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Abstract

We study certain significant properties of the equilibrium configurations of a rigid body subject to an 
undamped elastic restoring force, in the stream of a viscous liquid in an unbounded 3D domain. The motion 
of the coupled system is driven by a uniform flow at spatial infinity, with constant dimensionless velocity 
λ. We show that if λ is below a critical value, λc (say), there is a unique and stable time-independent 
configuration, where the body is in equilibrium and the flow is steady. We also prove that, if λ < λc, no 
oscillatory flow may occur. Successively, we investigate possible loss of uniqueness by providing necessary 
and sufficient conditions for the occurrence of a steady bifurcation at some λs ≥ λc.
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1. Introduction

Problems involving the flow of a viscous fluid around solids are the focus of the broad research 
area of Fluid-Solid Interactions (FSI). In particular, also due to their fundamental importance in 
many practical situations, the oscillations of structures induced by the flow of a viscous liquid 
occupy a rather significant position within them. It is thus not surprising that the problem of 
flow-induced oscillations has received all along a plethora of contributions by the engineering 
community, from experimental, numerical and theoretical viewpoints; see, e.g., the monographs 
[4,9,25], the review article [28] and the references therein. The structure model typically adopted 
by engineers for this study consists of a rigid body subject to a linear restoring elastic force, 
while the fluid is modeled by the Navier-Stokes equations [4].

Notwithstanding, the problem has not yet received a similar, systematic attention from the 
mathematical community. In this regard, in [2,6] we started a rigorous investigation of flow-
induced oscillations. There, we dealt with the model problem where a two-dimensional rect-
angular solid is subject to a unidirectional restoring elastic force, while immersed in the two-
dimensional channel flow of a Navier-Stokes liquid, driven by a time-independent Poiseuille 
flow. The main objective concerns the existence and uniqueness of equilibrium configurations 
of the FSI system, at least for “small” flow-rate. Successively, several other works have been 
dedicated to the investigation of further relevant properties of this model, such as explicit thresh-
olds for uniqueness of the equilibrium configuration [21,22], non-symmetric configurations [5], 
well-posedness of the associated initial-boundary value problem [26], large-time behavior [8]
and existence of a global attractor [20].

Objective of the current paper is to furnish a further contribution to the area of flow-induced 
oscillations, and consists in the study of the very fundamental properties of the stability of equi-
librium configurations and possible loss of their uniqueness via steady-state bifurcations. The 
model we shall consider –inspired by [4]– is somewhat more general than that in [6], and con-
sists of a rigid (finite) body, B, of arbitrary shape, subject to a linear undamped restoring force 
and immersed in the stream of a Navier–Stokes liquid, L , that fills the entire three-dimensional 
space outside B. The motion of the coupled system is driven by a uniform flow at spatial infin-
ity, characterized by a constant dimensionless velocity λ (Reynolds number). The choice of an 
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unbounded (exterior) domain for the flow region is due to the fact that the interaction of L and 
B should not be spoiled by possible “wall effects”.

We are interested in the existence, uniqueness, stability and steady bifurcation of equilibria, 
where, by “equilibrium” we mean a state where L is in a steady regime and B occupies a 
corresponding fixed region at all times.

Our first goal is to establish the existence of such equilibria, a property that we prove to be 
valid for all values of λ; see Theorem 6. We then provide a variational characterization of their 
uniqueness by showing the existence of a critical value λ1 = λ1(λ) > 0 such that the equilibrium 
is unique if λ − λ1(λ) < 0; see Theorem 6. As usual, this is merely a sufficient condition for 
uniqueness which we show to be satisfied (at least) for “small” λ; see Proposition 7.

Successively, we investigate the asymptotic stability (in suitable norms) of the equilibria: our 
study is complicated by the fact that the region occupied by the fluid is 3D, unbounded (exterior 
domain) and, contrary to [6], no Poincaré-type inequalities hold. One relevant consequence is 
that we are not in a position to furnish a time-decay rate of the perturbations which, very likely, 
is just algebraic and not exponential as in [20]. To set up the stability analysis, we define a second 
threshold λ2 = λ2(λ) ≥ 0 such that the stability of the equilibrium is guaranteed if λ −λ2(λ) < 0; 
see Theorem 8. However, we are not able to characterize the equilibria for which the request 
λ2(λ) > 0 is secured and this condition should be viewed as an assumption which could possibly 
only hold for certain equilibria. In any case, since λ2(λ) ≤ λ1(λ), if λ −λ2(λ) < 0 the equilibrium 
is unique and asymptotically stable. The proof of the latter is carried out by a generalization of the 
“invading domains” technique used in [18]. The main difficulty, in our case, consists in showing 
that the perturbation to the elongation of the spring eventually tends to 0. Actually, this property 
is by no means obvious at the outset, since the spring is assumed to be undamped.

Also in view of its importance in the problem of flow-induced oscillations, one may wonder 
if, in the range λ − λ2(λ) < 0, regimes of oscillatory nature are indeed possible. The answer to 
this question is given in Theorem 13 where we prove that, in that range of λ’s, no oscillatory 
regime can take place. Existence of oscillatory motions can, therefore, take place only for λ > λ2

as a result of Hopf bifurcation, a question investigated in the forthcoming article [7].
The last part the paper is dedicated to steady bifurcation, namely, the existence of possible 

multiple equilibria for “sufficiently large” λ (and, certainly, such that λ − λ1(λ) ≥ 0). In this 
regard, we show necessary and sufficient conditions for this phenomenon to occur; see Theo-
rem 21. All these findings are proved by reformulating the equilibrium problem as an operator 
equation in suitable Banach spaces that allows us to employ known results of abstract bifurcation 
theory. We emphasize further that, in order to avoid the notorious question of 0 being in the es-
sential spectrum of the linearized operator [1,11], for the functional setting we use homogeneous
(rather than classical) Sobolev spaces, according to the approach introduced in [14].

The plan of the paper is as follows. In Section 2 we present the relevant equations and furnish 
the mathematical formulation of the problem. In Section 3 we introduce the appropriate func-
tional spaces and collect some of their important properties. Section 4 contains our main results 
and is devoted to the study of the equilibria of the FSI problem. Precisely, in Section 4.1 we first 
prove existence of such equilibria in a class of homogeneous Sobolev spaces, for arbitrary val-
ues of the Reynolds number λ > 0. Successively, we provide the variational formulation of their 
uniqueness mentioned above. In the following Section 4.2, we study the asymptotic stability of 
equilibria, whereas the last Section 4.4 is dedicated to the occurrence of steady-state bifurcation.
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2. Formulation of the problem

Let B be a rigid body moving in a Navier-Stokes liquid that fills the region � ⊂R3 outside 
B and whose flow becomes uniform at “large” distances from B, characterized by a constant 
velocity V ∈R3. On B an elastic restoring force F acts, applied to its center of mass G, while a 
suitable active torque prevents it from rotating. Therefore, the motion of B is translatory. In this 
situation, the governing equations of motion of the coupled system body-liquid when referred to 
a body-fixed frame F ≡ {G, ei} are given by [13, Section 1]

∂tv − ν�v+∇p+ (v − γ ) · ∇v = 0

divv = 0

}
in �× (0,∞) ,

v(x, t)= γ (t) , (x, t) ∈ ∂�× (0,∞) ; lim|x|→∞v(x, t)= V , t ∈ (0,∞) ,

M γ̇ + ρ

∫
∂�

Tν(v,p) · n= F in (0,∞) .

(2.0.1)

In (2.0.1), v and p represent velocity and pressure fields of the liquid, ρ and ν its density and 
kinematic viscosity, while M and γ = γ (t) denote mass of B and velocity of G, respectively. 
Here and in the sequel, Tν denotes the Cauchy stress tensor

Tν(z,ψ) := 2νD(z)−ψ I , D(z) := 1
2

(
∇z+ (∇z)�

)
,

where I is the 3 × 3 identity matrix and n is the unit outer normal at ∂�, i.e. directed inside B.
We assume that F depends linearly on the displacement χ(t) := ∫

γ (s)ds = �GO , with O
fixed point, namely

∃	 > 0 s.t. F (t)=−	χ(t), t ≥ 0. (2.0.2)

Without loss of generality we take V =−V e1, V > 0.

Remark 1. The choice of the linear constitutive equation (2.0.2) is made just for simplicity 
of presentation. As will become clear from their proof, our findings (appropriately modified) 
continue to hold if, more generally, we assume F = A · χ + g(χ), where A is a symmetric, 
positive definite matrix (stiffness matrix), and g(χ) is sufficiently smooth, with |g(χ)| = o(|χ |)
as |χ | → 0.

Writing v = u− V e1, we are led to

∂tu− ν�u+∇p+ (u− χ̇(t)) · ∇u− V e1 · ∇u= 0

divu= 0

}
in �× (0,∞) ,

u(x, t)= χ̇(t)+ V e1, (x, t) ∈ ∂�× (0,∞); lim|x|→∞u(x, t)= 0, t ∈ (0,∞),

Mχ̈ + 	χ + ρ

∫
Tν(u,p) · n= 0 in (0,∞) .

(2.0.3)
∂�
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Scaling velocity with V , length with L := diamB, time with L2/ν, and setting u := v + e1, 
we may rewrite (2.0.3) in the following form

∂tu−�u+∇p = λ [∂1u+ (χ̇ − u) · ∇u]
divu= 0

}
in �× (0,∞) ,

u(x, t)= χ̇(t)+ e1 , (x, t) ∈ ∂�× (0,∞) ; lim|x|→∞u(x, t)= 0 , t ∈ (0,∞) ,

χ̈ +ω2
nχ +�

∫
∂�

T1(u,p) · n= 0 in (0,∞) ,

(2.0.4)

with

ω2
n :=

L4	

Mν2 , � := ρL3

M
, λ := V L

ν
.

All the involved quantities are now non-dimensional; in the sequel, we just write T instead of 
T1.

Let s0 = (u0, p0, χ0) be a steady-state solution to (2.0.4) corresponding to a given λ, namely,

−�u0 +∇p0 = λ (∂1u0 − u0 · ∇u0)

divu0 = 0

}
in �,

u0(x)= e1 , x ∈ ∂� ; lim|x|→∞u0(x)= 0 ,

ω2
nχ0 +�

∫
∂�

T (u0,p0) · n= 0 .

(2.0.5)

From the physical viewpoint, χ0 represents the (non-dimensional and rescaled) elongation of the 
spring necessary to keep B in place. In Sections 4.1 and 4.2, for any λ > 0, we show that (2.0.5)
has at least one solution

s0(λ) := (u0(λ),p0(λ),χ0(λ))

that is unique and stable provided λ remains below a definite value λc that we characterize in
Theorem 8. The uniqueness threshold does only depend on �, see Proposition 7, whereas the 
stability threshold λc depends on the solution itself and basically on its decay at spatial infinity, 
see Remark 4. Moreover, we prove that as long as λ < λc, no oscillatory regime can branch out of 
s0(λ); see Section 4.3. Therefore, non-uniqueness of, as well as bifurcation from s0(λ) may occur 
only at some λ ≥ λc. In this regard, we next investigate the occurrence of steady-state bifurcation 
at some λ = λs ≥ λc. More precisely, we furnish necessary and sufficient conditions for the 
existence of a bifurcation point λs and a family of solutions s(λ) to (2.0.5), with s(λ) �≡ s0(λ), 
λ ∈U(λs), such that s(λ) → s0(λs), as λ → λs . This is accomplished by formulating the problem 
in a functional setting that is suitable to employ the abstract results of bifurcation theory; see 
Section 4.4.
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3. Functional framework

3.1. Notations and relevant functional spaces

Let �0 ⊂R3 be the closure of a bounded domain of class C2, representing the region occupied 
by B. Let � =R3\�0 be the unbounded exterior domain containing the fluid L . With the origin 
of coordinates in the interior of �0, we set

BR := {x ∈R3 : |x|< R}, �R :=�∩BR, �R :=�\�R ∀R > R∗ := diam�0.

As customary, for a domain A ⊂ R3, Lq = Lq(A) denotes the Lebesgue space with norm 
‖ · ‖q,A, and Wm,2 =Wm,2(A), m ∈N , the Sobolev space with norm ‖ · ‖m,2,A. By ( , )A we 
indicate the L2(A)-scalar product. Furthermore, Dm,q =Dm,q(A) is the homogeneous Sobolev 
space with semi-norm 

∑
|l|=m ‖Dlu‖q,A, whereas D1,2

0 =D
1,2
0 (A) is the completion of C∞

0 (A)

in the norm ‖∇(·)‖2,A. The dual space of D1,2
0 (A) will be indicated by D−1,2

0 (A). In all the 
above notation we shall typically omit the subscript “A”, unless confusion arises.

If M is a map between two Banach spaces X and Y , we denote by D[M] ⊆X and R[M] ⊆ Y

its domain and range, respectively, and by N[M] := {x ∈X :M(x) = 0} its null space.
We shall now introduce certain function classes characterized by the property that their ele-

ments are solenoidal. Their most important properties will be collected later on in Section 3.2. 
Let

K=K(R3) := {
ϕ ∈ C∞

0 (R3) : ∃ ϕ̂ ∈R3 s.t. ϕ(x)≡ ϕ̂ in a neighborhood of �0
}

C = C(R3) := {ϕ ∈K(R3) : divϕ = 0 in R3} ,
C0 = C0(�) := {ϕ ∈ C(R3) : ϕ̂ = 0} .

In K we consider the scalar product

〈ϕ,ψ〉 :=�−1 ϕ̂ · ψ̂ + (ϕ,ψ)� , ∀ϕ,ψ ∈K , (3.1.1)

and we introduce the spaces

L2 = L2(R3) := {
completion of K(R3) in the norm induced by (3.1.1)

}
H=H(R3) := {

completion of C(R3) in the norm induced by (3.1.1)
}

G = G(R3) := {
h ∈ L2(R3) : ∃p ∈D1,2(�) s.t. h=∇p in �,

and h=−�
∫
∂�

p n in �0
}
.

(3.1.2)

We next define

D1,2 =D1,2(R3) := {
completion of C(R3) in the norm ‖D(·)‖2

}
,

D1,2
0 =D1,2

0 (�) := {
completion of C0(�) in the norm ‖D(·)‖2

}
,

Z2,2 :=W 2,2(�)∩D1,2(R3) . (3.1.3)

Obviously, D1,2
(�) ⊂D1,2(R3).
0
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Along with the spaces L2, H, and D1,2 defined above, we shall need also their “restrictions” 
to the ball BR . Precisely, we set

L2(BR) := {ϕ ∈L2(BR) : ϕ|�0 = ϕ̂ for some ϕ̂ ∈R3}
H(BR) := {ϕ ∈ L2(BR) : divϕ = 0 , ϕ · n|∂BR

= 0}
D1,2(BR) := {ϕ ∈W 1,2(BR)∩L2(BR) : divϕ = 0 , ϕ|∂BR

= 0} .

Then H(BR) and D1,2(BR) are Hilbert spaces with scalar products

�−1 ϕ̂1 · ϕ̂2 + (ϕ1,ϕ2)�R
, ϕi ∈H(�R) ;

(D(ψ1),D(ψ2)) , ψ i ∈D1,2(�R) , i = 1,2.

Let D−1,2
0 (�) be the dual space of D1,2

0 (�), endowed with the norm

|f |−1,2 = sup
ϕ ∈ C0(�)

‖∇ϕ‖2 = 1

|(f ,ϕ)| ,

and set

Y :=D−1,2
0 (�)∩H(R3) , Y :=D−1,2

0 (�)∩L2(R3) , (3.1.4)

with associated norms

‖g‖Y = ‖g‖Y := ‖g‖2 + |g|−1,2 + |̂g| .

We then define

X =X(�) := {u ∈D1,2
0 (�) : ∂1u ∈D−1,2

0 (�)},
X2 =X2(�) :=

{
u ∈X(�) :D2u ∈ L2(�)

}
.

(3.1.5)

It is known [16, Proposition 65] that X and X2 are (reflexive, separable) Banach spaces when 
equipped with the norms

‖u‖X := ‖∇u‖2 + |∂1u|−1,2 , ‖u‖X2 := ‖u‖X + ‖D2u‖2 .

In fact, as shown later on in Lemma 3, the norms ‖∇(·)‖2 and ‖D(·)‖2 are equivalent in D1,2
0 .

In the sequel, we also need some spaces of time-periodic functions. A function w :� ×R �→
R3 is 2π -periodic, if for a.e. t ∈R, w(·, t + 2π) = w(·, t), and we use the standard notation

w(·) := 1

2π

2π∫
w(·, t)dt , (3.1.6)
0
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whenever the integral is meaningful. Let B be a function space with seminorm ‖ · ‖B . By 
L2(0, 2π; B) we denote the class of functions u : (0, 2π) → B such that

‖u‖L2(B) :=
⎛⎝ 2π∫

0

‖u(t)‖2
Bdt

⎞⎠
1
2

<∞

Likewise, we put

W 1,2(0,2π;B)=
{
u ∈ L2(0,2π;B) : ∂tu ∈ L2(0,2π;B)

}
.

For simplicity, we write L2(B) for L2(0, 2π; B), etc. Moreover, we define the Banach spaces

L
q

 := {ξ ∈Lq(0,2π), ξ is 2π -periodic with ξ = 0} , q ∈ [1,∞] ,

Wk

 := {ξ ∈L2


(0,2π), dlξ/dt l ∈ L2(0,2π) , l = 1, . . . , k} ,
L2


 := {w ∈L2(L2(�)); w is 2π -periodic, with w = 0} ,
W2


 := {w ∈W 1,2(L2(�))∩L2(W 2,2(�)); w is 2π -periodic, with w = 0} ,

with associated norms

‖ξ‖L
q


:= ‖ξ‖Lq(0,2π) , ‖ξ‖Wk



:= ‖ξ‖Wk,2(0,2π) ,

‖w‖L2


:= ‖w‖L2(L2(�)) , ‖w‖W2



:= ‖w‖W 1,2(L2(�)) + ‖w‖L2(W 2,2(�)) .

We also introduce the Banach spaces

W2

 :=

{
w ∈L2(Z2,2)∩W 1,2(H) : w is 2π -periodic, with w|�0 = ŵ = 0

}
,

L2

 :=

{
w ∈L2(H) : w is 2π -periodic, with w|�0 = ŵ = 0

}
with corresponding norms

‖w‖W2


:= ‖∂tw‖L2(�) + ‖w‖L2(W 2,2(�)) + ‖ŵ‖W 1



, ‖w‖L2



:= ‖w‖L2(L2(�)) + ‖ŵ‖L2



.

Finally, we set

P1,2

 :=

{
p ∈L2(D1,2) with p= 0

}
,

with associated norm

‖p‖
P1,2 := ‖p‖L2(D1,2) .
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3.2. Basic properties of the relevant functional spaces

The L2-spaces have two main properties.

Lemma 1. The following characterizations hold

L2(R3)= {u ∈ L2(R3) : u= û in �0, for some û ∈R3}, H(R3)= {u ∈ L2(R3) : div u= 0 } .

Proof. See [27, Theorem 3.1 and Lemma 3.2]. �
We also have

Lemma 2. With the scalar product (3.1.1), the following orthogonal decomposition holds

L2(R3)=H(R3)⊕ G(R3) .

Proof. A proof can be deduced from [27, Theorem 3.2]. However, for completeness and since 
this result plays a major role in our analysis, we reproduce it here. Let u ∈H and h ∈ G. Then,

〈u,h〉 =
∫
�

u · ∇p−
∫
∂�

p û · n .

Therefore, integrating by parts and using divu= 0 we deduce

〈u,h〉 = −
∫
�

p div u+
∫
∂�

p û · n−
∫
∂�

p û · n= 0

which proves H⊥ ⊃ G. Conversely, assume v ∈H⊥, i.e.

�−1v̂ · û+
∫
�

v · u= 0 , for all u ∈H. (3.2.7)

Since C0 ⊂H, by picking u ∈ C0 from the preceding we find, in particular,∫
�

v · u= 0 , for all u ∈ C0,

so that, by well-known results on the Helmholtz decomposition [15, Lemma III.1.1], we infer 
v =∇p with p ∈D1,2(�). Replacing the latter into (3.2.7) and integrating by parts, we get⎛⎝�−1v̂ +

∫
∂�

p n

⎞⎠ · û= 0 for all û ∈R3 ,

from which we conclude that v ∈ G, that is, H⊥ ⊂ G. The proof of the lemma is completed. �
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Concerning the properties of D1,2-spaces, we state

Lemma 3. Let D̃1,2 denote either D1,2 or D1,2
0 . Then, D̃1,2 is a separable Hilbert space when 

equipped with the scalar product

(D(u1),D(u2)) , ui ∈ D̃1,2 , i = 1,2 .

Moreover, we have the characterization:

D̃1,2 = {
u ∈ L6(R3)∩D1,2(R3) ; div u= 0 ; u= û in �0

}
, (3.2.8)

with some ̂u ∈R3 if D̃1,2 ≡D1,2, and ̂u= 0 if D̃1,2 ≡D1,2
0 . Also, for each u ∈ D̃1,2, it holds

‖∇u‖2 =
√

2‖D(u)‖2 , (3.2.9)

and

‖u‖6 ≤ κ0 ‖D(u)‖2 , (3.2.10)

for some κ0 > 0. Finally, there is another positive constant κ1 such that

|̂u| ≤ κ1 ‖D(u)‖2 . (3.2.11)

Proof. See [13, Lemmas 9–11]. �
Remark 2. The space D1,2(BR) can be viewed as a subspace of D1,2(R3), by extending to 0 in 
R3\BR its generic element. Therefore, all the properties mentioned in Lemma 3 continue to hold 
for D1,2(BR).

The X-spaces also have a number of relevant properties that we collect in the next statements.

Lemma 4. The following continuous embedding properties hold

X2(�)⊂W 2,2(�R) for all R > R∗ , X2(�)⊂ L∞(�)∩D1,q (�) for all q ∈ [2,6].
(3.2.12)

Proof. By Lemma 3, the first property is obvious. From [15, Theorem II.6.1(i)] it follows that 
X2(�) ⊂D1,6(�) which, in turn, by [15, Theorem II.9.1] and simple interpolation allows us to 
deduce also the second stated property. �

We conclude this section with the following embedding result, whose proof is given in [17, 
Lemma 2].

Lemma 5. The space X(�) is continuously embedded in L4(�).
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4. Main results on the equilibrium configurations

4.1. Existence and uniqueness

We begin with a general existence result in a suitable function class, followed by a corre-
sponding uniqueness result. Both findings are, in fact, obtained as a corollary to classical results 
regarding steady-state Navier-Stokes problems in exterior domains. Precisely, we have the fol-
lowing theorem.

Theorem 6. For any λ > 0, problem (2.0.5) has at least one solution

s0(λ) := (u0(λ),p0(λ),χ0(λ))

such that

s0(λ) ∈ [Lq(�)∩D1,r (�)∩D2,s(�)] × [Lσ (�)∩D1,s(�)] ×R3, (4.1.1)

for all q ∈ (2, ∞], r ∈ ( 4
3 , ∞], s ∈ ( 3

2 , ∞], σ ∈ (1, ∞). Moreover, the quantity

sup
u ∈D1,2

0 (�)

(u · ∇u,u0)

‖∇u‖2
2

=: 1

λ1
(4.1.2)

is finite, strictly positive, and achieved and, if λ < λ1, the solution s0(λ) is unique.

Proof. From [15, Theorem X.6.4] we know that for any λ > 0 problem (2.0.5)1−4 has one cor-
responding solution (u0, p0) in the class (4.1.1). We then set

χ0 := −�

ω2
n

∫
∂�

T (u0,p0) · n , (4.1.3)

which is well defined by standard trace theorems. This completes the proof of the existence.
We now turn to the uniqueness part. The existence and achievement of 1/λ1 follows from 

the summability properties of u0 given in (4.1.1) and standard arguments about maxima of 
quadratic forms in exterior domains [12]. In order to prove that λ1 > 0, take any w ∈ C∞

0 (R3)

with supp w ∩ �0 = ∅. Then let u = curl w so that u ∈ D1,2
0 (�). By translating rigidly u and 

moving its support towards infinity, we see that (u · ∇u, u0) → 0 due to the decay properties of 
u0. Therefore, by its characterization in (4.1.2), λ−1

1 ≥ 0; in fact, λ−1
1 > 0 since the supremum in

(4.1.2) is achieved.
Finally, let (u+ u0, p+ p0, χ + χ0) be another solution to (2.0.5) in the class (4.1.1) corre-

sponding to the same λ. Then (u, p, χ) satisfies the following equations
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−�u+∇p = λ [∂1u− (u0 + u) · ∇u− u · ∇u0]
divu= 0

}
in �,

u(x)= 0 , x ∈ ∂�, lim|x|→∞u(x)= 0 ,

ω2
nχ +�

∫
∂�

T (u,p) · n= 0 .

(4.1.4)

Dot-multiplying (4.1.4)1 by u, integrating by parts over � and using (4.1.1), (4.1.4)2,3 and (4.1.2)
we find

‖∇u‖2
2 = λ(u · ∇u,u0)≤ λ

λ1
‖∇u‖2

2 ,

from which it follows that λ ≥ λ1 or ‖∇u‖2 = 0. The latter implies u= 0, χ = 0 (and therefore 
p = 0) by Lemma 3. �
Remark 3. The value λ1 defined in (4.1.2) plays the role of a weighted Poincaré constant. Indeed, 
it may be equivalently characterized by

λ1 = min
u ∈D1,2

0 (�)

‖∇u‖2
2

(u · ∇u,u0)
= min

u ∈D1,2
0 (�)

‖∇u‖2
2

(u · ∇(−u0),u)

with the weight ∇(−u0) vanishing at infinity and bringing enough compactness to ensure that 
the minimum is achieved.

Since λ1 depends on u0 which in turn depends on λ, it is natural to wonder whether the 
condition λ < λ1 (ensuring uniqueness) can be reached. The next statement shows that this is the 
case.

Proposition 7. There exists γ = γ (�) > 0 such that, if λ < γ , then problem (2.0.5) admits a 
unique solution.

Proof. As already noticed in the existence proof, the fluid equations (2.0.5)1−4 decouple from 
the one in (2.0.5)5, representing the balance of forces on B. Therefore, uniqueness for the whole 
problem (2.0.5) is reduced to establish the same property just for the Navier-Stokes problem
(2.0.5)1−4. However, the latter is well known [15, Theorem X.7.3] and is achieved exactly under 
the condition stated in the proposition. �

From Proposition 7 and Theorem 6, we infer, in particular, that uniqueness is ensured for 
“small” λ > 0 and may fail only at some λ such that

1

λ
≤ max

u∈D1,2
0 (�)

(u · ∇u,u0(λ))

‖∇u‖2
2

. (4.1.5)

This reveals that either we have uniqueness for all λ > 0 or there exists λ̃ > 0 such that 
λ1(̃λ) = λ̃. This ̃λ ∈ (0, ∞] can be defined as
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λ̃= sup{λ > 0 : ν < λ1(ν),∀ν ∈ (0, λ)}.
If ̃λ <∞, then there exists a non trivial solution u of the linear equation

�u−∇p = λ̃ (u0(̃λ) · ∇u+ u · ∇u0(̃λ))

divu= 0

}
in �,

u(x)= 0 , x ∈ ∂�, lim|x|→∞u(x)= 0 .

(4.1.6)

This condition is, in general, only necessary to get multiple equilibria (i.e. for λ > λ̃), as dis-
cussed in detail later on in the bifurcation context; see Theorem 16 and Corollary 17.

From a physical point of view, one expects that u0 = u0(λ) becomes “larger” as λ grows, 
although a precise definition of “larger” appears out of reach. From a mathematical point of 
view, this could be translated into the fact that some norms of u0(λ) are expected to grow with 
λ. If this were true, then equality in (4.1.5) would hold for a unique value λ > 0 and this would 
imply that

λ1(λ) > λ if λ < λ, λ1(λ) < λ if λ > λ .

Clearly, this would not allow us to conclude that uniqueness for (2.0.5) is ensured if and only if 
λ < λ.

4.2. Asymptotic stability

4.2.1. A sufficient condition for stability
Our next task is to find sufficient conditions for the stability of solutions determined in The-

orem 6, in a suitable class of “perturbations”. In this regard, let s0(λ) = (u0(λ), p0(λ), χ0(λ))

be a steady-state solution given in (4.1.1) and let (u, p, χ) be a corresponding time-dependent 
perturbation. By (2.0.4), we then have that (u, p, χ) satisfies the following set of equations

∂tu−�u+∇p = λ [∂1u− u0 · ∇u+ (χ̇ − u) · ∇u0 − (χ̇ − u) · ∇u]
divu= 0

}
in �× (0,∞) ,

u(x, t)= χ̇(t) , (x, t) ∈ ∂�× (0,∞) ,

χ̈ +ω2
nχ +�

∫
∂�

T (u,p) · n= 0 , in (0,∞)

u(x,0)= u0 , x ∈�, χ(0)= χ0 , χ̇(0)= χ1 .

(4.2.1)
Given λ > 0 and some s0(λ) solving problem (2.0.5) (see Theorem 6) we define

1

λ2
= 1

λ2(λ)
:= sup

u ∈D1,2(R3)

((u− û) · ∇u,u0(λ))

‖∇u‖2
2

(4.2.2)

From Theorem 6 we know that
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1

λ1
= (̃u · ∇ũ,u0)

‖∇ũ‖2
2

,

for some ̃u ∈D1,2
0 (�). Moreover, as D1,2

0 (�) ⊂D1,2(R3) (see Section 3), and since ̃u vanishes 
on ∂�, we infer that

1

λ1
= (̃u · ∇ũ,u0)

‖∇ũ‖2
2

≤ sup
u ∈D1,2(R3)

((u− û) · ∇u,u0)

‖∇u‖2
2

= 1

λ2
.

Therefore, we infer

0≤ λ2 ≤ λ1 . (4.2.3)

We can now state a stability result for (4.2.1).

Theorem 8. Let λ > 0 and let s0(λ) be a solution of problem (2.0.5). Suppose u0(λ) is such that 
λ−1

2 (λ) <∞ and that λ < λ2. Then, there exists ε= ε(�, λ, ωn, �) > 0 such that, if

‖u0‖1,2 + |χ0| + |χ1| ≤ ε, (4.2.4)

then problem (4.2.1) has one and only one solution such that

u ∈ C([0, T ];D1,2(R3))∩L2(0, T ;W 2,2(�))∩W 1,2(0, T ;L2(R3)) ,

p ∈ L2(0, T ;D1,2(�)) , χ ∈W 2,2(0, T ) ,
(4.2.5)

for all T > 0. Moreover,

lim
t→∞ (‖∇u(t)‖2 + ‖u(t)‖6 + |χ̇(t)| + |χ(t)|)= 0. (4.2.6)

Before giving the (lengthy) proof of Theorem 8, postponed until Sections 4.2.2 and 4.2.3, 
several comments are in order.

Remark 4. We first point out that the initial datum in (4.2.1) is assumed to satisfy u0 ∈W 1,2(�). 
Overall, the statement may appear unsatisfactory since it assumes that

λ−1
2 (λ) <∞ and λ < λ2 (4.2.7)

but, as we now discuss, a stronger result appears in general out of reach. It is readily seen that 
the first assumption of (4.2.7) is satisfied whenever

u0(λ) ∈L2(�) . (4.2.8)

Actually, by the triangle and Hölder inequalities we get
337



D. Bonheure, G.P. Galdi and F. Gazzola Journal of Differential Equations 408 (2024) 324–367
1

λ2(λ)
= sup

u ∈D1,2(R3)

(u · ∇u,u0(λ))− (̂u · ∇u,u0(λ))

‖∇u‖2
2

≤ sup
u ∈D1,2(R3)

‖u‖6 · ‖u0(λ)‖3 + |̂u| · ‖u0(λ)‖2

‖∇u‖2
<∞

since ‖∇u‖2 bounds both ‖u‖6 and |̂u| (by Lemma 3). This proves the first of (4.2.7) whenever
(4.2.8) holds. However, Theorem 6 ensures in general only that u0(λ) ∈ Lq(�) for all q > 2, 
plus some integrability conditions on its derivatives. At the same time, we can readily show that

∃u0 ∈ Lq(�) , all q > 2, u0 �∈L2(�), ∃u ∈D1,2(R3) s.t.
((u− û) · ∇u,u0)

‖∇u‖2
2

=∞ . (4.2.9)

Actually, take u ∈D1,2(R3) and u0 such that, as |x| →∞,

|u(x)| � c

|x|1/2(ln |x|)2/3 , |∇u(x)| � c

|x|3/2(ln |x|)2/3 , |u0(x)| � c

|x|3/2 . (4.2.10)

If we split the fraction as

(u · ∇u,u0)− (̂u · ∇u,u0)

‖∇u‖2
2

,

by the Hölder inequality as above, and (4.2.10) we find that

sup
u ∈D1,2(R3)

(u · ∇u,u0)

‖∇u‖2
2

<∞ .

On the other hand, we also have

|(̂u · ∇u,u0)|
‖∇u‖2

2

=+∞ ∀û ∈R3 \ {0} .

This proves (4.2.9). Incidentally, we notice that the derivatives of the above u0 satisfy

|∇u0(x)| � c

|x|5/2
, |D2u0(x)| � c

|x|7/2 , as |x| →∞ ,

so that (4.1.1) is fulfilled (in fact, we even have larger intervals for r and s). In conclusion, 
we just saw that (4.2.8) gives a sufficient condition for the validity of the first of (4.2.7). This 
condition may not be necessary but the above example suggests that (4.2.7)1 could fail if (4.2.2)
is evaluated along a generic solution u0.

Remark 5. Once the first condition in (4.2.7) is satisfied, in order to apply Theorem 8 one needs 
to check the second condition. We already observed that, in general, (4.2.3) holds. The assump-
tions of Theorem 8 require slightly more, namely

0 < λ2(λ)≤ λ1(λ).
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This means that if 0 < λ < λ2(λ), then the corresponding steady-state solution s0(λ) determined 
in Theorem 6 is unique and stable.

4.2.2. Some technical lemmas
We prove here some preliminary results. Recall that � =R3 \�0 and �R =� ∩BR .

Lemma 9. Let (u, p) ∈ [D1,2(A) ∩W 2,2(D)] ×D1,2(D) be such that u|�0 = û for some û ∈
R3 with either {A, D} ≡ {R3, �} or {A, D} ≡ {BR, �R}. Then, there exists a constant C > 0, 
depending only on the regularity of �, such that

‖D2u‖2,D + ‖∇p‖2,D ≤C (‖divT (u,p)‖2,D + ‖∇u‖2,D + |̂u|) .

Proof. See [24, Lemma 1] where the domain is requested to be of class C3. However, C2 suf-
fices. �
Lemma 10. Let u ∈ D1,2(A) ∩ W 2,2(D), with u|�0 = û for some û ∈ R3, A and D as in
Lemma 9, and let v ∈ L2(D). Then, for any ε > 0 there exists a positive constant C (depending 
only on ε, u0, and the regularity of �) such that

∣∣ (∂1u− u0 · ∇u+ (̂u− u) · ∇(u0 − u),v)D
∣∣

≤ C (‖∇u‖2
2,D + ‖∇u‖4

2,D + ‖∇u‖6
2,D)+ ε(‖D2u‖2

2,D + ‖v‖2
2,D).

Proof. Let us denote by Ii , i = 1, . . .6, in the order, the six terms in the scalar product. Taking 
into account that, by Theorem 6, u0 ∈L∞(�) ∩D1,q (�), q = 2, 3, and using (3.2.10), (3.2.11), 
Hölder and Cauchy-Schwarz inequalities we readily get

5∑
i=1

|Ii | ≤ C (‖∇u‖2
2,D + ‖∇u‖4

2,D)+ 1
2ε‖v‖2

2,D .

Moreover, again by Hölder inequality, [24, Lemma 1] (see also the “proof” of Lemma 9), (3.2.10)
and Remark 2,

|I6| ≤ ‖u‖6‖∇u‖3‖v‖2 ≤ C ‖∇u‖2

(
‖D2u‖

1
2
2,D‖∇u‖

1
2
2,D + ‖∇u‖2,D

)
‖v‖2,D

≤ C (‖∇u‖4
2,D + ‖∇u‖6

2,D)+ ε ‖D2u‖2
2,D + 1

2ε ‖v‖2
2,D .

The lemma is proved. �
We will also need the following technical result.

Lemma 11. Let y : [0, ∞) �→ [0, ∞), be absolutely continuous and satisfying

ẏ(t)≤ a(t)+ b(t)[y(t)+ yα(t)] , α ≥ 1, for a.e. t > 0 , (4.2.11)

where a, b ∈ L∞(0, ∞). Assume, also, y ∈L1(0, ∞), and set
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a := ess sup
t∈(0,∞)

|a(t)| , b := ess sup
t∈(0,∞)

|b(t)| .

Then, there exists δ > 0, such that if

y(0)≤ δ ,

∞∫
0

y(s) ds ≤ δ2 (4.2.12)

it follows that:

y(t) < M δ for all t ∈ (0,∞) , M := 3 max{1,2a,2b} .

Proof. Let

Y := y2 , β := (1+ α)/2 .

Multiplying both sides of (4.2.11) by y we get

Ẏ ≤ 2ay + 2b[Y + Yβ ]. (4.2.13)

Contradicting the statement means that there exists t0 > 0 such that

y(0)≤ δ , y(t) < M δ , for all t ∈ (0, t0) , and y(t0)=M δ. (4.2.14)

Then, integrating both sides of (4.2.13) from 0 to t0 and using the latter and (4.2.12)2, we deduce, 
in particular

Y(t0) ≤ Y(0)+ 2a

∞∫
0

y(s)ds + 2b

t0∫
0

Y(s)ds + 2b

t0∫
0

Yβ(s)ds

≤ δ2 + 2aδ2 + 2bMδ3 + 2bδ2(Mδ)α ≤ M
3 δ2 (2+Mδ + (Mδ)α) .

Therefore, choosing δ > 0 in such a way that

2+Mδ + (Mδ)α < 3M

we deduce y(t0) < Mδ, which contradicts (4.2.14)3. �
4.2.3. Proof of Theorem 8

Part 1: existence. To prove the existence of a solution to (4.2.1), we follow the arguments 
introduced and developed in [18,19]. Let {�R}, R ∈ N , be an increasing sequence such that 
� =∪R∈N�R and, for each fixed R, consider the problem
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∂tuR − divT (uR,pR)

= λ
[
∂1uR − u0 · ∇uR + (σR − uR) · ∇(u0 − uR)

]
divuR = 0

⎫⎪⎪⎬⎪⎪⎭ in �R × (0,∞) ,

uR|∂� = σR(t) , uR|∂BR
= 0 , in (0,∞)

σ̇R +ω2
nχR +�

∫
∂�

T (uR,pR) · n= 0 , χ̇R = σR in (0,∞)

uR(x,0)= u0 , x ∈�R , χR(0)= χ0 , σR(0)= χ1 .

(4.2.15)

Our approach to existence develops in two steps. In the first step, by the classical Galerkin 
method we show that (4.2.15) has a solution in the class (4.2.5). This is accomplished with the 
help of a suitable base, constituted by eigenvectors of a modified Stokes problem. This procedure 
also leads to the proof of estimates for (uR, pR, χR) with bounds that are independent of R. In 
this way, in the second step, we will pass to the limit R →∞ and show that the limit functions 
(u, p, χ) solve the original problem (4.2.1) along with the asymptotic property (4.2.6).

We start putting (4.2.15) in a “weak” form. If we multiply (4.2.15)1 by ψ ∈D1,2(BR), inte-
grate by parts and use (4.2.15)2,3,4, we deduce

(∂tu,ψ)+ 2(D(u),D(ψ))+�−1(σ̇ +ω2
nχ) · ψ̂

= λ
[
∂1u− u0 · ∇u+ (σ − u) · ∇(u0 − u),ψ

]
for all ψ ∈D1,2(BR) ,

(4.2.16)

where σ = χ̇ and, for simplicity, the subscript “R” has been omitted and (·, ·) ≡ (·, ·)�R
. Using 

standard procedures [13], one finds that if (u, p, χ , σ ) is a smooth solution to (4.2.16), then it 
also satisfies (4.2.15)1−6. In [18] it is shown that the problem

−∇ ·T (ψ, φ)= μψ

divψ = 0

⎫⎬⎭ in �R ,

ψ = ψ̂ on ∂�, ψ = 0 on ∂BR ,

μ ψ̂ =�

∫
∂�

T (ψ, φ) · n ,

(4.2.17)

with the natural extension ψ(x) = ψ̂ in �0, admits a denumerable number of positive eigen-
values {μRi} clustering at infinity, and corresponding eigenfunctions {ψRi}i ⊂ D1,2(BR) ∩
W 2,2(�R) forming an orthonormal basis of H(BR) that is also orthogonal in D1,2(�R). Also, 
the correspondent “pressures” satisfy φRi ∈W 1,2(�R), i ∈N . Thus, for each fixed R ∈N , we 
look for “approximated” solutions to (4.2.16) of the form

uN(x, t)=
N∑

k=1

ckN(t)ψRk(x) , σN(t)=
N∑

k=1

ckN(t)ψ̂Rk , χN(t) , (4.2.18)

where the vector functions cN(t) := {c1N(t), . . . cNN(t)} and χN(t) satisfy the following system 
of equations (i = 1, . . . , N)
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(∂tuN,ψRi)+ 2(D(uN),D(ψRi))+�−1(σ̇N +ω2
nχN) · ψ̂Ri

= λ
[
∂1uN − u0 · ∇uN + (σN − uN) · ∇(u0 − uN),ψRi

]
,

(4.2.19)

with σN = χ̇N . Indeed, (4.2.19) is a system of first order differential equations in normal form 
in the unknowns cN, χN . To this end, it suffices to observe that

〈ψRi,ψRj 〉 := (ψRi,ψRj )+�−1ψ̂Ri · ψ̂Rj = δij , (4.2.20)

so that the derivatives with respect to time can be grouped and (4.2.19) is equivalent to the system

ċiN = Fi(cN,χN) , i = 1, . . . ,N ,

Fi :=
N∑

k=1

ckN

[
λ
(
∂1ψRk − u0 · ∇ψRk + (ψ̂Rk −ψRk) · ∇u0,ψRi

)
−2

(
D(ψRk),D(ψRi)

)]− λ

N∑
k,m=1

ckNcmN

(
(ψ̂Rk −ψRk) · ∇ψRm,ψRi

)
−ω2

n
�

χN · ψ̂Ri ,

(4.2.21)

which we equip with the following initial conditions:

ciN (0)= (u0,ψRi)+�−1χ1 · ψ̂Ri , χN(0)= χ0 . (4.2.22)

From (4.2.18) and (4.2.20), it follows that

‖uN(0)‖2
2,�R

+�−1|σN(0)|2 ≤ ‖u0‖2
2,� +�−1|χ1|2 . (4.2.23)

Likewise, since

2(D(ψRi),D(ψRj ))= μRi

[
�−1ψ̂Ri · ψ̂Rj + (ψRi,ψRj )

]
= μRiδij

we have

D(uN(0))=
N∑

j=1

cjN(0)D(ψRj )= 2
k∑

j=1

1

μRj

(D(u0),D(ψRj ))�R
D(ψRj )

=
N∑

j=1

(D(u0),D(ψRj ))�R

‖D(ψRj )‖2
2,�R

D(ψRj )

and, therefore,

‖D(uN(0))‖2,�R
≤ ‖D(u0)‖2,�. (4.2.24)

We shall now derive three basic “energy estimates”. Multiplying both sides of (4.2.19)1 by 
ciN , summing over i, integrating by parts over �R and using (4.2.18) and (3.2.9), we get
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1
2

d

dt

[
‖uN‖2

2 +�−1(|σN |2 +ω2
n|χN |2)

]
+ ‖∇(uN)‖2

2 − λ ((uN − σN) · ∇uN,u0)= 0 ,

which, by (4.2.1), Remark 2 and (4.2.2), in turn furnishes

1
2

d

dt

[
‖uN‖2

2 +�−1(|σN |2 +ω2
n|χN |2)

]
+ γ ‖∇uN‖2

2 ≤ 0, (4.2.25)

where we have set

γ := 1− λ

λ2
> 0. (4.2.26)

We next multiply both sides of (4.2.19)1 by ċiN , sum over i, and integrate by parts over �R

as necessary. Taking again into account (4.2.18), (3.2.9) and Remark 2, we obtain

1
2

d

dt
‖∇uN‖2

2 + ‖∂tuN‖2
2 +�−1|σ̇N |2 = λ

(
∂1uN − u0 · ∇uN

+(σN − uN) · ∇u0 − (σN − uN) · ∇uN, ∂tuN

)
− ω2

n

�
χN · σ̇N .

(4.2.27)

Finally, we multiply both sides of (4.2.19)1 by λRiciN and sum over i. Integrating by parts 
over �R and employing (4.2.17) and, one more time, (4.2.1), (3.2.9), and Remark 2 we show

1
2

d

dt
‖∇uN‖2

2 + ‖divT (uN,pN)‖2
2 +� |SN |2 = λ

(
∂1uN − u0 · ∇uN

+(σN − uN) · ∇u0 − (σN − uN) · ∇uN,divT (uN,pN)
)
+ω2

nχN · SN

(4.2.28)

where

SN :=
∫
∂�

T (uN,pN) · n , pN :=
N∑

k=1

ckNφRk .

We shall now derive a number of estimates for the approximated solutions, paying attention 
that the constants involved are independent of N and R. Such generic constants will be denoted 
by C, which can thus depend, at most, on �, u0 and the physical constants involved in the 
problem. Moreover, without specification, its value may change from a line to the next one (e.g. 
2C ≤ C). From (4.2.25), (4.2.23) and (3.2.11) we get

sup
t∈(0,∞)

[‖uN(t)‖2
2 +�−1(|σN(t)|2 +ω2

n|χN(t)|2)]
+γ

∞∫
0

(2κ−2
1 |σN(s)|2 + ‖∇uN(s)‖2

2)ds

≤ ‖u0‖2 +�−1(|χ1|2 +ω2|χ0|2) .

(4.2.29)
2 n
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Such an estimate implies, in particular, that the initial-value problem (4.2.21)–(4.2.22) has a 
(unique) solution in the whole interval (0, ∞). Moreover, from (4.2.27), Cauchy-Schwarz in-
equality and Lemma 10 with v ≡ ∂tuN and ε ≡ ε1 < 1

2 , we infer

d

dt
‖∇uN‖2

2 + 1
2‖∂tuN‖2

2 + |σ̇N |2 ≤ C
(‖∇uN‖2

2 + ‖∇uN‖4
2 + ‖∇uN‖6

2 + |χN |2
)

+ε1 ‖D2uN‖2
2

≤ C
(‖∇uN‖2

2 + ‖∇uN‖6
2 + |χN |2

)+ ε1 ‖D2uN‖2
2.

(4.2.30)
Likewise, employing Lemma 10, this time with v ≡ divT (uN, pN), from (4.2.28) we obtain

1
2

d

dt
‖∇uN‖2

2 + ‖divT (uN,pN)‖2
2 +� |SN |2 ≤ C

(‖∇uN‖2
2 + ‖∇uN‖6

2 + |χN |2
)

+ε2 ‖D2uN‖2
2

which, in turn, combined with Lemma 9 implies, by taking ε2 small enough

1
2

d

dt
‖∇uN‖2

2 +C ‖D2uN‖2
2 +� |SN |2 ≤ C

(
‖∇uN‖2

2 + ‖∇uN‖6
2 + |χN |2

)
. (4.2.31)

Summing side-by-side (4.2.30) and (4.2.31) by choosing ε1 sufficiently small we deduce

d

dt
‖∇uN‖2

2 +C (‖D2uN‖2
2 + ‖∂tuN‖2

2 + |σ̇N |2 +� |SN |2)

≤ C
(
‖∇uN‖2

2 + ‖∇uN‖6
2 + |χN |2

)
,

(4.2.32)

which furnishes, in particular,

d

dt
‖∇uN‖2

2 ≤ C
(
‖∇uN‖2

2 + ‖∇uN‖6
2 + |χN |2

)
. (4.2.33)

In (4.2.33) we put y(t) = ‖∇uN(t)‖2
2, a(t) = C |χN(t)|2 and b = C. By (4.2.29), it follows 

that both a and b satisfy the assumptions of Lemma 11 with α = 3. Hence, there exists δ > 0
such that if (4.2.12) holds, namely

‖∇uN(0)‖2
2,�R

≤ δ ,

∞∫
0

‖∇uN(s)‖2
2,�R

ds ≤ δ2 , (4.2.34)

then

sup
t∈(0,∞)

‖∇uN(t)‖2,�R
≤Mδ . (4.2.35)

We take ε > 0 in (4.2.4) such that
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ε2 ≤min
{
δ, γ δ2 min{1,�(1+ω2

n)
−1}

}
.

Then, from (4.2.24) and (4.2.4) we know that

‖∇uN(0)‖2
2,�R

≤ ‖∇u0‖2
2,� ≤ (‖u0‖1,2 + |χ0| + |χ1|)2 ≤ ε2 ≤ δ ,

while from (4.2.29) we infer that

∞∫
0

‖∇uN(s)‖2
2,�R

ds ≤ γ−1
[
‖u0‖2

2 +�−1(|χ1|2 +ω2
n|χ0|2)

]

≤ γ−1 max

{
1,

1+ω2
n

�

}[
‖u0‖2

2 + |χ1|2 + |χ0|2
]

≤ γ−1 max

{
1,

1+ω2
n

�

}
ε2 ≤ δ2 .

Therefore, with the above choice of ε > 0, both conditions in (4.2.34) are satisfied and (4.2.35)
holds with a constant C0 =Mδ > 0, independent of N and R, namely

sup
t∈(0,∞)

‖∇uN(t)‖2 ≤C0 . (4.2.36)

Employing (4.2.36) in (4.2.32) and keeping in mind (4.2.29) we conclude

T∫
0

(
‖D2uN(s)‖2

2 + ‖∂tuN(s)‖2
2

)
ds ≤ C1 T , for all T > 0 , (4.2.37)

with C1 another positive constant independent of N and R. Thanks to (4.2.29) and (4.2.37), 
we can now use a standard argument (see e.g. [18]) to prove the existence of a subsequence 
{(uNk

, χNk
, σNk

)} converging in suitable topology to some (uR, χR, σR) in the class (4.2.5)
(with � replaced by �R and R3 replaced by BR) and satisfying (4.2.16). Since, clearly, 
(uR, χR, σR) continues to obey the bounds (4.2.29) and (4.2.37), we can similarly select a sub-
sequence (uRm, χRm

, σRm) converging (again, in suitable topology) to a certain (u, χ , σ ) that is 
in the class (4.2.5) and obeys (4.2.29), (4.2.37), and (4.2.1) for a.e. x ∈ � and t ∈ (0, ∞). The 
demonstration of this convergence is rather typical and we omit it, referring to [18, Step 3 at p. 
141] for details. Thus, the proof of existence is completed.

Part 2: uniqueness. This part of the proof is quite standard and we only sketch it here. Let 
(ui , pi, χ i ), i = 1, 2, be two solutions to (4.2.1) corresponding to the same initial data, and set 
u := u1 − u2, p = p1 − p2, χ = χ1 − χ2. We thus have
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∂tu−�u+∇p = λ
[
∂1u− u0 · ∇u

+(χ̇ − u) · ∇(u0 − u2)− (χ̇1 − u1) · ∇u
]

divu= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in �× (0,∞) ,

u(x, t)= χ̇(t) , (x, t) ∈ ∂�× (0,∞) ,

χ̈ +ω2
nχ +�

∫
∂�

T (u,p) · n= 0 , in (0,∞)

u(x,0)= 0 , x ∈�, χ(0)= 0 , χ̇(0)= 0 .

(4.2.38)

We dot-multiply (4.2.38)1 by u, integrate by parts over � and use (4.2.38)2−4 to obtain

1
2

d

dt

[
‖u‖2

2 +�−1(|χ̇ |2 +ω2
n|χ |2)

]
+ γ ‖∇u‖2

2 ≤ λ ((χ̇ − u) · ∇u2,u) , (4.2.39)

where we recall that γ is defined in (4.2.26). From (3.2.11) and Cauchy–Schwarz inequality we 
get

|(χ · ∇u2,u)| ≤ 1
2γ ‖∇u‖2

2 + c ‖∇u2‖2
2‖u‖2

2 ,

whereas from (3.2.10), Hölder, Sobolev and Cauchy–Schwarz inequalities,

|(u · ∇u2,u)| ≤ ‖u‖6‖∇u2‖3‖u‖2 ≤ 1
2γ ‖∇u‖2

2 + c ‖u2‖2
2,2‖u‖2

2 .

Replacing the last two displayed relations in (4.2.39), we thus conclude

dE

dt
≤ c g(t)E(t) (4.2.40)

where g := ‖u2‖2
2,2, E := ‖u‖2

2 +�−1(|χ̇ |2 +ω2
n|χ |2). Since u2 is in the class (4.2.5), we have 

g ∈ L1(0, T ), for all T > 0 and also, by assumption, E(0) = 0. Uniqueness then follows by using 
Gronwall’s lemma in (4.2.40).

Part 3: stability. We finally prove the validity of (4.2.6). In this regard, we begin to observe 
that the solution just constructed satisfies, in particular,

sup
t∈(0,∞)

(‖u(t)‖2 + ‖∇u(t)‖2 + |χ(t)| + |χ̇(t)|)+
∞∫

0

(|χ̇(s)|2 + ‖∇u(s)‖2
2)ds ≤K , (4.2.41)

where K > 0 is a constant depending only on the data. By dot-multiplying both sides of (4.2.1)1
by ∂tu and proceeding as in the proof of (4.2.30) we obtain

d

dt
(‖∇u‖2

2 + ω2
n

�
χ · χ̇)+ ‖∂tu‖2

2 +�−1|χ̈ |2

= λ (∂ u− u · ∇u+ (χ̇ − u) · ∇u − (σ − u) · ∇u, ∂ u)+ ω2
n |χ̇ |2 .
1 0 0 t �
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We now use, on the right-hand side of this relation, Lemma 10 with v ≡ ∂tu, ε ≡ ε1 < 1
2 , along 

with the uniform bound on ‖∇u‖2 in (4.2.41) to get

d

dt
(‖∇u‖2

2 + ω2
n

�
χ · χ̇)+ 1

2‖∂tu‖2
2 +�−1|χ̈ |2 ≤ C ‖∇u‖2

2 + ε1 ‖D2u‖2
2 + ω2

n
�
|χ̇ |2 (4.2.42)

Finally, we test both sides of (4.2.1)1 by −divT (u, p) and apply Cauchy-Schwarz inequality to 
deduce

‖divT (u,p)‖2
2 ≤−2λ (∂1u− u0 · ∇u+ (χ̇ − u) · ∇(u0 − u),divT (u,p))+ ‖∂tu‖2

2 .

Employing in this inequality Lemma 10 with v ≡ divT (u, p) along with the bound (4.2.41) on 
‖∇u‖2, we infer

‖divT (u,p)‖2
2 ≤ C ‖∇u‖2

2 + ε2 ‖D2u‖2
2 + ‖∂tu‖2

2 ,

which, in turn, with the help of Lemma 9 and by selecting ε2 small enough, entails

‖D2u‖2
2 + ‖∇p‖2

2 ≤ C (‖∇u‖2
2 + ‖∂tu‖2

2 ++|χ̇ |2) . (4.2.43)

Next, we utilize (4.2.43) on the right-hand side of (4.2.42) and pick ε2 suitably, which enables 
us to find

d

dt
(‖∇u‖2

2 + ω2
n

�
χ · χ̇)+ 1

4‖∂tu‖2
2 +�−1|χ̈ |2 ≤ C (‖∇u‖2

2 + |χ̇ |2) . (4.2.44)

Integrating over time both sides of (4.2.44), and taking into account (4.2.41), it follows that

∂tu ∈L2(0,∞;L2(�)) , χ̈ ∈L2(0,∞) , (4.2.45)

which once replaced in (4.2.44), again with the help of (4.2.41), furnishes

D2u,∇p ∈ L2(0,∞;L2(�)) . (4.2.46)

By possibly adding a suitable function of time to p, we may get [15, Theorem II.6.1]

p ∈L6(�) and ‖p(t)‖6 ≤C ‖∇p(t)‖2 , a.a. t > 0 . (4.2.47)

On the other hand, from (4.2.1)4 and standard trace theorems, we have

|χ(t)|2 ≤ 1
2

⎛⎜⎝|χ̈(t)|2 +
∣∣∣∣∣∣
∫
∂�

T (u,p) · n
∣∣∣∣∣∣
2
⎞⎟⎠

≤C
(
|χ̈(t)|2 + ‖∇u‖2

2,2,�ρ
+ ‖p‖2

1,2,�ρ

)
,

for some fixed ρ which, in view of (4.2.45)–(4.2.47), allows us to conclude that
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χ ∈ L2(0,∞) . (4.2.48)

Combining (4.2.41), (4.2.45) and (4.2.48) we get at once

lim
t→∞ (|χ(t)| + |χ̇(t)|)= 0 . (4.2.49)

From (4.2.41) it follows that there exists at least one unbounded sequence {tn} ∈ (0, ∞) such that

lim
n→∞‖∇u(tn)‖2 = 0 . (4.2.50)

Thus, integrating both sides of (4.2.44) between tn and t > tn we infer, in particular

‖∇u(t)‖2
2 ≤C

⎛⎝|χ(t)| |χ̇ (t)| + |χ(tn)| |χ̇ (tn)| +
∞∫

tn

(‖∇u(s)‖2
2 + |χ̇(s)|2)ds

⎞⎠+ ‖∇u(tn)‖2
2

which, by (4.2.41), (4.2.49) and (4.2.50) entails

lim
t→∞‖∇u(t)‖2 = 0 .

The latter and (3.2.10) complete the proof of (4.2.6). The proof of Theorem 8 is completed.

4.3. Absence of oscillatory solutions below the stability threshold

As remarked in the previous subsection, if λ2 > 0 and λ < λ2, the steady solution of Theo-
rem 6 is unique and stable. The objective of this subsection is to show, in addition, that, if λ2 > 0, 
no oscillatory motion can stem out of the steady-state branch in a suitable function class of solu-
tions � as long as λ < λ2. As a direct consequence, a time-periodic bifurcation may occur only 
at some λo > λ2. More precisely, let s0(λ) be the steady-state solution given in (4.1.1). A generic 
T -periodic solution to (2.0.4) can then always be written as

u(x, t)+ u0(x) , p(x, t)+ p0(x) , χ(t)+ χ0 ,

where (u, p, χ), after the scaling τ = 2π
T

.t , is a 2π -periodic solution to the following equations

ζ∂τu−�u+∇p

= λ
[
∂1u− u0 · ∇u+ (ζ χ̇ − u) · (∇u+∇u0)

]
divu= 0

⎫⎪⎬⎪⎭ in �× (0,2π) ,

u(x, t)= ζ χ̇(t) , (x, t) ∈ ∂�× (0,2π) ,

ζ 2χ̈ +ω2
nχ +�

∫
∂�

T (u,p) · n= 0 , in (0,2π) ,

(4.3.1)

where ζ := 2π/T . We now introduce the class
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� := {(u=u+w,p = p+ p,χ = χ + ξ) :
u ∈X(�) ,w ∈W2


; p ∈W 1,2(�) , p ∈ P1,2

 ; ξ ∈W 2


 } ,

which constitutes the functional framework where, later on, we shall prove the occurrence of 
a time-periodic bifurcation. We recall that · denotes the mean value, as defined in (3.1.6). In 
particular, if u= u+w ∈ �, then

w = ∂1w =�w = 0 , . . .

or, equivalently,

∂1u= ∂1u, �u=�u , . . .

For a solution of (4.3.1) in the class �, we have

ζ∂τw−�u−�w+∇p+∇p

= λ [∂1u+ ∂1w− u0 · (∇u+∇w)+ (ζ ξ̇ − u−w) · (∇u0 +∇u+∇w)] (4.3.2)

and

ζ 2ξ̈ +ω2
n(χ + ξ )+�

∫
∂�

T (u,p) · n+�

∫
∂�

T (w,p) · n= 0 , in (0,2π). (4.3.3)

Since we assume p= 0, we have

2π∫
0

∫
∂�

pI · n=
∫
∂�

pI · n= 0.

The facts that ξ = 0 and w = 0 then imply that (4.3.3) splits in

ω2
nχ +�

∫
∂�

T (u,p) · n= 0,

ζ 2ξ̈ +ω2
nξ +�

∫
∂�

T (w,p) · n= 0 , in (0,2π).

Taking the mean of (4.3.2), we infer that

−�u+∇p = λ
[
∂1u− u0 · ∇u− u · (∇u0 +∇u)+ (ζ ξ̇ −w) · ∇w

]
.

Summing up, and setting

M(x) := (ζ ξ̇ −w) · ∇w,
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we infer that (4.3.1) can be split into the coupled system

−�u+∇p = λ[∂1u− u0 · ∇u− u · ∇u0 − u · ∇u+M(x)]
divu= 0

⎫⎬⎭ in � ,

u= 0 on ∂�,

ω2
nχ +�

∫
∂�

T (u,p) · n= 0 ,

(4.3.4)

and

ζ∂τw−�w+∇p= λ
[
∂1w− u0 · ∇w+ (ζ ξ̇ −w) · ∇u0

]
+λ[−M(x)+ (ζ ξ̇ −w) · ∇w− u · ∇w+ (ζ ξ̇ −w) · ∇u]

divw = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in �× [0,2π ]

w = ζ ξ̇ on ∂�× [0,2π ],

ζ 2ξ̈ +ω2
nξ +�

∫
∂�

T (w,p) · n= 0 , in [0,2π ] .

(4.3.5)

In the proof of the main finding of this subsection given below, we need to use a specific 
“cut-off” function, whose properties are collected in the following lemma.

Lemma 12. There exists ψR ∈ C∞
0 (R3), R ∈ (0, ∞), with the following properties

(i) ψR(x) ∈ [0, 1], for all x ∈R3 and R > 0;
(ii) lim

R→∞ψR(x) = 1 for all x ∈R3;

(iii) ψR(x) = 1 for all x ∈ BR , and supp (ψR) ⊂ B2R2 , R ≥ 1;
(iv) supp (∇ψR) ⊂ B2R2\BR =: SR , R ≥ 1;
(v) ‖u|∇ψR|‖2 ≤ c ‖∇u‖

2,�

R√
2

, with c independent of R;

(vi) ∂1ψR ∈ L2(�).

Proof. Let ψ = ψ(r), r ∈ (0, ∞), be a smooth, non-increasing function that is 1 if r < 1/2 and 
0 if r > 1, and set

ψR(x) :=ψ

⎛⎝1

2

√
x2

1

R4 +
ρ2

R2

⎞⎠ , ρ2 := x2
2 + x2

3 .

We thus have

ψR(x)=

⎧⎪⎨⎪⎩
1 if

x2
1

R4 + ρ2

R2 ≤ 1

0 if
x2

1 + ρ2 ≥ 4
, (4.3.6)
R4 R2
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which at once implies the validity of properties (i) and (ii). Furthermore, for R≥ 1, we get

1

R4

(
x2

1 + ρ2
)
≤ x2

1

R4 +
ρ2

R2 ≤
1

R2

(
x2

1 + ρ2
)

.

The latter, combined with (4.3.6), proves the statements in (iii) and (iv). Finally, the remaining 
properties (v) and (vi) are obtained exactly like in [15, Lemma II.6.4]. �

The following result holds.

Theorem 13. Let (u, p, χ) ∈ � be a solution of (4.3.1). If λ < λ2, necessarily (u, p, χ) ≡
(0, 0, 0).

Proof. Recall that we use the decomposition

u= u+w, p = p+ p, χ = χ + ξ .

We test both sides of (4.3.5)1 by w, and integrate by parts over � × (0, 2π). Taking into account 
the summability properties of elements in the class � and the definition (4.2.2) of λ2, we obtain

‖∇w‖2
2 = λ

(
(ζ ξ̇ −w) · ∇(u0 + u),w

)
≤ λ

λ2
‖∇w‖2

2 − λ (M(x),u) . (4.3.7)

Testing both sides of (4.3.4)1 by ψRu, with ψR given in Lemma 12, and integrating by parts over 
� as needed, we get

‖ψ
1
2
R∇u‖2

2 = 1
2λ [−(∂1ψRu,u)+ (|u|2(u0 + u),∇ψR)+ 2(ψRM(x),u)]

−λ(ψRu · ∇u0,u)+ (p u,∇ψR) :=
5∑

k=1

Ik .

(4.3.8)

Using (iv)–(vi) in Lemma 12 along with Hölder inequality, we show

|I1| + |I2| ≤ 1
2λ (‖∂1ψR‖2 + ‖(u0 + u)|∇ψR|‖2)‖u‖2

4,SR
≤ c (1+ ‖∇u0‖2 + ‖∇u‖2)‖u‖2

4,SR

and also

|I5| ≤ ‖u|∇ψR|‖2‖p‖2,SR
≤ c ‖∇u‖2‖p‖2,SR

.

We now pass to the limit R →∞ in (4.3.8). With the help of the last two displayed inequalities 
along with Lemma 12-(ii), the fact that u, w ∈ � and the definition of λ1, we obtain

‖∇u‖2
2 =−λ (u · ∇u0,u)+ λ(M(x),u)≤ λ

λ1
‖∇u‖2

2 + λ(M(x),u) . (4.3.9)

Summing side-by-side (4.3.7) and (4.3.9), we infer that
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(
1− λ

λ2

)
‖∇w‖2

2 +
(

1− λ

λ1

)
‖∇u‖2

2 ≤ 0,

and since λ
λ2

< 1 implies λ
λ1

< 1, we conclude that

∇u(x, t)= 0 , for all (x, t) ∈�× [0,2π ] ,

which, by (3.2.10) and (3.2.11) concludes the proof of the theorem. �
4.4. Steady-state bifurcation

We shall now undertake the study of loss of uniqueness and occurrence of bifurcation for the 
family of solutions s0(λ), λ > 0, whose existence was established in Theorem 6. More precisely, 
in this subsection we will furnish necessary and sufficient conditions for the occurrence of steady 
bifurcation.

Let λs > 0, U(λs) be a neighborhood of λs , and denote by

s0(λ) := (u0(λ),p0(λ),χ0(λ)) , λ ∈U(λs) , (4.4.1)

a first solution to (2.0.5) determined in Theorem 6. Next, let

(u0(λ)+ u(λ),p0(λ)+ p(λ),χ0(λ)+ χ(λ)) , λ ∈U(λs) ,

be another solution to (2.0.5) so that (u(λ), p(λ), χ(λ)) solves the following homogeneous 
boundary-value problem

−�u+∇p = λ (∂1u− u0 · ∇u− u · ∇u0 − u · ∇u)

divu= 0

}
in �,

u(x)= 0 , x ∈ ∂� ; lim|x|→∞u(x)= 0 ,

ω2
nχ =−�

∫
∂�

T (u,p) · n .

(4.4.2)

Then, formally, steady-state bifurcation reduces to show that

(i) (u(λ), p(λ), χ (λ)) �≡ (0, 0, 0), λ ∈U(λs),
(ii) (u(λ), p(λ), χ (λ)) → (0, 0, 0) as λ → λs ,

in which case, (λs, s0(λs)) is called a bifurcation point for problem (2.0.5) (or, equivalently, 
(λs,0) a bifurcation point for (4.4.2)). The above properties should be, of course, rigorously 
formulated and their validity properly ascertained in an appropriate functional setting.

Remark 6. We observe that, in order to prove (i)-(ii) it is enough to prove

(i)′ (u(λ), p(λ)) �≡ (0, 0), λ ∈U(λs),
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(ii)′ (u(λ), p(λ)) → (0, 0) as λ → λs ,

provided the existence of the bifurcating branch is obtained in a function class that allows the 
control of χ(λ), namely, the right-hand side of (4.4.2)5. We could thus restrict ourselves to prove 
such a type of existence. However, also in view of the analysis of time-periodic bifurcation that 
we shall develop in [7], we prefer to study problem (4.4.2) as a whole.

Let

Z := [D2,2(�)∩D1,2
0 (�)] ×R3 , (4.4.3)

and

X :=X2(�)×R3 ; (4.4.4)

see (3.1.5). Clearly, X ⊂Z . Given a function u :� →R3 and a vector χ ∈R3, we put

U := (u,χ ) .

Our first goal to analyze steady bifurcation is to rewrite the left-hand side of (4.4.2)1 with suitable 
operators acting on U (that will therefore also include the compatibility condition (4.4.2)5 for χ ). 
To this aim, we consider several maps and their properties. Define first

�̂ : U ∈Z �→ �̂(U) ∈ Y ,

see (3.1.4), where

�̂(U)=

⎧⎪⎪⎨⎪⎪⎩
−�u in �,

ω2
nχ + 2�

∫
∂�

D(u) · n in �0 ,
(4.4.5)

and set Â :=P �̂, where P is the self-adjoint orthogonal projection of L2(R3) onto H(R3). 
We thus have

Â : U ∈Z �→ Â (U) ∈ Y ,

see (3.1.4), and, by (4.4.5) and Lemma 2,

Â (U)=

⎧⎪⎪⎨⎪⎪⎩
−�u+∇p in �,

ω2
nχ +�

∫
∂�

(2D(u)− p I) · n in �0 ,
(4.4.6)

for some p ∈ G(�).
The following result holds.
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Lemma 14. The operator Â :Z → Y is a homeomorphism.

Proof. We have to show that, for any (f , F ) ∈ [D−1,2
0 (�) ∩ L2(�)] ×R3 there exists one and 

only one (u, χ) ∈ [D2,2(�) ∩D1,2
0 (�)] ×R3 satisfying

−�u+∇p = f , divu= 0 in � ; u= 0 on ∂�,

ω2
nχ +�

∫
∂�

(2D(u)− p I) · n= F .
(4.4.7)

The result will then follow by the open mapping theorem. It is well-known that for any 
f ∈ D−1,2

0 (�) there exists a unique (u, p) ∈ D1,2
0 (�) × L2(�) satisfying (4.4.7)1,2,3 in dis-

tributional sense, see for instance [15, Theorem V.2.1]. Moreover, since f ∈ L2(�), we also 
have (u, p) ∈D2,2(�) ×D1,2(�) [15, Theorems IV.5.1 and V.5.3]. By the trace theorem, for a 
fixed R > R∗,

∣∣∣∫
∂�

(2D(u)− p I) · n
∣∣∣≤ c (‖u‖2,2,�R

+ ‖p‖1,2,�R
) <∞ ,

so that χ is uniquely determined from (4.4.7)4. �
Let

∂̂1 : U ∈X �→ ∂̂1(U) ∈H(R3)

with

∂̂1(U)=
{−∂1u in �,

0 in �0 .
(4.4.8)

It is readily checked that, as stated, ̂∂1(U) ∈H(R3). By Lemma 2 and (4.4.8), this amounts to 
show that ∫

�

∂1u · ∇p = 0 , for all p ∈D1,2(�) . (4.4.9)

Since u ∈D1,2
0 (�), there is a sequence (uk)k ⊂ C0(�) such that ‖∇(uk − u)‖2 → 0 as k →∞. 

Then, by an integration by parts combined with the condition divuk = 0, we deduce that (4.4.9)
holds for each uk and hence for u after passing to the limit k→∞.

Next, let

C : U ∈X �→ C (U) ∈ Y

where
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C (U)=
{

u0 · ∇u+ u · ∇u0 in �,

0 in �0 ,
(4.4.10)

and consider the following operator

Lλ : U ∈X �→ Â (U)+ λ[∂̂1(U)+PC (U)] ∈ Y . (4.4.11)

Then we prove

Lemma 15. For any λ �= 0, the operator Lλ :X → Y is Fredholm of index 0.

Proof. We first show that Lλ is well defined. Clearly Pϕ = ϕ, for ϕ ∈ C0(�). Therefore, for 
any such a ϕ, integrating by parts we get

(Lλ(U),ϕ)= λ(∂1u,ϕ)− (λ(u0 ⊗ u+ u⊗ u0)+∇u,∇ϕ) .

Since u ∈X(�), employing Hölder inequality and Lemma 5 we deduce that Lλ(U) ∈D−1,2
0 (�). 

Moreover,

‖u0 · ∇u+ u · ∇u0‖2 ≤ ‖u0‖∞‖∇u‖2 + ‖u‖∞‖∇u0‖2 .

Since u ∈X2(�), by Lemma 4 and Theorem 6, we conclude that Lλ(U) ∈H(R3) as claimed.
We now turn to the verification of the Fredholmness of Lλ. We decompose Lλ as follows

Lλ =L 0
λ + λPC ,

where L 0
λ := Â + λ ̂∂1. To prove the Fredholm property for Lλ, it is enough to show that L 0

λ

is a homeomorphism and that C is a compact operator.
We start by showing L 0

λ is a homeomorphism, that is, for any (f , F ) ∈ [D−1,2
0 (�) ∩L2(�)] ×

R3 there exists unique (u, χ) ∈X2(�) ×R3 solving

λ∂1u+�u=∇p+ f

divu= 0

⎫⎬⎭ in �,

u(x)= 0 on ∂�,

ω2
nχ +�

∫
∂�

T (u,p) · n= F .

(4.4.12)

To show the validity of this property, we notice that corresponding to the given f , from [10, The-
orem 2.1] we know that there exists a unique solution (u, p) ∈X2(�) ×W 1,2(�) to (4.4.12)1,2,3. 
By the trace theorem we get∣∣∣∣∣∣

∫
T (u,p) · n

∣∣∣∣∣∣≤ c (‖u‖2,2,�R
+ ‖p‖1,2,�R

) <∞ . (4.4.13)
∂�
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The associated and uniquely determined displacement χ is then obtained from (4.4.12)4, which 
concludes the proof of the homeomorphism property of L 0

λ by the open mapping theorem.
We next show that the operator C is compact. To this end, consider a sequence

{Uk}k ≡ {(uk,χ k)} ⊂X

with

‖uk‖X2 + |χ k| ≤M , (4.4.14)

and M independent of k ∈N . This implies the existence of u∗ ∈ L4(�) ∩D1,2(�) ∩D2,2(�)

and χ∗ ∈R3 such that along a subsequence (that we continue to denote by {(uk, χ k)})

χk − χ∗ → 0 , in R3

wk := uk − u∗ → 0 , weakly in L4(�) ,

∇wk → 0 , weakly in W 1,2(�) .

(4.4.15)

Moreover, by Lemma 4 and compact embedding results, we also have

wk → 0 , strongly in W 1,2(�R), for all R > R∗. (4.4.16)

Observe that

|u0 · ∇wk +wk · ∇u0|−1,2 ≤ ‖u0 ⊗wk‖2 ≤ ‖u0‖∞‖wk‖2,�R
+ ‖u0‖4,�R‖wk‖4 ,

where we recall �R =�\�R =R3 \BR , and

‖u0 · ∇wk +wk · ∇u0‖2 ≤ ‖u0‖1,∞‖wk‖1,2,�R
+ ‖u0‖1,4,�R‖wk‖1,4 .

From Theorem 6, we know that u0 ∈ W 1,∞(�) ∩W 1,4(�), so that letting first k →∞ in the 
above two inequalities and using (4.4.14)–(4.4.16), and then R →∞, we deduce

lim
k→∞

(|u0 · ∇wk +wk · ∇u0|−1,2 + ‖u0 · ∇wk +wk · ∇u0‖2
)= 0 .

In view of (4.4.10), this proves that C is compact and finishes the proof. �
From Theorem 6, we know that the solution s0(λ) := (u0(λ), p0(λ), χ0(λ)) to problem (2.0.5)

is unique, provided that λ < λ1(λ), as defined in (4.1.2). Our next concern is to furnish a sufficient 
condition for local uniqueness of s0(λ) whenever λ≥ λ1(λ) if this situation occurs. Let

(u0,p0, τ 0) := (u0(λ),p0(λ),χ0(λ))

be a given solution of the problem
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−�u0 +∇p0 = λ (∂1u0 − u0 · ∇u0)

divu0 = 0

}
in �,

u0(x)= e1 , x ∈ ∂� ; lim|x|→∞u0(x)= 0 ,

ω2
nχ0 +�

∫
∂�

T (u0,p0) · n= 0 .

(4.4.17)

We will write any solution (u0(λ), p0(λ), χ0(λ)) to (2.0.5) as

(u(λ)+ u0,p(λ)+ p0,χ(λ)+ τ 0).

Then (u, p, χ) = (u(λ), p(λ), χ(λ)) solves

−�u+∇p− λ∂1u+ λ (u0 · ∇u+ u · ∇u0)

= μ
(
∂1(u0 + u)− (u0 + u) · ∇(u0 + u)− λμ−1u · ∇u

)
divu= 0

⎫⎪⎪⎬⎪⎪⎭ in �,

u(x)= 0 , for x ∈ ∂�, lim|x|→∞u(x)= 0 ,

ω2
nχ +�

∫
∂�

T (u,p) · n= 0 ,

(4.4.18)

where we have set μ := λ −λ. To rewrite (4.4.18) in a suitable way, we define one more operator:

O : U ∈X �→O(U) ∈ Y

where

O(U)=
{−∂1(u0 + u)+ (u0 + u) · ∇(u0 + u)+ λμ−1u · ∇u in �,

0 in �0 .
(4.4.19)

It is clear that (4.4.18) is formally equivalent to

Lλ(U)+μPO(U)= 0.

We claim that the map O is well defined. Indeed, taking into account Theorem 6 and the fact that 
u ∈ X2(�), by arguments similar to those employed previously we easily show that, with a, b
being either u0 or u,

∂1u, a · ∇b ∈D−1,2
0 (�)∩L2(�) , ∂1u0 ∈ L2(�) . (4.4.20)

Moreover, testing (2.0.5)1 (with u0 ≡ u0, p0 ≡ p0, λ ≡ λ) by ϕ ∈ C0(�) and integrating by parts, 
we get
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λs(∂1u0,ϕ)=−(u0 ⊗ u0,∇ϕ)+ (∇u0,∇ϕ) .

Since u0 ∈ L4(�) ∩ D1,2(�), from the latter we deduce ∂1u0 ∈ D−1,2
0 (�), which, along with

(4.4.20) proves that O is well defined.
We are now in position to give a sufficient condition for local uniqueness.

Theorem 16. Let (u0, p0, τ 0) := (u0(λ), p0(λ), χ0(λ)), and assume that the equation

Lλ(U)= 0 (4.4.21)

has only the solution U ≡ 0. Then, there exists a neighborhood U(λ) ⊃ {λ} such that for 
λ ∈ U(λ), s0(λ) := (u(λ), p0(λ), χ0(λ)) is the only solution to (2.0.5). Moreover, λ �→ s0(λ)

is analytic at λ = λ, and

(u0(λ),p0(λ),χ0(λ))→ (u0,p0, τ 0) as λ→ λ .

Proof. Let

F : (U,μ) ∈�(0)× I(0) �→Lλ(U)+μPO(U) ∈ Y ,

where �(0) × I(0) is a neighborhood of (0, 0) ∈X ×R. We have seen that (2.0.5) translates in
(4.4.18) which is equivalent to

F(U,μ)= 0 ∈ Y . (4.4.22)

Clearly, (4.4.22) has the solution (U = 0, μ = 0). Moreover, it is standard to verify that F is 
Frechét-differentiable with derivative DUF(0, 0) = Lλ. Since Lλ is Fredholm of index 0, the 
assumption made in (4.4.21) implies that Lλ is a homeomorphism. In addition, F is polynomial 
in (U, μ). As a consequence, by the analytic version of the implicit function theorem we show 
the property stated in the theorem, which is thus completely established. �

Theorem 16 tells us, in particular, that s0(λ), λ ≥ λ1, is unique as long as the corresponding 
linearization satisfies (4.4.21). Moreover, this solution can be analytically (and uniquely) contin-
ued up to the first value of λ, say, λs , where (4.4.21) is violated.

We thus have:

Corollary 17. A necessary condition for (λs, s0(λs)) to be a steady-state bifurcation point is

dim N[Lλs ]> 0 . (4.4.23)

Remark 7. Recalling the definition of Lλ in (4.4.11), we have that condition (4.4.23) is equiva-
lent to the request that the linear problem
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−�u+∇p = λs (∂1u− u0(λs) · ∇u− u · ∇u0(λs))

divu= 0

}
in �,

u(x)= 0 , x ∈ ∂� ; lim|x|→∞u(x)= 0 ,

ω2
nχ +�

∫
∂�

T (u,p) · n= 0 ,

(4.4.24)

has at least one solution (u, χ) ∈X2(�) ×R\{0, 0}. This is, in turn, equivalent to the condition 
that (4.4.24)1,2,3,4 has a non-identically zero solution u ∈X2(�). We may then conclude that the 
necessary condition for bifurcation in absence of compatibility condition (4.4.24)5 remains such 
also in its presence; see also Remark 6.

Our next goal is to find sufficient conditions for the occurrence of steady bifurcation. For 
this, we shall rewrite (4.4.2) as an equation in a suitable Banach space, and establish some basic 
properties of the involved operators. After that, we will be able to apply abstract bifurcation 
results to our case and derive the desired conditions.

To reach these purposes, we need to introduce another operator, namely

N : U ∈X �→N (U) ∈ Y

where

N (U)=
{

u · ∇u in �,

0 in �0 .
(4.4.25)

By arguing as we did for the map O in Theorem 16, we show that N is well defined. Thus, 
from (4.4.25) and (4.4.11), we deduce that problem (4.4.2) is equivalent to the following equation

Â (U)+ λ[∂̂1(U)+PC (λ)(U)+PN (U)] = 0 in Y , λ ∈U(λs), (4.4.26)

where we have emphasized that the operator C depends on λ through u0. In view of Lemma 14, 
we may operate on both sides of (4.4.26) with Â −1, so that (4.4.26) becomes:

F (U, λ)= 0 , in Z , λ ∈U(λs) (4.4.27)

where

F := I+ λM (λ)+ λR (4.4.28)

with I identity in Z , and

M (λ) : U ∈X ≡ D[M (λ)] ⊂Z �→ Â −1[∂̂1(U)+PC (λ)(U)] ∈Z ,

R : U ∈X ≡ D[R] �→ Â −1N (U) ∈Z .

Remark 8. Since R is bilinear in U, for each fixed λ, the map F is analytic in U.
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We shall now establish some important properties of the operator M (λ).

Lemma 18. For each fixed λ > 0, the operator M =M (λ) is densely defined and closed.1

Proof. Recalling the definitions given in (4.4.3) and (4.4.4), the density property means that, 
given arbitrary u ∈D2,2(�) ∩D1,2

0 (�) and ε > 0, there exists uε ∈X2(�) ∩D1,2
0 (�) such that

‖∇(u− uε)‖1,2 < ε . (4.4.29)

Let φR , R > R∗, be a smooth, non-increasing function of |x| ∈ [0, ∞), such that φR(x) = 1, if 
|x| ≤R, φR(x) = 0, if |x| ≥ 2R, and

|∇φR(x)| ≤ cR−1 , |∇(∇φR(x))| ≤ cR−2 , for all x ∈R3 ,

with c independent of R. Consider the problem

divv =∇φR · u , in BR,2R := {x ∈� : |x| ∈ (R,2R)} , v ∈W
2,2
0 (BR,2R).

It is well known that the field v exists and that there exists a positive constant c0, independent of 
R, such that

‖∇v‖2 ≤ c0 ‖∇φR · u‖2 , ‖D2v‖2 ≤ c0 ‖∇(∇φR · u)‖2.

We refer to [15, Theorem III.3.3 and Lemma III.3.3]. Extending v by 0 outside �R , we deduce, 
in particular, v ∈W

2,2
0 (�). Moreover, by Hölder inequality and the properties of φR,

‖∇v‖2 ≤ cR−1‖u‖2 ≤ c2‖u‖6,BR,2R
,

‖D2v‖2 ≤ c
(
R−2‖u‖2,BR,2R

+R−1‖∇u‖2
)≤ cR−1 (‖u‖6 + ‖∇u‖2) ,

(4.4.30)

where, here and in the rest of the proof, c denotes a positive constant independent of R. Setting

uR := φRu− v ,

we establish at once with the help of Lemma 2 that uR ∈X2(�) ∩D1,2
0 (�). Also, again by the 

properties of φR , Hölder inequality and (4.4.30) we show, in a similar manner,

‖∇(u− uR)‖2 ≤ ‖(1− φR)∇u‖2 + c‖u‖6,BR,2R

‖D2(u− uR)‖2 ≤ ‖(1− φR)D2u‖2 + cR−1 (‖u‖6 + ‖∇u‖2) .
(4.4.31)

Since, by Lemma 2, u ∈ L6(�), (4.4.29) follows from (4.4.31), by taking R sufficiently large.

1 In fact, the result holds for all λ �= 0, but this generalization is irrelevant to our aims.
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To prove M is closed, we take {Uk ≡ (uk, χ k)} ⊂X , (U≡ (u,χ ),V≡ (v, ζ )) ∈Z such that

‖∇(uk − u)‖1,2 + |χk − χ |→ 0

M (Uk)→ V in Z
as k →∞ , (4.4.32)

where, for simplicity, we have omitted the dependence of M on λ. We need to show

(a) u ∈X(�);
(b) M (U) = V.

Let (vk, ζ k) ≡ Vk := M (Uk), and set vkk′ = vk − vk′ , ζ kk′ = ζ k − ζ k′ , ukk′ = uk − uk′ and 
pkk′ = pk − pk′ . Then,

−�vkk′ + ∇pkk′ = λ
(
∂1ukk′ − u0 · ∇ukk′ − ukk′ · ∇u0

)
divukk′ = 0

}
in � ,

ukk′ = 0 on ∂� ,

ω2
nζ kk′ +�

∫
∂�

T (vkk′ ,pkk′) · n= 0 .

(4.4.33)

Testing (4.4.33)1 with ϕ ∈ C0(�), integrating by parts, and using Hölder inequality we infer that

λ|(∂1ukk′ ,ϕ)| = | (∇vkk′ − λ(u0 ⊗ ukk′ + ukk′ ⊗ u0),∇ϕ) |
≤ (‖∇vkk′ ‖2 + 2λ‖u0‖3‖ukk′ ‖6)‖∇ϕ‖2 .

Now, ‖∇vkk′ ‖2 → 0 (by (4.4.32)2), ‖ukk′ ‖6 → 0 (by (3.2.10) and (4.4.32)1) and u0 ∈ L3(�)

(by Theorem 6), and so we conclude that (uk)k is converging also in X(�), which proves (a).
Writing (4.4.33) with vkk′ ≡ vk , ukk′ ≡ uk , etc., passing to the limit k →∞, and employing

(4.4.32) along with the trace theorem, we get

−�v+∇p = λ
(
∂1u− u0 · ∇u− u · ∇u0

)
divu= 0

}
in � ,

u= 0 on ∂� ,

ω2
nζ +�

∫
∂�

T (v,p) · n= 0 ,

which proves (b). �
Next, we prove

Lemma 19. For any fixed λ > 0 and μ �= 0 the operator

Hμ = μ I− λM (λ)
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is Fredholm of index 0. Furthermore, denoting by σ(M ) the spectrum of M , we have that 
σ(M ) ∩ (0, ∞) consists at most of a countable number of eigenvalues of finite algebraic multi-
plicity that can only cluster at 0.

Proof. Let us define Tμ through

Hμ = μ Â −1(Â + λ

μ
(∂̂1 +PC (λ)

) := Â −1Tμ. (4.4.34)

Since the operator Â is a homeomorphism by Lemma 14 and Tμ is Fredholm of index 0 by
Lemma 15, we have

dim N[Hμ] = dim N[Tμ] =m <∞ .

Moreover, from

Y = R(Tμ)⊕ Sm

with Sm m-dimensional subspace, we deduce that for every U ∈ Z , we have Â U = U1 + U2, 
U1 ∈ R(Tμ), U2 ∈ Sm. Therefore, we infer

U= Â −1U1 + Â −1U2, with Â −1U1 ∈ R(Hμ), and Â −1U2 ∈ Â −1Sm.

It then follows, in particular, that the essential spectrum σess(M ) of M –defined as the set of 
μ where Hμ is not Fredholm– has empty intersection with (0, ∞).

We shall next show that the resolvent set P(M ) of M has a non-empty intersection with 
(0, ∞). Since Hμ is Fredholm of index 0, it is enough to show that, for sufficiently large μ > 0, 
it is N[Hμ] = {0}. From (4.4.34), we see that the latter is equivalent to show that the equation 
Tμ(U) = 0 has only the solution U= 0  X , for sufficiently large μ > 0. From (4.4.11), in turn, 
this means that the following problem (U≡ (u, χ))

−μ�u+∇p = λ (∂1u− u0 · ∇u− u · ∇u0)

divu= 0

}
in �,

u(x)= 0 , x ∈ ∂� ,

ω2
nχ +�

∫
∂�

T (u,p) · n= 0 ,

(4.4.35)

has only the solution u= χ = 0. To show that this is indeed the case, we begin to observe that, 
since u0, u ∈ L4(�), it follows that (u0 · ∇u+u · ∇u0) ∈D

−1,2
0 . Therefore, from [15, Theorem 

VII.7.2] we deduce, in particular,

p ∈L2(�) . (4.4.36)

Let ψR be the cut-off function introduced in Theorem 13. Testing (4.4.35)1 with ψRu and 
integrating by parts, we get
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‖ψ
1
2
R∇u‖2

2 =− 1
2λ [(∂1ψRu,u)− (|u|2u0,∇ψR)] − λ(ψRu · ∇u0,u)+ (p u,∇ψR) . (4.4.37)

Thus, passing to the limit R →∞ in (4.4.37), using (4.4.36) and arguing as in the proof of
Theorem 13, we obtain

μ‖∇u‖2
2 =−λ(u·∇u0,u) .

By Theorem 6, (3.2.10) and Hölder inequality, we deduce

μ‖∇u‖2
2 ≤ λ‖u‖2

6‖∇u0‖ 3
2
≤ c λ‖∇u‖2

2‖∇u0‖ 3
2
.

As a result, if μ > cλ‖∇u0‖ 3
2
:= μ, we conclude u ≡ 0, which, by (4.4.35)2, implies U ≡ 0, 

namely, P(M ) ∩ (μ, ∞) �= ∅. Summarizing, we have shown that σess(M ) ∩ (0, ∞) = ∅ while 
P(M ) ∩ (μ, ∞) �= ∅. Therefore, the stated property about eigenvalues is a consequence of clas-
sical results in spectral theory [23, Theorem XVII.2]. �

We now make the following assumption:

the map λ ∈U(λs) �→ u0(λ) is of class C2 . (H)

This assumption, along with Remark 8, implies that F is of class C2 in U × X . Next, by
Lemma 19 and [29, Definition 79.14], for a fixed λ > 0, we call μ �= 0 simple eigenvalue if

dim N[μI− λM (λ)] = 1 ;
N[μI− λM (λ)] ∩R[I− λM (λ)] = {0} . (4.4.36)

As is known, (4.4.36)2 can be equivalently reformulated as follows. Let M ∗, be the adjoint of 
M . Then, from (4.4.36)1 and Lemma 19 we deduce that

dim N[μ I− λM ∗(λ)] = codim R[μ I− λM (λ)] = 1.

Indicating by W1 ∈Z and W∗
1 ∈Z−1 two non-zero elements of respectively N[μ I − λ M (λ)]

and N[μ I − λ M ∗(λ)], (4.4.36)2 is equivalent (after suitable normalization) to

〈W∗
1,W1〉 = 1 , (4.4.37)

where 〈·, ·〉 denotes the duality pairing Z→Z−1.
The following result holds.

Lemma 20. Suppose that 1 is a simple eigenvalue of λs M (λs) and that (H) holds. Then, there 
is U0 ⊆U(λs) such that the eigenvalue μ =μ(λ) of λ M (λ), λ ∈U0, is simple and of class C2. 
Moreover,

μ′(λs)=−〈W∗
1, (M (λs)+ λs M ′(λs)

)
(W1)〉 , (4.4.38)

where the prime denotes differentiation with respect to λ.
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Proof. It can be obtained as a consequence of (4.4.27)–(4.4.28) and [29, Corollary 79.16]. �
We are now in a position to prove the main result of this subsection.

Theorem 21. Suppose that (H) holds. If (λs, 0) is a bifurcation point of (4.4.28), then the equa-
tion

W− λs M (λs)(W)= 0 (4.4.39)

has at least one non-trivial solution W1. Conversely, assume that 1 is a simple eigenvalue of 
λs M (λs), namely, (4.4.36) holds with μ = 1. Then, if μ′(λs) �= 0 (transversality condition), 
there exists exactly one continuous curve of nontrivial solutions to (4.4.27), (U(λ), λ) ∈ X ×
U(λs), with (U(λs), λs) = (0, λs).

Proof. Taking into account that (4.4.39) is equivalent to dim N[Ls] > 0, the necessary condi-
tion follows from Corollary 17; see also Remark 7. Moreover, from (4.4.27)–(4.4.28) we have 
DUF (λs, 0) = I −λsM (λs), which, by Lemma 19, is Fredholm of index 0. Therefore, under the 
assumption dim N[I − λs M (λs)] = 1, a classical bifurcation result [3, Theorem 4.1.12] ensures 
the stated sufficient property provided

D2
λUF (λs,0) (W1) �∈ R[DUF (λs,0)] ,

or, equivalently,

〈W∗
1,D

2
λUF (λs,0)(W1)〉 �= 0 . (4.4.40)

By a straightforward computation, from (4.4.27)–(4.4.28) we show that

D2
λUF (λs,0)(W1)=M (λs)(W1)+ λs M ′(λs)(W1) ,

so that, if 1 is a simple eigenvalue, by Lemma 20, condition (4.4.40) is equivalent to μ′(λs) �= 0, 
which concludes the proof of the theorem. �
Remark 9. An equivalent way of expressing (4.4.36) is to say that the equation

W− λsM (λs)(W)=W1 ,

has no solution. In turn, the latter is equivalent to the condition that the equation

Lλs (W)=A (W1)

has no solution.

Remark 10. Should the basic flow u0(λ) not depend on λ ∈U(λs), then (4.4.38) reduces to

μ′(λs)=−〈W∗,M (λs)(W1)〉 ,
1
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which, combined with (4.4.39) and (4.4.37), furnishes

μ′(λs)=−λ−1
s .

As a result, under the above assumption, the transversality condition is no longer an extra re-
quirement and becomes a consequence of the fact that μ = 1 is simple.

Remark 11. Also in the light of the previous remarks, we would like to present in more explicit 
terms the conditions stated in Theorem 21, ensuring the occurrence of bifurcation. Consider the 
eigenvalue problem

−μ(λ)�u+∇p = λ (∂1u− u0(λ) · ∇u− u · ∇u0(λ))

divu= 0

}
in �,

u(x)= 0 , x ∈ ∂� ; lim|x|→∞u(x)= 0 ,

ω2
nχ +�

∫
∂�

T (u,p) · n= 0 ,

(4.4.41)

in the class (u, χ) ∈ X2(�) × R3. Then, (u0(λs), λs) is a bifurcation point if the following 
conditions are met:

(i) μ(λs) = 1 and the corresponding eigenspace is one-dimensional, spanned by (u1, χ1);
(ii) the problem

−�u+∇p− λs (∂1u− u0(λs) · ∇u− u · ∇u0(λs))=�u1

divu= 0

}
in �,

u(x)= 0 , x ∈ ∂� ;

ω2
nχ +�

∫
∂�

T (u,p) · n= ω2
nχ1 +�

∫
∂�

T (u1,p1) · n ,

has no solution in the class (u, χ) ∈X2(�) ×R3;
(iii) μ′(λ) satisfies the transversality condition.

The last requirement is automatically satisfied if u0(λ) , λ ∈U(λs), is independent of λ.
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