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Abstract 
 

Magnetoinductive waveguides (MIWs) are near-field 

guiding structures constructed with unit cells of electrically 

small resonant elements with applications ranging from 

wireless body area networks to wireless sensing. Previous 

work has derived the near-field guiding properties when 

the unit cell consists of either one or two resonant elements. 

In this work, we expand upon the MIW theory by deriving 

the dispersive behavior of an MIW when the unit cell 

consists of three resonant elements. Several simplified 

relationships are also presented for a variety of common 

geometric constraints and symmetries. The analytical 

model is shown to have excellent agreement with simulated 

results in the passband of the MIW. 

 

1. Introduction 
 

Magnetoinductive waveguides (MIWs) consist of a series 

of periodically spaced, electrically small, resonant 

elements. By exciting one of the elements, the current 

generates a magnetic field leading to coupling to 

neighboring elements through Faraday’s Law of Induction. 

Through careful design of the structure, this leads to a 

traveling wave phenomenon [1]. In the past, MIWs have 

been used for a variety of applications, including 

communications, power transfer, and wireless sensing [2]–

[4]. Recently, MIWs have found a strong place in wireless 

body area network applications due to their low loss, 

frequency independence, unobtrusiveness, and invariance 

to the presence of human tissue [5]–[7]. 

 

Various areas of MIW theory have been previously 

explored in the literature. The foundation of the work began 

with the analysis of MIWs constructed with a periodic unit 

that contained a single resonant element [1]. From there, 

the theory expanded to include MIWs with a periodic unit 

containing two resonant elements [8]. This was done by 

extending into a second dimension of construction (e.g., 

stacking two resonant loops on top of one another) or by 

maintaining a one-dimensional structure but alternating 

between different resonant elements [9]. The addition of 

the second resonant element in the periodic unit allowed 

for two passbands for the structure – through careful design 

this could be used to expand the passband of the structure 

or to give the structure two separated passbands of 

operation. 

 

In this work, we expand the theory to include three resonant 

elements in the periodic unit of the MIW. This will 

potentially provide the structure with three passbands 

which could then be manipulated in a similar way to the 

two resonant element case – allowing for an even larger 

passband or three distinct passbands. 

 

The rest of the paper is laid out as follows: Section 2 walks 

through the derivation of the dispersion relation for the 

three resonant element case, Section 3 analyzes the changes 

in the dispersion relation under various geometric 

simplification, Section 4 demonstrates a numerical 

validation of the dispersion relation, and the paper is 

concluded in Section 5. 

 

2. Derivation of Dispersion Relation 
 

The dispersion relation mathematically relates the radial 

frequency of operation, ω, with the complex propagation 

constant, 𝛾 = 𝛼 + 𝑗𝛽, where 𝛼 is the attenuation constant 

and 𝛽  is the phase constant. To derive the dispersion 

relation for an MIW with three resonant elements per unit 

we assume that the elements are split rings loaded with 

capacitors without any loss of generality. We further 

assume that the MIW is periodic in the direction of 

propagation and extends to infinity in either direction. 

Finally, we only account for nearest neighbor interactions 

in the direction of propagation. 

 

The periodic unit consists of three elements that are not 

necessarily identical. We denote the intrinsic impedance of 

each element with 𝑍0𝑥 = 𝑅𝑥 + 𝑗𝜔𝐿𝑥 +
1

𝑗𝜔𝐶𝑥
 where 𝑥 =

1, 2, or 3 represents each respective element in the periodic 

unit. Additionally, each element in the periodic unit can be 

rotated in any orientation and shifted any distance between 

[−
𝑝

2
,
𝑝

2
]  where 𝑝  is the geometric period of the MIW. 

Figure 1 shows the labeling convention for the impedance 

between elements in the MIW. Each impedance is of the 

form 𝑍𝑛𝑘± = 𝑗𝜔𝑀𝑛𝑘±  where 𝑀𝑛𝑘±  is the mutual 

inductance between the corresponding elements. 

 



To derive the dispersion relation, we start by invoking 

Kirchoff’s Voltage Law on the first element in the nth unit.  

 

 0 = 𝐼𝑛,1𝑍01 + 𝐼𝑛−1,1𝑍1 + 𝐼𝑛+1,1𝑍1 +

𝐼𝑛−1,2𝑍12− + 𝐼𝑛+1,2𝑍12+ + 𝐼𝑛,2𝑍12 +

𝐼𝑛−1,3𝑍13− + 𝐼𝑛+1,3𝑍13− + 𝐼𝑛,3𝑍13  

(1) 

 

We do the same for the second and third elements, which 

have similar forms as the first. 

 

 0 = 𝐼𝑛−1,1𝑍12+ + 𝐼𝑛+1,1𝑍12− + 𝐼𝑛,1𝑍12 +

𝐼𝑛,2𝑍02 + 𝐼𝑛−1,2𝑍2 + 𝐼𝑛+1,2𝑍2 + 𝐼𝑛−1,3𝑍23− +

𝐼𝑛+1,3𝑍23+ + 𝐼𝑛,3𝑍23  
(2) 

 0 = 𝐼𝑛−1,1𝑍13+ + 𝐼𝑛+1,1𝑍13− + 𝐼𝑛,1𝑍13 +

𝐼𝑛−1,2𝑍23+ + 𝐼𝑛+1,2𝑍23− + 𝐼𝑛,2𝑍23 +

𝐼𝑛,3𝑍03 + 𝐼𝑛−1,3𝑍3 + 𝐼𝑛+1,3𝑍3  
(3) 

 

We now look for a wave solution to the system of equations 

presented. In particular, we apply 𝐼𝑛,𝑘 = 𝐼𝑘exp⁡(𝑗𝜔𝑡 −

𝑛𝛾𝑝) where 𝐼𝑘 is the coefficient related to the element of 

interest. After applying this wave solution and simplifying 

the expressions we get: 

 

 0 = 𝐼1(𝑍01 + 2𝑍1 cos(𝑗𝛾𝑝)) +

𝐼2(𝑒
𝑗𝛾𝑝𝑍12− + 𝑒−𝑗𝛾𝑝𝑍12+ + 𝑍12) +

𝐼3(𝑒
𝑗𝛾𝑝𝑍13− + 𝑒−𝑗𝛾𝑝𝑍13+ + 𝑍13)  

(4) 

 0 = 𝐼1(𝑒
𝑗𝛾𝑝𝑍12+ + 𝑒−𝑗𝛾𝑝𝑍12− + 𝑍12) +

𝐼2(𝑍02 + 2𝑍2 cos(𝑗𝛾𝑝)) + 𝐼3(𝑒
𝑗𝛾𝑝𝑍23− +

𝑒−𝑗𝛾𝑝𝑍23+ + 𝑍23)  
(5) 

 0 = 𝐼1(𝑒
𝑗𝛾𝑝𝑍13+ + 𝑒−𝑗𝛾𝑝𝑍13− + 𝑍13) +

𝐼2(𝑒
𝑗𝛾𝑝𝑍23+ + 𝑒−𝑗𝛾𝑝𝑍23− + 𝑍23) + 𝐼3(𝑍03 +

2𝑍3𝑐𝑜𝑠⁡(𝑗𝛾𝑝))  
(6) 

 

Up to this point, we have assumed that each element can be 

entirely unique. To simplify the expression significantly, 

we now enforce that each element is identical such that 

𝑍01 = 𝑍02 = 𝑍03 = 𝑍. This allows us to solve the system 

of equations by algebraically eliminating the current 

coefficients leading to the final dispersion relation where 

𝑎𝑖 = 𝑍 + 2𝑍1cos⁡(𝑗𝛾𝑝)  and 𝑏𝑖𝑘+/− = 𝑒𝑗𝛾𝑝𝑍𝑖𝑘+/− +

𝑒−𝑗𝛾𝑝𝑍𝑖𝑘−/+ + 𝑍𝑖𝑘.  

 

 𝑎1𝑎2𝑎3 − 𝑎1𝑏23+𝑏23− − 𝑎2𝑏13+𝑏13− −

𝑎3𝑏12+𝑏12− + 𝑏12−𝑏13+𝑏23− +

𝑏13−𝑏23+𝑏12+ = 0  

(7) 

 

2.1. Simplifying the Dispersion Relation 
 

While the expression for a general three-element per unit 

MIW is useful, often the geometry contains symmetries 

and uniformities that can be used to our advantage. We will 

look at several useful simplifications to the geometry and 

how the changes to the geometry impact the dispersion 

relation. 

 

The first common geometric simplification is to enforce 

that each element is placed in the same orientation. In turn, 

the coupling between the n±1th unit and the nth unit is 

invariant to which element is examined. Mathematically, 

we get 𝑍1 = 𝑍2 = 𝑍3 such that 𝑎1 = 𝑎2 = 𝑎3 = 𝑎, leading 

to the following simplified dispersion relation: 

 

 𝑎3 − 𝑎(𝑏23+𝑏23− + 𝑏13+𝑏13− + 𝑏12+𝑏12−) +

𝑏12−𝑏13+𝑏23− + 𝑏13−𝑏23+𝑏12+ = 0  
(8) 

 

To further simplify the expression, we can enforce that 

there is no shift between the elements in each unit relative 

to the direction of propagation (i.e., elements in each unit 

are aligned). With this geometry, along with the previous 

simplification, we now have 𝑍12+ = 𝑍12− , 𝑍23+ = 𝑍23− , 

and 𝑍13+ = 𝑍13− . This then leads to 𝑏𝑖𝑘 =
2𝑍𝑖𝑘+𝑐𝑜𝑠⁡(𝑗𝛾𝑝) + 𝑍𝑖𝑘 and the further simplified dispersion 

relation: 

 

 𝑎3 − 𝑎(𝑏23
2 + 𝑏13

2 + 𝑏12
2 ) + 𝑏12𝑏13𝑏23 +

𝑏13𝑏23𝑏12 = 0  
(9) 

 

By enforcing that the spacing between elements within 

each unit is identical in addition to the other geometric 

simplifications, we have 𝑍12 = 𝑍23, 𝑍12+ = 𝑍23+ , leading 

to 𝑏12 = 𝑏23 . The dispersion relation is then further 

 
(a) 

 
(b) 

Figure 1. Diagram of impedance between neighboring 

MIW elements for (a) first-order interactions and (b) 

second-order interactions. 
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simplified as:  

 

 𝑎3 − 𝑎(𝑏13
2 + 2𝑏12

2 ) + 2𝑏12
2 𝑏13 = 0 (10) 

 

Finally, when the elements within each unit are spaced far 

enough apart such that the coupling between the first and 

third elements is significantly smaller than the coupling 

between the first and second elements, we have 𝑍13 ≅
𝑍13+ ≅ 0, leading to 𝑏13 ≅ 0. The dispersion relation is 

now in the simplest form, relying only on three impedance 

values (Z1, Z12+ and Z12) as seen in: 

 

 (𝑍 + 2𝑍1 cos(𝑗𝛾𝑝))
3 − 2(𝑍 +

2𝑍1 cos(𝑗𝛾𝑝))(2𝑍12+ cos(𝑗𝛾𝑝) + 𝑍12)
2 = 0  

(11) 

 

3. Numerical Validation 
 

To demonstrate the utility of the dispersion relation, we 

examine the following geometry: Each element is 

constructed with 30 AWG rectangular copper loops that are 

9.1 cm × 3.5 cm in size and loaded with 56 pF capacitors. 

The elements are all uniform, aligned, and spaced equally 

apart. They are placed in a planar manner such that the axes 

of each element in a single unit are aligned. The distance 

between units is 0.25 cm and the distance between the 

elements in each unit is 0.75 cm. With this geometry, the 

dispersion relation in Equation 11 is the most suitable and 

allows for the simplest design procedure. The equivalent 

electrical parameters based on this geometry are listed in 

Table I.  
 

A computer algebra system was used to solve the 

dispersion relation for the propagation constant with the 

described parameters across frequency. The attenuation 

and phase constants vs frequency are shown in Figure 2. As 

expected, there are three corresponding solutions in both 

the phase and attenuation constants shown by the different 

traces. Due to the limitation of the computer algebra 

system, there may be some instances of discontinuities 

when solutions are similar in value. As shown in the 

attenuation constant, this design achieves a single wide 

passband from 31 MHz to 61 MHz. We can compare this 

bandwidth to the theoretical limits of a one element per unit 

MIW with a similar design. From the literature, we have 

the passband of a one element per unit MIW to be governed 

by:  

 

 1

√1 − 2𝑀1/𝐿
≤ 𝜔√𝐿𝐶 ≤

1

√1 + 2𝑀1/𝐿
 (10) 

 

This leads to a theoretical maximum bandwidth of 9.95 

MHz which is significantly smaller than the 30 MHz 

bandwidth demonstrated by our simple example. 

To validate the theoretical results, the geometry described 

was recreated in CST Studio as an 11-unit MIW and 

Table I. Electrical parameters for example MIW 

Parameter Value 

R 0.92 Ω 

L 260.3 nH 

C 56 pF 

M1 -30.3 nH 

M12 62.8 nH 

M12+ -11.3 nH 

 

 

 
(a) 

 
(b) 

Figure 2. Dispersion diagrams for example MIW (a) 

phase constant and (b) attenuation constant 

 

Figure 3. Comparison of theoretical and simulated 

results for an example MIW shown as an inset. 

           

              

    

   

   

   

   

 

 
 
 
 
  
 
 
 
  
 
 

      

          



simulated [10]. The minimum attenuation constant was 

taken at each frequency point, converted to dB magnitude, 

and compared to the simulated |S21| results.  

 

Figure 3 shows the comparison between the theoretical and 

simulated results along with the MIW model used in 

simulation. As can be seen, the analytical model was able 

to successfully predict the performance of a finite MIW 

with the same structure. In fact, the model even captures 

the large ripples of the attenuation constant, where each 

band has a slight separation and slightly decreased 

performance. Note that the small ripples present in the 

simulated results are a result of reflections that arise by 

truncating the MIW and are not captured by the dispersion 

relation because of our assumption of an infinite MIW. If 

further fidelity in design is required, other analytical 

models can be used that examine the finite nature of the 

MIW [11]. 

 

5. Conclusion 
 

A derivation of the relationship between the complex 

propagation constant and frequency of operation for a 

general three resonant element-based MIW was 

demonstrated. The relationship was further simplified for 

several likely scenarios such as uniform spacing and weak 

coupling between elements in the same unit. The analytical 

model was compared to simulation and showed excellent 

agreement within the passband of the structure. While the 

model agrees strongly with the presented simulation, it is 

important to note that this agreement is limited to MIWs 

with small reflections as the analytical model cannot 

capture this behavior effectively due to the underlying 

assumptions. 

 

This derivation has set the groundwork for the expansion 

of MIW theory towards implementing higher numbers of 

resonant elements. In the future, the dispersion relation will 

be further analyzed to derive expressions for relevant MIW 

characteristics such as bandwidth and frequency of 

minimum attenuation. 
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