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Abstract—Given a binary random variable X representing
sensitive information and n noisy observations Yi,Y2,...,Y,
available to an adversary, we analyze the maximal leakage
Z (X—=Y™) in the following setting modeling adaptive attacks.
At each stage i, the adversary may choose an action to in-
teract with the system containing X to obtain Y;. The action
may depend on previous realizations of the observations, but
the leakage at each stage is limited. We derive an adaptive
composition theorem wherein .2 (X—Y™) is bounded in terms
of the leakage of each stage. Furthermore, we show that the
bound is achieved for ¥ (X—Z") where (Z1,%>,...,Z,) are
conditionally independent given X and each Z; corresponds to
the output of a binary erasure channel with the appropriate
parameter; moreover, X — 7" —Y™ can be coupled as a Markov
chain for any feasible Y". As a corollary of this result and the
asymptotic analysis of composition by Wu ef al., we show that
the binary erasure channel maximizes the Chernoff information
between the “rows” of binary-input channels given a maximal
leakage constraint. On the other hand, we show that the binary
symmetric channel minimizes the Chernoff information for a
given maximal leakage constraint.

Index Terms—composition, adaptive, maximal leakage, Cher-
noff information

I. INTRODUCTION

Consider a system containing sensitive data X and an adver-
sary interacting with the system to receive a noisy observation,
Y. In many scenarios, an adversary may generate several
“attacks” (e.g., averaging attacks in side channels, multiple
queries to a database, etc.), receiving a sequence of obser-
vations Y7,Ys,...,Y,. Thus even if the information leakage
from X to Y, denoted by L(X—Y'), is limited, it is essential
to analyze the degradation of privacy/security guarantees under
multiple observations, L(X—Y ™). In the privacy and security
literature, results of this form (bounding L(X—Y™) in terms
of L(X —Y)) are termed composition theorems. A smart
adversary may adapt their attacks to previous observations,
in which case we speak of adaptive composition theorems,
which are the focus of this paper.

Tight adaptive composition theorems have been derived for
(approximate) differential privacy in [1], where an equivalent
characterization of differential privacy in terms of a binary hy-
pothesis testing problem was used to demonstrate the existence
of a “dominating” mechanism. Composition theorems for
variants of differential privacy have also been studied [2]-[4].
Wu et al. [5] derived (non-adaptive) asymptotic composition
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theorems, assuming Y7, Y, ..., Y, are conditionally i.i.d given
X, for several information-theoretic measures, namely Sibson
mutual information [6], [7], Arimoto mutual information [8],
and a-maximal leakage [9]. In particular, they showed that
L(X —Y™) (where L is any of the mentioned measures)
converges exponentially fast to its corresponding limit. More-
over, the rate of convergence for all these measures is the
same, namely it is the Chernoff information among all pairs
of distinct distributions Py |x (.|x) and Py x(.|z').

In this paper, we consider maximal leakage (also studied
in [5] as it is equal to Sibson mutual information of order
o0), which is a security metric that emerged in the computer
security [10]-[12] and information theory literature [13], [14].
It is given by

L (X=Y) = log%;;nea; Py x (y]), (1)
Y

where we assume the alphabets are finite and X has full
support (throughout the paper). We consider an adaptive
setting where at each stage ¢, an attacker chooses an action to
interact with the system to obtain Y;. The action may depend
on previous realizations of the observations, but the leakage
at each stage is limited. We derive a tight finite-n bound on
Z (X—=Y™) in terms of the leakages at each stage, under the
assumption that X is binary. We show that the bound is in fact
achievable for a “non-adaptive” mechanism, in particular, it is
achievable for Pzn|x where (Zy,...,Z,) are conditionally
independent given X and each Z; corresponds to the output
of a binary erasure channel (BEC). To that end, for any
Py |x we find the largest o € [0, 1] for which it is possible
to couple X — Z — Y as a Markov chain where Z is the
output of a BEC with parameter .. This is then extended into
coupling X —Z™ —Y™ as a Markov chain with the appropriate
parameters for any feasible Py x.

As a consequence of this result and the asymptotic result of
Wau et al. [5], it turns out that the BEC maximizes the Chernoff
information between the “rows” of binary-input channels given
a maximal leakage constraint. On the other hand, we show
that the binary symmetric channel minimizes the Chernoff
information for a given maximal leakage constraint.
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II. MAIN RESULT

Notation: Given a joint distribution Pxy on alphabets

X x Y, we use Z(Py|x) to denote £ (X—Y) when X
has full support. The M-ary input erasure channel (M € N)
with parameter @ € [0,1] is denoted by M-EC(a), i.e
Pz x = M-EC(a) indicates |X| = M, Z € Z = X' U {e},
and Pz x(elr) = a and Pz x(z|z) =1 — a for all z € X.
For the special case where M = 2, we denote it by BEC(«).
Throughout this paper, we assume all alphabets are finite.

Deﬁ_n>iti0n 1 (7—Leakage Adaptive Mechanism). Given n €
N, 0 = (l1,0a,...,4,) € RY, alphabets X,Y1,Y2, ..., Vn,
and a conditional distribution Pyn|x where X € X and
Y" €Yy X Yo X e X
adaptive mechanism ( ¢ -LAM) if for all i € {1,2,...
all (yl,yz,...,yifl) S yl X yg X ...

Vi) <l 2

Wu et al. [5] studied the asymptotic growth of £ (Pyn|x)
when (Y7,Ys,...,Y,,) are conditionally i.i.d given X, ie.,
Pyn x = [];_; Py, x and for all i, Py, x = Py|x for some
fixed channel Py |x. Such (non-adaptive) mechanisms can be
seen as a subset of (-LAMSs with { = & (Py|X).

Our main result tightly upper-bounds £ (Py«|x) for any

. —
X Vn, we say Pyn|x is an [ -leakage
,n}, and
X Vi;_1, we have

Z (PYI'IX,leyl-,Yziyz,--

n and ¢, assuming X is binary.

Theorem 1. Suppose X = {0,1} and let X ~
Px  have full support. Consider n € N, €
[0,1]", alphabets Y1,Ys,...,Vn, and {-LAM Py x. Let
21,2, ...,4y, be conditionally independent given X, with
Pz, x = BEC(2 — €%). Then, there exists a coupling of
(X, Y™, Z™) such that X — Z™ — Y™ is a Markov chain
(i.e., the channel Pyn|x is degraded with respect to Pzn x).
Consequently,

g(X%Y17Y27"'7Yn) SX(X%ZMZ2)"'7ZTL) (3
= log (2—1—[(2—@&)) . @
i=1

Notably, the theorem states that a non-adaptive mechanism
(namely, conditionally independent outputs of binary erasure
channels) achieves the maximum total leakage . (Pyn‘ X)

among 7-LAMS. A similar phenomenon occurs in the context
of composition theorems for (approximate) differential pri-
vacy [15], as well as composition theorems for f-differential
privacy [4], wherein a non-adaptive mechanism maximizes the
privacy degradation. The latter work defines privacy in terms
of the trade-off function resulting from a binary hypothesis
testing problem. The tools developed in these papers [4],
[15] could be used to prove the inequality in Theorem 1
(herein, we provide a more explicit proof through the coupling
of (X,Y™ Z™)). This common phenomenon is due to the
existence of a “dominating” mechanism for both differential
privacy and f-differential privacy (for every valid choice of
f), analogous to the BEC in our context.

A. Proof of Theorem 1

For the case n = 1, the theorem follows from the following
two lemmas.

Lemma 1. If X = {0, 1}, then for any conditional distribu-

tion Py|X,

£ (Py|x) =log (1 +drv (Py|x=0, Py|x=1))

=log | 2— Z mlﬂ PY|X (ylz) |, &
Yy Gy
where d7v is the total variation distance.

Proof of Lemma 1: The first equality is due to Sibson [6].
For the second equality, note that
min P T
er{o h vix (y]z)

= — min P T
Za:E{O 1} Yix y‘

+- Z (In{l(l)nl}Pym(ylx)— H%aﬁ}PYIX(W))

=5 Z Pyix (410) + Py x (/1))
yey

5 3 [Prx(l0) -

yey
=1—dpv (Py|x=0, Pyix=1) -

Py x (y/1)]

Lemma 2. Fix an arbitrary finite alphabet X and let
Pyix = M-EC(«) for some' a € [0,1) where M = |X|.
Consider an arbitrary finite alphabet ) and a conditional
distribution Py |x. Then there exists a coupling of (X,Y,7)
such that X —Z —Y is a Markov chain if and only if
Z ;Izrél/lvl Py x (ylx) > a. Moreover, the following Py|z yields

yey
the desired coupling:

1
Py z(yle) = *HélnPY\X(ZA z), (6)

1 a . ,
Priz0l2) == (Prixlo) - & minPrix (1)) )

for z € X, where o :=

in P >
Zgg/g vix (ylz) = a

yey

Remark 1. For the purposes of the proof Theorem 1, only the
(<) implication of the lemma for M = 2 is needed. However,
the equivalence is simple to prove in general and may be of
independent interest.

'For @ = 1, the statement is trivially true as the output of Z of an
M-EC(1) is a constant and }°, mine Py x (y|z) = 1 implies that X is
independent from Y’
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Proof of Lemma 2: (=) :If X —Z —Y is a Markov

chain, then
Pyix(yle) = > Pyiz(yl2) Py x (z]2)
z€XU{e}
= Py z(ylz)(1 — @) + Py z(yle)
> Pyz(yle) - «
Consequently,
Z ;Iélg(lpy\x(?/m > o Z Py z(yle) = a.
yey yey
(<) : Let Z' = BEC(c/). Define X — Z' — Y, with Y € Y
as follows:
1
P{/\z/ (yle) = o ZIP PY|X(y|Z )
1 . ~\ =
Py 1) = 17 (P 01) ~ mig Pri012)) 2 € .

Note that all the above terms are non-negative. Moreover,

Zyey minz’GX PY\X(?AZ)
ZP‘?\Z’ yle) = 1%

=1.
yey
Similarly,
P N Dyey (Py|x(y|z") — minzex Pyx(y|2))
;3/ i (wl=) = 1—ao
Yy

=1.
Hence, the conditional distribution above is valid. Now note
that for all y € Y and x € &,
P Y\X(y|1”)

= Z PZ/|X(Z/|93)P)7|Z’ (yl2")

z'exu{e}
= (1= a') Py (ylz) + o' Py 4 (yle)
= Pyx(yle) — min Py x (y[z') + min Py|x (yl')
= Py x (y|z).

Hence, X — Z'—Y can be coupled as a Markov chain. Finally,

one can obtain X —Z — Z’ —Y as a Markov chain by defining
PZ’\Z as
1, ifz=eand 2/ =e,
o—a  ifrLeand 2 =e
Pyiz(2) =4 =97 8
712(212) o ifz=2'and 2 #e ®
0, otherwise,

and the induced conditional Py |z is as given in equations (6)
and (7). Indeed, for z = e,

Py z(yle) = Z Py |2/ (y|2" )Pz 2(#'|2)

z'exu{e}

= Py|z/(yle) - 1
1

= — min Prix(y]2),

as given in equation (6). Similarly, for z # e,

Pyz(ylz) = Z Py 72:(y2") Pz 2(7']2)
z'exuU{e}
= Py|z/(y|2)Pz/z(2|2) + Py |z (yle) Pz z(e|2)
1 . N\ 1-d
— = (Prixte) — i Prix019)) 125
1 . ) o —a
# 2 (i Prctole)) 4=
1 le}
— 1 (Pt - S mir19).
as given in equation (7). [ ]
Now consider the n = 1 case in Theorem 1, that is,

we have & (Py‘ X) < 0TIt follows from Lemma 1 that
min Py x(ylz) > 2 — ¢’. Hence, from Lemma 2,

Z ze{0,1}

— Z — Y can be coupled as a Markov chain where
PZ|X = BEC(2 — ¢*) and Py |z is as given in (6) and (7)
with o =2 — ¢ and o/ = 2 — eZ(Prix),

Now consider the general case. Let Y™ € Y1 X Yo X.. ..
and define the joint

XVn

PXZ” yn =

Px Pz \x Py, 7, P20\ x Py 2, 9, - Pz x Py, 7, 701

where Py, x = BEC(2—¢), and Py g yicioyioa 18 deﬁned
as in equat10ns (6) and (7) of Lemma 2, where o@ = 2 — ¢
and o/ = 2 — exp{Z (P}’qﬁ\X7Y1:y1,Y2:yz,~--,Y11_1:y71_1)}- By
construction, X — Z"™ — Y™ is a Markov chain, and

)= ZP*n7Zn|X(y",zn|x)

P{fn|X(yn|$

- Z H Py, x (zil0) Py, 7, yi-1 (vl 23, y'h

z™ =1

= H ZPZ,\X(ZZ|1.)P}7;|Z“}~”*1(y1|z“ yi_l)

1=1 Zq

n
(a) i
= HPmX,Yi—l(yi\l”»yl 1)
i=1

= Pyn x(y"|x),

where (a) follows from Lemma 2. Hence this coupling yields
that X — Z" — Y™ is a Markov chain.

To show the equality £ (X—Z1,%Zs,...,2Z,) =
log (2 —TI/_,(2—€%)), note that for the n-fold BEC,
for any output 2", if there exists ¢ such that z; # e, then
Pyznix(2"|0) = 0 or Pznx(2"|1) = 0. Hence,

min Pyn x (2

Z: Lin ) =

{0 1 e}"

Pyn
g{lg)nl} 7 x (e e

-e)fx)

ﬁQ—e
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Hence, by Lemma 1,

Z (Pznix) =log (2 — H(2 - efi)> :

i=1

III. CHERNOFF INFORMATION AND TOTAL VARIATION
DISTANCE

Definition 2 ([16]). The Chernoff information between two
probability mass functions, P and @Q, over the same alphabet
X is given as follows. First, for all x € X and X € [0,1], let:

P(2)*Q(z)!

P = . 9
M) = PEQET ©

Then the Chernoff information is given by
¢ (P||Q) = D(Px-||P) = D(Px-|Q), (10)

where \* is any value of \ such that the above two relative
entropies are equal. Equivalently, the Chernoff information is
also given by:

¢(P||Q) = — min log (Z P(x)“Q(ar)“) (1)

Wu et al. [5] analyzed the case in which Y;,Ys, ..., Y, are
conditionally i.i.d given X. In particular, it was shown that
(assuming the rows of Py x are distinct)

lim £ (X—Y™) =log|X]|, (12)

n— oo
and the convergence is exponential with a rate given by the
minimum Chernoff information between any two “rows” of
Py|X, that iS,

lim ! log (log |X| — Z (X—=Y™))
n

n— oo

= m;n 4 (Py|X(|{E1)||Py‘X(|£C2)) .

T17T2

13)

Notably, it was shown [5] that I(X; Y™) converges to its limit,
H(X), at the same rate. Similarly, Sibson mutual informa-
tion I(X;Y™) and Arimoto mutual information I5(X;Y™)
converge to their respective limits at the same rate for all
a € [0, 00].

Theorem 1 and the result of Wu er al [5] thus yield
that the binary-input channel that has the highest Chernoff
information between its rows (hence the fastest convergence
of Z(X—=Y™) to its limit) for a given maximal leakage
constraint is the binary erasure channel. This is formalized in
the next subsection where we cast the optimization in terms
of total variation distance (which, by virtue of Lemma 1,
is equivalent to maximal leakage for binary-input channels).
On the other hand, we show that the binary-input channel
minimizing the Chernoff information for a given maximal
leakage (or a given total variation distance between the two
rows) is the binary symmetric channel.

A. Maximum Chernoff Information

Corollary 1. Consider any o € [0,1]. Then,

max

Y %(P7Q) = _log(l - 05)7

(14)

max
P,Q:
drv (P,Q)<la

where Y is an arbitrary finite alphabet, and P and Q are
distributions over ). In particular, the maximum is achieved

Sfor Y ={0,1,¢e}, and
1—«
1—al’

P a0
Q" |0 «
i.e., P* and Q* are the rows of the BEC(1 — a).

Proof: Let X = {0, 1}. Fix any alphabet ) and any two
distributions P and @ over Y with drv (P, Q) = o < «, and
define the conditional distribution Wy | x such that

Wy |x—0 =P
and Wy‘le = Q
Define Wy x as H?:l Wy, x, i.e., Y™ are i.i.d conditioned

on X and for all 4, Wyi|X = Wy|X. Now, for n € N, let

Pn(a’) be the set of 7—LAMS {Pynx} with Y; = ) and
l; = £ = log(l + /) for all i € {1,2,...,n}. Note that
Wyn|x € Pn(a’) since, by Lemma 1,

Z (Wy|x) =log(1+dry(P,Q)) =log(1+a) = £.
Then,

a . 1
¢(P.Q) ¥ lim —~log (log2 —2 (Wynx))

sup

1
< lim ——log | log2 —
Pyn|x €Pn(a’)

n—oo n

i”(PYnX)>

® lim —% log (1og2 — log (2 —(1- a/)n))

n—oo
© _log(l—a)
< —log(l — ).

where (a) follows from [5, Theorem 1] (cf. equation (13)),
(b) follows from Theorem 1 and the fact that e = 1 +
forall ¢ € {1,2,...,n}, and (c) follows from 1’Hopital’s rule
(applied twice).

On the other hand, it is easy to check that dpy (P*,Q*) = «
and €' (P*,Q*) = —log(1 — a). [ |

B. Minimum Chernoff Information

We now turn to minimizing the Chernoff information for a
given total variation constraint. To that end, we will make use
of the properties of Rényi divergence.

Definition 3. The Rényi divergence of order « between
probability distributions P and Q is defined for a € [0, 00),
a#1 as:

! - log > P(2)*Qx)' ™, (15)

Da(PlIQ) = —
zeX
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where the continuous extension at o = 1 is given by the
standard Kullback-Leibler divergence

P(z)
Q(z)

Proposition 3. Consider any o € [0, 1]. Then,

D(P||Q) = ) P(x)log

zeX

(16)

min

i “(P.Q) =~ log((1- )1 +a)), (17)

min
drv(PQ)>a
where Y is an arbitrary alphabet, and P and Q are distri-

butions over ). In particular, the minimum is achieved for
Y ={0,1} and

-2 )

i.e., P* and Q* are the rows of the binary symmetric channel
with parameter (1 — «)/2.

Proof: Consider any Y, || > 2, and any two distributions
P and Q over Y. Let (Qy be any measure such that P < Qg
and Q < Qo, e.g., Qo = P+ Q. Let

A={y€y:;§0(y)>j§)(y)}-

(Note that here ) is not assumed to be finite, hence the use
of the measure-theoretic notation.) Now let )’ = {0, 1}, and
define P’ and Q' over )’ such that

P'(0) = P(A) and Q'(0) = Q(A).
Note that drv (P', Q') = drv (P, Q). Moreover,
¢(P,Q") =~ min (A~1)DA(P', Q")

< - Oggl(A —1)D\(P,Q) =€ (P,Q),

where the inequality follows from the data processing inequal-
ity for Rényi divergences [17, Theorem 9]. It is thus sufficient
to consider distributions P and @ over Y = {0, 1}. Note that
D\ (P, Q) is convex in the pair (P, Q) [17, Theorem 11], hence

%(PvQ) = Ssup _()‘ - 1)D)\(P7Q)
0<A<1

is a supremum of convex functions, so it is also convex in
(P, Q). Without loss of generality, suppose P(0) > Q(0). In
particular,

P(0) = Q(0)+P(0)-Q(0) = Q(0)+drv (P, Q) = Q(0)+d/,
where o/ > «. Define the distributions

Pl [a+a)/2 (1-a)/2

Q)  [1-a)/2 (1+a)/2]”
P =1—-Pand Q = 1 — Q. Then, by symmetry (cf.
equations (11) and (10)),

€(P,Q) =% (P,Q)=¢(Q,P).

Moreover, note that for any distributions P and @Q over {0, 1}
with P(0) = Q(0) + ¢,

P=(P+Q)/2and Q = (Q+ P)/2,
so that
1 1 - = A
where the inequality follows from convexity. Finally,
C(P,Q) 2~ log (1~ a)(1 + )
® 1
> —ilog (1 -a)(1+«))

where (a) follows from equation (11) (the minimum is
achieved for \* = 1/2), and (b) follows from the fact that

the function f(t) = —log((1 — ¢)(1 +t)) is non-decreasing
over [0, 1].
On the other hand, it is easy to check that dry (P*,Q*) = «
and € (P*,Q*) = —1log (1 — a)(1 + a)). ]
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