none of the k +1 synchronized LiDARs has a negative

detection outcome.

D. Limitations

Although in previous sections we have demonstrated that the

Doppler-shift-based method is effective for detecting spoofing

attacks across various real-world attack scenarios, there still

remain some scenarios where our method may be less effective

or not suitable, as elaborated below.

1) Static or Low-Relative Velocities Scenarios: Doppler

shift is the change of signal frequency due to the

movement of the transmitter in relative to the receiver.

In the LiDAR case, if the relative velocity between the

LiDAR and the sensed object is 0 or close to 0, then the

Doppler shift will be negligible. In these scenarios, our

method is not applicable.

2) Large Velocity Variation During Small Time Interval

Scenarios: A basic assumption in our attack models 2

and 3 is that the relative velocity between the LiDAR and

the object remains constant between the moments of two

consecutive LiDAR measurements (usually this is over

the span of a fraction of a second), so that our proposed

algorithm is able to resolve the Doppler velocity and

the ToF velocity of the object. While this assumption is
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valid in most cases, in reality there are special situations

where the relative velocity between the LiDAR and the

object changes significantly during the aforementioned

small interval. Such changes in velocity could be caused

by, e.g., a bumpy road condition, or a complicated traffic

condition that requires frequent maneuvers (e.g., sudden

acceleration, deceleration, or braking) of the car. In

these special situations, the accuracy of the proposed

method will be reduced. To deal with this issue, in

Section VI, we have proposed a statistical spoofing

detection scheme, which accounts for the short-term

variation/perturbation in the vehicle’s velocity. However,

the proposed statistical detection scheme still faces

limitations as it is based on certain assumed statistical

models (i.e., the distribution) for the velocity variation.

In the real-world scenario, if the actual velocity variation

deviates significantly from the assumed distribution,

then the accuracy of this statistical scheme will be

reduced. In this case, a combination of our method

with existing model-level defense methods would be a

good solution. As model-level defense methods utilize

high-level contextual relationships between multiple data

points for spoofing detection, they well compensate for

the limitations of the Doppler shift-based method that

works only at the physical layer.

We want to clarify that our proposed spoofing detection

method is not a panacea - a “solution to all” that intends to

replace existing methods. Instead, it serves as the “first line

of defense” that operates in the signal space and is designed

to complement existing model-level defense methods. Our

method uses the physical property of an individual data

point within the point cloud for spoofing attack detection,

which is a validation in the signal space to check whether

the signatures (Doppler shift) of the signal follow physical

principles. Because of its physical feature, our proposed

method can fundamentally ensure that the LiDAR sensing

results that are fed to the subsequent high-level processing

are authentic. In contrast, current perception models-level

defense methods work at a higher level: they first aggregate

multiple data points to establish a geometric representation for

the sensed object, and then examine whether this geometric

representation presents a reasonable contextual consistency

over time. It is clear that our method works in an orthogonal

space compared to these model-level defense methods. In

practice, both methods can be applied at the same time

to improve the overall detection accuracy against LiDAR

spoofing attacks.

VI. SPOOFING DETECTION WITH JOINT CONSIDERATION

OF VELOCITY AND ACCELERATION

In the previous section, we assumed a uniform motion

model, so that the relative velocity between the LiDAR and

the object can be seen as constant. And we propose to verify

the consistency between the ToF velocity and the Doppler

velocity for spoofing attack detection. Although, due to the

high-scanning rate of LiDAR, the motion of an object with

acceleration can be seen as a uniform motion, the presence

of acceleration introduces additional variance in velocity

estimation, which makes spoofing detection based only on

velocity unreliable.

In this section, we present a hypothesis-test-based spoofing

detection framework that jointly considers velocity and accel-

eration. We first formulate the hypotheses for the attack and

nonattack cases on the basis of our previous findings. Then, we

demonstrate the necessity to jointly consider acceleration and

velocity for spoofing detection and provide the test statistic

designing strategies. Finally, we perform power analysis under

various conditions and numerically determine the smallest test

sample size required to achieve an expected performance level.

A. Hypothesis Test Formulation

According to our discussion in the previous section, the

velocity of an object can be obtained based on the Doppler

shift or ToF of the received signal, namely, �vDop and �vToF.

The inconsistency between the two velocities, �vDop and �vToF,

can only be caused by spoofing attacks or noise. Consider

a sequence of n Doppler and ToF velocity samples {�vDop}n

and {�vToF}n, respectively. For convenience, let vDop and vToF

denote the magnitudes of �vDop and �vToF, respectively. And their

population means are denoted by μDop and μToF, respectively.

The spoofing detection can be formulated as a hypothesis test,

which essentially tests whether the two means are equal or

not, that is, μDop
?= μToF. The null and alternative hypotheses

can be formulated as follows:

H0: no spoofing attack.(μDop = μToF)

Ha: the presence of a spoofing attack.(μDop �= μToF). (16)

When only velocity is taken into account for spoofing

detection, the two-sample t-test is used. The test statistic is

calculated as

t = |μDop − μToF|
Spooled

√
2/n

(17)

where Spooled = ([s2
1 + s2

2]/2), and s2
1 and s2

2 are the sample

variances of vDop and vToF, respectively.

Then t is compared with the critical value with the degree

of freedom of n − 1 and the significance level α, tn−1(α/2).

Hypothesis H0 is rejected if t > tn−1(α/2), which indicates a

spoofing attack.

B. Joint Consideration of Velocity and Acceleration

In real driving scenarios, the AV’s motion not only has

velocity but also has acceleration. Such an acceleration could

lead to a broadening spectrum in the Doppler frequency,

which increases the variance in velocity estimations derived

from the Doppler shift spectrum. This variance becomes

more significant for the small velocity and large acceleration

cases. For example, suppose that we have v = 0.5 m/s

and a = 0.5 m/s2, the Doppler spectrum of the received

signals is likely to display two dominant peaks at velocities of

0.5 m/s and 1 m/s. This phenomenon can lead to ambiguity

in velocity estimation, with potential values ranging between

0.5 m/s or 1 m/s, thus introducing a maximal error of

0.5 m/s. Hence, when acceleration exists, it increases the
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risk of misidentifying a legitimate signal as a spoofing attack,

resulting in an increased false alarm rate in spoofing attack

detection. Realizing the limitation of considering velocity

alone in spoofing attack detection, we introduce an advanced

detection mechanism that jointly incorporates the effect of

both velocity and acceleration, which can provide more robust

and accurate results in identifying spoofing attacks in realistic

driving scenarios.

Let a denote the acceleration and let x = [v, a] denote

the multivariate variable that consists of both the velocity

v and the acceleration a, which is used for the hypothesis

test. We first use maximum likelihood estimation (MLE) to

estimate vToF and aToF. Let μDop,�Dop and μToF,�ToF denote

the mean and variance of the population for x̄Dop and x̄ToF,

respectively. We assume that {xDop}n is a random sample

of size n from the normal distribution N (μDop,�Dop) and

{xToF}n is a random sample of size n from normal distribution

N (μToF,�ToF). Note that x̄Dop − x̄ToF follows the normal

distribution N (μDop −μToF, (1/n)(�Dop +�ToF)). Therefore,

the hypothesis test is simplified accordingly to test if μDop =
μToF or not, and Hotelling’s T2 test is used, whose test

statistic is

T2
0 = [x̄Dop − x̄ToF − (μDop − μToF)]′[

2

n
Spooled]−1

[x̄Dop − x̄ToF − (μDop − μToF)] (18)

where Spooled = ([s2
1 + s2

2]/2), and x̄Dop and x̄ToF, and s2
1

and s2
2 are the sample mean and sample variance of xDop

and xToF, respectively. T2
0 follows a noncentral F distribution

(4n − 4/2n − 3)F2,2n−3. For a given significance level α, the

critical value τ is calculated as

τ = 4n − 4

2n − 3
F2,2n−3(α). (19)

The null hypothesis H0 is rejected when T2
0 > τ , and the

false alarm rate, a.k.a., type I error, is

PH0
(T2

0 > τ) = α. (20)

C. Formulation of Ha for Power Analysis

Fig. 12 illustrates the power and significance level of a

statistical test. Previously, we have determined the distribution

of H0 and the critical value. Next, we must ensure that the test

has enough power so that the distribution of H0 and that of

Ha are sufficiently apart and both type I and type II errors are

small. The power of a hypothesis test is the probability that

the test correctly rejects the null hypothesis, as illustrated by

the red dashed area. It should be noted that statistical power

is positively related to the sample size. The larger the sample

size, the easier it is to achieve the expected statistical power.

There are two possible cases where one fails to reject the null

hypothesis: 1) the null hypothesis is really true and 2) the

sample size is not large enough to reject the null hypothesis

(i.e., statistical power is too low). Additional samples may be

needed to either accept or reject the null hypothesis.

Now, we will design scenarios of Ha, under which the

power analysis can be performed to determine the small-

est sample size required to achieve a satisfactory detection

Fig. 12. Illustration of a statistical test.

performance. When designing Ha, it is impossible to enumer-

ate all possibilities. In fact, the detector is not designed to

identify every malicious attack, but rather to identify spoofing

attacks that can lead to severe consequences. Specifically,

in our study, we focus on two attack goals: 1) emergency

brake triggered by injecting a fake static object in front of

the LiDAR and 2) failure of the automatic braking system

by injecting a fake object that is relatively stationary to the

LiDAR. Specifically, we consider a scenario where the AV is

fast-moving toward a static real obstacle, and a brake decision

is required to avoid a collision. Note that the braking decision

of the AV system is based on the combination consideration

of the distance and the relative speed between the AV and

the object. Therefore, the attacker launches the attack by

sending spoofing signals that mimic a fake object in close

range (so the faked signal will be the first to arrive at the AV’s

LiDAR than that of the real object) to hide the real obstacle

from LiDAR detection and is relatively stationary to the AV.

Although the distance between the fake object and the AV is

small, due to the small relative speed between them, the AV’s

decision-making system will not trigger a braking decision,

as it perceives no immediate collision risk. Consequently, the

AV might continue at its current speed and collide with the

real obstacle. In addition to the above attack goals, we also

consider the attacker to be static or mobile and design three

attack scenarios, in which we provide the distribution of Ha.

1) Attack Scenario 1 (Emergency Brake Triggered by Static

Attacker): A static attacker wants to trigger an emergency

brake by faking a static object in front of the LiDAR. Because

both the attacker and the fake object are static, according to

(5) and (6), we have Ha: μDop = 2μToF. The test statistic

under Ha is

T2
a = [x̄Dop − 2x̄ToF − (μDop − 2μToF)]′[

5

n
Spooled]−1

[x̄Dop − 2x̄ToF − (μDop − 2μToF)]. (21)

According to [36], the test statistic T2
a follows a noncentral

F distribution [25(n − 1)/5n − 6]F2,5n−6 with a noncentrality

parameter (n.c.p.) equal to

n.c.p. = n

σ 2

[

(x̄Dop − μ̄)′(x̄Dop − μ̄) + (2x̄ToF − μ̄)′(2x̄ToF − μ̄)
]

(22)
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where μ̄ = [(2μDop + μToF)/2] and σ 2 is the mean square

error. Given a critical value τ , the type II error is represented as

PHa
(T2

a < τ) = β. (23)

2) Attack Scenario 2 (Emergency Brake Triggered by

Moving Attacker): The attacker is moving at the same speed

as the victim LiDAR and wants to trigger an emergency brake

by faking a static object in front of the victim LiDAR. In this

case, we have Ha: μDop = 0 and μToF �= 0. The test statistic

under Ha is

T2
a = [x̄Dop − x̄ToF + μToF)]′

[

2

n
Spooled

]−1

[x̄Dop − x̄ToF + μToF)]

(24)

with n.c.p.

= n

σ 2
[(x̄Dop − μToF)′(x̄Dop − μToF) + (x̄ToF − μToF)′(x̄ToF − μToF)]

(25)

which follows (4n − 4/2n − 3)F2,2n−3.

3) Attack Scenario 3 (Failure of Automatic Braking System

Triggered by Static Attacker): The attacker is static and wants

to trigger a failure of the automatic braking system of an AV.

The attacker sends spoofing signals that mimic a fake object

in close range and is relatively stationary to the AV. In this

case, we have Ha: μDop �= 0 and μToF = 0. The test statistic

under Ha is

T2
a = [x̄Dop − x̄ToF − μDop)]

′
[

2

n
Spooled

]−1

[x̄Dop − x̄ToF − μDop)] (26)

with n.c.p.

= n

σ 2

[

(x̄Dop − μDop)
′(x̄Dop − μDop)

+ (x̄ToF − μDop)
′(x̄ToF − μDop)

]

(27)

which follows (4n − 4/2n − 3)F2,2n−3.

D. Settings for Power Analysis

As mentioned above, the sample size should be large enough

to provide the expected statistical power. As a result, both the

type I error α from PH0
(T2

0 > τ) = α and the type II error

from PHa
(T2

a < τ) = β are controlled in acceptable ranges.

Analysis is carried out in combinations of road conditions,

spoofed signal proportion, signal SNR, and attack scenarios to

determine the minimum sample size required for the detector

to produce satisfactory results for the most practical x.

1) Road Condition: Three typical road conditions are con-

sidered: 1) highway driving (v = 33 m/s and a = 0.5 m/s2);

2) ramp driving (v = 20 m/s and a = 1.5 m/s2); and 3) city

driving (v = 11 m/s and a = 5 m/s2). We note that the

relative speed implies the distance between the LiDAR and

the object. A low-relative speed indicates a smooth driving

condition, under which any attack can be easily detected due

to the sudden change in speed measurements. Rather, a high-

relative speed may indicate that an abnormal traffic condition

is already in place, making the attack less effective. Therefore,

we set the relative speed of the victim LiDAR to be 50% of

Fig. 13. Number of samples needed for each road conditions under different
spoofed signal proportion.

that of each road condition to balance between the difficulty

of detection and the consequence of the attack.

2) Spoofed Signal Proportion: The high-LiDAR sampling

rate and the narrow receiver’s field-of-view impose stringent

constraints on the timing and direction of the spoofed signal.

In practice, the attacker hardly has the luxury of continuously

spoofing a sequence of signals [23], [37]. It is more practical

that the attacker spoofs the LiDAR signals intermittently. The

spoofed signal proportion is defined as the ratio of the number

of spoofing signal samples to the number of received signal

samples. The higher the ratio of the spoofed signal, the easier

the attack is detected. In the experiment, we consider the range

of the proportion of the spoofed signal p to be 0.1 to 1.

3) Signal-to-Noise Ratio: The noise level of the signals is

affected by weather conditions, ambient light, system error,

device noise, etc. Such noises would introduce errors in the

velocity estimated from both the ToF and Doppler shift,

and we discuss them separately. Considering the LiDAR

measurement error [38] and the disturbance of ambient light,

we set the error rate of both aToF and vToF to 3%. For the

measurement error in Doppler velocity, we follow [39] to

calculate the variance of xDop of MLE

σ 2
v = 1

SNR

3

2π2N2
, σ 2

a = 1

SNR

45

2π2N4
(28)

where N is the sampling length of the signal, which is set

to 256 in our simulation to tradeoff the estimation accuracy

and the system burden. The SNR is set to {10−6, 10−5, 10−4}
according to [16] to fit the real-world scenarios.

E. Numerical Results of Power Analysis

In our simulation, we follow the convention to set the

type I error to α = 0.05, and record the least number of

samples to achieve the power of 0.9 at each Ha, i.e., type

II error is β = 0.1. The F1 score in this setting is 0.923,

indicating satisfactory spoofing detection performance. In real-

world application scenarios, the type I and type II error settings

can be set differently to meet different practical requirements.

1) Impact of Spoofing Signal Proportion: We set the SNR

to 10−4 and vary the proportion of the spoofed signal from 0.1

to 1. We record the least number of samples needed to achieve

the preset significance level under different attack scenarios

and road conditions. The results are shown in Fig. 13. It can

be seen that more samples are needed when the proportion
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Fig. 14. Number of samples needed for each road conditions under different
SNR.

of the spoofed signal is small. When the attacker spoofs only

a small proportion of the LiDAR signals, the mean of xToF

is close to that of xDop, therefore, more samples are needed

to separate the two distributions. This phenomenon becomes

more obvious when the proportion of the spoofed signal is

less than 40%, especially for attack 1.

2) Impact of Signal-to-Noise Ratio: Then, we fix the pro-

portion of the spoofed signal to 0.1 and vary the SNR from

10−6 to 10−4. The minimal sample sizes needed to provide the

expected statistical power under various attack scenarios and

road conditions are shown in Fig. 14. Compared to the spoofed

signal proportion that has a greater impact on the difference

between the means of {xToF}n and {xDop}n, the SNR plays

a more significant role in affecting their variance. A smaller

SNR leads to a larger estimation variance in the velocity

and acceleration from the Doppler shift, which increases the

uncertainty in detecting spoofing attacks. As a result, more

test samples are needed to provide sufficient statistical power.

F. Discussion on Implementation

After determining the number of samples required, the

spoofing attack detection procedure is carried out in the

following two steps.

1) Data Collection: Assuming that the sample size is

50, 50 samples of {xdop} and {xToF} are collected,

respectively.

2) Testing: The test statistic is calculated according to (18),

then compared with the threshold τ predefined by (19).

If the test statistic is greater than the threshold, it suggests

the potential presence of a spoofing attack. According to the

analysis above, setting the sample size to 50 is sufficient for

our test to achieve an F1 score of 0.923 in the worst-case

scenario. Notably, with sample size of 50, the F1-score would

be even higher for the remaining cases. For example, under

conditions where 40% of the signals are spoofed and the SNR

is 10−4, the test produces an impressive F1 score of 0.97 in

all road conditions.

We then evaluate the time complexity of the proposed

method by examining the latency associated with each step

above. In the testing step, the calculation of the test statistic

directly from the data and the comparison with the predefined

threshold incurs negligible time overhead. In the data collec-

tion phase, considering a typical 16-beam Velodyne LiDAR

system with a rotation speed of 20 Hz [40], 50 samples can

be collected in 150 ms. This duration is significantly shorter

than the average reaction time of 830 ms for AVs [41].

Note that for more advanced AV LiDAR systems with a

higher number of laser beams and a faster rotation speed,

the data collection time can be further reduced. As a result,

our proposed spoofing attack detection mechanism can operate

simultaneously with established LiDAR processing algorithms,

enhancing the reliability of current AV driving systems without

introducing additional time overhead.

VII. APPLICABILITY DISCUSSION, FUTURE

WORKS, AND CONCLUSION

A. Applicability Discussion

In this section, we discuss the applicability of the proposed

method to other sensors, such as cameras and radars. The

primary focus of this article is on addressing the unique

problem of safeguarding against LiDAR spoofing attacks,

which is distinctive due to the special way of how a LiDAR

sensor detects an object and its distance to that object.

Therefore, our proposed method cannot be applied to cameras,

as cameras lack the capability to measure the Doppler shift

of incoming light signals. Specifically, cameras are passive

sensors that record natural radiation either emitted or reflected

from objects. The resulting signal is represented in terms of

pixel intensity and color, and cameras cannot capture any

frequency changes in these light signals. As for radars, our

proposed method can be used for spoofing attack detection

but requires adaptations to address the challenges inherent to

radar systems. Notably, while radars are also active sensors and

can directly measure the Doppler shift of incoming signals,

they present unique challenges when compared to LiDARs.

For example, radars typically offer lower spatial resolution

and emit signals with a larger spectral bandwidth. This means

that the received signal can be influenced by the Doppler

effect from several objects simultaneously, each contributing

different Doppler frequency shift components. Additionally,

the broad spectral bandwidth of radar signals can reduce

the precision of Doppler frequency shift measurements. This

complexity heightens the challenge of pinpointing spoofing

attacks-based solely on the Doppler shift and potentially

increasing the false positive rate of our proposed method when

being applied to radars.

B. Future Work

We understand that testing our method in a real-world setup,

such as on a real AV, would significantly improve the impact

and practical relevance of our method. However, as a research

lab in a university, we are not capable of fully implementing

the proposed methods on a real LiDAR system (note that

nearly all LiDAR systems on the market are proprietary and

are not open to redevelopment) and then mounting it on

a vehicle to perform real-world testing. Realistically, what

our capacity allows us to do is the theoretical study of

the mathematical models for the spoofing attacks and their

detection, and mainly computer-simulation-based performance

evaluation for the proposed models. The scope of this article

has to be decided by our capacity above. We acknowledge that
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there must exist a significant difference between our work and

a real-world system that can be directly used by the current

autonomous driving vehicles. However, our contribution in this

article is mainly on the modeling aspect of the problem rather

than on the system-building/implementation of the model. The

theoretical foundation laid in this work could serve as an

important reference/guideline for system implementation in

the next step, which is out of the scope of this article and may

be conducted in our future work.

C. Conclusion

In this article, we investigated the LiDAR security problem

in the autonomous driving system. We performed a detailed

analysis on the vulnerability of the LiDAR sensors. To better

illustrate how to use Doppler shift for spoofing attack detec-

tion in different attack scenarios, we considered three attack

models, including static attacker, moving attacker without/with

control of velocity, and moving attacker with control of both

velocity and signal frequency. Under each of these models,

we first show how the spoofing attack is performed, and

then present our proposed countermeasures. To address the

uncertainty caused by vehicle acceleration, we proposed a

statistical spoofing detection framework to jointly consider the

impact of acceleration on vehicle velocity. Extensive numerical

evaluations are conducted to verify the effectiveness and

accuracy of the proposed methods in a wide range of test

settings.
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