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Abstract—In this work, we present an alternative method for 

modeling finite-element magnetoinductive waveguides (MIWs) 

based on an equivalent circuit derivation. The proposed method 

provides practical insight into the behavior and operation of 

finite MIWs that cannot be fully explained using the dispersion 

model currently dominating MIW analysis, such as passband 

ripples. The model shows excellent agreement with simulated and 

experimental results when compared with first-order dispersion 

relation analysis and demonstrates the ability to predict behavior 

under complex MIW structures, such as junctions. To our 

knowledge, this is the first time that the equivalent circuit model 

presented in this work has been used to analyze MIW behavior 

and performance. 
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I. INTRODUCTION 

A magnetoinductive waveguide (MIW) is a structure 
formed from a closely-packed collection of electrically small, 
resonant loops that support the propagation of 
magnetoinductive (MI) waves. The dispersion relation defining 
MIW operation assumes an infinite MIW [1], i.e., there are no 
termination-induced reflections along the waveguide. When an 
MIW is restricted to finite length, the passband becomes 
uneven and rippled. Using the theory of an infinite MIW to 
approximate the operation of a real, finite-element MIW is 
typically reliable. However, in cases such as discontinuities, 
junctions, or severe impedance mismatch, the real passband of 
the MIW begins to deviate significantly from the predicted, 
theoretical passband.  

In this work, we develop an equivalent circuit model for 
finite element MIWs. As a proof-of-concept, we use this model 
to predict the passband of an 11-loop axial MIW in three cases: 
(1) no loops are broken; (2) the loop closest to the transmitting 
(Tx) loop is broken; and (3) the middle loop (i.e., loop six) is 
broken. We then validate these predictions using both 
simulation and experimental results. These test-cases 
demonstrate the valuable insight on finite MIW behavior that 
can be quickly and accurately attained using this model. These 
cases also demonstrate the practical application of this model, 
as MIW loop breakage has only been studied previously via 
simulations for the application of Wireless Body Area 
Networks (WBANs) [2]. By developing a theoretical model 
with the ability to predict the passband behavior of finite length 
MIWs, we are empowering practical design considerations of 
real MIWs and MIW devices.  

 

Fig. 1. Derivation of the equivalent circuit model used to analyze finite MIWs 

in this work. 

II. THEORETICAL MODEL 

A. Equivalent Circuit Model 

 We consider the general case of an N-element MIW shown 
at the top of Fig. 1. We assume the capacitance C, inductance 
L, and resistance R are the same for all loops to simplify our 
model. Further, we assume that coupling only occurs between 
directly neighboring loops. We do not require that the mutual 
coupling (Mx,y) between neighboring loops be uniform along 
the MIW. 

 We begin at loop N (i.e., the receive (Rx) loop) of the MIW 
and follow the iterative reduction process shown in Fig. 1. The 
impedance of the Nth loop is given by 

 ( 1/ ) ,N LZ j L C R Z = − + +  () 

where ZL is the terminal impedance, ω is the radial frequency 

and j is the complex unit. The circuit model, consisting of N 

loops, is reduced to N-1 loops by reflecting the impedance 

loop N onto loop N-l. The reflected impedance of loop N, Z'N, 

is given by 
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Next, the impedance of loop N-1 (including the series 

impedance Z'N) is reflected onto loop N-2. This process 

continues until the entire MIW is represented by one loop, as 

shown at the bottom of Fig. 1, where Z'2 is the equivalent 

impedance of loops two through N as derived through this 

process. The real power dissipated by this impedance (R'2) 

represents the power propagated beyond the first loop of the 

MIW. 



We can now approximate the transmission coefficient of 
our MIW as 
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This is an approximation as some of the power dissipated by 
R'2 is the conduction loss as the MI wave propagates down the 
MIW. These conduction losses cannot be easily separated from 
the power dissipated by the termination due to the complex 
interaction between impedances as they are reflected. 

B. Model Validation Setup 

We consider an 11-loop MIW constructed of circular, 
axially aligned 4 cm radius loops. Each loop has the following 
parameters: R = 0.29 Ω, C = 470 pF, and L = 293 nH. The gap 
between neighboring elements is g = 2 cm. The MIW is 
terminated by an impedance ZL = 50 Ω, and has a generator 
resistance of Rg = 50 Ω. Each loop is coupled to its direct 
neighbors with M = 19.8 nH. We construct a physical model 
(shown in Fig. 2(a)) and a simulation model (using CST Studio 
Suite [3]) for comparison to our theoretical results. 

We consider this MIW under three different cases of 
mechanical failure: (1) no mechanical failure has occurred; (2) 
the middle loop (i.e., loop six) is broken; and (3) the second 
loop (from Tx) is broken. To perform our analysis in Cases 2 
and 3, we remove the broken loop from the model. The direct 
neighbors of the broken loop are then coupled to each other 
with M' = 5.7 nH. 

C. Results 

Fig. 2(b), 2(c), and 2(d) show our results for Case 1, Case 

2, and Case 3, respectively. Our model correctly predicts that 

Case 2 exhibits the lowest minimum path loss, and that Case 3 

exhibits the highest minimum path loss. Our model also 

provides a qualitative estimate of the passband ripples and 

offers a good quantitative estimate for the path loss in each 

case; however, the theoretical results provided by our model 

are slightly shifted in frequency and exhibit a smaller 

bandwidth than the corresponding simulation results. Note that 

the circuit model can be extended to include non-nearest 

neighbor coupling which will lead to improved agreement. 

D. Comparison to Dispersion Relation 

We now analyze Cases 1 and 2 using the first-order 
dispersion relation and compare the results to our model. Case 
2 is chosen as opposed to Case 3 due to simplicity of analysis 
under the dispersion relation. We assume no reflections at the 
termination (a necessary but poor assumption in the case of 
finite MIWs as broadband matching is challenging for these 
devices). We analyze Case 1 using the attenuation coefficient 
of this MIW. We analyze Case 2 by treating this structure as a 
mirror (described in [4]). The minimum path loss and 10-dB 
bandwidth are compared in Table I. In both cases, our model 
has stronger agreement with the experimental results than the 
predictions made using the dispersion relation.  

III. CONCLUSION 

We described a new model to analyze finite-element MIWs 
that can accurately predict phenomena occurring on finite 
MIWs (e.g., passband ripples) that are not described by 
previous analysis techniques. This model also accurately 
predicts changes in MIW performance due to irregularities 
such as junctions and discontinuities, problems that are very 
complex using previous models. We further demonstrated the 
capabilities of this model to accurately describe the behavior of 
a finite MIW in several test cases. Finally, we used a physical 
model to validate our results. Overall, the model developed in 
this paper provides an alternative method of analysis for finite 
MIWs that offers practical insight into the performance of real 
MIWs. 
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TABLE I 

COMPARISON OF ANALYSIS TECHNIQUES 

 
 

This Work 
Dispersion 
Relation 

Experimental 
Results 

Case 1 

Min. Path 
Loss (dB) 

-13.73 -7.46 -11.91 

Bandwidth 
(MHz) 

2.0 1.7 3.2 

Case 2 

Min. Path 
Loss (dB) 

-12.67 -13.24 -11.48 

Bandwidth 
(MHz) 

1.9 1.7 2.6 
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Fig. 2. (a) Physical setup, (b) results for Case 1, (c) results for Case 2, and (d) 
results for Case 3. 


