IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

20673

Spoofing Detection for LiDAR in Autonomous
Vehicles: A Physical-Layer Approach

Xueyang Hu™, Tian Liu™, Tao Shu

Abstract—Recent years have witnessed the ever-growing
interest and adoption of autonomous vehicles (AVs), thanks
to the latest advancement in sensing and artificial intelligence
(AI) technologies. The LiDAR sensor is adopted by most
AV manufacturers for its high precision and high reliability.
Unfortunately, LiDARs are susceptible to malicious spoofing
attacks, which can lead to severe safety consequences for AVs.
Most current work focuses on protecting LiDAR against spoofing
attacks by using perception model-level defense methods, whose
effectiveness unfortunately depends on the correctness of the
LiDAR’s sensing outcome. A spoofer thus can elude from these
methods as long as it fabricates points that maintain the right
contextual relationship held by the legitimate points. In this
article, we propose to use the signal’s Doppler frequency shift
to verify the sender of the signal and detect potential spoofing
attacks. To this end, we first thoroughly analyze the working
principle of LiDAR and conduct real-world experiments to deeply
understand and reveal the vulnerability of LiDAR sensors. We
then prove that the Doppler frequency shifts of legitimate and
spoofing signals present different characteristics, which can be
used to fundamentally protect the LiDAR sensing outcome. For
better demonstration purposes, we consider three attack models,
including static attacker, moving attacker, and moving attacker
with control of both velocity and signal frequency. For each of the
models, we first show how the spoofing attack is performed and
then present our countermeasures. We then propose a statistical
spoofing detection framework to jointly consider the impact of
short-term uncertainty in vehicle velocity, which can provide
more accurate spoofing detection results in realistic environments.
Extensive numerical results are provided in a wide range of
settings and road conditions.

Index Terms—Connected autonomous vehicles (CAV), Doppler
shift, light detection and ranging sensor (LiDAR) sensor, physical-
layer security, spoofing attack.

I. INTRODUCTION

I N RECENT years, the development of autonomous vehicles
(AVs), i.e., vehicles that can drive by themselves with-
out the real-time intervention of human drivers, is rapidly
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progressing with the advancement of sensing and artificial
intelligence (AI) technologies [1], [2]. Some AVs are already
operating on public roads, e.g., Google’s Waymo One self-
driving taxis [3]. For all these AVs, driving safety is always the
No.1 requirement. To this end, all existing AVs are equipped
with certain types of environment-perception sensors, such
as cameras, mmWave radar, ultrasonic sensors, and light
detection and ranging sensor (LiDAR). With the rise of the
Internet of Things (IoT), AVs can connect to other devices
and systems, such as traffic lights and road sensors, to collect
real-time data and make more informed decisions. This can
enhance the accuracy of the AVs’ sensing and decision-
making abilities, leading to improved safety and efficiency.
Additionally, IoT-enabled AVs can communicate with each
other, allowing them to coordinate their movements and further
improve safety on the road.

Among the various environment-perception sensors used by
AVs, LiDAR sensor is adopted by almost all AV manufacturers
due to its high precision and high reliability [4], [5], [6]. The
LiDAR sensor employs highly directional laser pulses to probe
the surrounding environment. An accurate depth image of the
surrounding objects is then collected by the time of flight (ToF)
of the received pulse, on which a high-resolution 3-D point
cloud map of the environment can be built. In addition, the
usage of an infrared laser signal not only makes LiDAR less
affected by ambient light in the environment, but also enables
LiDAR to remain functional even under poor light conditions.

Ensuring correct and truthful sensing outcome from all
environment-perception sensors is essential to ensure reli-
able safety-critical decision making in autonomous driving.
Unfortunately, recent studies have found that LiDARs are
susceptible to malicious spoofing attacks that aim to alter
LiDAR’s sensing outcome by adding fake objects to and
removing real objects from the LiDAR’s sensed point cloud
map, and hence leading to severe safety consequences. For
example, the feasibility of injecting fake points into the
LiDAR’s sensed point cloud was first demonstrated in [7].
They showed that LiDAR sensing results can be easily
manipulated by a black-box attack using low-cost commodity
hardware (less than 60 U.S. dollars). Subsequent work in [8]
launched LiDAR spoofing attacks that successfully fooled a
real-world AV perception system, Baidu Apollo 2.5, to detect
(faked) objects that do not actually exist in reality. The work
in [9] further demonstrated that by spoofing only a small num-
ber of points (up to 100), the LIDAR object detection system
can be fooled to detect nonexisting objects. Their work shows
the severity of the threats posed by spoofing attacks on AV
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LiDARs, which urgently calls for promising countermeasures
that can better guarantee the safety of autonomous driving, so
as to offer a peace of mind to users when they are using the
technology.

In the last couple of years, many works have been focused
on mitigating the effect of LiDAR spoofing attack using per-
ception model-level defense methods [10], [11], [12], [13]. For
example, the work in [9] proposed CARLO, which harnesses
occlusion patterns between objects in the LiDAR point cloud
for spoofed vehicle detection. The intuition is that, if there
are many LiDAR points appearing to pass through a detected
object, the object is likely to be a fake object Another anomaly
detection system, Shadow-Catcher [14], identifies spoofed
ghost objects by checking the contextual consistency between
the object and its shadow. Treating the LiDAR’s sensed point
cloud as a depth image, these methods essentially follow the
image-recognition research ideas in Al, which mainly consider
the high-level contextual relationship, i.e., the perception,
between the points to decide the presence of a spoofer. A
critical weakness of these post-sensing methods is that their
effectiveness fully depends on the correctness/truthfulness of
their input, i.e., the LiDAR’s sensing outcome (the point
cloud). Therefore, a spoofer will be able to elude from these
methods as long as it fabricates/fakes points that maintain the
right contextual relationship among them.

Keeping the weakness of the above model-level methods in
mind, another category of work is dedicated to fundamentally
protect LiDAR from spoofing attacks based on physical-
layer authentication (PLA). These methods work on the
signal level, and try to authenticate LiDAR’s signal based
on some physical properties of the light so as to ensure the
correctness of LiDAR’s sensing outcome. For example, the
work in [15] uses amplitude modulation (AM) to directly
encrypt LiDAR signals with side channel information leaked
from a cryptographic device. Since side channel information
cannot be recreated without the knowledge of the secret
key, attackers cannot inject spoofing signals while remaining
undetected. Meshcheryakov et al. [16] used the signal-to-noise
ratio (SNR) of the received signal as an authentication metric
and developed a probabilistic approach based on the Neyman—
Pearson criterion to select the best SNR threshold for spoofing
attack detection. However, a major limitation of their methods
is that they use the intensity of the received signal for spoofing
detection, which is not a robust metric for LiDARs. In LiDAR
sensing, the intensity of the reflected signal faces complicated
distortions that are related to the material, size, and roughness
of the reflector. Therefore, the sensing signals encrypted by the
method in [15] may become unrecognizable after reflections.
Furthermore, the SNR of the sensing signal used in [16]
has a large variance due to the dynamics of the environment
(e.g., reflectors are moving), making it difficult to accurately
identify the spoofing signal.

In this article, we find that the intrinsic vulnerability of
LiDAR is caused by the fact that current LiDAR sensors
blindly accept incoming signals without verifying the sender
of the signal. Therefore, we propose to use the signal’s
Doppler frequency shift to verify the sender of the signal
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and detect potential spoofing attacks. The fundamental dif-
ference between a spoofing signal and a legitimate signal
is that the spoofing signal is generated by the attacker and
directly sent to the LiDAR receiver, while the legitimate
signal is originally sent by the LiDAR transmitter and then
echoed/reflected by some objects. Based on this observation
and through experiments on real-world testbed, we find that
the propagation differences between legitimate and spoofing
signals can be characterized by the Doppler shift of the
received signal, which can then be used for spoofing attack
detection. Specifically, the major contributions of our work are
fourfold.

1) To have a deep understanding on the vulnerability of
today’s LiDAR sensors, we thoroughly analyze the
working principle of LiDAR and conduct real-world
experiments to demonstrate how easily a spoofing attack
can be launched against LiDAR, so as to show such
attacks are realistic to current LiDAR technology, and
hence the urgency of a promising countermeasure.

2) We prove that the Doppler frequency shifts of legitimate
and spoofing signals present different characteristics, and
this signal-level difference can be used to fundamentally
protect the sensing outcome of LiDAR. We then build
a testbed to verify the feasibility of extracting Doppler
shift from LiDAR signals with only minor modifications
to the LiDAR system. Compared to amplitude and AM-
based authentication methods [15], [16], the signal’s
Doppler frequency shift is a more robust and reliable
decision statistic for spoofing detection, because it is
decided by the motion between the LiDAR and sensed
object and is less affected by the RF environment.

3) To show how the Doppler shift can be used to detect
spoofing attacks under different scenarios of attacker
capabilities, we thoroughly consider three attack mod-
els, including static attacker, moving attacker, and
moving attacker with control of both velocity and signal
frequency. In each of these models, we first show how
spoofing attacks can be performed and then present our
countermeasures for spoofing detection.

4) We make the proposed detection mechanisms more
accurate and practical by further accounting for the
short-term variance/uncertainty in the vehicle’s veloc-
ity, caused by the vehicle’s acceleration and random
perturbation on its movement by the road condition. A
statistical spoofing detection framework is proposed to
jointly consider the impact of velocity and acceleration
on the Doppler shift, which can provide more accurate
spoofing detection in realistic application environments.
Extensive numerical results are provided in a wide range
of settings and road conditions.

The remainder of the article is as follows. We begin
by briefly reviewing related work in Section II. Then, we
analyze the working principle and vulnerability of LiDAR in
Section III. We analyze the difference in Doppler frequency
shift between legitimate and spoofing signals in Section IV.
We consider three attack models and present the spoofing
detection method in Section V. The statistic-based spoofing
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detection framework is presented in Section VI. And finally,
we conclude this article in Section VII.

II. RELATED WORK
A. Attacks Against AV Sensors

Attacks against AV sensors can be classified into three
categories according to the physical channel used by the
attacker [16], [17], namely, the regular, side, and transmission
channel attacks. Regular channel attacks use the same working
channel as the sensor (e.g., laser for LiDAR) to directly
alter the sensing results. Side channel attacks use a physical
channel other than the sensor’s working channel to attack the
LiDAR [18], [19]. Lastly, transmission channel attacks focus
on the transmission channel that connects the sensor and other
parts of the system [20], [21], [22].

B. Perception Model Level Defense Methods

Since the point cloud data generated by LiDAR is used
by the Al-based perception model for 3-D object detection,
many research works focus on mitigating the effect of spoofing
attack by the perception model level defense methods. For
example, Hau et al. [14] proposed Shadow-Catcher, which
validates object identities by examining the shadow of the
object in the LiDAR point cloud. The idea is that, for the
genuine object representations in the LiDAR point cloud,
they are closely followed by regions void of measurements
(shadow region). For the injected spoofed object, it is either
does not have shadow regions or its shadow regions are
inconsistent with the object’s size or shape. Zhang et al. [13]
and You et al. [23] leveraged the spatio-temporal consistency
of the genuine object for spoofing attack detection. The authors
utilized a motion prediction framework to analyze the spatio-
temporal consistency of objects across consecutive frames in a
driving scene. The spoofed object is detected if it violates the
law of temporal consistency. However, the major limitation of
the above model-level defense methods is that they rely on
the geometric formation of points in the LiDAR point cloud
and its evolution over time (i.e., the contextual relationship
between points) to detect spoofing. These mechanisms first
aggregate multiple points in the point cloud to establish
an object representation, and then check whether the object
representation remains contextually consistent over a certain
time period. Therefore, if an attacker can maintain the cor-
rect contextual relationship among the fabricated points, it
can evade from being detected by these spoofing detection
methods. In contrast, our proposed method works in the
signal space and evaluates each point in the LiDAR point
cloud individually, by testing whether the Doppler shift of the
received signal matches with the expected Doppler shift caused
by the velocity of the LiDAR. A spoofing LiDAR signal
(i.e., a point in the point cloud) causes mismatch between the
received Doppler shift and the expected Doppler shift, and
hence will be detected by the proposed method, irrespective
of its geometric relationship with the other points in the point
cloud.
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TABLE I
COMPARISON BETWEEN RELATED WORK (DEF LV: DEFENSE METHOD
LEVEL, DEF STRATEGIES: DEFENSE STRATEGIES, AND PHY INVA:
PHYSICAL INVARIANTS USED)

Def LV Ref Attack Model Phy Inva Def Strategies
[23] Add/remove Points Spalio‘—temporul Cons:iglen;y
9] . Occlusion Pattern Verification
Model in —
[14] Point-Cloud N/A Shadow Pattern Verification
[13] - Disparity Errors Verification
Transmission [24] Data Tamping Dynamic Watermark
o [20] in Transmission QIM-based Watermark
[15] Amplitude Signal Amplitude Encryption
Signal [26] Change Time Challenge-Response Authentication
h [16] Signal ToF Amplitude SNR Distribution Analysis
Ours Frequency Doppler Shift Verification
d

I n I
- > B
Delay t 4*'-

Normal LiDAR sensing.

Fig. 1.

C. Signal Level Defense Methods

The signal-level defense method mainly uses PLA for spoof-
ing detection. Unlike perception model-level defense methods,
PLA protects LiDAR sensors against spoofing attacks by iden-
tifying the malicious signal in the analog domain [24], [25].
The most widely used PLA method is to endow the probes
used by active sensors with a special designed feature and
use the feature to authenticate the responses. For example,
Shoukry et al. [26] proposed PyCRA, which identifies spoofing
attacks for magnetic sensors and radio-frequency identification
(RFID) tags. PyCRA turns off the probe signal at random
instants to verify the existence of any spoofers. If there is
no spoofer, it will receive nothing; otherwise, the spoofing
attack is identified. However, PyCRA does not meet the
high-availability requirement in safety-critical systems, such
as an autonomous driving system. When using PyCRA, an
AV LiDAR should be turned off at random times for attack
detection. As a result, the LIDAR sensor becomes unavailable
for environmental sensing during that period, which may cause
safety problems for AVs.

For better readability, we summarize the related work in
Table I, to highlight the difference between our work and other
works.

III. LIDAR WORKING PRINCIPLE AND VULNERABILITY

To defend LiDAR against spoofing attack, we first need
to understand the working principle and vulnerability of
LiDAR. In this section, we first analyze the working principle
and vulnerability of LiDAR. Then, we conduct real-world
experiments to demonstrate the practicability and easiness of
conducting spoofing attacks against LiDAR.

A. LiDAR Working Principle

LiDARs detect and localize objects by actively probing
objects with pulses of infrared laser signals between 750 nm
to 1.5 um. Fig. 1 shows a typical LiDAR sensing scenario.
A LiDAR sensor consists of two parts: 1) a laser diode
as transmitter and 2) a photodetector as receiver. During
LiDAR sensing, the transmitter periodically emits laser pulses
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to the environment. After the pulses reach the objects in
the environment, they are reflected back and received by the
LiDAR photodetector. The reflected signals are called echo
signals. The time difference between the emitting and arriving
time of the signal, i.e., ToF, is used to calculate the distance d
between the LiDAR and the object. Let #; denote the time of
the laser pulse being sent by the transmitter, and 7, denote the
time of the echo signal being received by the photodetector.
The ToF of the received signal 7 is t, —#;, and the distance d
between the LiDAR and the detected object is

d=~ 1
N 2nr M
where n is the refractive index of the propagation medium
(n = 1 for air) and c is the speed of light. By mechanically
or electronically steering the laser pulses toward different
directions and calculating the ToF distances of the echo
signals, LiDAR is able to generate a point cloud, which is a
high-resolution depth image of the environment.

B. Motivating LiDAR Security via Real-World Observations

Existing LiDAR only accepts the first arrival signal and
uses the signal’s arrival time for ToF distance calculation
without verifying whether that signal was sent out by the
LiDAR’s laser diode (i.e., the legitimate transmitter). This
leaves a sufficient loophole for many possible forms of
spoofing attacks. In the following, we first present a simple
toy example implemented in [8] to illustrate a basic type of
spoofing attack that fakes a point in the LiDAR point cloud
through ToF manipulation. Such a basic attack can be used as
building blocks by the attacker to create more sophisticated
spoofing attacks, e.g., those that fake an object. We then
present our real-world experiments that are built upon two
commercial YD X2I. LiDARs to demonstrate how spoofing
attacks can actually take place in real-world applications. The
main purpose of this section is twofold.

1) To better motivate the LiDAR spoofing attack problem

studied in this article. In particular, by demonstrating
a real LiDAR spoofing attack over a commercially
available LiDAR system, we wish to show that such
an attack is very realistic for LiIDAR systems available
in today’s market. Note that even though such attacks
have been demonstrated in the past, most of them
were based on experimental testbeds in a lab rather
than directly over a commercially available LiDAR
product. We believe that showing the spoofing attack
on a commercial LiDAR product will make the attack
more convincing, especially for readers not familiar with
LiDAR and its vulnerabilities.

2) To better show the compelling nature of the problem:
By showing how easy it is to launch a spoofing attack
against current LiDARs, we highlight the urgent need
for solutions to this compelling security problem.

1) Toy Example for Spoofing Attack: A basic point-faking
attack was proposed and implemented in [8], as illustrated
in Fig. 2. This system features a photodiode, a time delay
component, and a laser diode. The total cost of the system is
less than 50 U.S. dollars. The goal of this spoofing system is
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Fig. 3. Outdoor spoofing test environment and setup.

to deceive the LiDAR by sending signals with false ToF that
simulate a fake object. The spoofing signal can be injected to
LiDAR via an attacker-controlled laser diode, whose working
wavelength is the same as the victim’s LiDAR. By properly
controlling the timing of the spoofing signal, the attacker can
alter the ToF measurements of the victim LiDAR, which in
turn results in a counterfeit point at the distance that the
attacker desires. More specifically, suppose that the attacker
aims to mislead the LiDAR in detecting a counterfeit point at
distance dgpoof, While the actual physical distance between the
LiDAR and the attacker is d. To achieve the attack goal, the
attacker first needs to synchronize with the victim LiDAR to
obtain the sending time of the laser pulses. The attacker then
sends a spoofing signal to LiDAR and ensures that the arrival

time of the spoofing signal tZPOOf is

f
thlpoo = ts + Tspoof (2)

where Tspoof = 2dspoot/c. In this case, when the spoofing signal
is received by LiDAR, the calculated ToF distance between
the LiDAR and the attacker is now manipulated to be dgpoof
(instead of being d), resulting in a faked point in the LiDAR’s
point cloud.

To launch a real-world spoofing attack, the photodiode in
Fig. 2 serves as a synchronization device to trigger the delay
component whenever it captures laser signals from the victim
LiDAR. And the delay component activates the laser diode
to send a spoofing signal toward the victim LiDAR after a
specified time delay Tspoot-

2) Our Real-World Experiments: To show how easily a
spoofing attack can be launched against current LiDAR
systems, we conduct the following real-world experiment.
We use two YD X2L LiDARs [27]. One of the LiDARs
acts as the victim LiDAR to generate point cloud data for
the test environment. The other LiDAR is configured as a
spoofing attacker that periodically generates spoofing signals
with random ToF to attack the victim LiDAR. We conduct
our spoofing attack experiments in an outdoor parking lot, and
the test environment and test location are shown in Fig. 3.
In the test, the victim LiDAR is running normal operation
to sense the environment and generate point cloud data, and
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Spoofed points

Spoofed points

(a)

Fig. 4. LiDAR point-cloud data. (a) Normal point cloud. (b) Point cloud
under attack.

the spoofing attacker is located 1.5 m away from the victim
LiDAR and shooting signals with random time delays.

Fig. 4 shows a comparison of LiDAR point cloud with and
without spoofing attack. In Fig. 4(a), the point cloud with no
spoofing attack clearly captures the shape and distance of the
surrounding objects. In contrast, in Fig. 4(b), there are multiple
spoofed points shown on the point cloud map (marked by red
squares). It can be seen that under the random attack, two
small clusters of spoofed points are generated in the LiDAR
point cloud. These clusters of spoofed points may deceive
the LiDAR system to misinterpret them as two small objects
in front of the LiDAR: one in the 12 o’clock direction and
the other in the 2 o’clock direction, which actually do not
exist at all in reality. This indeed poses a serious safety threat
for the AVs. Note that the experiment in Fig. 4 is just a
simple example. In reality, instead of a random attack, the
attacker can enhance their attack effects (i.e., generate a bigger
cluster of spoofed points in the point cloud) by launching more
sophisticated attacks.

IV. DOPPLER FREQUENCY SHIFT IN LIDAR SENSING

To fundamentally protect LiDAR against spoofing attacks
in the analog domain, it is crucial to distinguish legitimate
sensing signals and spoofing signals based on signal-level
features. However, choosing an appropriate physical feature
that can correctly represent the difference between legitimate
and spoofing signals is a challenge.

In this section, we first prove that the Doppler frequency
shift of the received signal can properly characterize the
propagation difference between the legitimate and spoofing
signal and distinguish the spoofing signal. Then, we build
a real-world testbed to show the practicability of extracting
Doppler shift from LiDAR’s laser signal.

A. Doppler Frequency Shift Difference Between Legitimate
Signal and Spoofing Signal

The Doppler effect, or Doppler frequency shift, is the
change in frequency of a signal in relation to the relative
movement between the signal’s transmitter and receiver. In
LiDAR sensing, due to the relative motion between the LiDAR
and the detected object, the echoed signal presents a frequency
shift caused by the Doppler effect.

In LiDAR sensing, the legitimate sensing signal is sent by
LiDAR’s transmitter, reflected by an object in the environment
and then received by the LiDAR’s receiver, which travels
through a round trip. Let us consider a 2-D case to derive
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Fig. 5. Doppler frequency shift illustration. (a) Normal sensing (round trip).
(b) Spoofing attack (single-way).

the Doppler frequency shift of the legitimate sensing signal.
Let the velocity vector of LiDAR be v, and the velocity
vector of the object detected be V(5. The Doppler shift of the
legitimate sensing signal is determined by the relative radial
speed between the LiDAR and the object, which is defined
as the rate of change of the distance between them. The
relative radial speed Av between the LiDAR and the object is
calculated as Av = (VL. —V(op)) -1, where - is the dot product and
[ is the Direction of Arrival (DoA) vector of the signal (i.e., the
direction along the line connecting the LiDAR and the detected
object). Due to the large magnitude of the speed of light, the
DoA of the received signal is considered to be the same as the
sending direction of the signal, which is considered as known.

Recall that the legitimate sensing signal travels through a
round trip. We introduce an intermediate signal frequency f;,
which is the frequency of the signal that reaches the object.
Let fo be the frequency of the signal transmitted by LiDAR
and f, be the frequency of the received signal, as shown in
Fig. 5(a). In the forward trip of the round trip, the signal with
frequency fp is sent to the object, and f is

, c
fr - (C— Av>f0~

Then, the signal with frequency f; is reflected back to
LiDAR on the same route, and the received signal frequency

fris
= <c+ Av)fr,.
c

The Doppler frequency shift Af of the received signal is
calculated as the frequency difference between the transmitted
and received signals, which is

3)

“4)

c+ Av
c— Av

2
Af =fr=fo= < - l)fo ~ ?Av. (&)

The approximation is valid since Av is much smaller than
the speed of light ¢ (3 x 108 m/s).

In contrast, the spoofing signal is sent directly to LiDAR by
the attacker, which only travels one-way. Let v, be the velocity
vector of the attacker. The relative radial speed between the
LiDAR and the attacker is Av, = (¥ — V,) - [, as shown
in Fig. 5(b). Since the frequency of the transmitted spoofing
signal is also fy, the Doppler frequency shift of the spoofing
signal Af, is

A= —E
“ c— Ay,

f

0
— Avyg.
c

>fo =™ ©
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Fig. 6. Testbed design. (a) Schematic. (b) Testbed layout.

Based on the above analysis, it is clear that the Doppler
shifts of the legitimate and spoofing signals are differ-
ent due to their different propagation paths: the Doppler
frequency shift of the legitimate sensing signal is twice as
much as that of the spoofing signal under the same radial
speed due to its round trip propagation. As will be elabo-
rated shortly in Section V, the above margin (a factor of
2) between the Doppler frequency shifts of legitimate and
spoofing signals can be utilized to construct reliable and
accurate spoofing detection mechanisms under various attack
conditions.

Next, we present a proof-of-concept testbed to demonstrate
the feasibility of extracting Doppler frequency shift from the
laser signal of a moving LiDAR.

B. Feasibility Study of Extracting Doppler Frequency Shift

1) Proof-of-Concept Testbed Design: We design and build
a proof-of-concept testbed to test the feasibility of extracting
the velocity-based Doppler shift from the laser similar in
nature to those used in LiDAR systems. The schematic
diagram of the testbed is shown in Fig. 6(a). The Doppler
shift is extracted by using the self-mixing effect of the signal.
Specifically, the laser signal with frequency fj is first split into
two orthogonal beams by a 3-dB beam splitter in the middle.
Then, one beam of signal, which is called the local signal, is
reflected back by the fixed mirror My. And the other beam
of signal, termed the modulated signal, is reflected back by
a moving mirror M whose velocity is v. The local signal
and the modulated signal are mixed together and received by
the photodiode to extract the Doppler frequency shift of the
modulated signal.

The Doppler shift of the modulated signal is extracted by
the homodyne detection method. The local signal Y7 and the
modulated signal Yy, can be expressed as

Yio = ALo - e 1@ fottéLo)

Yy = Ay - e I FGoEANHEm)

where Aro, ¢ro,Am, ¢m denote the amplitude and phase
shift of the local and modulated signal, respectively. j is the
imaginary unit and Af = (2v/c)fy is the Doppler frequency
shift caused by the movement of the mirror M.

The output of the photodetector is the combined signal
power of Y7o and Y),. Due to the low-pass filtering effect of
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(b)

Fig. 7. Doppler shift spectrum results. (a) Af = 24.10 KHz, v = 0.75 cm/s.
(b) Af = 48.72 KHz, v = 1.55 cm/s

the photodetector, the high-frequency components of Y7o+ Yy,
are filtered out, and the output power is

Ay | Ao
Poyr = > + N + ApmALo cos 2 Aft + ¢y — Pro)

which is a beat signal with frequency Af. By filtering out the
direct current (DC) signal, Af can be extracted by fast Fourier
transform (FFT).

2) Testbed Implementation: Regarding the implementation
of the testbed, we use a 635 nm ThorLabs PL202 laser diode
to send laser signals. A cubic beam splitter, ThorLabs CCM1-
BS013, is used to split the beam. The photoreceiver is OPT101
from Texas Instruments. The moving mirror is attached to a
motorized camera slider for stable and continuous movement.
An oscilloscope is connected to the photoreceiver for data
collection and visualization. The layout of the testbed is shown
in Fig. 6(b).

Note that for the demonstration purpose, we use mirrors
instead of real obstacles. In real-world scenarios, the surface
roughness and color of the obstacle can affect the received
signal’s SNR. Rough surfaces can scatter laser light, and
darker colors absorb more light, resulting in weaker reflections
(i.e., smaller reflection coefficient of the obstacle) and hence
lower SNR. However, in practice, the reduced reflection
coefficient can be well compensated by using a higher power
laser emitter and filter lenses, which are commonly adopted
by vehicle LiDARs. Therefore, in real-world use cases, the
LiDAR’s SNR should be sufficient for reliable and accurate
Doppler shift extraction.

3) Test Results: We then use the above testbed to extract
the Doppler frequency shift of the received signal and estimate
M;’s velocity v. Fig. 7 shows the Fourier spectrum of the
signals for different velocities of M. In the experiment, the
moving speed of M is set to 0.75 cm/s and 1.50 cm/s, respec-
tively. The estimated velocity v of Mj, which is calculated
from the Doppler shift Af, is v = (Af/2fp)c. In Fig. 7(a), the
Doppler shift of the signal is 24.10 kHz, which corresponds to
v=0.75 cm/s and is match with the M;’s ground truth speed
v = 0.75 cm/s. In Fig. 7(b), there are two peaks found, and
the peak with the highest value is chosen as the Doppler shift
that corresponds to the real signal. In this case, the Doppler
frequency of the signal is 48.72 kHz, which corresponds
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to v= 1.55 cm/s. Under real-world conditions, the Doppler
spectrum of the received signal may contain multiple peaks
due to random noise and subtle movement of the object. A
general principle of identifying the real signal is to choose
the frequency component with the highest energy, as this is
caused by the dominant movement of the object. Compared
to the ground truth speed of v = 1.50 cm/s, the small variance
between v and v is caused by noise in the photodiode. This
small variance does not affect the accuracy of our proposed
spoofing attack detection method. As will be shown in later
sections, the velocity detection error [about 3% as shown in
Fig. 7(b)] caused by random noise is much smaller than the
separation between the detected velocity of a real object and
the detected velocity of a spoofed object (the former is twice as
much as the latter). Furthermore, the impact of random noise
can be reduced by our statistical spoofing detection framework
presented in Section VI.

In summary, this experiment establishes the feasibility of
extracting the Doppler shift of high-frequency LiDAR signals
over a testbed that is open for redevelopment. The same struc-
ture of the testbed can be integrated into real-world LiDAR
systems to extract the Doppler shift and detect spoofing
attacks. Specifically, the testbed is based on an interferometer
structure and can be integrated into LiDARs. The potential
challenges of incorporating our method into the LiDAR system
include:

1) Cost Issue: Implementing the structure shown in

Section IV-B requires an additional frequency mixer and
A/D converters, which increases the manufacturing cost
of LiDAR sensors.

2) Standardization Issues: The lack of industry-wide stan-
dards for LiDAR systems can cause compatibility and
interoperability issues between different AV models and
brands. At this point, all commercial LiDAR products
available on the market are proprietary and are not open
for redevelopment.

We understand that there have been numerous existing com-
mercial products on the market that are capable of extracting
Doppler shift from laser signals. However, these products are
often proprietary, and hence are not friendly to redevelopment.
The spoofing detection measures developed in the subsequent
sections can be implemented on the testbed presented in this
section.

V. DOPPLER SHIFT-BASED SPOOFING DETECTION

In the previous section, we demonstrated that the Doppler
shift of the laser signal can be used to distinguish between
a spoofing signal and a legitimate sensing signal. In this
section, we present the detailed designs that utilize the Doppler
frequency shift for LiDAR spoofing attack detection under
various attack models. Specifically, we first study the uniform-
motion scenario, where the velocities of the attacker, the
LiDAR, and genuine objects in the environment are assumed to
be constants during the window of detection (we will relax this
assumption and consider accelerations in the next section). We
consider three different spoofing attack models, respectively:
1) a static attacker; 2) a mobile attacker; and 3) a mobile
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Fig. 8. Spoofing attack in Scenario 1.

attacker that controls both its velocity and signal frequency.
Each of these models can be considered as a generalization
of the model before it. We start off our detection design with
the simplest attack model—the static attacker, and gradually
make the design more general by considering more realistic
conditions in the attack. For each attack model, we first show
how the spoofing attacks are performed. Then, we illustrate the
countermeasure that uses the signal Doppler shift to identify
the spoofing attack.

We need to point out that the spoofing attack models
adopted by the related works are essentially based on the
same assumption of the attacker’s most basic attack capability
considered in this work. In particular, no matter it is the fake
object injection attack or the target object removal attack,
they are all built upon the attacker’s foundational capability
of being able to manipulate the time-of-flight of the LiDAR
signal, so that the attacker can either inject a fake point into
or remove a real point from the LiDAR’s point cloud. Our
work considers exactly the same foundational capability of
the attacker, as shown in Fig. 2 and Section III-B1. In this
regard, the comparison between our work and those related
works is fair. In addition, our work not only considers the
same foundational capability of the attacker, but also studies
how such a foundational capability can be achieved by an
attacker and how such capability can be countered under
various realistic scenarios, e.g., when the attacker is static,
or when the attacker is mobile, or when the attacker can
control its movement and the frequency of the LiDAR signal,
etc. Because the detection methods proposed in our work
essentially target detecting the manipulation of the time-of-
flight of the LiDAR signals, they are also able to detect those
fake object injection attacks and the target object removal
attacks which are based on the above manipulations.

A. Attack Model 1 (Static Attacker and Moving LiDAR)

1) Spoofing Attack in Model 1: We first consider the case
where only LiDAR is moving with constant velocity vz, and
any other objects and the attacker remain static. This is a
common scenario for LiDAR spoofing attacks. For example,
the attacker can place the spoofing device on the roadside
to shoot malicious laser pulses to AVs passing by. We also
assume that the LiDAR system already knows that all genuine
objects are static. In this scenario, similar to the example
illustrated in Section III-B1, the attacker aims to mislead the
LiDAR in detecting a counterfeit point at distance dspoor While
the real distance between the LiDAR and the attacker is d.
This is achieved by sending spoofing signal with time delay
Tspoof 10 the victim LiDAR, as shown in Fig. 8.

In this attack scheme (and also the subsequent two attack
models), it is assumed that the attacker is aware of the working
frequency of the victim LiDAR, and the transmitted spoofing
signal has the same frequency as the victim LiDAR’s working
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Fig. 9. Cartesian coordinate system and signal tuple.

frequency. This assumption is practical because the working
frequency of a vehicle’s LIDAR can be easily obtained through
the product specification. We also assume that the attacker
is aware of its distance to the victim LiDAR, so that it can
decide the timing of emitting the spoofing signal that misleads
the victim LiDAR to calculate dspoor. This assumption is
reasonable because the attacker can simply use its own LiDAR
to monitor its distance to the victim in real time.

2) Spoofing Detection in Attack Model 1: In Attack
Model 1, a spoofing signal can be identified by testing
whether the Doppler shift of the received signal matches the
expected Doppler shift caused by the velocity of the LiDAR.
Specifically, for the legitimate sensing signal sent to direction
I, since only LiDAR is moving with velocity vy, the expected
Doppler frequency shift of the reflected signal is (2fy/c)vr - L.
Here, due to the small field of view of LiDAR receiver
(less than 1°), the transmission direction of the signal is the
same as the receive direction. Let the Doppler shift of the
received signal be Af, (Af; can be measured as illustrated
in Section IV-B). To detect a spoofing signal, the following
should be tested:

N ?(h .7). 7

_ For the spoofing signal sent by the attacker from direction
I, since the attacker is static and the spoofing signal travels
one way, its Doppler shift is only (fy/c)vr - —a margin of a
factor of 2. Therefore, the spoofing signal can be detected.

B. Attack Model 2 (Moving Attacker and Moving LiDAR)

Next, we consider a more general attack model, where the
LiDAR, the attacker, and the object in the environment are
moving. This scenario is more common than attack model 1.
For example, the attacker can drive a vehicle in close proximity
to the victim AV, e.g., in the same lane or adjacent lanes,
to shoot the laser pulses to the victim AV’s LiDAR. To
better present the spoofing attack and the proposed spoofing
detection in this model, we first introduce some basic notation
and definitions.

Let us consider a 2-D Cartesian coordinate system shown
in Fig. 9. Let the LiDAR’s velocity be vy. Without loss of
generality, we assume that the direction of vy is the same
as the y-axis, and the x-axis is perpendicular to v,. With the
movement of the LiDAR and the object, the LiDAR receives
a series of signals emitted by the LiDAR and then reflected
by the object at different locations. In particular, at times
f,t, ..., g, let the locations of the LiDAR and the object
be LiDAR;,, Object;,, LiDAR;,, Object,,, ..., and LiDARy,
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Object;,, respectively. Denote the signal that is emitted from
the LiDAR, reflected by the object, and then received by the
LiDAR at time #; by S;,, where k = 1,2, ..., K. The signal §;,
can be presented as a tuple S;, = [Af;,, dy, 0, ], where Af;,,
dy,, and 6, represent the signal’s Doppler frequency shift, ToF
distance, and Angle of Arrival (AoA), respectively, at time #,
as shown in Fig. 9. Let S denote the set of signals reflected by
the object and received by the LiDAR from time #; to time #x.

Using S, we can determine the velocity of the object in
one of two ways: 1) by the signal’s Doppler shift or 2) by
the ToF distance. We refer to the velocity determined from
the ToF distance as the object’s ToF velocity, and the velocity
determined by the Doppler frequency shifts as the Doppler
velocity. More specially, these velocities can be calculated as
follows.

ToF Velocity: The ToF velocity of the object, denoted as
VToF, can be determined based on the ToF distances of the
signals. In particular, the velocity vector can be represented
as VIoF = [VTor|(COs ¢1oF, sin ¢1or), Where [vior| and ¢ror
denote the magnitude and direction angle of Vyog. Given
any two signals received at time f#, and #, (t, < 1),
ie., S, = [Af,. ds,, 0,1 and S;, = [Afy,, dy,, 0;,], VToF can
be calculated as

Vo] = [(d,n sin6, — dy, sin6; )?

1

2
+(d;, cosb;, + |V |At — d,, cos e,m)z} (8)

and
d,, cosO, + |vp|At—d,, cosOy,
dtn sin th

©)

¢ToF = arctan —d,_sinf,
where At = |t;, — ty,].

Doppler Velocity: The object’s Doppler velocity Vpop, can
be represented as Vpop = [VDopl(COS Ppop, Sin Ppop), Where
|§Dop| and ¢pop are the magnitude and direction angle of
the velocity. Given two signals S;, = [Af;,, ds,,, 01,1, S, =
[Afy,. d,, 0,1 € S, [Vpopl and ¢pop can be calculated by
solving the following set of nonlinear equations:

V] sin (6;,) — [VDop| 08 (8, — $Dop) = 57 Afi,

- . - 10
521 in (6,) — [Fpopl 08 @, — $pop) = 2= Afy,. 0

Depending on whether the attacker controls its velocity to
facilitate the spoofing, the attacker’s spoofing attack schemes
can be divided into the following two cases.

1) Spoofing Attack When Attacker Does Not Control Its
Velocity: We first consider a simple spoofing attack in which
the attacker only manipulates the ToF distance of the probing
signal, but does not control its velocity to facilitate the
attack. Specifically, to launch a spoofing attack, the attacker
injects spoofing signals into the victim LiDAR so that the
legitimate signal set S that corresponds to a genuine object
is replaced by the spoofing signal set S®PD, where St(kSpf) =

[Af,isPﬂ, d,(:pf), 0] € S6PD | Note that due to the small field
of view of the LiDAR receiver, the spoofing signal can only
be injected when the LiDAR is transmitting to and receiving

from the attacker’s direction, and the AoAs of the spoofing
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signal can not be changed by the attacker. The goal of the
attacker is to mislead the LiDAR’s calculation of its distance
to the faked object by manipulating d,(:pﬂ, similar to that in
Section V-Al. The ToF of the spoofing signal is determined
by the attacker according to its attack goal, i.e., how far does
it want the faked object to be from the LiDAR, based on (2).

2) Spoofing Detection When Attacker Does Not Control Its
Velocity: The key insight in the above attack model is that
AV <P and dt(: PD are not independent between each other. This
is because both quantities are related to the velocity of the
attacker/faked object, and both can be used to calculated that
velocity according to (8)—(10). Since the attacker does not
adjust its velocity according to the ToF distance it claims to
be, there exists a mismatch between the Doppler velocity Vpep
and the ToF velocity Vror. This allows us to detect spoofing
by testing the following:

> ?7 S5
VToF = VDop-

(1)

For legitimate signals reflected by genuine objects, its ToF
distance is authentic (i.e., not manipulated), and therefore
VDop = VTor. Otherwise, a mismatch indicates the presence of
a spoofing attack.

3) Spoofing Attack When Attacker Controls Its Velocity: An
attacker can tailor its velocity to its claimed ToF distance to
ensure that the calculated Doppler velocity Vpop matches the
ToF velocity vrop. In particular, this can be achieved according
to the following.

Proposition 1: Given the attacker’s velocity v, =
[Va|(cos ¢y, sin ¢,), where ¢, is the direction angle of v,, to
maintain consistency between the Doppler velocity and ToF
velocity of the spoofing 51gnals for any two spoofing signals
S0 5P ¢ S6pD | where S0 = [A£PY 40 6, ] and
SO "[RO0 g1 6" 2 6, dP and dSP) must
satisfy the following equation set:

cos (60, )[v| At + LGl Cu D) A,

dt(sp _ 2 cos (6y,, —ba) (12)

" sin (6, — 6;,,)
> fB4,) sin (6, —P)

o0 _ 8 O LI o007, =5 A (13)

n sin (6, — 6;,)
where
f(0) = [vr|sin () + [Vl cos (8 — ¢pa)
f(6;,) xcos b, —f(6,) * cos b,

® = arctan

f(6;,) *sin6;,
and At = |t, — ti].
Proof: The ToF velocity derived from the spoofing signals
VTor must be equal to the Doppler velocity of the spoofing
signals Vpep. Denote Vpop = [Vpopl(cos P, sin @). Since the
attacker is directly sending the spoofing signals to the victim
LiDAR, the Doppler shifts of the spoofing signals are deter-
mined by the relative radial velocity between the LiDAR and
the attacker. We also have the Doppler shifts of the spoofing
signals as

—f(6;,) *sin6;,

fo

(IVLI sin (6y,,) —

fo

(I vr|sin (6y,) — [Val cos (6;, —

N — )

[Val cos (6,

Aﬁ(spf)

n

b))
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And Vpop can be obtained by substituting Af,f:pf) and Af,ffpﬂ
into (10), which gives

£6,,)
2cos (6;, — P)
f(6y,) xcosb,, —f(6,) *cosb,
f(6:,) *sinb;, — f(6;,) *sinb;,

where f(0) is the function value of 8, and we have
f(O) = vrlsin (8) + [Val cos (0 — ¢g).

The ToF velocity can be obtained by (8) and (9). Letting
VToF = VDop, We can obtain dl(;pﬂ and d,:pD as specified in the
proposition. |

According to Proposition 1, given a pair of desired spoofing
ToF distances dt(’ipﬂ and d,(:p D at time t,,; and #,,, the attacker can
calculate the required velocity that ensures a match between
VoF and Vpep by solving (12) and (13), so as to elude from
being detected by the aforementioned detection mechanisms.

4) Spoofing Detection When Attacker Controls Its Velocity:
A key insight of Proposition 1 is that the attacker’s velocity
must be coordinated with the ToF of the spoofing signals for
a successful spoofing attack. Specifically, according to (12)
and (13), given a pair of desired fake ToF distances and
the victim LiDAR’s velocity, the attacker’s velocity v, is
fully determined. Therefore, when there exist two LiDARs
of different velocities, both are scanning the attacker at the
same time, then there is no way for the attacker to adjust its
velocity to satisfy the requirements from both LiDARs—one
key cannot open two locks. In this case, there will be at least
one LiDAR, whose calculated ToF velocity is inconsistent with
the Doppler velocity. Based on the above insight, we propose
a cooperative LiDAR sensing scheme [28], [29], [30], [31]
for our spoofing detection. A basic cooperative LiDAR system
is shown in Fig. 10, which consists of two LiDARs: 1) a
Coop-LiDAR and 2) an Ego-LiDAR. In cooperative LiDAR
sensing, each LiDAR independently senses the environment
and generates the data, and the generated sensing data are
shared between them [30]. Note that in this scenario, it is
essential to ensure the trustworthiness of the Cooperative
LiDAR system, which can be guaranteed by using secured
vehicle-to-vehicle (V2V) communication [32], [33], [34].

To detect the spoofing attack, we require LiDARs in the
cooperative LiDAR system to move at different velocities.
Each LiDAR computes its ToF velocity and Doppler velocity
based on its received signals. The spoofing detection is
conducted by checking whether the computed ToF velocity
is consistent with the Doppler velocity at every LiDAR.
To be more specific, suppose that we have N LiDARs in
the cooperative LiDAR system with velocities v(l) ...,ﬁzN),
respectively. There exists at least a pair of L1DARs say LIDAR
i and LiDAR j, where 1 <i,j < N, whose velocities are not
equal, i.e., |T}g)| # |T/g)|. Each LiDAR calculates the Doppler
velocity and the ToF velocity based on its received signals,
which gives ¥ and 7., 39 and 7Y, respectively.

op o op 0.
For legitimate signals, the ToF and Doppler velocities

computed by each LiDAR are consistent, i.e., vggp = T/(TL)F =

= 38\;)10 = v(TIZI):, because they all correspond to the velocity

|‘-}Dop| =

& = arctan (14)
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of the same object. However, when a spoofing attacker is in
place, it faces the following dilemma: on one hand, given the
velocity of LiDAR i and the desired ToF distances to LiDAR
i at time ¢, and t,41, the attacker must set its velocity to, say
vfz'), where vf,) is decided based on Proposition 1, in order
to elude from the detection of LiDAR i. On the other hand,
given the velocity of LiDAR j and the desired ToF distances
to LiDAR j at time ¢, and tn Iy where £, is close to f,, and
r 41 is close to 7,41, the attacker must set its velocity to, say
vf{), where v(’) is decided based on Proposition 1, in order to
elude from the detection of LiDAR j Because |vL)| 7+ |q(])|
we can expect that in general v(’) £V va . Therefore, no matter
which velocity the attacker chooses, at least one of LiDAR i
and LiDAR j will be able to detect the attacker by testing the
inconsistency between its calculated ToF velocity and Doppler
velocity.

Alternatively, the attacker may just choose to move at
velocity \7(') and instead customize the spoofing ToF distances
to LiDAR j at time #, and t T according to (12) and (13).
In this way, the ToF ve1001ty is consistent with the Doppler

velocity at each of the LiDARs i and j, i.e., v]()')Op = Tz(T'gF

and V]%Lp = V(T/())F, however, it must be true that v]gi)p *
vglp Therefore, by sharing their ToF velocities and Doppler

velocities with each other, LiDARs i and j can also detect
the spoofing attack based on the inconsistency between their
respective Doppler velocities.

The proposed spoofing detection can be better illustrated by
the following numerical examples. Without loss of generality,
we use the 2-LiDAR cooperative LiDAR system shown in
Fig. 10 as an example. The cooperative LiDAR system has
one ego-LiDAR and one coop-LiDAR, and their velocities are
denoted as v( °P) and v *( cg0) , respectively. The Doppler veloci-
ties and TOF velocities computed by the two LiDARs for the
same object are denoted as v]()cgg) G(TCO(?) and ﬁgfg) 3&%‘? ). For
the attacker, denote its velocity by v, = |va|(cos q&a, sin ¢g).
The attacker sends spoofing signals Sggof) and Scop to ego-
LiDAR and coop-LiDAR, respectively. And the ToF distances
of ng.%f) and ng)%f) are designed according to Proposition 1 to
maintain that for each LiDAR, the calculated Doppler velocity

: : ; : >(cop) >(cop)

is consistent with the ToF velocity, i.e., vp,,~ = Vpp~ and
pleeo) _ (ego)

Dop = VToF -

The numerical results are shown in Fig. 11. In each subfig-
ure, the x axis denotes |V,|, which varies from 0 to 20 m/s.
The y axis represents the difference between the magnitudes
of the two Doppler velocities, i.e., |v]()°8§)| - |*g§§)| Recall
that v(mp) (egp) are 2-D vectors, therefore if |v](§§§)| —
|*(eg0)| # 0, then we must have picop) + 78 we plot

Dop VDop
|_']()C§§)| — |17](§§§)| as functions of |v,| in different combinations

and v
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Fig. 11. Numerical examples for spoofing detection when attacker control
its velocity. (@) W4 = 2, 7| = 1. () 7| = 2, P = 3
(© W =2, | = 4 (@) ) = 2, )

of |v(eg0)| and |v(C°p)| in the four subfigures: (a) |v(eg°)| =
2m/s, [P =1 m/s, b) 7] =2 m/s, 1| =3 m/s.
© |*(Eg°§| 2 m/s, 7P = 4 mys, and (d) Py =

2 m/s, |*(C°p)| = 2 m/s. In each subfigure, we also vary
the angle of the attacker’s velocity, i.e., ¢,, by setting ¢, =
(t/2), (t/3), (r/4), 0, respectively.

In Fig. 11(a)—(c), the two LiDARSs in the cooperative LIDAR
system have different velocity magnitudes, i.e., |v(eg°)| #=
|17(L°°p)|. Although the spoofing attack maintains that the ToF
velocity is consistent with the Doppler velocity at each of
LiDARs (T)]()ng) = #(Tco}p) nd T/ng) = *(TZ‘(’;? ), when the Doppler
velocities are shared in the cooperative LiDAR system, ego-
LiDAR and coop-LiDAR can detect spoofing attacks because
*(wp) £V peeo) (|*(c°p)| |*(eg0)| # 0). A special case is shown

Dop Dop
m Flg 11(d), when the two L1DARs have the same velocity
magnitude, that is, |*(C°p)| = |*(ego)|, we have |v(°°p)|

|17(Leg0)| = 0 even when the spoofing attack is in place. In this
case, the cooperative LiDAR system cannot detect spoofing
attacks based on the inconsistency between their respective
Doppler velocities. Therefore, our spoofing detection scheme
requires that the LiDARs in the cooperative LiDAR system
have different velocities to successfully detect the spoofing
attack.

C. Attack Model 3 (Moving Attacker That Controls Both Its
Velocity and Signal Frequency)

A basic assumption in Attack Models 1 and 2 is that the
attacker transmits spoofing signals of the same frequency
as that of the victim LiDAR and it does not manipulate
the frequency of the spoofing signal during the attack.
Although this assumption is valid for many spoofing attack
scenarios and has been adopted by many existing studies,
e.g., [7], [8], and [35], an attacker may use frequency mod-
ulation or a tunable laser source to dynamically change the
frequency of the spoofing signal, so as to create a faked
Doppler frequency shift to mislead those spoofing detection
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mechanisms proposed in the previous sections. This is elabo-
rated as follows.

1) Spoofing Attack in Attack Model 3: When an attacker
can dynamically adjust the frequency of the spoofing signal,
besides sending spoofing ToF signals to the victim LiDAR,
the attacker also compensates for the frequency offset caused
by the Doppler effect by changing the frequency of the
transmitted spoofing signal, making the frequency offset of the
spoofing signal received by the victim LiDAR identical to the
Doppler frequency shift of the legitimate signal.

Specifically, let us consider a typical spoofing attack sce-
nario, where at the current moment the distance between the
(victim) LiDAR and the attacker is d. The relative radial
velocity between the victim LiDAR and the attacker is Av, =
(VL — Vo) - I, where [ is the unit vector along the direction
from the LiDAR to the attacker. The goal of the attacker is
to create a fake object that is d' away from the LiDAR, in
the same direction of [ (so the LiDAR, the attacker, and the
fake object are collinear) and of a relative radial velocity of
AVgpoofs Where Avspoor = (VL —Vspoof) - [, and Vspoor denotes the
velocity of the fake object. With time continues, the trajectory
of the faked object (i.e., d’s) should be consistent with Tzspoof.

To achieve the attack goal, in the time domain, the attacker
sends spoofing signals with faked ToF distance of d’. In
the frequency domain, the attacker adjusts the frequency of
the transmitted spoofing signal to mimic the Doppler shift
experienced by a legitimate signal. Specifically, if a genuine
object of velocity Vspoor is at the location of the fake object,
then the Doppler shift experienced by a legitimate signal (this
is the signal sent out by the LiDAR, reflected by the object, and
then received by the LiDAR) is given by Af, = (2fo/c) Avspoots
where fj is the frequency of the transmitted (legitimate) signal.
Therefore, the frequency of the received legitimate signal is
given by fo + Af. To mimic the legitimate signal, the attacker
chooses a frequency f;, for the transmitted spoofing signal, such
that when the spoofing signal is received by the victim LiDAR,
the frequency of the received spoofing signal is identical to that
of the received legitimate signal. Since the spoofing signal is
sent directly to the LiDAR, its Doppler shift is given by Af, =
(fa/c)Av,. So the frequency of the received spoofing signal
is f; + Af,. Therefore, the f, that satisfies the aforementioned
requirement is given by

¢ + 2Avspoot

fo= —p o (15)

In this way, the Doppler shift measured by the victim LiDAR
happens to be Af,. As a result, the calculated Doppler velocity
is consistent with the ToF velocity (both are equivalent to
Tzspoof), and hence the fake object will be accepted by the
LiDAR as a genuine one.

2) Spoofing Detection When Attacker Controls Signal
Frequency: The cooperative LiDAR system can also be used
for spoofing detection when the attacker controls its signal
frequency. Specifically, according to (15), the attacker must
adjust the frequency of the transmitted signal each time when
sending a spoofing signal to a LiDAR. When there exist
multiple LiDARs with different velocities (so they have dif-
ferent Av,’s and Avgpoof’s), the attacker must choose different
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transmission frequencies when sending to different LiDARs to
spoof each of them.

Based on this observation, we can use the cooperative
LiDAR system and require all LiDARs in the system be
synchronized to send probing laser pulses that will hit the
object at the same time (and hence will be reflected by
the object at the same time too), so that an attacker is
not able to simultaneously change the frequency of spoofing
signals for all LiDARs at once. The key point in achieving
full synchronization among a group of cooperative LiDARs,
i.e., making them point to the same object at the same time,
is to realize that the first LiDAR that detects the object
actually can compute and then communicate the location of
that object to all other collalborating LiDARSs, and hence allow
all LiDARs in the group to compute their respective angles of
departure for their laser beams in order for them to point to
the same object.

The basic idea of using multiple LiDARs for spoofing
detection is that an attacker can only send out a spoofing signal
with a certain frequency at one time. Given that our Coop-
LiDAR system synchronizes multiple LiDARSs to monitor the
same object at the same time, it is hard for an attacker to
send a single spoofing signal that can simultaneously satisfy
the frequency requirements from all LiDARs. In the case
where the attacker has k coordinated dynamic-frequency laser
transmitters, at least k+1 synchronized LiDARs are needed, so
that at least one LiDAR is able to detect the spoofing by testing
the inconsistency between its calculated Doppler velocity and
ToF velocity. Note that here, the goal of the spoofing detection
mechanism is to serve as a filter (a gate-keeper) that identifies
and rejects spoofed LiDAR sensing outcomes. Therefore, a
collective decision-making process is adopted among all (k+1)
LiDARs: a sensed point in the point cloud will be accepted
only if none of the k4 1 synchronized LiDARs has a negative
detection outcome.

D. Limitations

Although in previous sections we have demonstrated that the
Doppler-shift-based method is effective for detecting spoofing
attacks across various real-world attack scenarios, there still
remain some scenarios where our method may be less effective
or not suitable, as elaborated below.

1) Static or Low-Relative Velocities Scenarios: Doppler
shift is the change of signal frequency due to the
movement of the transmitter in relative to the receiver.
In the LiDAR case, if the relative velocity between the
LiDAR and the sensed object is O or close to O, then the
Doppler shift will be negligible. In these scenarios, our
method is not applicable.

2) Large Velocity Variation During Small Time Interval
Scenarios: A basic assumption in our attack models 2
and 3 is that the relative velocity between the LiDAR and
the object remains constant between the moments of two
consecutive LiDAR measurements (usually this is over
the span of a fraction of a second), so that our proposed
algorithm is able to resolve the Doppler velocity and
the ToF velocity of the object. While this assumption is
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valid in most cases, in reality there are special situations
where the relative velocity between the LiDAR and the
object changes significantly during the aforementioned
small interval. Such changes in velocity could be caused
by, e.g., a bumpy road condition, or a complicated traffic
condition that requires frequent maneuvers (e.g., sudden
acceleration, deceleration, or braking) of the car. In
these special situations, the accuracy of the proposed
method will be reduced. To deal with this issue, in
Section VI, we have proposed a statistical spoofing
detection scheme, which accounts for the short-term
variation/perturbation in the vehicle’s velocity. However,
the proposed statistical detection scheme still faces
limitations as it is based on certain assumed statistical
models (i.e., the distribution) for the velocity variation.
In the real-world scenario, if the actual velocity variation
deviates significantly from the assumed distribution,
then the accuracy of this statistical scheme will be
reduced. In this case, a combination of our method
with existing model-level defense methods would be a
good solution. As model-level defense methods utilize
high-level contextual relationships between multiple data
points for spoofing detection, they well compensate for
the limitations of the Doppler shift-based method that
works only at the physical layer.

We want to clarify that our proposed spoofing detection
method is not a panacea - a “solution to all” that intends to
replace existing methods. Instead, it serves as the “first line
of defense” that operates in the signal space and is designed
to complement existing model-level defense methods. Our
method uses the physical property of an individual data
point within the point cloud for spoofing attack detection,
which is a validation in the signal space to check whether
the signatures (Doppler shift) of the signal follow physical
principles. Because of its physical feature, our proposed
method can fundamentally ensure that the LiDAR sensing
results that are fed to the subsequent high-level processing
are authentic. In contrast, current perception models-level
defense methods work at a higher level: they first aggregate
multiple data points to establish a geometric representation for
the sensed object, and then examine whether this geometric
representation presents a reasonable contextual consistency
over time. It is clear that our method works in an orthogonal
space compared to these model-level defense methods. In
practice, both methods can be applied at the same time
to improve the overall detection accuracy against LiDAR
spoofing attacks.

VI. SPOOFING DETECTION WITH JOINT CONSIDERATION
OF VELOCITY AND ACCELERATION

In the previous section, we assumed a uniform motion
model, so that the relative velocity between the LiDAR and
the object can be seen as constant. And we propose to verify
the consistency between the ToF velocity and the Doppler
velocity for spoofing attack detection. Although, due to the
high-scanning rate of LiDAR, the motion of an object with
acceleration can be seen as a uniform motion, the presence

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 11, 1 JUNE 2024

of acceleration introduces additional variance in velocity
estimation, which makes spoofing detection based only on
velocity unreliable.

In this section, we present a hypothesis-test-based spoofing
detection framework that jointly considers velocity and accel-
eration. We first formulate the hypotheses for the attack and
nonattack cases on the basis of our previous findings. Then, we
demonstrate the necessity to jointly consider acceleration and
velocity for spoofing detection and provide the test statistic
designing strategies. Finally, we perform power analysis under
various conditions and numerically determine the smallest test
sample size required to achieve an expected performance level.

A. Hypothesis Test Formulation

According to our discussion in the previous section, the
velocity of an object can be obtained based on the Doppler
shift or ToF of the received signal, namely, Vpop and VroF.
The inconsistency between the two velocities, Vpop and VroF,
can only be caused by spoofing attacks or noise. Consider
a sequence of n Doppler and ToF velocity samples {Vpop}n
and {VroF}., respectively. For convenience, let VDop and Vrop
denote the magnitudes of Y/’DOP and Vo, respectively. And their
population means are denoted by upop and o, respectively.
The spoofing detection can be formulated as a hypothesis test,
which essentially tests whether the two means are equal or

not, that is, upep 2 UTor- The null and alternative hypotheses
can be formulated as follows:

Ho:
Ha:

no spoofing attack.(pop = MToF)
the presence of a spoofing attack.(upop # UToF). (16)

When only velocity is taken into account for spoofing
detection, the two-sample #-test is used. The test statistic is
calculated as

- |4Dop — UToF|
Spooledr/2/n

where Spooled = ([s% + s%] /2), and s% and s% are the sample
variances of vpop and vrof, Tespectively.

Then ¢ is compared with the critical value with the degree
of freedom of n — 1 and the significance level «, #,—;(x/2).
Hypothesis H is rejected if ¢ > 1,_;(«/2), which indicates a
spoofing attack.

a7

B. Joint Consideration of Velocity and Acceleration

In real driving scenarios, the AV’s motion not only has
velocity but also has acceleration. Such an acceleration could
lead to a broadening spectrum in the Doppler frequency,
which increases the variance in velocity estimations derived
from the Doppler shift spectrum. This variance becomes
more significant for the small velocity and large acceleration
cases. For example, suppose that we have v = 0.5 m/s
and a = 0.5 m/s?, the Doppler spectrum of the received
signals is likely to display two dominant peaks at velocities of
0.5 m/s and 1 m/s. This phenomenon can lead to ambiguity
in velocity estimation, with potential values ranging between
0.5 m/s or 1 m/s, thus introducing a maximal error of
0.5 m/s. Hence, when acceleration exists, it increases the
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risk of misidentifying a legitimate signal as a spoofing attack,
resulting in an increased false alarm rate in spoofing attack
detection. Realizing the limitation of considering velocity
alone in spoofing attack detection, we introduce an advanced
detection mechanism that jointly incorporates the effect of
both velocity and acceleration, which can provide more robust
and accurate results in identifying spoofing attacks in realistic
driving scenarios.

Let a denote the acceleration and let x = [v, a] denote
the multivariate variable that consists of both the velocity
v and the acceleration a, which is used for the hypothesis
test. We first use maximum likelihood estimation (MLE) to
estimate vror and atop. Let MDop- Y pop and pryp, o denote
the mean and variance of the population for Xpep and XToF,
respectively. We assume that {xpep}, is a random sample
of size n from the normal distribution A (MDops LDop) and
{xTor}n 1s a random sample of size n from normal distribution
N (1op, ZToF). Note that X¥pop — ¥1or follows the normal
distribution N (fpep — 1o, (1/7)(Epop + E1oF)). Therefore,
the hypothesis test is simplified accordingly to test if pp,, =
Wror or not, and Hotelling’s T? test is used, whose test
statistic is

_ _ 2 _
TS = [Xpop — XToF — (’LDop - /LToF)]/[;Spooled] !

[¥Dop — *¥ToF — (Mpop — HToF)] (18)

where Spooled = ([s% +s%]/2), and Xpop and Xtor, and s%
and s% are the sample mean and sample variance of Xpop
and xToF, respectively. Tg follows a noncentral F distribution
(4n — 4/2n — 3)F2 2,—3. For a given significance level «, the
critical value t is calculated as
4dn — 4
T =
2n—3

F2on-3(a). (19)
The null hypothesis Hp is rejected when TO2 > 7, and the
false alarm rate, a.k.a., type I error, is

Py, (T3 > 1) = a. (20)

C. Formulation of H, for Power Analysis

Fig. 12 illustrates the power and significance level of a
statistical test. Previously, we have determined the distribution
of Ho and the critical value. Next, we must ensure that the test
has enough power so that the distribution of Hy and that of
‘H, are sufficiently apart and both type I and type II errors are
small. The power of a hypothesis test is the probability that
the test correctly rejects the null hypothesis, as illustrated by
the red dashed area. It should be noted that statistical power
is positively related to the sample size. The larger the sample
size, the easier it is to achieve the expected statistical power.
There are two possible cases where one fails to reject the null
hypothesis: 1) the null hypothesis is really true and 2) the
sample size is not large enough to reject the null hypothesis
(i.e., statistical power is too low). Additional samples may be
needed to either accept or reject the null hypothesis.

Now, we will design scenarios of H,, under which the
power analysis can be performed to determine the small-
est sample size required to achieve a satisfactory detection
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Fig. 12. Illustration of a statistical test.

performance. When designing H,,, it is impossible to enumer-
ate all possibilities. In fact, the detector is not designed to
identify every malicious attack, but rather to identify spoofing
attacks that can lead to severe consequences. Specifically,
in our study, we focus on two attack goals: 1) emergency
brake triggered by injecting a fake static object in front of
the LiDAR and 2) failure of the automatic braking system
by injecting a fake object that is relatively stationary to the
LiDAR. Specifically, we consider a scenario where the AV is
fast-moving toward a static real obstacle, and a brake decision
is required to avoid a collision. Note that the braking decision
of the AV system is based on the combination consideration
of the distance and the relative speed between the AV and
the object. Therefore, the attacker launches the attack by
sending spoofing signals that mimic a fake object in close
range (so the faked signal will be the first to arrive at the AV’s
LiDAR than that of the real object) to hide the real obstacle
from LiDAR detection and is relatively stationary to the AV.
Although the distance between the fake object and the AV is
small, due to the small relative speed between them, the AV’s
decision-making system will not trigger a braking decision,
as it perceives no immediate collision risk. Consequently, the
AV might continue at its current speed and collide with the
real obstacle. In addition to the above attack goals, we also
consider the attacker to be static or mobile and design three
attack scenarios, in which we provide the distribution of .

1) Attack Scenario 1 (Emergency Brake Triggered by Static
Attacker): A static attacker wants to trigger an emergency
brake by faking a static object in front of the LiDAR. Because
both the attacker and the fake object are static, according to
(5) and (6), we have Hy: mpop = 2prop. The test statistic
under H, is

_ _ 5 _
Tg = [¥pop — 2X¥ToF — (M’Dop - ZM’TOF)]/[;SPOOICd] :

[X'Dop — 2XToF — (ILDop - ZILTOF)]' (21)

According to [36], the test statistic Ta2 follows a noncentral
F distribution [25(n — 1)/5n — 6]F3 55— With a noncentrality
parameter (n.c.p.) equal to

nep. = %[(Scmp — i) Epop — i) + (2ror — 8) (210 — 1) ]
(22)
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where & = [(2ipop + R1or) /2] and o? is the mean square
error. Given a critical value 7, the type II error is represented as

Py, (T < 1) = B. (23)

2) Attack Scenario 2 (Emergency Brake Triggered by
Moving Attacker): The attacker is moving at the same speed
as the victim LiDAR and wants to trigger an emergency brake
by faking a static object in front of the victim LiDAR. In this
case, we have Ha: fpo, = 0 and ppop # 0. The test statistic
under H, is

-1
T; = [Zpop — ¥1oF + Hrop)] [%Spooled] [¥pop — ¥ToF + K1op)]
(24)
with n.c.p.
= %[(iDop — I1or) (FDop — MToR) + (FToF — Mor) (*ToF — MTop)]

(25)

which follows (4n — 4/2n — 3)F 2,—3.

3) Attack Scenario 3 (Failure of Automatic Braking System
Triggered by Static Attacker): The attacker is static and wants
to trigger a failure of the automatic braking system of an AV.
The attacker sends spoofing signals that mimic a fake object
in close range and is relatively stationary to the AV. In this
case, we have Ha: fipo, # 0 and ppop = 0. The test statistic
under H, is

Tz = [¥Dop — ¥ToF — Rpop)]’

2 - _
|:ZSpooled:| [XDop — XToF — ﬂDop)] (26)
with n.c.p.
n _ _
= ; |:(xD0p - ILDop)/(xDop - ILDop)
+ (¥ToF — ILDop)/(-i'ToF - ILDop)] 27

which follows (4n — 4/2n — 3)F 2,—3.

D. Settings for Power Analysis

As mentioned above, the sample size should be large enough
to provide the expected statistical power. As a result, both the
type I error o from Py, (Tg > 1) = « and the type II error
from Py, (Tg < 1) = B are controlled in acceptable ranges.
Analysis is carried out in combinations of road conditions,
spoofed signal proportion, signal SNR, and attack scenarios to
determine the minimum sample size required for the detector
to produce satisfactory results for the most practical x.

1) Road Condition: Three typical road conditions are con-
sidered: 1) highway driving (v =33 m/s and a = 0.5 m/s?);
2) ramp driving (v = 20 m/s and a = 1.5 m/s?); and 3) city
driving (v = 11 m/s and @ = 5 m/s?). We note that the
relative speed implies the distance between the LiDAR and
the object. A low-relative speed indicates a smooth driving
condition, under which any attack can be easily detected due
to the sudden change in speed measurements. Rather, a high-
relative speed may indicate that an abnormal traffic condition
is already in place, making the attack less effective. Therefore,
we set the relative speed of the victim LiDAR to be 50% of
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Fig. 13. Number of samples needed for each road conditions under different
spoofed signal proportion.

that of each road condition to balance between the difficulty
of detection and the consequence of the attack.

2) Spoofed Signal Proportion: The high-LiDAR sampling
rate and the narrow receiver’s field-of-view impose stringent
constraints on the timing and direction of the spoofed signal.
In practice, the attacker hardly has the luxury of continuously
spoofing a sequence of signals [23], [37]. It is more practical
that the attacker spoofs the LiDAR signals intermittently. The
spoofed signal proportion is defined as the ratio of the number
of spoofing signal samples to the number of received signal
samples. The higher the ratio of the spoofed signal, the easier
the attack is detected. In the experiment, we consider the range
of the proportion of the spoofed signal p to be 0.1 to 1.

3) Signal-to-Noise Ratio: The noise level of the signals is
affected by weather conditions, ambient light, system error,
device noise, etc. Such noises would introduce errors in the
velocity estimated from both the ToF and Doppler shift,
and we discuss them separately. Considering the LiDAR
measurement error [38] and the disturbance of ambient light,
we set the error rate of both ator and vror to 3%. For the
measurement error in Doppler velocity, we follow [39] to
calculate the variance of xpep of MLE

) 1 3 2 1 45
% T SNR2N % T SR Y
where N is the sampling length of the signal, which is set
to 256 in our simulation to tradeoff the estimation accuracy
and the system burden. The SNR is set to {10_6, 1073, 10_4}

according to [16] to fit the real-world scenarios.

E. Numerical Results of Power Analysis

In our simulation, we follow the convention to set the
type I error to ¢ = 0.05, and record the least number of
samples to achieve the power of 0.9 at each H,, i.e., type
IT error is B = 0.1. The F1 score in this setting is 0.923,
indicating satisfactory spoofing detection performance. In real-
world application scenarios, the type I and type II error settings
can be set differently to meet different practical requirements.

1) Impact of Spoofing Signal Proportion: We set the SNR
to 10~* and vary the proportion of the spoofed signal from 0.1
to 1. We record the least number of samples needed to achieve
the preset significance level under different attack scenarios
and road conditions. The results are shown in Fig. 13. It can
be seen that more samples are needed when the proportion
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Fig. 14. Number of samples needed for each road conditions under different
SNR.

of the spoofed signal is small. When the attacker spoofs only
a small proportion of the LiDAR signals, the mean of xTor
is close to that of xpop, therefore, more samples are needed
to separate the two distributions. This phenomenon becomes
more obvious when the proportion of the spoofed signal is
less than 40%, especially for attack 1.

2) Impact of Signal-to-Noise Ratio: Then, we fix the pro-
portion of the spoofed signal to 0.1 and vary the SNR from
107 to 10~*. The minimal sample sizes needed to provide the
expected statistical power under various attack scenarios and
road conditions are shown in Fig. 14. Compared to the spoofed
signal proportion that has a greater impact on the difference
between the means of {xr.r}, and {xpop}s, the SNR plays
a more significant role in affecting their variance. A smaller
SNR leads to a larger estimation variance in the velocity
and acceleration from the Doppler shift, which increases the
uncertainty in detecting spoofing attacks. As a result, more
test samples are needed to provide sufficient statistical power.

FE. Discussion on Implementation

After determining the number of samples required, the
spoofing attack detection procedure is carried out in the
following two steps.

1) Data Collection: Assuming that the sample size is
50, 50 samples of {xqop} and {xror} are collected,
respectively.

2) Testing: The test statistic is calculated according to (18),
then compared with the threshold t predefined by (19).

If the test statistic is greater than the threshold, it suggests
the potential presence of a spoofing attack. According to the
analysis above, setting the sample size to 50 is sufficient for
our test to achieve an F1 score of 0.923 in the worst-case
scenario. Notably, with sample size of 50, the F1-score would
be even higher for the remaining cases. For example, under
conditions where 40% of the signals are spoofed and the SNR
is 107, the test produces an impressive F1 score of 0.97 in
all road conditions.

We then evaluate the time complexity of the proposed
method by examining the latency associated with each step
above. In the testing step, the calculation of the test statistic
directly from the data and the comparison with the predefined
threshold incurs negligible time overhead. In the data collec-
tion phase, considering a typical 16-beam Velodyne LiDAR
system with a rotation speed of 20 Hz [40], 50 samples can
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be collected in 150 ms. This duration is significantly shorter
than the average reaction time of 830 ms for AVs [41].
Note that for more advanced AV LiDAR systems with a
higher number of laser beams and a faster rotation speed,
the data collection time can be further reduced. As a result,
our proposed spoofing attack detection mechanism can operate
simultaneously with established LiDAR processing algorithms,
enhancing the reliability of current AV driving systems without
introducing additional time overhead.

VII. APPLICABILITY DISCUSSION, FUTURE
WORKS, AND CONCLUSION

A. Applicability Discussion

In this section, we discuss the applicability of the proposed
method to other sensors, such as cameras and radars. The
primary focus of this article is on addressing the unique
problem of safeguarding against LiDAR spoofing attacks,
which is distinctive due to the special way of how a LiDAR
sensor detects an object and its distance to that object.
Therefore, our proposed method cannot be applied to cameras,
as cameras lack the capability to measure the Doppler shift
of incoming light signals. Specifically, cameras are passive
sensors that record natural radiation either emitted or reflected
from objects. The resulting signal is represented in terms of
pixel intensity and color, and cameras cannot capture any
frequency changes in these light signals. As for radars, our
proposed method can be used for spoofing attack detection
but requires adaptations to address the challenges inherent to
radar systems. Notably, while radars are also active sensors and
can directly measure the Doppler shift of incoming signals,
they present unique challenges when compared to LiDARs.
For example, radars typically offer lower spatial resolution
and emit signals with a larger spectral bandwidth. This means
that the received signal can be influenced by the Doppler
effect from several objects simultaneously, each contributing
different Doppler frequency shift components. Additionally,
the broad spectral bandwidth of radar signals can reduce
the precision of Doppler frequency shift measurements. This
complexity heightens the challenge of pinpointing spoofing
attacks-based solely on the Doppler shift and potentially
increasing the false positive rate of our proposed method when
being applied to radars.

B. Future Work

We understand that testing our method in a real-world setup,
such as on a real AV, would significantly improve the impact
and practical relevance of our method. However, as a research
lab in a university, we are not capable of fully implementing
the proposed methods on a real LiDAR system (note that
nearly all LiDAR systems on the market are proprietary and
are not open to redevelopment) and then mounting it on
a vehicle to perform real-world testing. Realistically, what
our capacity allows us to do is the theoretical study of
the mathematical models for the spoofing attacks and their
detection, and mainly computer-simulation-based performance
evaluation for the proposed models. The scope of this article
has to be decided by our capacity above. We acknowledge that
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there must exist a significant difference between our work and
a real-world system that can be directly used by the current
autonomous driving vehicles. However, our contribution in this
article is mainly on the modeling aspect of the problem rather
than on the system-building/implementation of the model. The
theoretical foundation laid in this work could serve as an
important reference/guideline for system implementation in
the next step, which is out of the scope of this article and may
be conducted in our future work.

C. Conclusion

In this article, we investigated the LiDAR security problem
in the autonomous driving system. We performed a detailed
analysis on the vulnerability of the LiDAR sensors. To better
illustrate how to use Doppler shift for spoofing attack detec-
tion in different attack scenarios, we considered three attack
models, including static attacker, moving attacker without/with
control of velocity, and moving attacker with control of both
velocity and signal frequency. Under each of these models,
we first show how the spoofing attack is performed, and
then present our proposed countermeasures. To address the
uncertainty caused by vehicle acceleration, we proposed a
statistical spoofing detection framework to jointly consider the
impact of acceleration on vehicle velocity. Extensive numerical
evaluations are conducted to verify the effectiveness and
accuracy of the proposed methods in a wide range of test
settings.
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