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Abstract—In this work, we present an alternative method for
modeling finite-element magnetoinductive waveguides (MIWs)
based on an equivalent circuit derivation. The proposed method
provides practical insight into the behavior and operation of
finite MIWs that cannot be fully explained using the dispersion
model currently dominating MIW analysis, such as passband
ripples. The model shows excellent agreement with simulated and
experimental results when compared with first-order dispersion
relation analysis and demonstrates the ability to predict behavior
under complex MIW structures, such as junctions. To our
knowledge, this is the first time that the equivalent circuit model
presented in this work has been used to analyze MIW behavior
and performance.
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I. INTRODUCTION

A magnetoinductive waveguide (MIW) is a structure
formed from a closely-packed collection of electrically small,
resonant loops that support the propagation of
magnetoinductive (MI) waves. The dispersion relation defining
MIW operation assumes an infinite MIW [1], i.e., there are no
termination-induced reflections along the waveguide. When an
MIW is restricted to finite length, the passband becomes
uneven and rippled. Using the theory of an infinite MIW to
approximate the operation of a real, finite-element MIW is
typically reliable. However, in cases such as discontinuities,
junctions, or severe impedance mismatch, the real passband of
the MIW begins to deviate significantly from the predicted,
theoretical passband.

In this work, we develop an equivalent circuit model for
finite element MIWs. As a proof-of-concept, we use this model
to predict the passband of an 11-loop axial MIW in three cases:
(1) no loops are broken; (2) the loop closest to the transmitting
(Tx) loop is broken; and (3) the middle loop (i.e., loop six) is
broken. We then validate these predictions using both
simulation and experimental results. These test-cases
demonstrate the valuable insight on finite MIW behavior that
can be quickly and accurately attained using this model. These
cases also demonstrate the practical application of this model,
as MIW loop breakage has only been studied previously via
simulations for the application of Wireless Body Area
Networks (WBANSs) [2]. By developing a theoretical model
with the ability to predict the passband behavior of finite length
MIWs, we are empowering practical design considerations of
real MIWs and MIW devices.
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Fig. 1. Derivation of the equivalent circuit model used to analyze finite MIWs
in this work.

II.  THEORETICAL MODEL

A. Equivalent Circuit Model

We consider the general case of an N-element MIW shown
at the top of Fig. 1. We assume the capacitance C, inductance
L, and resistance R are the same for all loops to simplify our
model. Further, we assume that coupling only occurs between
directly neighboring loops. We do not require that the mutual
coupling (Myy) between neighboring loops be uniform along
the MIW.

We begin at loop N (i.e., the receive (Rx) loop) of the MIW
and follow the iterative reduction process shown in Fig. 1. The
impedance of the N™ loop is given by

Z,=j(@L-1/wC)+R+Z,, (D)
where Z is the terminal impedance, ® is the radial frequency
and j is the complex unit. The circuit model, consisting of N
loops, is reduced to N-1 loops by reflecting the impedance
loop N onto loop N-1. The reflected impedance of loop N, Z'\,
is given by
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Next, the impedance of loop N-1 (including the series

impedance Z'\) is reflected onto loop N-2. This process

continues until the entire MIW is represented by one loop, as

shown at the bottom of Fig. 1, where Z'; is the equivalent

impedance of loops two through N as derived through this

process. The real power dissipated by this impedance (R'2)

represents the power propagated beyond the first loop of the
MIW.



We can now approximate the transmission coefficient of
our MIW as
S:=TTRE v
g 2
This is an approximation as some of the power dissipated by
R"; is the conduction loss as the MI wave propagates down the
MIW. These conduction losses cannot be easily separated from
the power dissipated by the termination due to the complex
interaction between impedances as they are reflected.

B. Model Validation Setup

We consider an 11-loop MIW constructed of circular,
axially aligned 4 cm radius loops. Each loop has the following
parameters: R =0.29 Q, C =470 pF, and L =293 nH. The gap
between neighboring elements is g = 2 cm. The MIW is
terminated by an impedance Zp = 50 €, and has a generator
resistance of Ry = 50 Q. Each loop is coupled to its direct
neighbors with M = 19.8 nH. We construct a physical model
(shown in Fig. 2(a)) and a simulation model (using CST Studio
Suite [3]) for comparison to our theoretical results.

We consider this MIW under three different cases of
mechanical failure: (1) no mechanical failure has occurred; (2)
the middle loop (i.e., loop six) is broken; and (3) the second
loop (from Tx) is broken. To perform our analysis in Cases 2
and 3, we remove the broken loop from the model. The direct
neighbors of the broken loop are then coupled to each other
with M'=5.7 nH.

C. Results

Fig. 2(b), 2(c), and 2(d) show our results for Case 1, Case
2, and Case 3, respectively. Our model correctly predicts that
Case 2 exhibits the lowest minimum path loss, and that Case 3
exhibits the highest minimum path loss. Our model also
provides a qualitative estimate of the passband ripples and
offers a good quantitative estimate for the path loss in each
case; however, the theoretical results provided by our model
are slightly shifted in frequency and exhibit a smaller
bandwidth than the corresponding simulation results. Note that
the circuit model can be extended to include non-nearest
neighbor coupling which will lead to improved agreement.
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Fig. 2. (a) Physical setup, (b) results for Case 1, (c) results for Case 2, and (d)
results for Case 3.

TABLE I
COMPARISON OF ANALYSIS TECHNIQUES

. Dispersion Experimental
This Work Relation Results
Min. Path
Loss (dB) -13.73 -7.46 -11.91
Case 1 .
Bandwidth 20 17 32
(MHz) ) ) )
Min. Path
Loss (dB) -12.67 -13.24 -11.48
Case 2 5
Bandwidth 1.9 17 26
(MHz) ) ) )

D. Comparison to Dispersion Relation

We now analyze Cases 1 and 2 using the first-order
dispersion relation and compare the results to our model. Case
2 is chosen as opposed to Case 3 due to simplicity of analysis
under the dispersion relation. We assume no reflections at the
termination (a necessary but poor assumption in the case of
finite MIWs as broadband matching is challenging for these
devices). We analyze Case 1 using the attenuation coefficient
of this MIW. We analyze Case 2 by treating this structure as a
mirror (described in [4]). The minimum path loss and 10-dB
bandwidth are compared in Table I. In both cases, our model
has stronger agreement with the experimental results than the
predictions made using the dispersion relation.

ITII. CONCLUSION

We described a new model to analyze finite-element MIWs
that can accurately predict phenomena occurring on finite
MIWs (e.g., passband ripples) that are not described by
previous analysis techniques. This model also accurately
predicts changes in MIW performance due to irregularities
such as junctions and discontinuities, problems that are very
complex using previous models. We further demonstrated the
capabilities of this model to accurately describe the behavior of
a finite MIW in several test cases. Finally, we used a physical
model to validate our results. Overall, the model developed in
this paper provides an alternative method of analysis for finite
MIWs that offers practical insight into the performance of real
MIWs.
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