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Abstract

We study certain significant properties of the equilibrium configurations of a rigid body subject to an
undamped elastic restoring force, in the stream of a viscous liquid in an unbounded 3D domain. The motion
of the coupled system is driven by a uniform flow at spatial infinity, with constant dimensionless velocity
A. We show that if A is below a critical value, A (say), there is a unique and stable time-independent
configuration, where the body is in equilibrium and the flow is steady. We also prove that, if A < A¢, no
oscillatory flow may occur. Successively, we investigate possible loss of uniqueness by providing necessary
and sufficient conditions for the occurrence of a steady bifurcation at some Ay > A..
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1. Introduction

Problems involving the flow of a viscous fluid around solids are the focus of the broad research
area of Fluid-Solid Interactions (FSI). In particular, also due to their fundamental importance in
many practical situations, the oscillations of structures induced by the flow of a viscous liquid
occupy a rather significant position within them. It is thus not surprising that the problem of
flow-induced oscillations has received all along a plethora of contributions by the engineering
community, from experimental, numerical and theoretical viewpoints; see, e.g., the monographs
[4,9,25], the review article [28] and the references therein. The structure model typically adopted
by engineers for this study consists of a rigid body subject to a linear restoring elastic force,
while the fluid is modeled by the Navier-Stokes equations [4].

Notwithstanding, the problem has not yet received a similar, systematic attention from the
mathematical community. In this regard, in [2,6] we started a rigorous investigation of flow-
induced oscillations. There, we dealt with the model problem where a two-dimensional rect-
angular solid is subject to a unidirectional restoring elastic force, while immersed in the two-
dimensional channel flow of a Navier-Stokes liquid, driven by a time-independent Poiseuille
flow. The main objective concerns the existence and uniqueness of equilibrium configurations
of the FSI system, at least for “small” flow-rate. Successively, several other works have been
dedicated to the investigation of further relevant properties of this model, such as explicit thresh-
olds for uniqueness of the equilibrium configuration [21,22], non-symmetric configurations [5],
well-posedness of the associated initial-boundary value problem [26], large-time behavior [8]
and existence of a global attractor [20].

Objective of the current paper is to furnish a further contribution to the area of flow-induced
oscillations, and consists in the study of the very fundamental properties of the stability of equi-
librium configurations and possible loss of their uniqueness via steady-state bifurcations. The
model we shall consider —inspired by [4]— is somewhat more general than that in [6], and con-
sists of a rigid (finite) body, £, of arbitrary shape, subject to a linear undamped restoring force
and immersed in the stream of a Navier—Stokes liquid, -#, that fills the entire three-dimensional
space outside A. The motion of the coupled system is driven by a uniform flow at spatial infin-
ity, characterized by a constant dimensionless velocity A (Reynolds number). The choice of an
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unbounded (exterior) domain for the flow region is due to the fact that the interaction of . and
2 should not be spoiled by possible “wall effects”.

We are interested in the existence, uniqueness, stability and steady bifurcation of equilibria,
where, by “equilibrium” we mean a state where . is in a steady regime and % occupies a
corresponding fixed region at all times.

Our first goal is to establish the existence of such equilibria, a property that we prove to be
valid for all values of A; see Theorem 6. We then provide a variational characterization of their
uniqueness by showing the existence of a critical value A1 = A1(A) > 0 such that the equilibrium
is unique if A — A1(A) < 0; see Theorem 6. As usual, this is merely a sufficient condition for
uniqueness which we show to be satisfied (at least) for “small” A; see Proposition 7.

Successively, we investigate the asymptotic stability (in suitable norms) of the equilibria: our
study is complicated by the fact that the region occupied by the fluid is 3D, unbounded (exterior
domain) and, contrary to [6], no Poincaré-type inequalities hold. One relevant consequence is
that we are not in a position to furnish a time-decay rate of the perturbations which, very likely,
is just algebraic and not exponential as in [20]. To set up the stability analysis, we define a second
threshold Ay = A(A) > 0 such that the stability of the equilibrium is guaranteed if A — A2 (1) < O;
see Theorem 8. However, we are not able to characterize the equilibria for which the request
A2(A) > 0 is secured and this condition should be viewed as an assumption which could possibly
only hold for certain equilibria. In any case, since A2 (A) < A1(X),if A —A2(X) < 0 the equilibrium
is unique and asymptotically stable. The proof of the latter is carried out by a generalization of the
“invading domains” technique used in [18]. The main difficulty, in our case, consists in showing
that the perturbation to the elongation of the spring eventually tends to 0. Actually, this property
is by no means obvious at the outset, since the spring is assumed to be undamped.

Also in view of its importance in the problem of flow-induced oscillations, one may wonder
if, in the range A — A2(A) < 0, regimes of oscillatory nature are indeed possible. The answer to
this question is given in Theorem 13 where we prove that, in that range of A’s, no oscillatory
regime can take place. Existence of oscillatory motions can, therefore, take place only for A > A,
as a result of Hopf bifurcation, a question investigated in the forthcoming article [7].

The last part the paper is dedicated to steady bifurcation, namely, the existence of possible
multiple equilibria for “sufficiently large” A (and, certainly, such that A — A1(AX) > 0). In this
regard, we show necessary and sufficient conditions for this phenomenon to occur; see Theo-
rem 21. All these findings are proved by reformulating the equilibrium problem as an operator
equation in suitable Banach spaces that allows us to employ known results of abstract bifurcation
theory. We emphasize further that, in order to avoid the notorious question of 0 being in the es-
sential spectrum of the linearized operator [1,11], for the functional setting we use homogeneous
(rather than classical) Sobolev spaces, according to the approach introduced in [14].

The plan of the paper is as follows. In Section 2 we present the relevant equations and furnish
the mathematical formulation of the problem. In Section 3 we introduce the appropriate func-
tional spaces and collect some of their important properties. Section 4 contains our main results
and is devoted to the study of the equilibria of the FSI problem. Precisely, in Section 4.1 we first
prove existence of such equilibria in a class of homogeneous Sobolev spaces, for arbitrary val-
ues of the Reynolds number A > 0. Successively, we provide the variational formulation of their
uniqueness mentioned above. In the following Section 4.2, we study the asymptotic stability of
equilibria, whereas the last Section 4.4 is dedicated to the occurrence of steady-state bifurcation.
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2. Formulation of the problem

Let 4 be a rigid body moving in a Navier-Stokes liquid that fills the region  C R? outside
% and whose flow becomes uniform at “large” distances from %, characterized by a constant
velocity V € R3. On Z an elastic restoring force F acts, applied to its center of mass G, while a
suitable active torque prevents it from rotating. Therefore, the motion of 4 is translatory. In this
situation, the governing equations of motion of the coupled system body-liquid when referred to
a body-fixed frame F = {G, e;} are given by [13, Section 1]

v —VvAV+Vp+(w—yp)- V=0
in 2 x (0, 00),
divv=0
v(x,t)=y(), (x,t)€dRx(0,00); lim v(x,t)=V, te(0,00),
[x|—o00 (2.0.1)

MJ"+p/Tu(v,p)~n=F in (0, 00).
02

In (2.0.1), v and p represent velocity and pressure fields of the liquid, o and v its density and
kinematic viscosity, while M and y = y(¢) denote mass of # and velocity of G, respectively.
Here and in the sequel, T, denotes the Cauchy stress tensor

Ty(z,¥):=2vD@) -y 1, D(z):=3 (Vz + <Vz>T) :

where I is the 3 x 3 identity matrix and »n is the unit outer normal at 92, i.e. directeq inside 4.
We assume that F depends linearly on the displacement x (¢) := f y(s)ds = GO, with O
fixed point, namely

30>0st. F(t)=—Lx(), t>0. (2.0.2)
Without loss of generality we take V = —Ve;, V > 0.

Remark 1. The choice of the linear constitutive equation (2.0.2) is made just for simplicity
of presentation. As will become clear from their proof, our findings (appropriately modified)
continue to hold if, more generally, we assume F = A - x + g(x), where A is a symmetric,
positive definite matrix (stiffness matrix), and g(x) is sufficiently smooth, with |g(x)| =o(|x|)
as |x| — 0.

Writing v =u — Ve, we are led to

ou—vAu+Vp+u—x@)-Vu—Ve-Vu=0
in 2 x (0, 00),
divu =0

u(x,t)=x@)+ Vey, (x,1) €92 x (0,00); lim u(x,t) =0, t € (0, 00),
|x|—00 (2.0.3)

M3 +ex +p/?rv(u,p>-n=o in (0, 00).
0
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Scaling velocity with V, length with L := diam 23, time with L?/v, and setting u := v + ey,
we may rewrite (2.0.3) in the following form

ou—Au+Vp=xr[odiu+(x —u)- Vu]
in 2 x (0, 00),
divu =0
u(r, =X +er, (x,)€d2x(0,00); lim u(x,1)=0, e, 00), (2.0.4)

i+ o+ [Tiw ) n=0 in0.00),

Q
with
, L% pL? VL
OF =, W=, A= —.
Mv M v

All the involved quantities are now non-dimensional; in the sequel, we just write T instead of
T.
Let so = (uo, po, X ) be a steady-state solution to (2.0.4) corresponding to a given A, namely,

—Aug+Vpo=»xr(01ug —uo-Vug) |
in 2,
divuyg=0

uo(x):el, er)Q; lim uO(x)ZO’ (205)

[x]—00

who+w/Twmmyn=a
Q2

From the physical viewpoint, x represents the (non-dimensional and rescaled) elongation of the
spring necessary to keep B in place. In Sections 4.1 and 4.2, for any A > 0, we show that (2.0.5)
has at least one solution

so(A) == (uo(A), po(A), xo(A))

that is unique and stable provided X remains below a definite value A, that we characterize in
Theorem 8. The uniqueness threshold does only depend on €2, see Proposition 7, whereas the
stability threshold A, depends on the solution itself and basically on its decay at spatial infinity,
see Remark 4. Moreover, we prove that as long as A < A, no oscillatory regime can branch out of
so(X); see Section 4.3. Therefore, non-uniqueness of, as well as bifurcation from so(A) may occur
only at some A > A.. In this regard, we next investigate the occurrence of steady-state bifurcation
at some A = Ay > A.. More precisely, we furnish necessary and sufficient conditions for the
existence of a bifurcation point A; and a family of solutions s(A) to (2.0.5), with s(A) £ so(A),
A € U(Ay), suchthat s(L) — so(Xy), as A — Ag. This is accomplished by formulating the problem
in a functional setting that is suitable to employ the abstract results of bifurcation theory; see
Section 4.4.
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3. Functional framework
3.1. Notations and relevant functional spaces

Let Qo C R3 be the closure of a bounded domain of class C?, representing the region occupied
by #. Let @ = R3\ Q) be the unbounded exterior domain containing the fluid .. With the origin
of coordinates in the interior of 2, we set

={xeR’: |x| <R}, Qr:=QNBg, Q¥ :=Q\Qr VR > R, :=diam Q.

As customary, for a domain A C R3, LY = L9(A) denotes the Lebesgue space with norm
I - llg,a, and W™2 = W™2(A), m € N, the Sobolev space with norm || - [[;n.2.4. By (, )a we
indicate the L?(A)-scalar product. Furthermore, D" = D™4(A) is the homogeneous Sobolev

space with semi-norm Z‘”:m IIDlullq,A, whereas Dé’z = Dé’z(A) is the completion of C§°(A)

in the norm ||V (:)[|2,4. The dual space of Dé’Z(A) will be indicated by DO_I’Z(A). In all the
above notation we shall typically omit the subscript “A”, unless confusion arises.

If M is a map between two Banach spaces X and Y, we denote by D[M] C X and RIM] C Y
its domain and range, respectively, and by N[M] := {x € X : M (x) = 0} its null space.

We shall now introduce certain function classes characterized by the property that their ele-
ments are solenoidal. Their most important properties will be collected later on in Section 3.2.
Let

K=K®R3 := {(p € Cgo(]R3) :39 € R3 s.t. @(x) = @ in a neighborhood of Qo}
C=CR?}:={p e KR?: diveg =0in R3},
Co=Co(Q) :={p eC(R?): 9 =0}.

In K we consider the scalar product

@) =010+ (9. ¥)a, Vo, ¥ek, 3.1.1)

and we introduce the spaces

=L2(R3) = {completion of K(R?) in the norm induced by (3.1 .l)}
H =H(R?) := {completion of C(R?) in the norm induced by (3.1.1)} (3.12)
G=GR}:={heL?RY):3peD"?(Q)st.h=VpinQ,
and h=—w [, pnin Q}.
We next define
D2 =D!2(R3) := {completion of C(R?) in the norm [D(-)]|2}
Dy* =Dy*(Q) := {completion of Cy(£2) in the norm [D(-)]l2},
722 =w>2( Q) ND"2(RY). (3.1.3)

Obviously, Dy 2(R2) € DM2(R?).
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Along with the spaces L2, H, and D! defined above, we shall need also their “restrictions”
to the ball Bg. Precisely, we set

L*(Br) := {9 € L>(BR) : ¢|q, =9 for some g € R3}
H(BR) :={p € L*(Bg): divp =0, ¢ -nlyp, =0}
DY2(Br) :={p € W'2(BR)NLA(Bg): dive =0, @lyp, =0}.

Then H(Bg) and D'-%(Bp) are Hilbert spaces with scalar products

@01 92+ (@1, 0o @i € H(QW):
D@ ), D), ¥; €D2(Qr), i=1,2.

Let Dy 1’z(Q) be the dual space of D(l)’z(Q), endowed with the norm

[floiz2= sup  [(f.0)l,
0 €Co(Q)
Vel =1

and set
V:=D;" Q) NHR?Y), Y:=D;" Q)N LR, (3.1.4)

with associated norms

gy =llglly =ligl2+lgl-12+ gl

We then define

X =X(Q):={ueDy*(Q): dueD, " *(Q),
(3.1.5)
X% = X2(Q) = {u €X(Q):D*uc LZ(Q)} .

It is known [16, Proposition 65] that X and X 2 are (reflexive, separable) Banach spaces when
equipped with the norms

. . 2
lulx :=Vul2 + 1@ 12, lallx2 = llulx + D ull2.

In fact, as shown later on in Lemma 3, the norms ||V (-)||2 and ||D(-)||» are equivalent in D(l)’z.
In the sequel, we also need some spaces of time-periodic functions. A function w: Q2 X R
R3 is 27 -periodic, if for a.e. t € R, w(-, ¢t + 27) = w(-, 1), and we use the standard notation

2

w():= L/w(~,t)dt, (3.1.6)
2

0
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whenever the integral is meaningful. Let B be a function space with seminorm || - ||g. By
L2(0,27; B) we denote the class of functions « : (0, 27) — B such that

1

2

2w
”“”LZ(B) = /||u(t)||%dl‘ < 00
0

Likewise, we put
w120, 27; B) = {u € L2(0,27; B) : du € L*(0, 27; B)} .
For simplicity, we write L?(B) for L?(0, 27r; B), etc. Moreover, we define the Banach spaces

Lg :={£§ € L9(0,27), & is 2mw-periodic withE:O}, q €[1, 0],
Wi =1{§ € L3(0,2n), d'§/dt' € L*(0,27), I=1,...,k},
Lg = {w e L?>(L*(Q)); w is 27-periodic, with w = 0},

W2 = {we WhH(L2(Q) N LAW2(Q)); w is 2 -periodic, with W = 0},
with associated norms

€N g == 118N La0,27) » II’;'IIWtf = 1 llwk2(0,27) »

lwl gz = lwll 22y Iwlhne = lwlwizgz@) +Ilwl2mwe2@) -
We also introduce the Banach spaces

W§ = {we L*(Z**) N W'2(H) : w is 27 -periodic, with W|g, = =0} ,

L§ :={w € L*(H) : w is 27r-periodic, with W|g, =W =0}
with corresponding norms
||w||W§ =0wll 2 + lwll L2ew22@)) + ”ﬁ”Wul , ||w|||_§ = w22 + ||ﬁ||L§-

Finally, we set

Pi2:= {p € L2(D"?) with p= 0} ,

with associated norm

||P||Pé~2 =pllLzpray-
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3.2. Basic properties of the relevant functional spaces
The £2-spaces have two main properties.
Lemma 1. The following characterizations hold
L2RY={ueL’>RY: u=uinQ, forsomew R}, HR?) ={uecL’R?: divu=0}.
Proof. See [27, Theorem 3.1 and Lemma 3.2]. O
We also have
Lemma 2. With the scalar product (3.1.1), the following orthogonal decomposition holds
LR =HER) @ GRY).

Proof. A proof can be deduced from [27, Theorem 3.2]. However, for completeness and since
this result plays a major role in our analysis, we reproduce it here. Let u € H and k € G. Then,

(u,h):/wVp—/pfiw.

Q 982

Therefore, integrating by parts and using divu = 0 we deduce
(u, h) :—/pdivu+/pﬁ~n—/pﬁ~n=0
Q Q2 Q2
which proves HL>G. Conversely, assume v € HL ie.

w_15~'zi+/v~u=0, forallu € H. (3.2.7)
Q

Since Cp C H, by picking u € Cp from the preceding we find, in particular,

/v-u:O, for all u € Cy,
Q

so that, by well-known results on the Helmholtz decomposition [15, Lemma III.1.1], we infer
v = Vp with p € D'?(Q). Replacing the latter into (3.2.7) and integrating by parts, we get

w_l’v\—i—/pn =0 forallm e R,
a0

from which we conclude that v € G, that is, X+ C G. The proof of the lemma is completed. O
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Concerning the properties of D!-2-spaces, we state

Lemma 3. Let D12 denote either D2 or Dé’z. Then, D2 jsq separable Hilbert space when
equipped with the scalar product

(D(uy), D)), u; €D2, i=1,2,
Moreover, we have the characterization:
D2 — lue LSRHN D' (RY); divu=0; u=1in Q}, (3.2.8)
with some i € R3 ifﬁﬁ =D'"2 andi=0 ifﬁﬁ = D(l)’z. Also, for each u € 251/2, it holds

IVul2 = v2ID@)]2, (3.2.9)

and

lulle < xo D (@)]l2, (3.2.10)
for some kg > 0. Finally, there is another positive constant k1 such that
[u] <1 D)2 (3.2.11)
Proof. See [13, Lemmas 9-11]. O
Remark 2. The space DL2(BRg) can be viewed as a subspace of DLL(R3), by extending to O in
%ii\gllgzi(tlsg ge)tneric element. Therefore, all the properties mentioned in Lemma 3 continue to hold
2(Bg).

The X-spaces also have a number of relevant properties that we collect in the next statements.

Lemma 4. The following continuous embedding properties hold

X2(Q) c W22(QR) forall R> R,, X*(Q)C L®(Q)ND"(Q) forall g €[2,6].
3.2.12)
Proof. By Lemma 3, the first property is obvious. From [15, Theorem I1.6.1(i)] it follows that
X3(Q) C D1’6(Q) which, in turn, by [15, Theorem I1.9.1] and simple interpolation allows us to

deduce also the second stated property. O

We conclude this section with the following embedding result, whose proof is given in [17,
Lemma 2].

Lemma 5. The space X () is continuously embedded in LY.
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4. Main results on the equilibrium configurations
4.1. Existence and uniqueness

We begin with a general existence result in a suitable function class, followed by a corre-
sponding uniqueness result. Both findings are, in fact, obtained as a corollary to classical results
regarding steady-state Navier-Stokes problems in exterior domains. Precisely, we have the fol-
lowing theorem.

Theorem 6. For any A > 0, problem (2.0.5) has at least one solution

so(A) := (uo(A), po(A), X0(1))

such that

so(h) € [L1(Q) N DV (Q) N D> ()] x [L° ()N D ()] x R3, 4.1.1)
forallg e (2,00], r € (‘3—‘, o], s € (%, o], o € (1, 00). Moreover, the quantity

Vu, 1
sup o Vwdo) 1 (4.12)

2
u ED(I).Z(Q) Vaull; A

is finite, strictly positive, and achieved and, if . < A1, the solution so(A) is unique.

Proof. From [15, Theorem X.6.4] we know that for any A > O problem (2.0.5);_4 has one cor-
responding solution (uq, po) in the class (4.1.1). We then set

w
XO1=——2/T(uo,po)-n, (4.1.3)
wn
iy}

which is well defined by standard trace theorems. This completes the proof of the existence.

We now turn to the uniqueness part. The existence and achievement of 1/A; follows from
the summability properties of ug given in (4.1.1) and standard arguments about maxima of
quadratic forms in exterior domains [12]. In order to prove that A; > 0, take any w € C° R3)
with suppw N Qo = @. Then let u = curl w so that u € D(l)’Z(Q). By translating rigidly u and
moving its support towards infinity, we see that (u - Vu, ug) — 0 due to the decay properties of
uo. Therefore, by its characterization in (4.1.2), )»f] > (0; in fact, Af‘ > 0 since the supremum in
(4.1.2) is achieved.

Finally, let (u + uo, p + po, x + Xo) be another solution to (2.0.5) in the class (4.1.1) corre-
sponding to the same A. Then (u, p, x) satisfies the following equations
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—Au+Vp=»r[oiu— (uo+u)-Vu—u-Vuy)
in 2,
divu =0
ux)=0, xe€02, le‘l_r)noou(x)z(), (4.1.4)
w§x+w/1r(u,p).n=0.
Q2

Dot-multiplying (4.1.4); by u, integrating by parts over 2 and using (4.1.1), (4.1.4)2.3 and (4.1.2)
we find

2 _ A 2
IVull5 =A@ - Vu,ug) < A—lllvullz,

from which it follows that L > A1 or | Vu||» = 0. The latter implies # = 0, x = 0 (and therefore
p=0)byLemma3. O

Remark 3. The value A defined in (4.1.2) plays the role of a weighted Poincaré constant. Indeed,
it may be equivalently characterized by

Vu|? Vul|3
S L I 19
u epévz(g) (u-Vu,up) u Epévz(g) (u-V(-up),u)

with the weight V(—ug) vanishing at infinity and bringing enough compactness to ensure that
the minimum is achieved.

Since A1 depends on uy which in turn depends on A, it is natural to wonder whether the
condition A < A (ensuring uniqueness) can be reached. The next statement shows that this is the
case.

Proposition 7. There exists y = y(2) > 0 such that, if . < y, then problem (2.0.5) admits a
unique solution.

Proof. As already noticed in the existence proof, the fluid equations (2.0.5);—_4 decouple from
the one in (2.0.5)s, representing the balance of forces on Z. Therefore, uniqueness for the whole
problem (2.0.5) is reduced to establish the same property just for the Navier-Stokes problem
(2.0.5)1—4. However, the latter is well known [15, Theorem X.7.3] and is achieved exactly under
the condition stated in the proposition. O

From Proposition 7 and Theorem 6, we infer, in particular, that uniqueness is ensured for
“small” A > 0 and may fail only at some A such that

1 SV, uo(r
2 < max w (4.1.5)
AT uenlr @ Vul;

This reveals that either we have uniqueness for all 2 > 0 or there exists % > 0 such that
A1(A) = A. This A € (0, oo] can be defined as
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= sup{A > 0:v <A1(v),Yv e (0,A)}.
If % < oo, then there exists a non trivial solution # of the linear equation
Au—Vp=nuo(h) - Vu+u-Vug(h))
in 2,

divu =0
ux)=0, xcdQ, lim u(x)=0.

|x]—00

(4.1.6)

This condition is, in general, only necessary to get multiple equilibria (i.e. for A > X), as dis-
cussed in detail later on in the bifurcation context; see Theorem 16 and Corollary 17.

From a physical point of view, one expects that ug = uo(}) becomes “larger” as A grows,
although a precise definition of “larger” appears out of reach. From a mathematical point of
view, this could be translated into the fact that some norms of uy(A) are expected to grow with
A. If this were true, then equality in (4.1.5) would hold for a unique value A > 0 and this would
imply that

M) >AifA <A, A Q) <Aiifi>a.

Clearly, this would not allow us to conclude that uniqueness for (2.0.5) is ensured if and only if
A <A

4.2. Asymptotic stability

4.2.1. A sufficient condition for stability

Our next task is to find sufficient conditions for the stability of solutions determined in The-
orem 6, in a suitable class of “perturbations”. In this regard, let so(A) = (wo(X), po(X), xo(A))
be a steady-state solution given in (4.1.1) and let (u, p, x) be a corresponding time-dependent
perturbation. By (2.0.4), we then have that (u, p, x) satisfies the following set of equations

oju—Au+Vp=»r[oju—uo-Vu+ (x —u)-Vug— (x —u) - Vu]
in 2 x (0, 00),
divu =0
u(x,r)=x(), (x,1)€dx(0,00),
i +olx +wf1r<u,p)-n=0, in (0, 00)
Q2
u(x,00=u’, xeQ, xO©=x" xO=x".
4.2.1)
Given A > 0 and some so(}) solving problem (2.0.5) (see Theorem 6) we define
1 1 —-u)-V A
- = sup ¥ - o) 4.2.2)
)"2 )"2()") u €D1’2(R3) ||Vu||2

From Theorem 6 we know that
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1 (@& Vi, up)

A Vi3

for some u € D(l)’z(Q). Moreover, as D(l)’z(Q) c DV2(R3) (see Section 3), and since # vanishes
on 0€2, we infer that

1 _(ﬁ~V'ii,u0)< (u—1u)-Vu,ug) 1

A IVEIZ  ~ , cplam3 Vall3 iy

Therefore, we infer
0<Xt <Ap. 4.2.3)
We can now state a stability result for (4.2.1).

Theorem 8. Let A > 0 and let so()) be a solution of problem (2.0.5). Suppose uy()) is such that
)»2_1()») < 00 and that A < Ajp. Then, there exists ¢ = (2, A, wn, @) > 0 such that, if

a2+ 1x°1+ 1x ' <, 4.2.4)
then problem (4.2.1) has one and only one solution such that

ueC0, T; DR NLEO, T; W2 Q) N W20, T; £L2(R3)),

4.2.5)
peL*(0,T; DV*(Q)), x € W>(0,T),
forall T > 0. Moreover,
tEIgO(IIVu(t)Ilz +llu@®lle + Ix O+ x(®))=0. (4.2.6)

Before giving the (lengthy) proof of Theorem 8, postponed until Sections 4.2.2 and 4.2.3,
several comments are in order.

Remark 4. We first point out that the initial datum in (4.2.1) is assumed to satisfy u’ e wh2(Q).
Overall, the statement may appear unsatisfactory since it assumes that

AW <oo  and A <hp 4.2.7)

but, as we now discuss, a stronger result appears in general out of reach. It is readily seen that
the first assumption of (4.2.7) is satisfied whenever

up(h) € LX(Q). (4.2.8)
Actually, by the triangle and Holder inequalities we get
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1 (u-Vu,up(r) — @ - Vu,up(1))
= su
2
M), cplaw Va3

lulls - lleo) I3 + (7] - lluo() ll2
<0
Vaell2

=<

u e DL2(R3)

since ||Vul|2 bounds both |lu||¢ and || (by Lemma 3). This proves the first of (4.2.7) whenever
(4.2.8) holds. However, Theorem 6 ensures in general only that ug(X) € L9(R2) for all g > 2,
plus some integrability conditions on its derivatives. At the same time, we can readily show that

((u —u) - Vu,ug)
Va3

Juge L1(Q),allg > 2, ug & L*(Q), Ju € D2(R?) s.t. (4.2.9)

Actually, take u € D12(R3) and ug such that, as |x| — oo,

c

= FRETNICEY

C
IVa(x)| < luo(x)| < FE (4.2.10)

x[1/2(In|x[)/3
If we split the fraction as

(u : Vua uO) - (i2 : Vu, uO)
V|3

’

by the Holder inequality as above, and (4.2.10) we find that

(u-Vu,upy)

su 5
uep2®3 I1Vul;
On the other hand, we also have

@ - Vu,up)|

+oo  VmeR3\{0}.
IVul3

This proves (4.2.9). Incidentally, we notice that the derivatives of the above u( satisfy

2 C
[Vuo(x)| =< |D uo(X)lexl—m, as [x| — oo,

c
[x[5/2
so that (4.1.1) is fulfilled (in fact, we even have larger intervals for » and s). In conclusion,
we just saw that (4.2.8) gives a sufficient condition for the validity of the first of (4.2.7). This
condition may not be necessary but the above example suggests that (4.2.7); could fail if (4.2.2)
is evaluated along a generic solution u.

Remark 5. Once the first condition in (4.2.7) is satisfied, in order to apply Theorem 8 one needs

to check the second condition. We already observed that, in general, (4.2.3) holds. The assump-
tions of Theorem 8 require slightly more, namely

0<r2(d) =M ().
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This means that if 0 < A < A2(1), then the corresponding steady-state solution sg(A) determined
in Theorem 6 is unique and stable.

4.2.2. Some technical lemmas
We prove here some preliminary results. Recall that @ =R3\ Qg and Qz = QN Bg.

Lemma 9. Let (u, p) € [D'?(A) N W>2(D)] x DV2(D) be such that u|o, = U for some u €

R3 with either {A, D} = {R3, Q) or {A, D} = {Bg, Qr}. Then, there exists a constant C > 0,
depending only on the regularity of 2, such that

ID*ull2,p + IV pll2,p < C (Idiv T (w, p)ll2,p + [ Vall2,p + 4.

Proof. See [24, Lemma 1] where the domain is requested to be of class C 3. However, C? suf-
fices. O

Lemma 10. Ler u € DV2(A) N W22(D), with ulg, = U for some U € R3, A and D as in

Lemma 9, and let v € L*>(D). Then, for any & > 0 there exists a positive constant C (depending
only on ¢, uo, and the regularity of Q2) such that

| Q1w —uo-Vu+ @ —u)- V(g —u),v)p|
<C(IVul3 p+ I Vul p + 1IVull p) +e(1D*ul5 b + 013, p)-
Proof. Let us denote by [;, i =1, ...6, in the order, the six terms in the scalar product. Taking

into account that, by Theorem 6, ug € L*°(2) N DL (Q), q = 2,3, and using (3.2.10), (3.2.11),
Holder and Cauchy-Schwarz inequalities we readily get

5
YL = CAValsp+1Val3 p) + ellvl3 p -
i=1

Moreover, again by Holder inequality, [24, Lemma 1] (see also the “proof” of Lemma 9), (3.2.10)
and Remark 2,

sl < llullellVulsllvlz < CIVull2 (IIDzullz%,DIIVullz%,D + IIVullz,D) llvll2,p
<C(IVul p + 1VullS ) +elID*uld , + 3013 5 -
The lemma is proved. O
We will also need the following technical result.
Lemma 11. Let y : [0, 00) — [0, 00), be absolutely continuous and satisfying
y() <a(t) +b@)[y@) +y*®)], a=>1, foraet>0, “4.2.11)
where a, b € L*°(0, 00). Assume, also, y € L! (0, 00), and set
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a:=esssup |a(t)|, b:=esssup |b(t)].
1€(0,00) 1€(0,00)

Then, there exists § > 0, such that if

[e¢]

y(0) <3, fy(S)dSSSZ 4.2.12)
0

it follows that:
y() <M forallt € (0,00), M :=3max{l, 2a, 2b}.

Proof. Let

Y=y, B:=(14a)/2.

Multiplying both sides of (4.2.11) by y we get

Y <2ay+2b[Y +YF]. (4.2.13)

Contradicting the statement means that there exists fy > 0 such that

y(0) <8, y(t) <MS$, forallt e (0,1, and y(to) = M. (4.2.14)

Then, integrating both sides of (4.2.13) from 0 to 7y and using the latter and (4.2.12),, we deduce,
in particular

[ee] I00) )

Y(t9) <Y(0)+ Za/y(s) ds +2b/Y(s) ds +2b/Yﬂ(s) ds
0 0 0
< 6% +2a8% + 20M 83 + 2082 (M8)* < 4522+ Ms + (M5)*).

Therefore, choosing § > 0 in such a way that

2+ MS§+ (MS* <3M
we deduce y(tp) < M§, which contradicts (4.2.14);. O

4.2.3. Proof of Theorem 8

Part 1: existence. To prove the existence of a solution to (4.2.1), we follow the arguments
introduced and developed in [18,19]. Let {Q2g}, R € N, be an increasing sequence such that
Q = UpgeNQr and, for each fixed R, consider the problem
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8tllR — divT(uR, PR)

Z/\[aluk —uy-Vur+ (0g —ug)-V(ug _uR)] in £2g x (0, 00),
divur =0

urlogg=0g(t), urlap, =0, in (0, 00) 4.2.15)

dR+wﬁxR+war(uR,pR)-n=0, Xx=0r in (0,00)
Q2

up(x,00=u’, x e Qr, xz0)=x° or©0 =x".

Our approach to existence develops in two steps. In the first step, by the classical Galerkin
method we show that (4.2.15) has a solution in the class (4.2.5). This is accomplished with the
help of a suitable base, constituted by eigenvectors of a modified Stokes problem. This procedure
also leads to the proof of estimates for (ug, pr, x ) with bounds that are independent of R. In
this way, in the second step, we will pass to the limit R — oo and show that the limit functions
(u, p, x) solve the original problem (4.2.1) along with the asymptotic property (4.2.6).

We start putting (4.2.15) in a “weak” form. If we multiply (4.2.15); by ¥ € DV2(Bg), inte-
grate by parts and use (4.2.15)7 3 4, we deduce

(O, ¥) + 2D @), DW)) + (6 +wlx)- ¥

4.2.16)
=1[du—ug-Vu+ (o —u) V(ug—u),y¥] forally € D"2(Bg),
where ¢ = x and, for simplicity, the subscript “R” has been omitted and (-, -) = (-, -)q,. Using
standard procedures [13], one finds that if (u, p, x, d) is a smooth solution to (4.2.16), then it
also satisfies (4.2.15);_¢. In [18] it is shown that the problem

V- T, ¢)=ny¢ _
divy =0 in g,
Yv=v% ondQ, ¥y=0 ondBg, 4.2.17)

u$=w/?r(x/r,¢>-n,
Q2

with the natural extension ¥ (x) = /1/; in o, admits a denumerable number of positive eigen-
values {ug;} clustering at infinity, and corresponding eigenfunctions {¥p;}i C DY2(Bgr) N
W?22(Q2g) forming an orthonormal basis of H(Bg) that is also orthogonal in D2(Qg). Also,
the correspondent “pressures” satisfy ¢r; € W12(Qpg), i € N. Thus, for each fixed R € N, we
look for “approximated” solutions to (4.2.16) of the form

N N
uy(x.0) =Y anO¥ ). o)=Y an®O¥ g, Xn@), (4.2.18)
k=1 k=1

where the vector functions ¢y (¢) :={c1n(t),...cnn(t)} and x y (¢) satisfy the following system
of equations (i =1,..., N)
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@un, ¥ i) +20 ). D)+ @GN +0ixn)  Vri

(4.2.19)
=X [0iuy —uo - Vuy + (on —uy) - V(wg —un). ¥ ;] .

with oy = x . Indeed, (4.2.19) is a system of first order differential equations in normal form
in the unknowns cy, x y. To this end, it suffices to observe that

Wri-Vrj) =g Ug)+@ " Wgi Vg =0 (4.2.20)
so that the derivatives with respect to time can be grouped and (4.2.19) is equivalent to the system
¢in=Fi(en, xny), i=1,...,N,

N
Fii= Y can | MW pe = w0 V¥ pi+ B g = ¥ i) - Vo, ¥ g)
k=1

N 4.221)
=2(D (¥ o), D('/’Ri))] - Z caNemN (W re — Y RE) - V¥ R Y i)
k,m=1
2 o~
_%XN “Yri
which we equip with the following initial conditions:
an©@ =@ Yr)+o ' x" Pre, xn©=x". (4.222)
From (4.2.18) and (4.2.20), it follows that
lun )30, + @ on O < [u’13q+ x> (4.2.23)
Likewise, since
2D ). DV ) = iri[ @ T Ty + i V)| = i
we have
N ko
D(un(0) = ZCjN(O)D('/’Rj) = 22 E(D(uo), DY gD g))
Jj=1 j=17"
N D). D g )y
= 5 D))
= IDW I3,
and, therefore,
ID @y 0) 2,05 < ID@")]l2.. (4.2.24)

We shall now derive three basic “energy estimates”. Multiplying both sides of (4.2.19); by
ciN, sSumming over i, integrating by parts over Qx and using (4.2.18) and (3.2.9), we get

342



D. Bonheure, G.P. Galdi and F. Gazzola Journal of Differential Equations 408 (2024) 324-367

d

$ 2 [luw 1B+ @ o v 2+ @2 |+ 1V @13 = 2 (@ey = o) - Vi o) =0,

which, by (4.2.1), Remark 2 and (4.2.2), in turn furnishes

d —
%E I:”uN”% + o oy +CU,%|XN|2)] +y IVuy|3 <0, (4.2.25)
where we have set

A
yi=1-— - > 0. (4.2.26)
2

We next multiply both sides of (4.2.19); by ¢;n, sum over i, and integrate by parts over Qg
as necessary. Taking again into account (4.2.18), (3.2.9) and Remark 2, we obtain

d 1.
%E”VMN“% +lunll3 + o Nl =)»(81u1v —uo-Vuy

) 4.2.27)

[ .
+(0'N_uN)'Vu0_(UN_uN)'quvazuN)_anN'0N~

Finally, we multiply both sides of (4.2.19)1 by Ag;c;ny and sum over i. Integrating by parts
over Qg and employing (4.2.17) and, one more time, (4.2.1), (3.2.9), and Remark 2 we show

d .
%d—nVuNn% FIdivT (uy, p)|2 + @ [Sy > =2 (BluN —uo- Vay
! (4.2.28)

+(on —uyn)-Vug—(oy —uy) - Vuy,divT (uy, PN)) +@ixy - Sn

where

N
Sy = f T(un, pN) R, PN =)  CANGRE-
a0 k=1

We shall now derive a number of estimates for the approximated solutions, paying attention
that the constants involved are independent of N and R. Such generic constants will be denoted
by C, which can thus depend, at most, on €2, u( and the physical constants involved in the
problem. Moreover, without specification, its value may change from a line to the next one (e.g.
2C < C). From (4.2.25), (4.2.23) and (3.2.11) we get

sup [llun I3+ Lon®? + i lxy®1P]
te(0,00)

o0

+y f k2o N ()2 + [V (9)]13) ds (4.2.29)
0

<23+ Ux'12+ 2 1x°1P).
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Such an estimate implies, in particular, that the initial-value problem (4.2.21)—(4.2.22) has a
(unique) solution in the whole interval (0, co0). Moreover, from (4.2.27), Cauchy-Schwarz in-
equality and Lemma 10 with v =0,uy and e = ¢ < %, we infer

d .
E”VMN”%‘F Hounl3+1on? < C(IVun I3+ IVun 13+ IVan IS + [x v 1)
+e1 |D%uny|l3

< C(IVunl3 + IVun |l + 1xn1%) + &1 1 D> uylf3.

(4.2.30)
Likewise, employing Lemma 10, this time with v =divT (uy, pn), from (4.2.28) we obtain

d .
%E”VVN”%‘F IdivT (uy, pa)I3+@ ISnI* < C (IVun 13+ IVanl§ + 1x v %)
+&2 | D%un|l3

which, in turn, combined with Lemma 9 implies, by taking &, small enough

| =

S IVunll3+ ClIID*un |3+ @ ISP < C (||VuN||§ +IVan§ + |xN|2) . (423D

Q

t

Summing side-by-side (4.2.30) and (4.2.31) by choosing ¢ sufficiently small we deduce

d .
d—WuNn% +C (1D unll3 + I18;un 5 +16 51> + @ [Sy|?)
! (4.2.32)

= € (IVun I3+ IVunl§ + xn ).
which furnishes, in particular,

d
Va3 = C (IVayl3+ 1Vayl§ + xvl). (4.2.33)

In (4.2.33) we put y(¢) = ||VuN(t)||%, a(t) =C|xy@®|* and b = C. By (4.2.29), it follows
that both a and b satisfy the assumptions of Lemma 11 with @ = 3. Hence, there exists § > 0
such that if (4.2.12) holds, namely

o0
IIVuN(O)H%,QR <3, / ||VuN(s)||§,QR ds < 8%, (4.2.34)
0
then
sup [[Vun(@)ll2,p < M. (4.2.35)
1€(0,00)

We take ¢ > 0 in (4.2.4) such that
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¢2 < min {5, 82 min{1, @ (1 + wﬁ)—l}} .
Then, from (4.2.24) and (4.2.4) we know that

2
IVan O3 o, < IVE13 o < (1%l 2+ 1x°1+ 1x ') < e” <5,

while from (4.2.29) we infer that

o0
/HWN(s)n%,QR ds <y~ [0 + o X P+ 21X
0

_ 1 + w?
<y 1max{1, T”} [||u0||%+ x>+ |X0|2]

2
§y_1max{1, 1+w”}52§82.
w

Therefore, with the above choice of ¢ > 0, both conditions in (4.2.34) are satisfied and (4.2.35)
holds with a constant Cy = M § > 0, independent of N and R, namely

sup [[Vun(@®)ll2 < Co. (4.2.36)

te(0,00)

Employing (4.2.36) in (4.2.32) and keeping in mind (4.2.29) we conclude

T
/ (||DZuN(s)||§ + ||a,uN(s)||§> ds<Ci T, forallT >0, (4.2.37)
0

with C; another positive constant independent of N and R. Thanks to (4.2.29) and (4.2.37),
we can now use a standard argument (see e.g. [18]) to prove the existence of a subsequence
{(un,, XN o y,)} converging in suitable topology to some (ug, X g, 0 g) in the class (4.2.5)
(with  replaced by Qr and R> replaced by Bg) and satisfying (4.2.16). Since, clearly,
(uRr, X g, 0 R) continues to obey the bounds (4.2.29) and (4.2.37), we can similarly select a sub-
sequence (UR,,, X g, » O R,,) CONverging (again, in suitable topology) to a certain (u, X, o) that is
in the class (4.2.5) and obeys (4.2.29), (4.2.37), and (4.2.1) for a.e. x € Q and ¢ € (0, 00). The
demonstration of this convergence is rather typical and we omit it, referring to [18, Step 3 at p.
141] for details. Thus, the proof of existence is completed.

Part 2: uniqueness. This part of the proof is quite standard and we only sketch it here. Let
(u;, pi, x;), i = 1,2, be two solutions to (4.2.1) corresponding to the same initial data, and set
u:=u)—uy, p=p1— P2, X = X1 — X2- We thus have
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3,u—Au+Vp=k[31u—u0~Vu

(X — ) Vi —u2) = Gy —w1)- Vae] tin €% (0,00),
dive =0

u(x,t)=x(), (x,1) €92 x(0,00), (4.2.38)

x+w%x+wf1r<u,p>~n=0, in (0, 00)
Q2
ux,00=0, xeQ, x0)=0, x0)=0.

We dot-multiply (4.2.38); by u, integrate by parts over 2 and use (4.2.38)2_4 to obtain

d L .
%a[llull%w 1(|x|2+w§|x|2)]+y||Vu||§§)\((x_u).vl,z,u), (4.2.39)

where we recall that y is defined in (4.2.26). From (3.2.11) and Cauchy—Schwarz inequality we
get

|(x - Vo, w)] < 3y [Val3 + ¢l Vuall3lull3,
whereas from (3.2.10), Holder, Sobolev and Cauchy—Schwarz inequalities,

1 2 2 2
|- Vuz, u)| < llullell Vuzlzllullz < sy I Vullz + c lluzllz 5 llull; -

Replacing the last two displayed relations in (4.2.39), we thus conclude
dE
T <cg)E(@) (4.2.40)

where g := ||u2||%,2, E = IIuII% +o (x? —i-a),z]lx 12). Since u> is in the class (4.2.5), we have
g€ L'(0,T),forall T > 0 and also, by assumption, E(0) = 0. Uniqueness then follows by using
Gronwall’s lemma in (4.2.40).

Part 3: stability. We finally prove the validity of (4.2.6). In this regard, we begin to observe
that the solution just constructed satisfies, in particular,

1€(0,00)

sup (u@)ll2 + IVu@)ll2 + | x (O] + IX(I)I)+/(IX(S)I2+ IVu@s)I3)ds <K, (4.2.41)
0

where K > 0 is a constant depending only on the data. By dot-multiplying both sides of (4.2.1);
by d;u and proceeding as in the proof of (4.2.30) we obtain

d > o
E(||Vu||§+%x-x>+||azu||§+w Nx1?
2
=A(Blu—uo~Vu+()'(—u)~Vu0—(a—u)~Vu,8tu)+%|)'(|2.
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We now use, on the right-hand side of this relation, Lemma 10 with v = 0su, e =¢1 < %, along
with the uniform bound on ||Vu||; in (4.2.41) to get

d 2 . 2
E(IIVulliJr%x-x)+§||8zu||§+w X1 <CIVul} +e ID%ul3 + 2 x> (4.2.42)

Finally, we test both sides of (4.2.1); by —div T (u, p) and apply Cauchy-Schwarz inequality to
deduce

Idiv T (u, p)I3 < =221 (B1u —uo - Vu + (X —u) - V(ug — u),divT (u, p)) + ||3,ull3 .

Employing in this inequality Lemma 10 with v = div T (u, p) along with the bound (4.2.41) on
IVul|,, we infer

Idiv T (u, p)II3 < ClIVul3 + e | D*ull3 + 13,ul3,
which, in turn, with the help of Lemma 9 and by selecting &, small enough, entails
ID*u )3+ IVpl3 < C(IVul3 + 18:ul3 ++x1%) . (4.2.43)

Next, we utilize (4.2.43) on the right-hand side of (4.2.42) and pick &, suitably, which enables
us to find

%(IIWII% + %y 0+ Mol o 5P < C AVl + 1xP). (4.2.44)
Integrating over time both sides of (4.2.44), and taking into account (4.2.41), it follows that
du e L*(0,00; L*(R)), ¥ € L*(0,00), (4.2.45)
which once replaced in (4.2.44), again with the help of (4.2.41), furnishes
D*u,Vp e L*(0, 00; L3(Q)). (4.2.46)
By possibly adding a suitable function of time to p, we may get [15, Theorem I1.6.1]

pPE L%(Q) and lp®lle <C|IVp@®)|2, aa.t>0. (4.2.47)

On the other hand, from (4.2.1)4 and standard trace theorems, we have

2

xoP <t [ iEor+ fT(u,p>~n
Q

=C(IFOP+1Vuld,q, + 1213 2, ) -
for some fixed p which, in view of (4.2.45)—(4.2.47), allows us to conclude that
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x € L0, 00). (4.2.48)
Combining (4.2.41), (4.2.45) and (4.2.48) we get at once
lim (|x(@®)|+|x@®)])=0. (4.2.49)
—00
From (4.2.41) it follows that there exists at least one unbounded sequence {#,} € (0, co) such that
lim ||Vu(t,)]2=0. (4.2.50)
n— o0

Thus, integrating both sides of (4.2.44) between 1, and ¢ > 1, we infer, in particular

IVu@)13 < C L IxOX O+ 1x @) X )] +/<||Vu<s>||% + X ds | + 1Vu@)l3
ty

which, by (4.2.41), (4.2.49) and (4.2.50) entails

lim |Vu(t)|2=0.

[—>0o0
The latter and (3.2.10) complete the proof of (4.2.6). The proof of Theorem 8 is completed.
4.3. Absence of oscillatory solutions below the stability threshold

As remarked in the previous subsection, if A > 0 and A < A3, the steady solution of Theo-

rem 6 is unique and stable. The objective of this subsection is to show, in addition, that, if 1, > 0,
no oscillatory motion can stem out of the steady-state branch in a suitable function class of solu-
tions I" as long as A < A,. As a direct consequence, a time-periodic bifurcation may occur only

at some A, > Ay. More precisely, let so(1) be the steady-state solution given in (4.1.1). A generic
T -periodic solution to (2.0.4) can then always be written as

u(x,t) +uox), px,t)+pox), x®+ xo,
where (u, p, x), after the scaling t = ZT”.t, is a 2w -periodic solution to the following equations

(0;u—Au+Vp
=A[81u—u0~Vu+(§)'( —u)-(Vu—i—Vuo)] in Q x (0, 271),
divu =0
w(e, ) =cx(t), (x,1) € x (0,27), 43.1)

& +w§X+W/T(u,p)~n=0, in (0, 27)
aQ

where ¢ :=2m/T. We now introduce the class
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F={uw=u+w,p=p+p,x=x+8&):
ueX(Q).weWl: peW'i(Q), peP? £e W),
which constitutes the functional framework where, later on, we shall prove the occurrence of

a time-periodic bifurcation. We recall that ~ denotes the mean value, as defined in (3.1.6). In
particular, if u =u + w € T, then

or, equivalently,

For a solution of (4.3.1) in the class I", we have

(0w —Au—Aw+Vp+Vp 432)
. 4.3.
=A[0u+ 0w —ug-(Vu+Vw)+ (& —u—w)- - (Vug+ Vu + Vw)]

and
CE+PX 46+ w/T(ﬁ,ﬁ) n+ w/T(w, p)-n=0, in(0,27). (4.3.3)
Q2 Q2

Since we assume p = 0, we have

2

//pﬂ-n:fﬁ]l-n:ﬂ.
Q2

0 90
The facts that £ = 0 and w = 0 then imply that (4.3.3) splits in
w§7+w[1r(ﬂ,ﬁ)-n=0,
a0

;2.§+w§g+wf1r(w,p).n=0, in (0, 27).
Q2

Taking the mean of (4.3.2), we infer that
AT+ Vﬁ:/\[alﬁ— uo- Vi — - (Vug + VD) +m].
Summing up, and setting
M(x) = (& —w) Vu,

349



D. Bonheure, G.P. Galdi and F. Gazzola Journal of Differential Equations 408 (2024) 324-367

we infer that (4.3.1) can be split into the coupled system

AT VP =A% —ug- Vi — - Vg — - Vi + M(x)]
divi=o0 [ ™
T=0 ondQ. (4.3.4)

%7+W/T@ﬁ%n=&
a0
and
Lo w — Aw—i—Vp:A[B]w —uo'Vw—i—({é —w)'Vuo]

FA~M @) + (CE —w) Vw—7-Vw+ (& —w) - va) | 02 x[0,27]
diviw =0
. 4.3.5)
w=2¢& ondQ x [0,2n],

;2,§+w%§+w/11“(w,p)-n=0, in [0, 2] .
aQ

In the proof of the main finding of this subsection given below, we need to use a specific
“cut-off” function, whose properties are collected in the following lemma.

Lemma 12. There exists Yg € C§° (R3), R € (0, 00), with the following properties

(i) vr(x) €0, 1], forall x e R? and R > 0;
m)gmleu)=1ﬁwaUxeR%
— 00

(iii)) Y r(x) =1 forall x € Bg, and supp (Ygr) C Byp2, R>1;

(iv) supp(Vyr) C Byg2\Br =: Sg, R>1;

W) [u|VYgrlll <clVu| %, with ¢ independent of R;
2,QV2

(i) d1yr € LA(Q).

Proof. Let ¢ = ¥ (r), r € (0, 00), be a smooth, non-increasing function that is 1 if » < 1/2 and
0if r > 1, and set

1 [x2  p2
Vr(x) =¥ | 5 R_l4+ﬁ , pPi=x3 413,
We thus have
2
Lif 24 2 <1
YR() = LT 43.6)
0 if 2+ 2 >4
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which at once implies the validity of properties (i) and (ii). Furthermore, for R > 1, we get

2 2
X P 1
—(X12+,()2)§R—14+F§F(x12+,02>.

The latter, combined with (4.3.6), proves the statements in (iii) and (iv). Finally, the remaining
properties (v) and (vi) are obtained exactly like in [15, Lemma I[1.6.4]. O

The following result holds.

Theorem 13. Let (u, p, x) € I be a solution of (4.3.1). If A < Ay, necessarily (u, p, x) =
0,0,0).

Proof. Recall that we use the decomposition
u=u+w, p=p+p, x=x-+E&.

We test both sides of (4.3.5)1 by w, and integrate by parts over 2 x (0, 2). Taking into account
the summability properties of elements in the class I" and the definition (4.2.2) of A,, we obtain

IVwI3 =1 (€ —w) - Vao+@),w) < I Vel -4+ (M@, . (4.3.7)

Testing both sides of (4.3.4) by ¥ gu, with Y g given in Lemma 12, and integrating by parts over
 as needed, we get

Iz V|l = 32 [— (019 rE, &) + (7> (o + &), Viyr) + 2(Yr M (x), 7)]

5 4.3.8)
—AMYRE - Vuo, W) + (PU, VYr) =Y Ix.
k=1

Using (iv)—(vi) in Lemma 12 along with Holder inequality, we show

L]+ 15 < 32 (1919rll2 + (o + B IVYRII) 1713 5, < ¢ (1+ [ Vaolz + [ VEl2) [%]7 5,

and also

sl < 1@ IVyrlll21Pl2,sx < clIVal2lPll2, s -

We now pass to the limit R — oo in (4.3.8). With the help of the last two displayed inequalities
along with Lemma 12-(ii), the fact that u, w € I and the definition of A, we obtain

A
IVE&||3 = —A (@ - Vo, @) + (M (x), &) < /\—IIVﬁH% + MM (x), 7). 4.3.9)
1

Summing side-by-side (4.3.7) and (4.3.9), we infer that
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L= 2 )iV + (1= 2 ) vaz <o
-— w - u ,
Ao 2 A 2=

< 1 implies )f‘—l < 1, we conclude that

A
A2

and since
Vu(x,t)=0, forall (x,1) e 2 x[0,2n],
which, by (3.2.10) and (3.2.11) concludes the proof of the theorem. O
4.4. Steady-state bifurcation
We shall now undertake the study of loss of uniqueness and occurrence of bifurcation for the
family of solutions sg(A), A > 0, whose existence was established in Theorem 6. More precisely,
in this subsection we will furnish necessary and sufficient conditions for the occurrence of steady

bifurcation.
Let A; > 0, U (%,) be a neighborhood of Ay, and denote by

so(A) := (uo(A), po(A), xo(A), A€ U(y), 4.4.1)
a first solution to (2.0.5) determined in Theorem 6. Next, let

(wo(A) +ud), po(r) + p(A), xo(A) +x (1), A€ U(hs),

be another solution to (2.0.5) so that (u(}), p(}), x (1)) solves the following homogeneous
boundary-value problem

—Au+Vp=Ar(u—ug-Vu—u-Vug—u-Vu)
divu =0

in Q,

uix)=0, xeo; |xl|1_r)noou(x)=0, (4.4.2)
w%x =—w/T(u,p)-n.
Q

Then, formally, steady-state bifurcation reduces to show that

@) @), p(2), x(2) #(0,0,0), 2 € U(%s),
(11) (u()")9 p()")9 X()")) — (0’ O’ 0) as )" — )"Sv

in which case, (Ag, sp(Ag)) is called a bifurcation point for problem (2.0.5) (or, equivalently,
(X5, 0) a bifurcation point for (4.4.2)). The above properties should be, of course, rigorously
formulated and their validity properly ascertained in an appropriate functional setting.

Remark 6. We observe that, in order to prove (i)-(ii) it is enough to prove

(i) @), p() #(0,0), A € U(Xy),
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i) (m(r), p(r)) — (0,0) as & — Ag,

provided the existence of the bifurcating branch is obtained in a function class that allows the
control of x (1), namely, the right-hand side of (4.4.2)5. We could thus restrict ourselves to prove
such a type of existence. However, also in view of the analysis of time-periodic bifurcation that
we shall develop in [7], we prefer to study problem (4.4.2) as a whole.

Let
Z:=[D*}(Q)NDy* ()] x R3, (4.4.3)
and
X:=X%(Q) xR3; (4.4.4)

see (3.1.5). Clearly, X C Z. Given a function u : Q — R3 and a vector X € R3, we put

U:=(u, x).

Our first goal to analyze steady bifurcation is to rewrite the left-hand side of (4.4.2); with suitable
operators acting on U (that will therefore also include the compatibility condition (4.4.2)5 for x).
To this aim, we consider several maps and their properties. Define first

A:UcZ> AMl)eY,
see (3.1.4), where
—Auin Q,

A(U) = (4.4.5)

w%x +2ar/]D(u)-n in Qq,
aQ
and set o = P A, where 2 is the self-adjoint orthogonal projection of £2(R3) onto H(R3).
We thus have
dUeZ>dU)e),
see (3.1.4), and, by (4.4.5) and Lemma 2,

—Au+Vpin Q,

Q?(U) = (4.4.6)

wﬁx—i—w/(Z]D)(u)—p]I)w in Qq,
IR

for some p € G(R2).
The following result holds.
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Lemma 14. The operator o Z— Y is a homeomorphism.

Proof. We have to show that, for any (f, F) € [’DO_LZ(Q) N L%(2)] x R3 there exists one and
only one (u, x) € [D%2(Q) N D(l)’z(Q)] x R3 satisfying

—Au+Vp=f, dvu=0inQ; u=0 ondQ,

o + w[ D) — pl)-n=F. 4.4.7)

R

The result will then follow by the open mapping theorem. It is well-known that for any
f e Dy"(R) there exists a unique (u, p) € Dy*(Q) x L*(R) satisfying (4.4.7)1 23 in dis-
tributional sense, see for instance [15, Theorem V.2.1]. Moreover, since f € LZ(Q), we also
have (u, p) € DZ’Z(Q) X Dl’z(Q) [15, Theorems IV.5.1 and V.5.3]. By the trace theorem, for a
fixed R > R,

‘/(ZD(u) —pD-n|=c(lul22,9r + IPlli208) <00,
a0

so that x is uniquely determined from (4.4.7)4. O

Let
3 :UeX > 0(U) e HRY
with
. —0ju in
3, (U) = 4.4.8)
0 in Q() .

It is readily checked that, as stated, 51 (U) € H(R?). By Lemma 2 and (4.4.8), this amounts to
show that

/alu-vpzo, forall p e D2(Q). (4.4.9)
Q
Since u € D(l)’z(SZ), there is a sequence (uy)x C Co(£2) such that |V (uy —u)||» — 0 as k — oo.
Then, by an integration by parts combined with the condition div u; = 0, we deduce that (4.4.9)

holds for each uj and hence for u after passing to the limit k — oo.
Next, let

F:UeX—%EWU)eY
where
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uog-Vu+u-Vuyin Q
“WU) = (4.4.10)
0 in Qo .

and consider the following operator
LUeX > dU)+A[01(U) + PEW)] €. (4.4.11)
Then we prove
Lemma 15. For any A # 0, the operator £, : X — Y is Fredholm of index 0.

Proof. We first show that % is well defined. Clearly ¢ = ¢, for ¢ € Cy(€2). Therefore, for
any such a ¢, integrating by parts we get

(L), 0) =r01u,9) — (AMuo@u+uuo) +Vu,Ve).

Since u € X (2), employing Holder inequality and Lemma 5 we deduce that %, (U) € D, 1’2(9).
Moreover,

luo - Vu +u - Vuollz < lluollol|Vull2 + llullo I Vaoll2 -

Since u € X?(R2), by Lemma 4 and Theorem 6, we conclude that .%; (U) € H(R?3) as claimed.
We now turn to the verification of the Fredholmness of .%;. We decompose %, as follows

&=L+ 0 PG,

where .,Sff = +A1d. To prove the Fredholm property for .7, it is enough to show that .iﬂo
is a homeomorphism and that 4 is a compact operator.

We start by showing .ZAO is a homeomorphism, that is, for any ( f, F) € [DO_I’Z(Q) NL%()] x
R3 there exists unique (u, x) € X*(2) x R3 solving

Adu+Au=Vp+ f

divae =0 n <,

u(x)=0 onoQ2, 4.4.12)
w%x—l—w/T(u,p)-n:F.

Q2

To show the validity of this property, we notice that corresponding to the given f, from [10, The-
orem 2.1] we know that there exists a unique solution (u, p) € X2(Q) x Wh2(Q) to (4.4.12)1,2,3.
By the trace theorem we get

/T(u, p)-n|=c(lulz2z2.er +1pli20) <o0. (4.4.13)
Q
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The associated and uniquely determined displacement y is then obtained from (4.4.12)4, which
concludes the proof of the homeomorphism property of 3)\0 by the open mapping theorem.
We next show that the operator 4 is compact. To this end, consider a sequence

{(Uhe = {(uk, x )} C X
with
el x2 +xpl <M, (4.4.14)

and M independent of k € N. This implies the existence of u, € L*(Q) N D'2(Q) N D>2(RQ)
and x, € RR3 such that along a subsequence (that we continue to denote by {(u, x )

Xi— X+« — 0, in R3
wy :=up —u, — 0, weakly in L4(§2) , 4.4.15)
Vw; — 0, weakly in wh2(Q).

Moreover, by Lemma 4 and compact embedding results, we also have
w; — 0, strongly in W2(Qpg), for all R > R,. (4.4.16)

Observe that

luo - Vwg + wy - Vol —1,2 < lluo @ will2 < luolloollwill2.2r + llwolls or llwkll4,

where we recall QF = Q\Q = R3\ Bg, and

lwo - Vwy + wy - Vuoll2 < luollcollwilln 2.0 + ll#olly 4.or lwkll4-

From Theorem 6, we know that ug € Wl’OO(Q) N WL4(Q), so that letting first k — oo in the
above two inequalities and using (4.4.14)—(4.4.16), and then R — oo, we deduce

klim (|u0 -Vwg +wi - V|12 4+ |lug - Vwi + wy - Vu0||2) =0.
—00

In view of (4.4.10), this proves that % is compact and finishes the proof. [
From Theorem 6, we know that the solution so(A) := (#o (L), po(A), x(1)) to problem (2.0.5)

is unique, provided that A < A1(A), as _deﬁned in (4J 2). Olil‘ next concern is to furnish a sufficient
condition for local uniqueness of sg(A) whenever A > A1(A) if this situation occurs. Let

(Uo, po, 7o) := (o), po(), Xo(4))
be a given solution of the problem
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—Au()~|—Vp()=X(31uo—uo'Vuo) )
in 2,

divug=0

up(x)=e;, x€dQ; lim up(x)=0, (4.4.17)

[x]—00
wﬁxOJrZU/T(uo,po) ‘n=0.
a0

We will write any solution (ug(A), po(X), xo(A)) to (2.0.5) as

((2) +ug, p(A) + po, X (1) + To).
Then (u, p, x) = (u(A), p(A), x (1)) solves
—Au+Vp—rdu+r(up-Vu+u - Vug)

= 1191 (o + ) = (Uo + ) - V(uo +) — - Var) 0D
divu =0

ulx)=0, forxeBQ,l Iim u(x)=0,

x|— 00

(4.4.18)

w%x+wf11"(u,p)-n:0,
02

where we have set i := A — A. To rewrite (4.4.18) in a suitable way, we define one more operator:
O:UeX—OWM)eY
where

—d1(ug+u)+ (up+u) - V(up+u) +ipn~'u-Vu inQ,
o) = 4.4.19)
0 in Q.

It is clear that (4.4.18) is formally equivalent to
L) +pn20U) =0.
We claim that the map & is well defined. Indeed, taking into account Theorem 6 and the fact that

u € X?*(R), by arguments similar to those employed previously we easily show that, with a, b
being either ug or u,

diu, a-VbeDy (@ NLXQ), duge LX(RQ). (4.4.20)

Moreover, testing (2.0.5)1 (with ug = ug, po = po, A = A) by @ € Co(RQ) and integrating by parts,
we get
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As(d1ug, @) = —(ug @ ug, V@) + (Vug, Vo).
Since ug € L4(Q) N Dl*z(Q), from the latter we deduce djug € D_l’z(Q), which, along with
0 g

(4.4.20) proves that & is well defined.
We are now in position to give a sufficient condition for local uniqueness.

Theorem 16. Let (ug, po, To) := (wo(A), po(L), Xxo(*)), and assume that the equation

W) =0 (4.4.21)

has only the solution U = 0. Then, there exists a neighborhood U (M) D {A} such that for
A e U, so(r) := mr), po(A), xo(A)) is the only solution to (2.0.5). Moreover, A — sp(A)
is analytic at . = 2, and

(uo(A), po(A), xo(X)) = (ug, po, To) asr— A.

Proof. Let

F:U,pn)eB0)xIO0) > LW +uP0U)e),

where E(0) x Z(0) is a neighborhood of (0,0) € X x R. We have seen that (2.0.5) translates in
(4.4.18) which is equivalent to

FU,uw=0e). (4.4.22)

Clearly, (4.4.22) has the solution (U = 0, © = 0). Moreover, it is standard to verify that F is
Frechét-differentiable with derivative DyF (0, 0) = .75 Since .75 is Fredholm of index 0, the
assumption made in (4.4.21) implies that .5 is a homeomorphism. In addition, F is polynomial
in (U, ). As a consequence, by the analytic version of the implicit function theorem we show
the property stated in the theorem, which is thus completely established. O

Theorem 16 tells us, in particular, that sq (M), A= Aq, is unique as long as the corresponding
linearization satisfies (4.4.21). Moreover, this solution can be analytically (and uniquely) contin-
ued up to the first value of A, say, Ay, where (4.4.21) is violated.

We thus have:

Corollary 17. A necessary condition for (As, so(As)) to be a steady-state bifurcation point is

dimN[L.%,1> 0. (4.4.23)

Remark 7. Recalling the definition of .%; in (4.4.11), we have that condition (4.4.23) is equiva-
lent to the request that the linear problem
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—Au+Vp=»xi;(01u —upo(rs)-Vu —u - Vuy(lry))
divu =0

ux)=0, xeoQ; |xl|1_1)1100u(x)=0, (4.4.24)

in 2,

wﬁx+w/1r(u,p)-n=0,
Q

has at least one solution (u, x) € X2(£2) x R\{0, 0}. This is, in turn, equivalent to the condition
that (4.4.24)1 2.3.4 has a non-identically zero solution u € X 2(Q2). We may then conclude that the
necessary condition for bifurcation in absence of compatibility condition (4.4.24)s remains such
also in its presence; see also Remark 6.

Our next goal is to find sufficient conditions for the occurrence of steady bifurcation. For
this, we shall rewrite (4.4.2) as an equation in a suitable Banach space, and establish some basic
properties of the involved operators. After that, we will be able to apply abstract bifurcation
results to our case and derive the desired conditions.

To reach these purposes, we need to introduce another operator, namely

N UeX—> A U)eY
where

u-Vuin Q,
AN (U) = (4.4.25)
0 in Q.

By arguing as we did for the map & in Theorem 16, we show that .4 is well defined. Thus,
from (4.4.25) and (4.4.11), we deduce that problem (4.4.2) is equivalent to the following equation

A U) + A0, (U) + PEOYU) + PN U)]=0 inY, LeU(h), (4.4.26)

where we have emphasized that the operator ¢ depends on A through uo. In view of Lemma 14,
we may operate on both sides of (4.4.26) with .27 !, so that (4.4.26) becomes:

FU,A)=0, inZ, AeU(ry) (4.4.27)
where
F o=+ AM () + % (4.4.28)
with | identity in Z, and

M) UeX=DL.AMN]CZr o [51(U) + PEO)U)] € Z,
R UeX=D[Z+ ' NU)e?Z.

Remark 8. Since Z is bilinear in U, for each fixed A, the map .% is analytic in U.
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We shall now establish some important properties of the operator . (1).
Lemma 18. For each fixed ). > 0, the operator .M = . (}) is densely defined and closed."

Proof. Recalling the definitions given in (4.4.3) and (4.4.4), the density property means that,
given arbitrary u € D>2(Q)N Dé’z(Q) and ¢ > 0, there exists u, € X2(Q) N D(l)’z(Q) such that

V(e —ue)lh2<e. (4.4.29)

Let ¢r, R > Ry, be a smooth, non-increasing function of |x| € [0, 00), such that ¢g(x) = 1, if
x| <R, ¢pr(x) =0, if [x|] > 2R, and

IVér()| <cR™, |V(Vor(x)| <cR™?, forallx eR?,
with ¢ independent of R. Consider the problem

divo= Vg -u, in Brog:={x€Q:|x| €(R,2R)}, ve W, (Brar).

It is well known that the field v exists and that there exists a positive constant cg, independent of
R, such that

IVoll2 <collVer - ullz, 1Dz <collV(Ver-u)la.

We refer to [15, Theorem II1.3.3 and Lemma II1.3.3]. Extending v by 0 outside Q2g, we deduce,
in particular, v € Wg’Z(Q). Moreover, by Holder inequality and the properties of ¢g,

-1
Vvllz < cR™ lullz < callulle, Bg 2 -

5 5 5 4 (4.4.30)
ID*vll2 < ¢ (R ull2, o + R~ IVUl2) <c R™ (lull + IVull2)

where, here and in the rest of the proof, ¢ denotes a positive constant independent of R. Setting

Ug:=¢ru —v,

we establish at once with the help of Lemma 2 that ug € X2(2) N D(l)’2(Q). Also, again by the
properties of ¢g, Holder inequality and (4.4.30) we show, in a similar manner,

IV —up)ll2 = |(1 —¢r)Vullz +cllulle,Bg 1

) ) C (4.431)
D" —up)l2 < |(1 = ¢r)Dull2 +cR™" (lule + [ Vul2) .

Since, by Lemma 2, u € L(2), (4.4.29) follows from (4.4.31), by taking R sufficiently large.

1 In fact, the result holds for all A # 0, but this generalization is irrelevant to our aims.
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To prove . is closed, we take {Ux = (ux, x;)} C X, U= (u, x),V= (v,¢)) € Z such that

V@i —wlli2+1xy —x1—0
as k — 0o, (4.4.32)
MU >V in Z

where, for simplicity, we have omitted the dependence of .# on A. We need to show

(@) ue X();
(b) A (U)=V.

Let (vk, &) = Vi := 4 (Uy), and set vipy = vk — Vi, Cppr = S — Surs Uppy = Uk — Uy and
Pkk’ = Pk — pr'- Then,

—Avgr + Vpro = M0 — uo - Vg — ugge - Vag) | Q
in 2,
div Uk = 0

Uik — 0 on 9Q2 s (4433)

wﬁgkk’ +W/T(vkkupkkr) -n=0.
aQ

Testing (4.4.33); with ¢ € Cy(2), integrating by parts, and using Holder inequality we infer that

MO@ruge, @) = | (Vg — Auo @ upp + g @ up), Vo) |

< (Ve ll2 + 22 luo i3 llurr lle) I Vell2 -
Now, [|[Vvge [l = 0 (by (4.4.32)), lugw |6 — O (by (3.2.10) and (4.4.32)1) and ug € L3(Q)
(by Theorem 6), and so we conclude that (uy )y is converging also in X (£2), which proves (a).

Writing (4.4.33) with vy = vg, ugy = uy, etc., passing to the limit k — oo, and employing
(4.4.32) along with the trace theorem, we get

—Av—}—Vp:A(Z)m—uo-Vu—u-Vuo)
in Q,
divu =0

u=0 onodf2,

w%{+wf?1"(v,p)-n=0,
Q2

which proves (b). O
Next, we prove
Lemma 19. For any fixed ) > 0 and u # 0 the operator
H, =l =1 (L)
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is Fredholm of index O. Furthermore, denoting by o (#') the spectrum of M, we have that
o ()N (0, 00) consists at most of a countable number of eigenvalues of finite algebraic multi-
plicity that can only cluster at 0.

Proof. Let us define .7}, through
i~ A~ N
A =pnd g+ =0+ PCN)) =o' T,. (4.4.34)
w

Since the operator o is a homeomorphism by Lemma 14 and .7}, is Fredholm of index O by
Lemma 15, we have

dimN[57,] =dimN[.7,]=m < co.

Moreover, from

Y =R(I.) ® Sm

with S, m-dimensional subspace, we deduce that for every U € Z, we have AU = U; + Uy,
U; € R(J,), Uz € S, Therefore, we infer

U= U+ Uy, with 7 'U; €R(H), and 7 'Uy € 7 'S,

It then follows, in particular, that the essential spectrum oegs(.#) of .# —defined as the set of
w where 7}, is not Fredholm— has empty intersection with (0, 0o).

We shall next show that the resolvent set P(.#) of .# has a non-empty intersection with
(0, 00). Since 77, is Fredholm of index 0, it is enough to show that, for sufficiently large 1 > 0,
it is N[, ] = {0}. From (4.4.34), we see that the latter is equivalent to show that the equation
7, (U) = 0 has only the solution U= 0> X, for sufficiently large u > 0. From (4.4.11), in turn,
this means that the following problem (U= (u, x))

—uAu+Vp=iru—uog-Vu—u-Vuy)
in 2,
divu =0
ux)=0, xeoQ2, (4.4.35)
w%x+wf?1“(u,p)-n=0,
IR

has only the solution # = y = 0. To show that this is indeed the case, we begin to observe that,
since ug, u € L*(2), it follows that (ug - Vu +u - Vug) € Do_l’z. Therefore, from [15, Theorem
VIL.7.2] we deduce, in particular,

pel*(Q). (4.4.36)

Let ¢ be the cut-off function introduced in Theorem 13. Testing (4.4.35); with Y ru and
integrating by parts, we get
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1
W2 Vul} = —Ax[@ vru, u) — (ul*uo, Vr)l — A(Yru - Vg, u) + (pu, Vrg) . (4.4.37)

Thus, passing to the limit R — oo in (4.4.37), using (4.4.36) and arguing as in the proof of
Theorem 13, we obtain

wll Va3 = —r(u.Vuo, u).
By Theorem 6, (3.2.10) and Holder inequality, we deduce
ulIVul3 < lulglVaolly < crlIVal3Vaolly .

As a result, if yu > ck||Vu0||% 1=, we conclude u = 0, which, by (4.4.35),, implies U= 0,
namely, P(.Z) N (i, 00) # . Summarizing, we have shown that oeg(.#) N (0, 0c0) = ¥ while

P() N (Jt, 00) # . Therefore, the stated property about eigenvalues is a consequence of clas-
sical results in spectral theory [23, Theorem XVIL.2]. O
We now make the following assumption:

the map A € U(Ay) — ug(A) is of class C2. (H)

This assumption, along with Remark 8, implies that .% is of class C? in U x X. Next, by
Lemma 19 and [29, Definition 79.14], for a fixed A > 0, we call u # 0 simple eigenvalue if

dimN[ul — A Z(AM)]=1;

(4.4.36)
N[l — A Z (M) MR — X .#(A)] ={0}.

As is known, (4.4.36); can be equivalently reformulated as follows. Let .#Z™*, be the adjoint of
A . Then, from (4.4.36); and Lemma 19 we deduce that

dimN[p | — A .Z*(A)] = codimR[p| — A #Z(M)] = 1.

Indicating by Wy € Z and Wi € Z ~! two non-zero elements of respectively N[z | — A .7 (1)]
and N[ | — A .Z*())], (4.4.36), is equivalent (after suitable normalization) to

(Wi, Wy) =1, (4.4.37)

where (-, -) denotes the duality pairing Z — Z~1.
The following result holds.

Lemma 20. Suppose that 1 is a simple eigenvalue of As A (7s) and that (H) holds. Then, there

is Up € U (Ay) such that the eigenvalue = (LX) of » M (1), A € U, is simple and of class C2.
Moreover,

W (hs) = = (WT, (A (hs) + s A (hs)) (W) , (4.4.38)
where the prime denotes differentiation with respect to A.
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Proof. It can be obtained as a consequence of (4.4.27)—(4.4.28) and [29, Corollary 79.16]. O
We are now in a position to prove the main result of this subsection.

Theorem 21. Suppose that (H) holds. If (Ag, 0) is a bifurcation point of (4.4.28), then the equa-
tion

W — Ay A (As)(W) =0 (4.4.39)
has at least one non-trivial solution W1. Conversely, assume that 1 is a simple eigenvalue of
As A (As), namely, (4.4.36) holds with u = 1. Then, if u'(As) # 0 (transversality condition),
there exists exactly one continuous curve of nontrivial solutions to (4.4.27), (UL),A) € X x
U (Ag), with (U(Ay), As) = (0, Ay).

Proof. Taking into account that (4.4.39) is equivalent to dimN[.%;] > 0, the necessary condi-
tion follows from Corollary 17; see also Remark 7. Moreover, from (4.4.27)—(4.4.28) we have
Dy (Ag, 0) = | — Ay (As), which, by Lemma 19, is Fredholm of index 0. Therefore, under the

assumption dim N[l — A; .# (A)] = 1, a classical bifurcation result [3, Theorem 4.1.12] ensures
the stated sufficient property provided

D3y F (hs, 0) (W1) & RIDuF (s, 0)],
or, equivalently,
(W, D3 . Z (A, 0)(W))) #0. (4.4.40)
By a straightforward computation, from (4.4.27)—(4.4.28) we show that
D3y F (hs, OYW1) = 4 () (W) + s ' () (W),

so that, if 1 is a simple eigenvalue, by Lemma 20, condition (4.4.40) is equivalent to u'(As) # 0,
which concludes the proof of the theorem. O

Remark 9. An equivalent way of expressing (4.4.36) is to say that the equation
W — At (hg)(W) =Wy,
has no solution. In turn, the latter is equivalent to the condition that the equation
25, (W) =2/ (W)
has no solution.
Remark 10. Should the basic flow uy(A) not depend on A € U (1), then (4.4.38) reduces to
W (hs) = —(WT, A (hs)(W1))
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which, combined with (4.4.39) and (4.4.37), furnishes

W) =-27".

As a result, under the above assumption, the transversality condition is no longer an extra re-
quirement and becomes a consequence of the fact that u = 1 is simple.

Remark 11. Also in the light of the previous remarks, we would like to present in more explicit
terms the conditions stated in Theorem 21, ensuring the occurrence of bifurcation. Consider the
eigenvalue problem

—uA)Au+Vp=r @1 —uo(d) - Vu —u - Vug(h)) | 9
in Q,
divu =0

ux)=0, xe€dQ; ‘xlll_r)noou(x):O, (4.4.41)

w%x—l—w/?l’(u,p)w:(),
aQ

in the class (u, x) € X*(2) x R3. Then, (uo(Ay), As) is a bifurcation point if the following
conditions are met:

(i) m(As) =1 and the corresponding eigenspace is one-dimensional, spanned by (w1, x1);
(ii) the problem

—Au+Vp— A (01u —ug(rs) - Vu —u - Vug(rg)) = Aug -
in Q,
divu =0

ux)=0, xe€d;

w%x +w/T(u,p)-n=a)ﬁx1 —i—w/'[F(ul,pl) -n,
Ele} Ele}
has no solution in the class (u, x) € X2(Q2) x R3;
(iii) u’(X) satisfies the transversality condition.
The last requirement is automatically satisfied if ug(X), A € U (), is independent of A.
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