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Abstract— We characterize the growth of the Sibson and
Arimoto mutual informations and α-maximal leakage, of any
order that is at least unity, between a random variable and a
growing set of noisy, conditionally independent and identically-
distributed observations of the random variable. Each of these
measures increases exponentially fast to a limit that is order-
and measure-dependent, with an exponent that is order- and
measure-independent.

Index Terms— Composition theorem, maximal leakage, mutual
information, side-channel leakage.

I. INTRODUCTION

I
N THE context of information leakage, composition the-
orems characterize how leakage increases as a result of

multiple, independent, noisy observations of the sensitive
data. Equivalently, they characterize how security (or privacy)
degrades under the “composition” of multiple observations (or
queries). In practice, attacks are often sequential in nature,
whether the application is side channels in computer secu-
rity [1], [2], [3] or database privacy [4], [5], [6]. Thus
composition theorems are practically relevant. They also raise
theoretical questions that are interesting in their own right.

Various composition theorems for differential privacy and
its variants have been established (e.g., [4], [5], [6]). For
the information-theoretic metrics of mutual information and
maximal leakage [7], [8], [9], [10] (throughout we assume
discrete alphabets and base-2 logarithms)

I(X;Y ) =
�

x,y

P (x, y) log
P (x, y)

P (x)P (y)
(1)

L(X → Y ) = log
�

y

max
x:P (x)>0

P (y|x), (2)

and ³-maximal leakage [11], less is known. While some
results are available in the case that P (y|x) is not known [12],
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here we assume it is known. For the metrics in (1)-(2) it is
straightforward to show the “weak” composition theorem that
if Y1, . . . , Yn are conditionally independent given X , then

I(X;Y n) f
n
�

i=1

I(X;Yi)

L(X → Y n) f

n
�

i=1

L(X → Yi).

These bounds are indeed weak in that if Y1, . . . , Yn are
conditionally i.i.d. given X , then as n → ∞, the right-hand
sides generally tend to infinity while the left-hand sides remain
bounded. A “strong” (asymptotic) composition theorem would
identify the limit and characterize the speed of convergence.

Such a result for mutual information is known [13, Theorem
2]. We prove an analogous result for maximal leakage. The
limits are readily identified as the entropy and log-support size,
respectively, of a minimal sufficient statistic of Y given X .
Notably, in both cases, the speed of convergence to the limit
is exponential, and the exponent is the same. Specifically, it is
the minimum Chernoff information among all pairs of distinct
distributions QY |X(·|x) and QY |X(·|x′).

Mutual information and maximal leakage are both instances
of Sibson mutual information [10], [14], [15], the former
being order 1 and the latter being order ∞. The striking fact
that the exponents governing the convergence to the limit are
the same at these two extreme points suggests that Sibson
mutual information of all orders satisfies a strong asymptotic
composition theorem, with the convergence rate (but not the
limit) being independent of the order. Meanwhile, Shannon
mutual information can also be viewed as Arimoto mutual
information of order 1 [16], and ³-maximal leakage is equiv-
alently expressed as a maximization of Sibson or Arimoto
mutual information of order ³ over P (X) for ³ > 1; for
³ = 1, it equals Shannon mutual information [11], as opposed
to the Shannon capacity. Due to the intimate interrelation
between these measures, it is reasonable to suspect that similar
strong asymptotic composition theorems obtain for them all.
Indeed, we prove strong composition theorems for Sibson
mutual information, Arimoto mutual information, and ³-
maximal leakage, for all orders of at least unity. In particular,
we find that they all approach their respective limits at the
same ³-independent exponential rate, namely the minimum
Chernoff information mentioned earlier. Our proofs rely on
type-theoretic methods [17, Ch.11], [18].

The composition theorems proven here are different in
nature from those in the differential privacy literature. Here we
assume that the relevant probability distributions are known,
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and we characterize the growth of leakage with repeated
looks from those distributions. We also assume that Y1, . . . , Yn

are conditionally i.i.d. given X . Composition theorems in
differential privacy consider the worst-case distributions given
leakage levels for each of Y1, . . . , Yn individually, assuming
only conditional independence.

Although our motivation is averaging attacks in side chan-
nels, the results may have some use in capacity studies of
channels with multiple conditionally i.i.d. outputs given the
input [17, Prob. 7.20].

The balance of the paper is organized as follows. The next
section introduces the remaining mutual information measures
and other important quantities. Our main result is stated in
Sec. II. Secs. III-VIII contain the proofs separated out by
information measure. A preliminary version [19] of this work
provided results for Sibson mutual information for all orders
in [1,∞]. This paper extends those results by also including
results for channel capacity, Arimoto mutual information, and
³-maximal leakage.

II. SIBSON, ARIMOTO, RÉNYI, AND CHERNOFF

This study relies on both Sibson’s and Arimoto’s tunable
mutual information metrics as well as ³-maximal leakage. All
random variables in the paper are assumed discrete.

Definition 1 ([14], [15]): The Sibson mutual information

of order ³ between random variables X and Y is defined
by

IS
³ (X;Y ) =

³

³ − 1
log
�

y∈Y

�

�

x∈X

P (x)P (y|x)³
�1/³

, (3)

for ³ ∈ (0, 1) ∪ (1,∞) and for ³ = 1 and ³ = ∞ by its
continuous extensions. These are

IS
1 (X;Y ) = I(X;Y )

IS
∞(X;Y ) = L(X → Y ),

defined in (1)-(2) above.
Definition 2 [16]: The Arimoto mutual information of

order ³ between random variables X and Y is defined by

IA
³ (X;Y ) =

³

³ − 1
log
�

y∈Y

�

�

x∈X P (x)³P (y|x)³

�

x∈X P (x)³

�1/³

(4)

for ³ ∈ (0, 1) ∪ (1,∞) and for ³ = 1 and ³ = ∞ by its
continuous extensions. Note that [16]

IA
1 (X;Y ) = I(X;Y )

but

IA
∞(X;Y ) ̸= L(X → Y ).

Definition 3 [11]: The ³-maximal leakage for ³ ∈ (1,∞]
is equivalently defined using either Sibson or Arimoto mutual
information as:1

Lmax
³ (X → Y ) = max

Q(X)
IS
³ (X;Y ) = max

Q(X)
IA
³ (X;Y ), (5)

1The second equality in (5) is apparent for 1 < α < ∞ from (3) and (4)
since the tilting of P (x) in the latter can be absorbed into the maximization.
For α = ∞, see [11, Thm. 2].

where the maxima are over all distributions of X that have
full support. For ³ = 1, we have

Lmax
³ (X → Y ) = I(X;Y ). (6)

as opposed to the (Shannon) capacity

C(X;Y ) = max
Q(X)

I(X;Y ). (7)

Liao et al. [11] define ³-maximal leakage operationally. The
identities in (5)-(6) are a theorem in that work, which we shall
take as a definition. Likewise, Issa et al. [7] define maximal
leakage operationally, and (2) is a theorem therein that we take
as a definition.

We are interested in how IS
³ (X;Y n), IA

³ (X;Y n), and
Lmax

³ (X → Y n) grow with n when Y1, . . . , Yn are condi-
tionally i.i.d. given X for ³ g 1. The question for ³ < 1 is
meaningful in all cases but is not considered here because we
are interested in the behavior of operational leakage measures,
and the ³ < 1 regime is not known to be relevant to measuring
leakage. We do not consider the mutual information meaures
put forward by Csiszár [20] and Lapidoth and Pfister [21], [22]
for the same reason. For the quantities under study, we shall
see that the limits are given by Rényi entropy. As they will
be needed for the proofs later, we also define Arimoto-Rényi

conditional entropy and Rényi divergence.
Definition 4: The Rényi entropy of order ³ of a random

variable X is given by:

H³(X) =
1

1 − ³
log
�

x∈X

P (x)³ (8)

for ³ ∈ (0, 1)∪ (1,∞) and for ³ = 0, ³ = 1, and ³ = ∞ by
its continuous extensions. These are

H0(X) = log |{x : P (x) > 0}| (9)

H1(X) = H(X) (10)

H∞(X) = log
1

maxx P (x)
. (11)

where H(X) is the regular Shannon entropy.
Definition 5: The Arimoto-Rényi conditional entropy of

order ³ of a random variable X given Y is defined as:

H³(X|Y ) =
³

1 − ³
log
�

y∈Y

�

�

x∈X

P (x)³P (y|x)³
�

1
α

. (12)

Remark: One can verify that it holds

IA
³ (X;Y ) = H³(X) − H³(X|Y ). (13)

Definition 6: The Rényi divergence of order ³ between
probability distributions P and Q is defined for ³ ∈ [0,∞),
³ ̸= 1 as:

D³(P ||Q) =
1

³ − 1
log
�

x∈X

P (x)³Q(x)1−³, (14)

where the continuous extension at ³ = 1 is given by the
standard Kullback-Leibler divergence

D(P ||Q) =
�

x∈X

P (x) log
P (x)

Q(x)
. (15)
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As will be shown in Theorem 1, the speed of convergence
of IS

³ (X;Y n), IA
³ (X;Y n), Lmax

³ (X → Y n), and C(X;Y n)
to their respective limits turns out to be governed by Chernoff

information.

Definition 7 [17]: The Chernoff information between two
probability mass functions, P1 and P2, over the same alphabet
X is given as follows. First, for all x ∈ X and ¼ ∈ [0, 1], let:

P¼(x) = P¼(P1, P2, x) =
P1(x)¼P2(x)1−¼

�

x′∈X P1(x′)¼P2(x′)1−¼
. (16)

Then the Chernoff information is given by

C (P1||P2) = D(P¼∗ ||P1) = D(P¼∗ ||P2), (17)

where ¼∗ is any value of ¼ such that the above two relative
entropies are equal. Equivalently, the Chernoff information is
also given by:

C (P1||P2) = − min
0f¼<1

log

�

�

x

P1(x)¼P2(x)1−¼

�

. (18)

Since we consider finite alphabets, the Chernoff information
is infinite if and only if P1 and P2 have disjoint support.

Other Notation: We use standard type-theoretic ideas and
notation [17, Ch.11], [18]. We use Pn to denote the set of all
possible empirical distributions of Y n. We let P denote the
set of all possible probability distributions over Y . For any
P ∈ P , let

T (P ) = {yn ∈ Yn|Pyn = P},

where Pyn is the empirical distribution of yn. Note that
T (P ) is empty if P /∈ Pn. We use Q(·) to denote the true
distributions of X and Y n. We let Qx denote the distribution
of Y given x for a given x ∈ X . For any P ∈ P , let xk(P )
denote x ∈ X such that D(P ||Qx) is the kth smallest relative
entropy across all elements of X . Ties can be broken by
the ordering of X . Note that from the standard type-theoretic
result [17, Thm. 11.1.2] that for any P ∈ Pn,

Qx(T (P )) = |T (P )| · 2−n(H(P )+D(P ||Qx)) (19)

we infer the ordering

Qx1(P )(T (P )) g Qx2(P )(T (P )) g · · · g Qx|X|(P )(T (P )).

(20)

We shall also use the standard type-theoretic bound [17,
Theorem 11.1.4] [18, Lemma 2.6]:

1

(n + 1)|Y|
2−nD(P ||Qx) f Q(T (P )|x) f 2−nD(P ||Qx). (21)

We also define x-domains for fixed n in two slightly
different ways. Let

Dx = {P ∈ P|D(P ||Qx) < D(P ||Qx′) ∀x′ ̸= x} (22)

D̄x = {P ∈ P|D(P ||Qx) f D(P ||Qx′) ∀x′ ∈ X} (23)

Note that for any P ∈ D̄x, D(P ||Qx) =
minx′∈X D(P ||Qx′).

III. THE RESULT

Let X be a random variable with alphabet X =
{x1, x2, . . . x|X |}. Let Y n = (Y1, Y2, . . . Yn) be a vector
of discrete random variables with a shared alphabet Y =
{y1, y2, . . . y|Y|}. We assume that Y1, Y2, . . . , Yn are condi-
tionally i.i.d. given X . Our goal is to characterize the growth
of IS

³ (X;Y n), IA
³ (X;Y n), and Lmax

³ (X → Y n) with n. For
this we may assume, without loss of generality, that X and Y
have full support. We may also assume that the distributions
PY |X(·|x) are distinct over x, which we call the distinct

row assumption. For Sibson mutual information and ³-max
leakage, this is without loss of generality, since we can divide
X into equivalence classes based on their respective PY |X(·|x)

distributions and define X̃ to be the equivalence class of X .
Then both Markov chains X ´ X̃ ´ Y n and X̃ ´ X ´ Y n

hold and so

IS
³ (X;Y n) = IS

³ (X̃;Y n) (24)

Lmax
³ (X → Y n) = Lmax

³ (X̃ → Y n), (25)

by the data processing inequality for Sibson mutual informa-
tion [23] and ³-maximal leakage [11, Thm. 3]. We may then
replace X with X̃ in the case of these measures. For Arimoto
mutual information, the chain rule does not hold, and in fact an
arbitrarily large discrepancy can exist between IA

³ (X;Y ) and
IA
³ (X̃;Y ), as shown in Appendix B, where it is also shown

that the distinct row assumption is nonetheless still without
loss of generality.

Our measures of interest satisfy the following upper bounds:

I(X;Y n) f H(X) (26)

C(X;Y n) f log |X | (27)

IS
³ (X;Y n) f H1/³(X) [15, Ex. 2 and Thm. 3]

(28)

IA
³ (X;Y n) f H³(X) [24, Prop. 3] and (13) (29)

Lmax
³ (X → Y n) f

�

H(X) if ³ = 1

log |X | if ³ > 1
[11, Thm. 3] (30)

=: L³(X),

where each inequality holds for all n and all ³ ∈ [1,∞].
Comparing (28) and (29) suggests that perhaps the Arimoto
mutual information of order ³ should be associated with the
Sibson mutual information of order 1/³; the identity in (5)
suggests otherwise.

Kanaya and Han [13, Theorem 2] have shown that I(X;Y n)
approaches H(X) exponentially fast, with a rate equal to the
minimum Chernoff information among all pairs of distinct
distributions QY |X(·|x) and QY |X(·|x′) (equation (32)). Our
main result shows that all quantities mentioned above approach
their corresponding upper bounds at this same rate.

Theorem 1: Under the distinct row assumption, for all ³ ∈
[1,∞],

min
x̸=x′

C (Qx||Qx′) (31)

= lim
n→∞

−
1

n
log
�

H(X) − I(X;Y n)
�

(32)

= lim
n→∞

−
1

n
log
�

log |X | − C(X;Y n)
�

(33)
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= lim
n→∞

−
1

n
log
�

H1/³(X) − IS
³ (X;Y n)

�

(34)

= lim
n→∞

−
1

n
log
�

H³(X) − IA
³ (X;Y n)

�

(35)

= lim
n→∞

−
1

n
log
�

L³(X) − Lmax
³ (X → Y n)

�

. (36)

Thus the Chernoff information governs the exponential rate-
of-approach for all measures and for all values of ³. This
Chernoff information is infinite if Qx and Qx′ have disjoint
support for all x ̸= x′; in this case, the bounds in (26)-(30)
are met with equality already for n = 1. Channels with this
property arise naturally in certain applications [25].

Observe that (34)-(36) coincide with (32) when ³ = 1. Also,
(34) and (36) coincide for ³ = ∞; otherwise the assertions
are independent.

For continuous random variables, it is meaningful and inter-
esting to study how IS

³ (X;Y n), C(X;Y n), and Lmax
³ (X →

Y n) grow with n. The behavior would be fundamentally
different from the discrete case, however. See Aishwarya and
Madiman [26] for a discussion of Arimoto mutual information
in the continuous case.

The remainder of the paper is devoted to proving the
various assertions contained within Theorem 1. The assertions
are evidently asymptotic in nature, and our proofs are not
optimized to provide the best finite-n bounds. Numerical
experiments show that in many cases our lower and upper
bounds are quite far apart for moderate values of n.

IV. PROOF FOR CAPACITY

To prove the upper bound in (33), let Q(u) denote the
uniform distribution over X . Then by (32) we have

lim inf
n→∞

−
1

n
log (log |X | − C(X;Y n)) (37)

g lim inf
n→∞

−
1

n
log
�

log |X | − I(X;Y n)Q(u)

�

(38)

= min
x̸=x′

C (Qx||Qx′). (39)

For the reverse inequality, for each n, let Qn be a maximizer of
I(X;Y n). We shall show that Qn is asymptotically uniform.
We have

D(Qn||Q
(u)) = log |X | − H(X)Qn

(40)

f log |X | − I(X;Y n)Qn
(41)

(a)

f log |X | − I(X;Y n)Q(u) (42)
(b)

f log |X | (43)

−
�

log |X | − e−
n
2 minx̸=x′ C (Qx||Qx′ )

�

f e−
n
2 minx̸=x′ C (Qx||Qx′ ), (44)

where (a) follows from the fact that Qn is a maximizer of
I(X;Y n), and (b) follows from (32) for sufficiently large
n. Thus Qn converges to Q(u) as desired. Moreover, it is
known [13, Lemma1] that for any ¶ > 0, there exists n large
enough such that

H(X|Y n)Qn
(45)

g e−n(minx̸=x′ C (Qx||Qx′ )+¶) · min
x̸=x′

{Qn(x) + Qn(x′)} .

Combining (44) and (45) yields, for any ¶ > 0 and sufficiently
large n,

C(X;Y n) = I(X;Y n)Qn
(46)

f H(X)Qn
−

�

e−n(minx̸=x′ C (Qx||Qx′ )+¶)· (47)

min
x̸=x′

{Qn(x) + Qn(x′)}

�

f log |X | −
1

|X |
e−n(minx̸=x′ C (Qx||Qx′ )+¶). (48)

The result follows by noting that ¶ was chosen arbitrarily.

V. PROOF FOR SIBSON (³ ∈ (1,∞))

We turn to (34), focusing on the regime ³ ∈ (1,∞), since
the ³ = 1 case is established in (32) and the ³ = ∞ case
will be proven subsequently. First, we derive a lower bound of
IS
³ (X;Y n) for ³ > 1 that will be useful in this and subsequent

proofs.
Lemma 2:

IS
³ (X;Y n) g H1/³(X) −

³

(³ − 1) ln 2

�

Γn +
Γ2

n

2(1 − Γn)

�

(49)

for ³ > 1, where

Γn = min(1, (n + 1)|Y| · 2−n·minx̸=x′ C (Qx||Qx′ )).

(50)

Remark: If Qx and Qx′ have disjoint support for every x ̸=
x′, then Γn = 0 and this lemma establishes that IS

³ (X;Y n) =
H1/³(X) for any n g 1.

Proof: We begin by expressing the Sibson mutual infor-
mation as a sum over types:

³ − 1

³
IS
³ (X;Y n) ≡ log

�

yn∈Yn

�

�

x∈X

Q(x)Q(yn|x)³
�1/³

(51)

= log
�

P∈Pn

�

�

x∈X

Q(x)Q(T (P )|x)³
�1/³

.

(52)

We then decompose Pn using the Dx sets defined in (22):

g log
�

x∈X

�

P∈Dx∩Pn

�

�

x′∈X

Q(x′)Q(T (P )|x′)³
�1/³

(53)

g log
�

x∈X

Q(x)1/³
�

P∈Dx∩Pn

Q(T (P )|x), (54)

where we have retained only the x′ = x term in the inner
sum. Continuing,

= log
�

x∈X

Q(x)1/³
�

1 −
�

P∈Pn\Dx

Q(T (P )|x)
�

(55)

= log
�

�

x∈X

Q(x)1/³ −
�

x∈X

�

P∈Pn\Dx

Q(x)1/³Q(T (P )|x)
�

.

(56)
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Define

µn =

�

x∈X

�

P∈Pn\Dx
Q(x)1/³Q(T (P )|x)

�

x∈X Q(x)1/³
f 1. (57)

Then we can write

IS
³ (X;Y n) g

³

³ − 1
log
��

�

x∈X

Q(x)1/³
�

(1 − µn)
�

(58)

= H1/³(X) +
³

³ − 1
log(1 − µn). (59)

Now µn can be bounded from above:

µn f

�

x∈X Q(x)1/³(n + 1)|Y| · maxP∈Pn\Dx
Q(T (P )|x)

�

x∈X Q(x)1/³

(60)

f

�

x∈X Q(x)1/³(n + 1)|Y| · max
x′∈X

max
P∈Pn\Dx′

Q(T (P )|x′)

�

x∈X Q(x)1/³

(61)

= (n + 1)|Y| · max
x∈X

max
P∈Pn\Dx

Q(T (P )|x). (62)

Applying the type-theoretic bound from (21), this gives

µn f (n + 1)|Y| · 2−n(minx∈X minP∈Pn\Dx
D(P ||Qx)). (63)

The exponent is in fact the one that we desire:

min
x∈X

min
P∈Pn\Dx

D(P ||Qx) = min
x̸=x′

inf
P∈D̄x′

D(P ||Qx) (64)

= inf
P∈Pn

min
x:x̸=x1(P )

D(P ||Qx) (65)

= inf
P∈Pn

D(P ||Qx2(P )) (66)

= min
x̸=x′

C (Qx||Qx′), (67)

where we have used Lemma 4 in Appendix A for the equality
in the last step. The result then follows from the expansion:

ln(1 − ϵ) = −

∞
�

i=1

ϵi

i
(68)

g −ϵ −
ϵ

2

�

∞
�

i=1

ϵi
�

= −ϵ −
ϵ2

2(1 − ϵ)
(69)

for 0 < ϵ < 1.
□

We next prove an analogous upper bound.
Lemma 3: For ³ > 1, define

F (x, P ) = Q(x)Q(T (P )|x)³. (70)

For each n, let {E(n)
xi }

|X |
i=1 be a partition of Pn such that P ∈

E
(n)
x implies F (x, P ) = maxx′∈X F (x′, P ). Then

IS
³ (X;Y n)

f H1/³(X) +
³

(³ − 1) ln 2
·
�

x∈X

�

P ̸∈E
(n)
x

F (x, P )·

�

F (x1(P ), P )1/³−1 − F (x, P )1/³−1

�

x′∈X

Q(x′)1/³

�

, (71)

where for the remainder of this section we redefine xk(P ) so
that they are ordered by F (x, P ) instead of relative entropy.
That is,

F (x1(P ), P ) g F (x2(P ), P ) g · · · g F (x|X |(P ), P ). (72)

Note that this ordering now depends on n.
Proof: We have

³ − 1

³
IS
³ (X;Y n)

= log
�

x∈X

�

P∈E
(n)
x

�

�

x′∈X

F (x′, P )
�1/³

(73)

= log
�

x∈X

�

P∈E
(n)
x

F (x, P )1/³
�

1 +
�

x′ ̸=x

F (x′, P )

F (x, P )

�1/³

(74)

f log
�

x∈X

�

P∈E
(n)
x

F (x, P )1/³
�

1 +
�

x′ ̸=x

F (x′, P )

F (x, P )

�

(75)

f log
�

x∈X

�

P∈E
(n)
x

�

F (x, P )1/³

+ F (x, P )1/³−1
�

x′ ̸=x

F (x′, P )
�

, (76)

where we have used the fact that ³ > 1. Considering the
second term in isolation,

�

x∈X

�

P∈E
(n)
x

F (x, P )1/³−1
�

x′ ̸=x

F (x′, P )

=
�

x∈X

�

P∈E
(n)
x

max
x̂∈X

F (x̂, P )1/³−1· (77)

�

�

x′∈X

F (x′, P ) − max
x̂∈X

F (x̂, P )

�

=
�

x∈X

�

P∈E
(n)
x

F (x1(P ), P )1/³−1· (78)

�

�

x′∈X

F (x′, P ) − F (x1(P ), P )

�

=
�

P∈Pn

F (x1(P ), P )1/³−1
�

x′ ̸=x1(P )

F (x′, P ) (79)

=
�

x∈X

�

P /∈E
(n)
x

F (x1(P ), P )1/³−1F (x, P ), (80)

where the first and second equalities follow from the defini-
tions of the partition and x1(P ) in Lemma 3. Substituting this
into (76),

³ − 1

³
IS
³ (X;Y n)

= log
�

x∈X

�

�

P∈E
(n)
x

F (x, P )1/³ (81)

+
�

P ̸∈E
(n)
x

F (x1(P ), P )1/³−1F (x, P )
�

= log
�

x∈X

�

�

P∈E
(n)
x

F (x, P )1/³ (82)
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+
�

P ̸∈E
(n)
x

F (x1(P ), P )1/³−1F (x, P )

+
�

P ̸∈E
(n)
x

F (x, P )1/³ −
�

P ̸∈E
(n)
x

F (x, P )1/³
�

= log
�

x∈X

�

�

P∈Pn

F (x, P )1/³ (83)

+
�

P ̸∈E
(n)
x

�

F (x1(P ), P )1/³−1 − F (x, P )1/³−1
�

F (x, P )
�

.

Using ln(1 + x) f x then gives the result. □

The lower bound in (34) for ³ ∈ (1,∞) follows directly
from Lemma 2. For the upper bound, pick xa ̸= xb and P ∗ ∈
Dxb

. Let {Pn}
∞
n=1 be a sequence of types converging to P ∗.

From Lemma 3 we have

IS
³ (X;Y n) f H1/³(X) +

³

(³ − 1) ln 2

�

x∈X

�

P ̸∈E
(n)
x

F (x, P )·

�

F (x1(P ), P )1/³−1 − F (x, P )1/³−1

�

x′∈X

Q(x′)1/³

�

.

(84)

Note that for sufficiently large n, Pn ∈ E
(n)
xb , x1(Pn) = xb.

Moreover, by equations (21) and (70),

F (xa, Pn)

F (xb, Pn)
=

Q(xa)Q(T (Pn)|xa)³

Q(xb)Q(T (Pn)|xb)³
(85)

g
1

(n + 1)³|Y|
2−n³(D(Pn||Qxa )−D(Pn||Qxb

).

(86)

Since for sufficiently large n, D(Pn||Qxb
) < D(Pn||Qxa

)
(P ⋆ ∈ Dxb

), the ratio can be made arbitrarily small. Hence,
F (xb, Pn)1/³−1 = F (x1(Pn), Pn)1/³−1 < 1

2F (xa, Pn)1/³−1

for sufficiently large n. Thus,

IS
³ (X;Y n) f H1/³(X) +

³F (xa, Pn)

(³ − 1) ln 2
· (87)

F (x1(Pn), Pn)1/³−1 − F (xa, Pn)1/³−1

�

x∈X

Q(x)1/³

f H1/³(X) −
³

2(³ − 1) ln 2
·
F (xa, Pn)1/³

�

x∈X

Q(x)1/³
.

(88)

From the type-theoretic bound (21),

IS
³ (X;Y n) f H1/³(X)

−
³

2(³ − 1) ln 2

Qmin(X)1/³

�

x∈X

Q(x)1/³
·
2−nD(Pn||Qxa )

(n + 1)|Y|
,

(89)

where Qmin(X) = minx∈X Q(x). This implies

lim sup
n→∞

−
1

n
log
�

H1/³(X) − IS
³ (X;Y n)

�

f lim
n→∞

D(Pn||Qxa
) = D(P ∗||Qxa

). (90)

Since xa ̸= xb and P ∈ Dxb
were arbitrarily chosen, this

implies:

lim sup
n→∞

−
1

n
log
�

H1/³(X) − IS
³ (X;Y n)

�

f min
x̸=x′

inf
P∈D̄x

D(P ||Qx′) = min
x̸=x′

C (Qx||Qx′),

(91)

where the last step used Lemma 4 in Appendix A.

VI. PROOF FOR MAXIMAL LEAKAGE

We turn to proving (34) for the case ³ = ∞. While the
lower bound on IS

∞(X;Y n) can be proven directly, we will
instead note that it can be obtained from Lemma 2 by letting
³ → ∞ and then n → ∞.

For the upper bound, recalling the x-domains defined in (22)
and (23), fix xa ̸= xb ∈ X and a P ∈ Dxb

and let {Pn}
∞
n=1

be a sequence such that Pn ∈ Pn for each n and Pn → P .
Using the fact that ∪xD̄x covers Pn and maxx′ Q(T (P )|x′) =
Q(T (P )|x) if P ∈ D̄x, we have

IS
∞(X;Y n) f log

�

x∈X

�

P∈D̄x∩Pn

Q(T (P )|x) (92)

= log
�

|X | −
�

x∈X

�

P∈Pn\D̄x

Q(T (P )|x)
�

. (93)

Now Pn ∈ Dxb
for sufficiently large n so

f log
�

|X | −
�

P∈Pn\D̄xa

Q(T (P )|xa)
�

(94)

f log
�

|X | − Q(T (Pn)|xa)
�

, (95)

for sufficiently large n. Thus for sufficiently large n, from
(21),

IS
∞(X;Y n) f log

�

|X | −
1

(n + 1)|Y|
2−nD(Pn||Qxa )

�

(96)

f log
�

|X |
�

−
2−nD(Pn||Qxa )

(ln 2)|X |(n + 1)|Y|
, (97)

and

lim sup
n→∞

−
1

n
log
�

|X | − IS
∞(X;Y n)

�

f lim
n→∞

D(Pn||Qxa
) = D(P ||Qxa

). (98)

Since xa ̸= xb and P were arbitrary, the result follows by
Lemma 4 in Appendix A.

VII. PROOF FOR ARIMOTO

Note that (35) for the case ³ = 1 has already been proven.
We prove the lower and upper bounds for the ³ > 1 case as
follows.

From (13), we have

H³(X) − IA
³ (X;Y n) = H³(X|Y n). (99)

Sason and Verdú [27, Propositions 1 and 2] showed that

H∞(X|Y n) f H³(X|Y n) f
³

³ − 1
H∞(X|Y n). (100)
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Therefore,

lim
n→∞

−
1

n
log
�

H³(X) − IA
³ (X;Y n)

�

= lim
n→∞

−
1

n
log
�

H∞(X|Y n)
�

. (101)

Define

ϵX|Y n = min
f :Yn→X

P (X ̸= f(Y n)). (102)

By the definition of H∞, we have

H∞(X|Y n) = log
1

1 − ϵX|Y n

. (103)

Now note that for 0 < ϵ f 1/2,

ϵ

ln 2
f log

1

1 − ϵ
f

1

ln 2

ϵ

1 − ϵ
f

2ϵ

ln 2
. (104)

Combining (101), (103), and (104) yields

lim
n→∞

−
1

n
log
�

H³(X) − IA
³ (X;Y n)

�

= lim
n→∞

−
1

n
log ϵX|Y n . (105)

The result then follows from the result of Kanaya and Han [13,
Theorem 2] stating that

lim
n→∞

−
1

n
log ϵX|Y n = min

x̸=x′
C (Qx||Qx′). (106)

VIII. PROOF FOR ³-MAXIMAL LEAKAGE

Note that for ³ = 1, ³-maximal leakage is given by regular
mutual information, so that case is already proven.

A. Proof of Lower Bound

Proof: We obtain the lower bound by choosing X ∼
Q(u), where Q(u)(X) denotes the uniform distribution over
X . Then

Lmax
³ (X → Y ) = max

Q(X)
IS
³ (X;Y n) g IS

³ (X;Y n)|Q(u)(X).

(107)

Then by (34),

lim inf
n→∞

−
1

n
log(log |X | − Lmax

³ (X → Y ))

g min
x̸=x′

C (Qx||Qx′). (108)

□

B. Proof of Upper Bound

Proof: As with the proof for Shannon capacity, the idea
is to show that the maximizing Q(X) must eventually be
contained in a neighborhood of the uniform distribution. Over
this neighborhood, we can use Lemma 3 to uniformly bound
the difference

log |X | − max
Q(X)

IS
³ (X;Y n). (109)

First, for each n, let

Qn(X) ∈ arg max
Q(X)

IS
³ (X;Y n). (110)

We have [15, Ex. 2 and Thm. 3]

H1/³(X)|Qn(X) g IS
³ (X;Y n)|Qn(X), (111)

and thus, by Lemma 2,

H1/³(X)|Qn(X)

g IS
³ (X;Y n)|Q(u)(X) (112)

g H1/³(X)|Q(u)(X) −
³

(³ − 1) ln 2

�

Γn +
Γ2

n

2(1 − Γn)

�

.

(113)

Then,

H1/³(X)|Qn(X) g H1/³(X)|Q(u)(X) (114)

−
³

(³ − 1) ln 2

�

Γn +
Γ2

n

2(1 − Γn)

�

H1/³(X)|Q(u)(X) − H1/³(X)|Qn(X) (115)

f
³

(³ − 1) ln 2

�

Γn +
Γ2

n

2(1 − Γn)

�

D1/³(Qn(X)||Q(u)(X)) (116)

f
³

(³ − 1) ln 2

�

Γn+
Γ2

n

2(1 − Γn)

�

≡ϵn,

where we have used the fact that H1/³(X)|Q(u)(X) −

H1/³(X)|Qn(X) = D1/³(Qn(X)||Q(u)(X)). Note that
limn→∞ ϵn = 0. Then, using the Rényi version of Pinsker’s
Inequality ([28, Thm. 31]),

D1/³(Qn(X)||Q(u)(X)) g
2

³
sup
A

|Qn(A) − Q(u)(A)|2

(117)

g
2

³
sup

x
|Qn(x) − Q(u)(x)|2,

(118)

and so

ϵn g
2

³
sup

x
|Qn(x) − Q(u)(x)|2. (119)

It also follows that, under this constraint,

ϵn g
2

³
(Q(u)(x) − min

x′
Qn(x′))2 (120)

�

³ϵn

2
g Q(u)(x) − min

x′
Qn(x′) (121)

min
x′

Qn(x′) ≡ Qmin,n(X) g
1

|X |
−

�

³ϵn

2
(122)

and similarly,

max
x′

Qn(x′) ≡ Qmax,n(X) f
1

|X |
+

�

³ϵn

2
(123)

Let An be the set of distributions over X that satisfy both (122)
and (123) and note that Qn ∈ An for sufficiently large n.
Recalling (70), define

F (x, P, Q̃) = Q̃(x)Q(T (P )|x)³, (124)

where we now indicate the dependence on the input distri-
bution Q̃(x). Similarly, we let {E(n)

xi,Q̃
} be a partition of Pn
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such that P ∈ E
(n)

x,Q̃
implies F (x, P, Q̃) = maxx′ F (x′, P, Q̃)

and we let x1(P, Q̃), x2(P, Q̃), . . . , denote the letters of X
in decreasing order of (124). By Lemma 3, we have, for
sufficiently large n,

max
Q̃

IS
³ (X;Y n)

= max
Q̃∈An

IS
³ (X;Y n)

f max
Q̃∈An

H1/³(X) +
³

(³ − 1) ln 2

�

x∈X

�

P ̸∈E
(n)

x,Q̃

F (x, P, Q̃)
�

x′∈X

Q̃(x′)1/³

�

F (x1(P, Q̃), P, Q̃)1/³−1 − F (x, P, Q̃)1/³−1
�

.

(125)

Fix xa ̸= xb and P ∗ ∈ Dxb
and let Pn be a sequence of types

converging to P ∗. Then for all sufficiently large n, we have
that Pn ∈ E

(n)

xb,Q̃
for all Q̃ ∈ An. Then because the summands

in (125) are nonpositive, we have

max
Q̃∈An

IS
³ (X;Y n)

f max
Q̃∈An

H1/³(X) +

�

³F (xa, Pn, Q̃)· (126)

F (x1(Pn, Q̃), Pn, Q̃)1/³−1 − F (xa, Pn, Q̃)1/³−1

(³ − 1) ln 2
�

x∈X

Q̃(x)1/³

�

.

Note that, since P ∗ ∈ Dxb
, for all sufficiently large n,

for some ϵ > 0 we have D(Pn||Qxb
) < ϵ < D(Pn||Qx)

for all x ̸= xb. This implies that, for sufficiently large n,
x1(Pn, Q̃) = xb for all Q̃ ∈ An and F (xb, Pn, Q̃)1/³−1 <
1
2F (xa, Pn, Q̃)1/³−1 for all Q̃ ∈ An (by the same argument as
the one made in equation (85), F (xa, Pn, Q̃) and F (xb, Pn, Q̃)
decrease exponentially fast with the former decreasing at a
faster rate). The remainder of the argument proceeds analo-
gously to the Sibson proof. For sufficiently large n, we have

max
Q̃∈An

IS
³ (X;Y n) (127)

f max
Q̃∈An

H1/³(X) −
1

2

³

(³ − 1) ln 2
·

1
�

x∈X Q̃(x)1/³

(128)

· F (xa, Pn, Q̃)1/³ (129)

f max
Q̃∈An

H1/³(X) −
1

2

³

(³ − 1) ln 2
·

1

|X |
�

1
|X | +

�

³ϵn

2

�1/³

(130)

·

�

1

|X |
−

�

³ϵn

2

�1/³
1

(n + 1)|Y|
2−nD(Pn||Qxa )

(131)

f log |X | −
1

2

³

(³ − 1) ln 2

1

|X |
�

1
|X | +

�

³ϵn

2

�1/³
(132)

·

�

1

|X |
−

�

³ϵn

2

�1/³
1

(n + 1)|Y|
2−nD(Pn||Qxa ).

(133)

This implies that

lim
n→∞

−
1

n
log

�

log |X | − max
Q̃(X)

IS
³ (X;Y n)

�

f min
x̸=x′

C (Qx||Qx′), (134)

by Lemma 4 in Appendix A, which implies the result for 1 <
³ < ∞. The ³ = ∞ case follows from (34) since IS

∞(X;Y n)
does not depend on Q(X), and H1/³(X) = log |X | in that
case. □

APPENDIX A
AN ANCILLARY LEMMA

Recall that Qx denotes the distribution of Y given x, and
for any P ∈ P , xk(P ) denotes x ∈ X such that D(P ||Qx) is
the kth smallest relative entropy across all elements of X .

Lemma 4:

inf
P∈P

D(P ||Qx2(P )) = min
x̸=x′

C (Qx||Qx′), (135)

where both quantities may be infinite.
Proof: We will separately prove that

inf
P∈P

D(P ||Qx2(P )) f min
x̸=x′

C (Qx||Qx′) (136)

and

inf
P∈P

D(P ||Qx2(P )) g min
x̸=x′

C (Qx||Qx′). (137)

To prove the upper bound, fix x ̸= x′ and consider P¼(y) =
P¼(Qx, Qx′ , y) as defined in (16). Choose ¼∗ such that
D(P¼∗ ||Qx) = D(P¼∗ ||Qx′). Then, certainly

D(P¼∗ ||Qx2(Pλ∗ )) f C (Qx||Qx′) (138)

since we know of two X-values whose corresponding Q(Y |X)
distributions are equidistant to P¼∗ , from which (136) follows.

For the lower bound, we first define subsets of P:

Ex = {P ∈ P | D(P ||Qx) f C (Qx||Qx′)} (139)

Ex′ = {P ∈ P | D(P ||Qx′) f C (Qx||Qx′)}. (140)

Note that Ex and Ex′ are convex sets since D(·||·) is convex
and that P¼∗ achieves the minimum distance to Qx′ in Ex and
the minimum distance to Qx in Ex′ [17, Sec. 11.9].

Choose any P ∈ P . There are three cases to consider,
depending on the location of P in P-space.

Case 1: P /∈ Ex and P /∈ Ex′ . By construction,
D(P ||Qx) g C (Qx||Qx′) and D(P ||Qx′) g C (Qx||Qx′).

Case 2: P ∈ Ex. Using the Pythagorean theorem for relative
entropy [17, Thm. 11.6.1],

D(P ||Qx′) g D(P ||P¼∗) + D(P¼∗ ||Qx′) (141)

Case 3: P ∈ Ex′ . By the same argument,

D(P ||Qx) g D(P ||P¼∗) + D(P¼∗ ||Qx). (142)

Hence, for any P ∈ P ,

max{D(P ||Qx), D(P ||Qx′)} g C (Qx||Qx′) (143)
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Since D(P ||Qx2(P )) = min
x̸=x′

max{D(P ||Qx), D(P ||Qx′)},

inf
P∈P

D(P ||Qx2(P )) g min
x̸=x′

C (Qx||Qx′). (144)

□

The following result is standard and the proof is omitted.
Lemma 5: For any discrete distributions P1 and P2 on a

common alphabet X ,

C (Pn
1 ||P

n
2 ) = nC (P1||P2) (145)

APPENDIX B
DATA PROCESSING FOR ARIMOTO MUTUAL INFORMATION

As a generalization of Shannon conditional entropy,
Arimoto-Rényi conditional entropy satisfies a number of
desirable properties. In particular, the rule that conditioning
cannot increase entropy carries over to the Arimoto-Rényi
version [16], [24, Thm. 2], [26, Corr. 1], [29, Prop. 2]:

H³(X|Y,Z) f H³(X|Y ). (146)

It follows from (13) that a “right-hand” data processing
inequality therefore holds: if X ´ Y ´ Z form a Markov
chain, then

IA
³ (X;Z) f IA

³ (X;Y ). (147)

To reduce our problem to an instance satisfying the distinct
row assumption using the technique in Section III, we require
a “left-hand” version of the inequality, i.e.,

IA
³ (X;Z) f IA

³ (Y ;Z)? (148)

In fact, this inequality can fail dramatically.
Proposition 1: For any 1 < ³ < ∞, there exist random

variables X , Y , and Z such that X ´ Y ´ Z and Y ´
X ´ Z with IA

³ (X;Z) being arbitrarily small and IA
³ (Y ;Z)

being arbitrarily large.
Proof: Fix positive integers K and L and 0 < ϵ < 1/L.

Let Y and Z be jointly distributed as

P (Y = i) =

�

ϵ if i ∈ {1, . . . , L}
1−Lϵ

K if i ∈ {L + 1, . . . , L + K}

(149)

P (Z = j|Y = i) =











1 if j = i and i ∈ {1, . . . , L}
1
L if i ∈ {L + 1, . . . , L + K}

0 otherwise.

(150)

We then couple X to Y and Z via

X = min(Y,L + 1). (151)

From (4), as ϵ → 0, we have that IA
³ (X;Z) → 0. Fix ϵ so

that IA
³ (X;Z) is as small as desired. If we then let K → ∞,

we have

IA
³ (Y ;Z) →

³

³ − 1
log L. (152)

But L was arbitrary. □

For Sibson mutual information and ³-maximal leakage, we
could reduce our problem to one satisfying the distinct row

assumption by dividing X into equivalence classes based on
PY |X(·|x) and assigning to a “leader” realization in each
equivalence class the probability of all of the x realizations in
that class. This approach fails for Arimoto mutual information,
due to the above result, but the reduction is still possible if
one accounts for the exponential tilting of P (x) in (4).

Proposition 2: Fix ³ > 0. If (X, Y ) does not satisfy the
distinct row assumption then there exists X̃ such that

(i) The support of X̃ is strictly contained within the support
of X;

(ii) PY |X(y|x) = PY |X̃(y|x) for all x and y;

(iii) (X̃, Y ) satisfies the distinct row assumption; and
(iv) IA

³ (X;Y ) = IA
³ (X̃;Y ).

Proof: For ³ = 1, this follows directly from the chain
rule for mutual information. For ³ ̸= 1, without loss of
generality, we may assume that there exists a k < |X | such
that

PY |X(·|xj) ̸= PY |X(·|xi) (153)

for all 1 f i < j f k, and for all k < j f |X | there exists
1 f i f k such that

PY |X(y|xj) = PY |X(y|xi) for all y. (154)

That is, the first k rows of PY |X , viewed as a stochastic matrix,
are distinct, and every other row is a copy of one of those k
rows. For each 1 f i f k, define the set of X realizations

Ci =
�

x ∈ X : PY |X(y|x) = PY |X(y|xi) for all y
�

, (155)

and note that C1, . . . , Ck are nonempty and form a partition
of X . Define X̃ to have support {x1, . . . , xk} with marginal
distribution

P (X̃ = xi) =
1

Γ

�

�

x∈Ci

P (X = x)³

�1/³

, (156)

where

Γ =
k
�

i=1

�

�

x∈Ci

P (X = x)³

�1/³

. (157)

Define the joint distribution between X̃ and Y through (ii).
Then (i)-(iii) clearly hold and we have

IA
³ (X;Y )

=
³

³ − 1
log
�

y

�

�k
i=1

�

x∈Ci
P (x)³P (y|x)³

�k
i=1

�

x∈Ci
P (x)³

�1/³

(158)

=
³

³ − 1
log
�

y

�

�k
i=1

�

x∈Ci
(P (x)³/Γ³)P (y|x)³

�k
i=1

�

x∈Ci
(P (x)³/Γ³)

�1/³

(159)

=
³

³ − 1
log
�

y

�

�k
i=1 P (X̃ = xi)

³P (y|x)³

�k
i=1 P (X̃ = xi)³

�1/³

(160)

= IA
³ (X̃;Y ). (161)

□
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