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Abstract

Magnetoinductive waveguides (MIWs) are near-field
guiding structures constructed with unit cells of electrically
small resonant elements with applications ranging from
wireless body area networks to wireless sensing. Previous
work has derived the near-field guiding properties when
the unit cell consists of either one or two resonant elements.
In this work, we expand upon the MIW theory by deriving
the dispersive behavior of an MIW when the unit cell
consists of three resonant elements. Several simplified
relationships are also presented for a variety of common
geometric constraints and symmetries. The analytical
model is shown to have excellent agreement with simulated
results in the passband of the MIW.

1. Introduction

Magnetoinductive waveguides (MIWSs) consist of a series
of periodically spaced, electrically small, resonant
elements. By exciting one of the elements, the current
generates a magnetic field leading to coupling to
neighboring elements through Faraday’s Law of Induction.
Through careful design of the structure, this leads to a
traveling wave phenomenon [1]. In the past, MIWs have
been used for a variety of applications, including
communications, power transfer, and wireless sensing [2]—
[4]. Recently, MIWs have found a strong place in wireless
body area network applications due to their low loss,
frequency independence, unobtrusiveness, and invariance
to the presence of human tissue [5]-[7].

Various areas of MIW theory have been previously
explored in the literature. The foundation of the work began
with the analysis of MIWs constructed with a periodic unit
that contained a single resonant element [1]. From there,
the theory expanded to include MIWs with a periodic unit
containing two resonant elements [8]. This was done by
extending into a second dimension of construction (e.g.,
stacking two resonant loops on top of one another) or by
maintaining a one-dimensional structure but alternating
between different resonant elements [9]. The addition of
the second resonant element in the periodic unit allowed
for two passbands for the structure — through careful design
this could be used to expand the passband of the structure
or to give the structure two separated passbands of
operation.

In this work, we expand the theory to include three resonant
elements in the periodic unit of the MIW. This will
potentially provide the structure with three passbands
which could then be manipulated in a similar way to the
two resonant element case — allowing for an even larger
passband or three distinct passbands.

The rest of the paper is laid out as follows: Section 2 walks
through the derivation of the dispersion relation for the
three resonant element case, Section 3 analyzes the changes
in the dispersion relation under various geometric
simplification, Section 4 demonstrates a numerical
validation of the dispersion relation, and the paper is
concluded in Section 5.

2. Derivation of Dispersion Relation

The dispersion relation mathematically relates the radial
frequency of operation, ®, with the complex propagation
constant, y = a + jf§, where « is the attenuation constant
and f is the phase constant. To derive the dispersion
relation for an MIW with three resonant elements per unit
we assume that the elements are split rings loaded with
capacitors without any loss of generality. We further
assume that the MIW is periodic in the direction of
propagation and extends to infinity in either direction.
Finally, we only account for nearest neighbor interactions
in the direction of propagation.

The periodic unit consists of three elements that are not
necessarily identical. We denote the intrinsic impedance of

each element with Z,, = R, + jwL, + ](U;C where x =
X

1, 2, or 3 represents each respective element in the periodic
unit. Additionally, each element in the periodic unit can be
rotated in any orientation and shifted any distance between
[— g,g] where p is the geometric period of the MIW.
Figure 1 shows the labeling convention for the impedance
between elements in the MIW. Each impedance is of the
form Zpxy = joMy,y where M., is the mutual
inductance between the corresponding elements.
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Figure 1. Diagram of impedance between neighboring
MIW elements for (a) first-order interactions and (b)
second-order interactions.

To derive the dispersion relation, we start by invoking
Kirchoff’s Voltage Law on the first element in the n'" unit.

0="11Zo1 + In_11Z1 + Iny11Z:1 + (D
In_12Z12- + Lny12Z124 + InpZip +
Ly_13213- F Inp13213- + 13233

We do the same for the second and third elements, which
have similar forms as the first.

0="li 112124 + Iny11Z12- + 11212 +
InoZog + In_12Z; + L1072 + In_q 37255 + )
Lny132234 + In3Zss

0= In—1,1Z13+ + In+1,1Z13— + In,1213 +
In—l,ZZZ3+ + In+1,2223— + In,2223 + (3)
Ln3Zoz + In 1323+ Iny1323

We now look for a wave solution to the system of equations
presented. In particular, we apply I, = Iyexp (jwt —
nyp) where [ is the coefficient related to the element of
interest. After applying this wave solution and simplifying
the expressions we get:

0=1(Zy, +2Z, cos(jyp)) +
Iz(eiypzlz_ + e—j}’pzlz+ +7Z,)+ 4)
I3(e/"PZy3_ + e P Zy5, + Zs3)

0 = Il(ejyp212+ + e_jypzlz_ + le) +
12(202 + 2Z; cos(jyp)) + I5(e"PZy3_ + 5)
e P Zysy + Z33)

0= Il(eijZl3+ + e—jyp213_ +7Zy3) +
Iz(ejyp223+ + e_jypzz3— + Z33) + 13(Zo3 + 6)
2Z3zcos (jyp))

Up to this point, we have assumed that each element can be
entirely unique. To simplify the expression significantly,
we now enforce that each element is identical such that
Zyy = Zy, = Zyz = Z. This allows us to solve the system
of equations by algebraically eliminating the current
coefficients leading to the final dispersion relation where
a; = Z +2Zycos (jyp)  and by, =eVPZy,, +
e M Zy_yi + Zy.

a,a,03 — A1by3, b3 — azby34 b3 —
a3bi34b15_ + biy_bi3ibys_ + @)
by3_by34b154 =0

2.1. Simplifying the Dispersion Relation

While the expression for a general three-element per unit
MIW is useful, often the geometry contains symmetries
and uniformities that can be used to our advantage. We will
look at several useful simplifications to the geometry and
how the changes to the geometry impact the dispersion
relation.

The first common geometric simplification is to enforce
that each element is placed in the same orientation. In turn,
the coupling between the n+l1™ unit and the n™ unit is
invariant to which element is examined. Mathematically,
we get Z; = Z, = Z3 such that a; = a, = a; = a, leading
to the following simplified dispersion relation:

a® — a(byzybys_ + byzybiz_ + bigybip ) + (8)

b12-b134bys— + big_byz bz =0
To further simplify the expression, we can enforce that
there is no shift between the elements in each unit relative
to the direction of propagation (i.e., elements in each unit
are aligned). With this geometry, along with the previous
simplification, we now have Z,,, = Z15_, Zy3y = Zy3_,
and Zy3y =Zy;3_ . This then leads to by =
2Z;.+cos (jyp) + Zy, and the further simplified dispersion
relation:

a® — a(b; + bi3 + biy) + biybisbys +
)

byzbysbi; =0

By enforcing that the spacing between elements within
each unit is identical in addition to the other geometric
simplifications, we have Z;, = Z,3, Z1,, = Z,3, , leading
to by, = b,3 . The dispersion relation is then further



Table 1. Electrical parameters for example MIW

Parameter Value
R 0.92 Q
L 260.3 nH
C 56 pF
M, -30.3 nH
M]z 62.8 nH
M12+ -11.3 nH
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Figure 2. Dispersion diagrams for example MIW (a)
phase constant and (b) attenuation constant
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Figure 3. Comparison of theoretical and simulated
results for an example MIW shown as an inset.

simplified as:
a3 - a(bf3 + Zblzz) + 2b122b13 =0 (10)

Finally, when the elements within each unit are spaced far
enough apart such that the coupling between the first and
third elements is significantly smaller than the coupling
between the first and second elements, we have Z;; =
Zi34+ = 0, leading to b;3 = 0. The dispersion relation is
now in the simplest form, relying only on three impedance
values (Z1, Zi12+ and Z,) as seen in:

(Z + 2Z, cos(jyp))® — 2(Z + (11
27, cos(jyp)) (2Z124 cos(jyp) + Z12)* = 0

3. Numerical Validation

To demonstrate the utility of the dispersion relation, we
examine the following geometry: Each eclement is
constructed with 30 AWG rectangular copper loops that are
9.1 cm % 3.5 cm in size and loaded with 56 pF capacitors.
The elements are all uniform, aligned, and spaced equally
apart. They are placed in a planar manner such that the axes
of each element in a single unit are aligned. The distance
between units is 0.25 cm and the distance between the
elements in each unit is 0.75 cm. With this geometry, the
dispersion relation in Equation 11 is the most suitable and
allows for the simplest design procedure. The equivalent
electrical parameters based on this geometry are listed in

Table 1.

A computer algebra system was used to solve the
dispersion relation for the propagation constant with the
described parameters across frequency. The attenuation
and phase constants vs frequency are shown in Figure 2. As
expected, there are three corresponding solutions in both
the phase and attenuation constants shown by the different
traces. Due to the limitation of the computer algebra
system, there may be some instances of discontinuities
when solutions are similar in value. As shown in the
attenuation constant, this design achieves a single wide
passband from 31 MHz to 61 MHz. We can compare this
bandwidth to the theoretical limits of a one element per unit
MIW with a similar design. From the literature, we have
the passband of a one element per unit MIW to be governed
by:

1 1
,/1—2M1/st\/]fs1/1+2M1/L (19)

This leads to a theoretical maximum bandwidth of 9.95
MHz which is significantly smaller than the 30 MHz
bandwidth demonstrated by our simple example.

To validate the theoretical results, the geometry described
was recreated in CST Studio as an 11-unit MIW and



simulated [10]. The minimum attenuation constant was
taken at each frequency point, converted to dB magnitude,
and compared to the simulated |S;| results.

Figure 3 shows the comparison between the theoretical and
simulated results along with the MIW model used in
simulation. As can be seen, the analytical model was able
to successfully predict the performance of a finite MIW
with the same structure. In fact, the model even captures
the large ripples of the attenuation constant, where each
band has a slight separation and slightly decreased
performance. Note that the small ripples present in the
simulated results are a result of reflections that arise by
truncating the MIW and are not captured by the dispersion
relation because of our assumption of an infinite MIW. If
further fidelity in design is required, other analytical
models can be used that examine the finite nature of the
MIW [11].

5. Conclusion

A derivation of the relationship between the complex
propagation constant and frequency of operation for a
general three resonant element-based MIW was
demonstrated. The relationship was further simplified for
several likely scenarios such as uniform spacing and weak
coupling between elements in the same unit. The analytical
model was compared to simulation and showed excellent
agreement within the passband of the structure. While the
model agrees strongly with the presented simulation, it is
important to note that this agreement is limited to MIWs
with small reflections as the analytical model cannot
capture this behavior effectively due to the underlying
assumptions.

This derivation has set the groundwork for the expansion
of MIW theory towards implementing higher numbers of
resonant elements. In the future, the dispersion relation will
be further analyzed to derive expressions for relevant MIW
characteristics such as bandwidth and frequency of
minimum attenuation.
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