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Abstract—Given a binary random variable X representing
sensitive information and n noisy observations Y1, Y2, . . . , Yn

available to an adversary, we analyze the maximal leakage
L (X→Y n) in the following setting modeling adaptive attacks.
At each stage i, the adversary may choose an action to in-
teract with the system containing X to obtain Yi. The action
may depend on previous realizations of the observations, but
the leakage at each stage is limited. We derive an adaptive
composition theorem wherein L (X→Y n) is bounded in terms
of the leakage of each stage. Furthermore, we show that the
bound is achieved for L (X→Zn) where (Z1, Z2, . . . , Zn) are
conditionally independent given X and each Zi corresponds to
the output of a binary erasure channel with the appropriate
parameter; moreover, X−Zn

−Y n can be coupled as a Markov
chain for any feasible Y n. As a corollary of this result and the
asymptotic analysis of composition by Wu et al., we show that
the binary erasure channel maximizes the Chernoff information
between the “rows” of binary-input channels given a maximal
leakage constraint. On the other hand, we show that the binary
symmetric channel minimizes the Chernoff information for a
given maximal leakage constraint.

Index Terms—composition, adaptive, maximal leakage, Cher-
noff information

I. INTRODUCTION

Consider a system containing sensitive data X and an adver-

sary interacting with the system to receive a noisy observation,

Y . In many scenarios, an adversary may generate several

“attacks” (e.g., averaging attacks in side channels, multiple

queries to a database, etc.), receiving a sequence of obser-

vations Y1, Y2, . . . , Yn. Thus even if the information leakage

from X to Y , denoted by L(X→Y ), is limited, it is essential

to analyze the degradation of privacy/security guarantees under

multiple observations, L(X→Y n). In the privacy and security

literature, results of this form (bounding L(X→Y n) in terms

of L(X → Y )) are termed composition theorems. A smart

adversary may adapt their attacks to previous observations,

in which case we speak of adaptive composition theorems,

which are the focus of this paper.

Tight adaptive composition theorems have been derived for

(approximate) differential privacy in [1], where an equivalent

characterization of differential privacy in terms of a binary hy-

pothesis testing problem was used to demonstrate the existence

of a “dominating” mechanism. Composition theorems for

variants of differential privacy have also been studied [2]–[4].

Wu et al. [5] derived (non-adaptive) asymptotic composition

theorems, assuming Y1, Y2, . . . , Yn are conditionally i.i.d given

X , for several information-theoretic measures, namely Sibson

mutual information [6], [7], Arimoto mutual information [8],

and α-maximal leakage [9]. In particular, they showed that

L(X → Y n) (where L is any of the mentioned measures)

converges exponentially fast to its corresponding limit. More-

over, the rate of convergence for all these measures is the

same, namely it is the Chernoff information among all pairs

of distinct distributions PY |X(.|x) and PY |X(.|x′).

In this paper, we consider maximal leakage (also studied

in [5] as it is equal to Sibson mutual information of order

∞), which is a security metric that emerged in the computer

security [10]–[12] and information theory literature [13], [14].

It is given by

L (X→Y ) = log
∑

y∈Y

max
x∈X

PY |X(y|x), (1)

where we assume the alphabets are finite and X has full

support (throughout the paper). We consider an adaptive

setting where at each stage i, an attacker chooses an action to

interact with the system to obtain Yi. The action may depend

on previous realizations of the observations, but the leakage

at each stage is limited. We derive a tight finite-n bound on

L (X→Y n) in terms of the leakages at each stage, under the

assumption that X is binary. We show that the bound is in fact

achievable for a “non-adaptive” mechanism, in particular, it is

achievable for PZn|X where (Z1, . . . , Zn) are conditionally

independent given X and each Zi corresponds to the output

of a binary erasure channel (BEC). To that end, for any

PY |X we find the largest α ∈ [0, 1] for which it is possible

to couple X − Z − Y as a Markov chain where Z is the

output of a BEC with parameter α. This is then extended into

coupling X−Zn−Y n as a Markov chain with the appropriate

parameters for any feasible PY n|X .

As a consequence of this result and the asymptotic result of

Wu et al. [5], it turns out that the BEC maximizes the Chernoff

information between the “rows” of binary-input channels given

a maximal leakage constraint. On the other hand, we show

that the binary symmetric channel minimizes the Chernoff

information for a given maximal leakage constraint.
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II. MAIN RESULT

Notation: Given a joint distribution PXY on alphabets

X × Y , we use L (PY |X) to denote L (X→Y ) when X
has full support. The M -ary input erasure channel (M ∈ N)

with parameter α ∈ [0, 1] is denoted by M -EC(α), i.e.,

PZ|X = M -EC(α) indicates |X | = M , Z ∈ Z = X ∪ {e},

and PZ|X(e|x) = α and PZ|X(x|x) = 1 − α for all x ∈ X .

For the special case where M = 2, we denote it by BEC(α).
Throughout this paper, we assume all alphabets are finite.

Definition 1 (
−→
` -Leakage Adaptive Mechanism). Given n ∈

N,
−→
` = (`1, `2, . . . , `n) ∈ R

n
+, alphabets X ,Y1,Y2, . . . ,Yn,

and a conditional distribution PY n|X where X ∈ X and

Y n ∈ Y1 × Y2 × . . . × Yn, we say PY n|X is an
−→
` -leakage

adaptive mechanism (
−→
` -LAM) if for all i ∈ {1, 2, . . . , n}, and

all (y1, y2, . . . , yi−1) ∈ Y1 × Y2 × . . .× Yi−1, we have

L
(

PYi|X,Y1=y1,Y2=y2,...,Yi−1=yi−1

)

≤ `i. (2)

Wu et al. [5] studied the asymptotic growth of L
(

PY n|X

)

when (Y1, Y2, . . . , Yn) are conditionally i.i.d given X , i.e.,

PY n|X =
∏n

i=1 PYi|X and for all i, PYi|X = PY |X for some

fixed channel PY |X . Such (non-adaptive) mechanisms can be

seen as a subset of `-LAMs with ` = L
(

PY |X

)

.

Our main result tightly upper-bounds L
(

PY n|X

)

for any

n and
−→
` , assuming X is binary.

Theorem 1. Suppose X = {0, 1} and let X ∼

PX have full support. Consider n ∈ N,
−→
` ∈

[0, 1]n, alphabets Y1,Y2, . . . ,Yn, and
−→
` -LAM PY n|X . Let

Z1, Z2, . . . , Zn be conditionally independent given X , with

PZi|X = BEC(2− e`i). Then, there exists a coupling of

(X,Y n, Zn) such that X − Zn − Y n is a Markov chain

(i.e., the channel PY n|X is degraded with respect to PZn|X ).

Consequently,

L (X→Y1, Y2, . . . , Yn) ≤ L (X→Z1, Z2, . . . , Zn) (3)

= log

(

2−

n
∏

i=1

(2− e`i)

)

. (4)

Notably, the theorem states that a non-adaptive mechanism

(namely, conditionally independent outputs of binary erasure

channels) achieves the maximum total leakage L
(

PY n|X

)

among
−→
` -LAMs. A similar phenomenon occurs in the context

of composition theorems for (approximate) differential pri-

vacy [15], as well as composition theorems for f -differential

privacy [4], wherein a non-adaptive mechanism maximizes the

privacy degradation. The latter work defines privacy in terms

of the trade-off function resulting from a binary hypothesis

testing problem. The tools developed in these papers [4],

[15] could be used to prove the inequality in Theorem 1

(herein, we provide a more explicit proof through the coupling

of (X,Y n, Zn)). This common phenomenon is due to the

existence of a “dominating” mechanism for both differential

privacy and f -differential privacy (for every valid choice of

f ), analogous to the BEC in our context.

A. Proof of Theorem 1

For the case n = 1, the theorem follows from the following

two lemmas.

Lemma 1. If X = {0, 1}, then for any conditional distribu-

tion PY |X ,

L
(

PY |X

)

= log
(

1 + dTV

(

PY |X=0, PY |X=1

))

= log



2−
∑

y∈Y

min
x∈{0,1}

PY |X(y|x)



 , (5)

where dTV is the total variation distance.

Proof of Lemma 1: The first equality is due to Sibson [6].

For the second equality, note that

∑

y∈Y

min
x∈{0,1}

PY |X(y|x)

=
1

2

∑

y∈Y

min
x∈{0,1}

PY |X(y|x) +
1

2

∑

y∈Y

max
x∈{0,1}

PY |X(y|x)

+
1

2

∑

y∈Y

(

min
x∈{0,1}

PY |X(y|x)− max
x∈{0,1}

PY |X(y|x)

)

=
1

2

∑

y∈Y

(

PY |X(y|0) + PY |X(y|1)
)

−
1

2

∑

y∈Y

∣

∣PY |X(y|0)− PY |X(y|1)
∣

∣

= 1− dTV

(

PY |X=0, PY |X=1

)

.

Lemma 2. Fix an arbitrary finite alphabet X and let

PZ|X = M -EC(α) for some1 α ∈ [0, 1) where M = |X |.
Consider an arbitrary finite alphabet Y and a conditional

distribution PY |X . Then there exists a coupling of (X,Y, Z)
such that X − Z − Y is a Markov chain if and only if
∑

y∈Y

min
x∈X

PY |X(y|x) ≥ α. Moreover, the following PY |Z yields

the desired coupling:

PY |Z(y|e) =
1

α′
min
z∈X

PY |X(y|z), (6)

PY |Z(y|z) =
1

1− α

(

PY |X(y|z)−
α

α′
min
z′∈X

PY |X(y|z′)

)

, (7)

for z ∈ X , where α′ :=
∑

y∈Y

min
x∈X

PY |X(y|x) ≥ α.

Remark 1. For the purposes of the proof Theorem 1, only the

(⇐) implication of the lemma for M = 2 is needed. However,

the equivalence is simple to prove in general and may be of

independent interest.

1For α = 1, the statement is trivially true as the output of Z of an
M -EC(1) is a constant and

∑
y minx PY |X(y|x) = 1 implies that X is

independent from Y
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Proof of Lemma 2: (⇒) : If X − Z − Y is a Markov

chain, then

PY |X(y|x) =
∑

z∈X∪{e}

PY |Z(y|z)PZ|X(z|x)

= PY |Z(y|x)(1− α) + PY |Z(y|e) · α

≥ PY |Z(y|e) · α.

Consequently,
∑

y∈Y

min
x∈X

PY |X(y|x) ≥ α
∑

y∈Y

PY |Z(y|e) = α.

(⇐) : Let Z ′ = BEC(α′). Define X − Z ′ − Ỹ , with Ỹ ∈ Y
as follows:

PỸ |Z′(y|e) =
1

α′
min
z′∈X

PY |X(y|z′),

PỸ |Z′(y|z
′) =

1

1− α′

(

PY |X(y|z′)−min
z̃∈X

PY |X(y|z̃)

)

, z̃ ∈ X .

Note that all the above terms are non-negative. Moreover,

∑

y∈Y

PỸ |Z′(y|e) =

∑

y∈Y minz′∈X PY |X(y|z)

α′
= 1.

Similarly,

∑

y∈Y

PỸ |Z′(y|z
′) =

∑

y∈Y

(

PY |X(y|z′)−minz̃∈X PY |X(y|z̃)
)

1− α′

= 1.

Hence, the conditional distribution above is valid. Now note

that for all y ∈ Y and x ∈ X ,

PỸ |X(y|x)

=
∑

z′∈X∪{e}

PZ′|X(z′|x)PỸ |Z′(y|z
′)

= (1− α′)PỸ |Z′(y|x) + α′PỸ |Z′(y|e)

= PY |X(y|x)− min
x′∈X

PY |X(y|x′) + min
x′∈X

PY |X(y|x′)

= PY |X(y|x).

Hence, X−Z ′−Y can be coupled as a Markov chain. Finally,

one can obtain X−Z−Z ′−Y as a Markov chain by defining

PZ′|Z as

PZ′|Z(z
′|z) =



















1, if z = e and z′ = e,
α′−α
1−α

, if z 6= e and z′ = e
1−α′

1−α
, if z = z′ and z′ 6= e

0, otherwise,

(8)

and the induced conditional PY |Z is as given in equations (6)

and (7). Indeed, for z = e,

PY |Z(y|e) =
∑

z′∈X∪{e}

PY |Z′(y|z′)PZ′|Z(z
′|z)

= PY |Z′(y|e) · 1

=
1

α′
min
z′∈X

PY |X(y|z′),

as given in equation (6). Similarly, for z 6= e,

PY |Z(y|z) =
∑

z′∈X∪{e}

PY |Z′(y|z′)PZ′|Z(z
′|z)

= PY |Z′(y|z)PZ′|Z(z|z) + PY |Z′(y|e)PZ′|Z(e|z)

=
1

1− α′

(

PY |X(y|z)−min
z̃∈X

PY |X(y|z̃)

)

1− α′

1− α

+
1

α′

(

min
z̃∈X

PY |X(y|z̃)

)

α′ − α

1− α

=
1

1− α

(

PY |X(y|z)−
α

α′
min
z̃∈X

PY |X(y|z̃)

)

,

as given in equation (7).

Now consider the n = 1 case in Theorem 1, that is,

we have L
(

PY |X

)

≤ `. It follows from Lemma 1 that
∑

y∈Y

min
x∈{0,1}

PY |X(y|x) ≥ 2 − e`. Hence, from Lemma 2,

X − Z − Y can be coupled as a Markov chain where

PZ|X = BEC(2 − e`) and PY |Z is as given in (6) and (7)

with α = 2− e` and α′ = 2− eL (PY |X).

Now consider the general case. Let Ỹ n ∈ Y1×Y2×. . .×Yn

and define the joint

PXZnỸ n :=

PXPZ1|XPỸ1|Z1
PZ2|XPỸ2|Z2,Ỹ1

. . . PZn|XPỸn|Zn,Ỹ n−1 ,

where PZi|X = BEC(2−e`i), and PỸi|Zi,Ỹ i−1=yi−1 is defined

as in equations (6) and (7) of Lemma 2, where α = 2 − e`i

and α′ = 2 − exp{L
(

PYi|X,Y1=y1,Y2=y2,...,Yi−1=yi−1

)

}. By

construction, X − Zn − Ỹ n is a Markov chain, and

PỸ n|X(yn|x) =
∑

zn

PỸ n,Zn|X(yn, zn|x)

=
∑

zn

n
∏

i=1

PZi|X(zi|x)PỸi|Zi,Ỹ i−1(yi|zi, y
i−1)

=

n
∏

i=1

∑

zi

PZi|X(zi|x)PỸi|Zi,Ỹ i−1(yi|zi, y
i−1)

(a)
=

n
∏

i=1

PYi|X,Y i−1(yi|x, y
i−1)

= PY n|X(yn|x),

where (a) follows from Lemma 2. Hence this coupling yields

that X − Zn − Y n is a Markov chain.

To show the equality L (X→Z1, Z2, . . . , Zn) =
log
(

2−
∏n

i=1(2− e`i)
)

, note that for the n-fold BEC,

for any output zn, if there exists i such that zi 6= e, then

PZn|X(zn|0) = 0 or PZn|X(zn|1) = 0. Hence,

∑

zn∈
{0,1,e}n

min
x∈{0,1}

PZn|X(zn|x) = min
x∈{0,1}

PZn|X((e, e, . . . , e)|x)

=

n
∏

i=1

(2− e`i).
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Hence, by Lemma 1,

L
(

PZn|X

)

= log

(

2−

n
∏

i=1

(2− e`i)

)

.

III. CHERNOFF INFORMATION AND TOTAL VARIATION

DISTANCE

Definition 2 ([16]). The Chernoff information between two

probability mass functions, P and Q, over the same alphabet

X is given as follows. First, for all x ∈ X and λ ∈ [0, 1], let:

Pλ(x) =
P (x)λQ(x)1−λ

∑

x′∈X P (x′)λQ(x′)1−λ
. (9)

Then the Chernoff information is given by

C (P ||Q) = D(Pλ∗ ||P ) = D(Pλ∗ ||Q), (10)

where λ∗ is any value of λ such that the above two relative

entropies are equal. Equivalently, the Chernoff information is

also given by:

C (P ||Q) = − min
0≤λ<1

log

(

∑

x

P (x)λQ(x)1−λ

)

. (11)

Wu et al. [5] analyzed the case in which Y1, Y2, . . . , Yn are

conditionally i.i.d given X . In particular, it was shown that

(assuming the rows of PY |X are distinct)

lim
n→∞

L (X→Y n) = log |X |, (12)

and the convergence is exponential with a rate given by the

minimum Chernoff information between any two “rows” of

PY |X , that is,

lim
n→∞

−
1

n
log (log |X | − L (X→Y n))

= min
x1 6=x2

C
(

PY |X(.|x1)||PY |X(.|x2)
)

. (13)

Notably, it was shown [5] that I(X;Y n) converges to its limit,

H(X), at the same rate. Similarly, Sibson mutual informa-

tion ISα (X;Y n) and Arimoto mutual information ISα (X;Y n)
converge to their respective limits at the same rate for all

α ∈ [0,∞].

Theorem 1 and the result of Wu et al. [5] thus yield

that the binary-input channel that has the highest Chernoff

information between its rows (hence the fastest convergence

of L (X→Y n) to its limit) for a given maximal leakage

constraint is the binary erasure channel. This is formalized in

the next subsection where we cast the optimization in terms

of total variation distance (which, by virtue of Lemma 1,

is equivalent to maximal leakage for binary-input channels).

On the other hand, we show that the binary-input channel

minimizing the Chernoff information for a given maximal

leakage (or a given total variation distance between the two

rows) is the binary symmetric channel.

A. Maximum Chernoff Information

Corollary 1. Consider any α ∈ [0, 1]. Then,

max
Y

max
P,Q:

dTV (P,Q)≤α

C (P,Q) = − log(1− α), (14)

where Y is an arbitrary finite alphabet, and P and Q are

distributions over Y . In particular, the maximum is achieved

for Y = {0, 1, e}, and
[

P ?

Q?

]

=

[

α 0 1− α
0 α 1− α

]

,

i.e., P ? and Q? are the rows of the BEC(1− α).

Proof: Let X = {0, 1}. Fix any alphabet Y and any two

distributions P and Q over Y with dTV (P,Q) = α′ ≤ α, and

define the conditional distribution WY |X such that

WY |X=0 = P

and WY |X=1 = Q.

Define WY n|X as
∏n

i=1 WYi|X , i.e., Y n are i.i.d conditioned

on X and for all i, WYi|X = WY |X . Now, for n ∈ N, let

Pn(α
′) be the set of

−→
` -LAMs {PY n|X} with Yi = Y and

`i = ` := log(1 + α′) for all i ∈ {1, 2, . . . , n}. Note that

WY n|X ∈ Pn(α
′) since, by Lemma 1,

L
(

WY |X

)

= log(1 + dTV (P,Q)) = log(1 + α′) = `.

Then,

C (P,Q)
(a)
= lim

n→∞
−
1

n
log
(

log 2− L
(

WY n|X

))

≤ lim
n→∞

−
1

n
log

(

log 2− sup
PY n|X∈Pn(α′)

L
(

PY n|X

)

)

(b)
= lim

n→∞
−
1

n
log
(

log 2− log
(

2− (1− α′)
n))

(c)
= − log(1− α′)

≤ − log(1− α).

where (a) follows from [5, Theorem 1] (cf. equation (13)),

(b) follows from Theorem 1 and the fact that e`i = 1 + α′

for all i ∈ {1, 2, . . . , n}, and (c) follows from l’Hopital’s rule

(applied twice).

On the other hand, it is easy to check that dTV (P
?, Q?) = α

and C (P ?, Q?) = − log(1− α).

B. Minimum Chernoff Information

We now turn to minimizing the Chernoff information for a

given total variation constraint. To that end, we will make use

of the properties of Rényi divergence.

Definition 3. The Rényi divergence of order α between

probability distributions P and Q is defined for α ∈ [0,∞),
α 6= 1 as:

Dα(P ||Q) =
1

α− 1
log
∑

x∈X

P (x)αQ(x)1−α, (15)
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where the continuous extension at α = 1 is given by the

standard Kullback-Leibler divergence

D(P ||Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
. (16)

Proposition 3. Consider any α ∈ [0, 1]. Then,

min
Y

min
P,Q:

dTV (P,Q)≥α

C (P,Q) = −
1

2
log ((1− α)(1 + α)) , (17)

where Y is an arbitrary alphabet, and P and Q are distri-

butions over Y . In particular, the minimum is achieved for

Y = {0, 1} and

[

P ?

Q?

]

=

[

(1 + α)/2 (1− α)/2
(1− α)/2 (1 + α)/2

]

,

i.e., P ? and Q? are the rows of the binary symmetric channel

with parameter (1− α)/2.

Proof: Consider any Y , |Y| ≥ 2, and any two distributions

P and Q over Y . Let Q0 be any measure such that P � Q0

and Q � Q0, e.g., Q0 = P +Q. Let

A =

{

y ∈ Y :
dP

dQ0
(y) >

dQ

dQ0
(y)

}

.

(Note that here Y is not assumed to be finite, hence the use

of the measure-theoretic notation.) Now let Y ′ = {0, 1}, and

define P ′ and Q′ over Y ′ such that

P ′(0) = P (A) and Q′(0) = Q(A).

Note that dTV (P
′, Q′) = dTV (P,Q). Moreover,

C (P ′, Q′) = − min
0≤λ≤1

(λ− 1)Dλ(P
′, Q′)

≤ − min
0≤λ≤1

(λ− 1)Dλ(P,Q) = C (P,Q),

where the inequality follows from the data processing inequal-

ity for Rényi divergences [17, Theorem 9]. It is thus sufficient

to consider distributions P and Q over Y = {0, 1}. Note that

Dλ(P,Q) is convex in the pair (P,Q) [17, Theorem 11], hence

C (P,Q) = sup
0≤λ≤1

−(λ− 1)Dλ(P,Q)

is a supremum of convex functions, so it is also convex in

(P,Q). Without loss of generality, suppose P (0) ≥ Q(0). In

particular,

P (0) = Q(0)+P (0)−Q(0) = Q(0)+dTV (P,Q) = Q(0)+α′,

where α′ ≥ α. Define the distributions
[

P̂

Q̂

]

=

[

(1 + α′)/2 (1− α′)/2
(1− α′)/2 (1 + α′)/2

]

,

P̄ = 1 − P and Q̄ = 1 − Q. Then, by symmetry (cf.

equations (11) and (10)),

C (P,Q) = C (P̄ , Q̄) = C (Q̄, P̄ ).

Moreover, note that for any distributions P and Q over {0, 1}
with P (0) = Q(0) + α′,

P̂ = (P + Q̄)/2 and Q̂ = (Q+ P̄ )/2,

so that

C (P,Q) =
1

2
C (P,Q) +

1

2
C (Q̄, P̄ ) ≥ C (P̂ , Q̂),

where the inequality follows from convexity. Finally,

C (P̂ , Q̂)
(a)
= −

1

2
log ((1− α′)(1 + α′))

(b)

≥ −
1

2
log ((1− α)(1 + α))

where (a) follows from equation (11) (the minimum is

achieved for λ? = 1/2), and (b) follows from the fact that

the function f(t) = − log((1 − t)(1 + t)) is non-decreasing

over [0, 1].
On the other hand, it is easy to check that dTV (P

?, Q?) = α
and C (P ?, Q?) = − 1

2 log ((1− α)(1 + α)).
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