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ABsTtrACT: The successful realization of the EIC scientific program requires the design and
construction of high-performance particle detectors. Recent developments in the field of scien-
tific computing and increased availability of high performance computing resources have made it
possible to perform optimization of multi-parameter designs, even when the latter require longer
computational times (for example simulations of particle interactions with matter). Procedures
involving machine-assisted techniques used to inform the design decision have seen a considerable
growth in popularity among the EIC detector community. Having already been realized for tracking
and RICH PID detectors, it has a potential application in calorimetry designs. A SciGlass barrel
calorimeter originally designed for EIC Detector-1 has a semi-projective geometry that allows for
non-trivial performance gains, but also poses special challenges in the way of effective exploration
of the design space while satisfying the available space and the cell dimension constraints together
with the full detector acceptance requirement. This talk will cover specific approaches taken to
perform this detector design optimization.
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1 Introduction

The Electron-Ion Collider (EIC), a new accelerator facility that will be built in the next decade,
provides the novel opportunity to utilize Machine Learning algorithms directly in the accelerator,
detector and data acquisition design. Previous efforts at optimizing particle detector designs for
EIC included a dual radiator RICH detector [1] and a tracker subsystem [2], both were aimed for the
“Detector-1" concept. Generally a design optimization problem is a Multi-Objective Optimization
(MOO) problem with metrics which are practically non-differentiable. Such problems were suc-
cessfully addressed in simpler cases using Genetic Algorithms, and there were recent developments
in advanced methods for Bayesian Optimization (e.g., [5]) showing promise for scaling to more
complex tasks. The following paper summarizes findings in evaluation of the existing approaches
for optimization of electromagnetic calorimeter detector to be used for EIC.

A projective homogeneous calorimeter with SciGlass radiator is envisioned for Detector-
IT at the EIC. This device will be used to measure the energy of electrons scattered at mid-
rapidity (corresponding to interactions with high momentum transfer in deep-inelastic electron-
proton scattering (DIS)). In this work, we attempt to solve the practical task of optimizing the
geometrical shape of such a calorimeter. The reference design for this calorimeter with n-coverage
—1.7 < n < 1.3 is shown on (fig. 1).

2 Problem definition

The optimization procedure starts with defining a set of design parameters to be optimized and
numerical objectives to quantify the detector performance. The focus of this work was on optimizing



Figure 1: Top-down view of one of the 12 sectors of the SciGlass projective geometry for Detector-

IT at EIC, with the sector in front of it removed for visibility. Seven different cell colors mark seven
assumed shapes. Black denotes carbon fiber supports, and grey represent wall of the wedge box
surrounding each sector.

tower projectivity. To that end, the shapes of the towers were allowed to vary. The assumption
was made that up to seven independent tower shapes can be manufactured, those are referred to as
“families”. The difference in shape was encoded in terms of flaring angles for each trapezoid that
corresponded to the angle between opposite faces of a cell. When looking at the cells from the
middle towards the detector ends that flaring angle would accumulate towards the polar angle of
each cell’s incline (fig. 2), since the adjacent sides of adjacent cells were coplanar with a 1 mm gap
distance. An assumption was made that the towers from the same family would be stacked together,
and families would go in the same order. That allowed to encode placements of the towers in an
integer vector with 12 values: 7 for positive direction and 5 for the negative. Altogether, families
flaring angles and numbers of towers used per family fit in a vector of 19 values.

The barrel SciGlass calorimeter subsystem
serves several purposes: the measurement of elec-
tron and photon energy with excellent resolution,
which is especially important for constraining kine-
matics of the scattered electron. It also needs to be
able to help identify the scattered electron from the
background of negatively charged hadrons, such as
7~ that will be also present in DIS events. This
is largely relying on shower profiling and discrim-

ination based on the ratio of the deposited energy
(Edep.), as reconstructed from a 3 X 3 tower cluster,

and the momentum (py) of the particle as deter- Figure 2: Side-view schematic of longitudi-

mined by an external tracking detector. In this work nal tower stacking with flaring angles {a;}.
the true momentum of the particle (prown) Will be

used since a realistic tracking detector has not been included in this study. Initial evaluations of pion
rejection had showed that this design could use a slight improvement for particles at lower values of
pr at which probabilities to encounter a pion are higher. Thus the focus of this work was on attempt
at improving this quantity. Another responsibility of the subsystem is discrimination between y
from DVCS and n° — yy signal from DVMP, which at high energies relies on computationally

expensive ML training, and is less optimal for including in an initial round of optimization.



3 Multi-objective Optimization using Genetic Algorithms

A direct approach using NSGA-II [3] implemented in pymoo [4] framework was applied to the
present problem. The algorithm displayed decent performance for the 2-objective problem when
using default settings and population size of 100. One problem-specific consideration had to be
made for the fact that implicit constraints placed by inherent possibility of overlaps occurring in
the geometry, which prevent objective functions to be evaluated. The [4] framework does not allow
for the user code to report such missing values, so instead values of O were reported when overlaps
were detected, and non-overlapping minimized values were adjusted be always negative.

4 Constraints and dimensional reduction

The handling of constraints is particularly challenging for this problem. The cells of the calorimeter
have to fit within the allocated volume, yet have a maximal possible acceptance within that limit.
The resulting constraint on the parameters is non-linear due to complicated trigonometric relations
arising for the angular parameters.

Another observation is that the time needed to evaluate the geometry for overlaps (via TGeo) is
O(1 second), much smaller than the time needed to evaluate the geometry for its performance which
is at least O(1 minute). One could ask then if it would be possible to pre-compute the manifold of
parameters that correspond to valid geometries. The approach taken in this work is to use Markov
Chain Monte Carlo (MCMC) walkers to explore the design space and approximately identify a
subspace of valid geometries that occupy maximal acceptance within the detector envelope. The
latter requirement is needed as we are not interested in valid geometries that don’t use sufficient
amount of towers. A value of the distance between the z-coordinates between the backward-most
and forward-most towers is used as a proxy for acceptance that is easy to compute for a given
geometry. In the end, the following probability distribution was given to the MCMC:

—oo, if parameter set doesn’t pass the overlap check

. “4.1)
(Zrightmost tower — Zleftmost tower) / (1 cm), otherwise

log(P) = {
The MCMC was run until it converged to a concrete population effectively sampling a region
of high log(P), as seen on fig. 3a. This population was then used to perform dimensional reduction.
Generally, that would be achieved using a manifold learning method, but in this case, a simple
Principal Component Analysis was applied. The main outcome was that two dimensions were
highly constrained, as seen on fig. 3b. The eigenvectors corresponding to those directions, as seen
on fig. 3¢, had comparable components for variations in parameters of the same type. The PCA
defines a transformation to a new parameter set. The limits for transformed parameters are not
well-defined anymore, so instead a 30~ variation across populations was used. Figure 3d shows how
variations are different between initial population and converged population after MCMC. It makes
sense that there were two components reduced, as when detector geometry is defined by stacking
from the center in the +Z directions, there are two detector envelope boundaries to hit.
The effect of dimensional reduction was evaluated for 2-objective MOO using NSGA-II imple-
mentation described in section 3. In comparison to optimization without dimensional reduction the
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convergence was achieved much faster with a slightly better outcome for the Egep. / Pihrown Objective
as illustrated in fig. 4.

5 Multi-objective Optimization using Bayesian Optimization

Bayesian Optimization (BO) is another popular approach for doing MOO. It has the benefit of
reducing a number of expensive objective evaluations compared to Genetic Algorithms by reducing
exploration and increasing exploitation. This approach however generally requires extra fine tuning
to make it work.

The implementation of BO in the Ax framework with SAASBO [5] surrogate model in the
gNEHVI [6] acquisition function was used in this study. The surrogate model was initialized by
fitting it to evaluated designs with parameters from a Sobol quasi-random sequence of length 1000.
That was followed by several hundred of BO iterations for which ¢ = 3 samples were evaluated at a
time and the surrogate model was refitted at each iteration. Unlike for NSGA-II the computational
overhead of the optimization algorithms was not negligible compared to the cost of evaluating the
objective functions. Instead, it was a dominant cost in the time budget of the whole procedure.

The same overlap consideration from section 3 applies to implementation in Ax. However, in
this case the missing values must also be ignored when determining a surrogate model fit model.
The solution of returning a value of 0 with a large uncertainty appears to work sufficiently well for
this purpose.
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Figure 5: Cross-validation for Gaussian Process surrogate models. Red dots mark 3-fold cross
validation of the Sobol-generated sample within the fit and blue trianlges mark predicted and actual
values for the points suggested by gNEHVI.

Another important consideration for BO lies within the surrogate model’s ability to adequately
model the unknown objective function. To ensure that, a 3-fold cross validation has been performed
for each of the objectives (shown on fig. 5) on points from a Sobol-generated sample. The cross



validation shows decent correlation, especially for pion rejection factor!. Furthermore, correlation
of predicted versus actual objective value can be visualized by the points suggested by gNEHVI.
Those points, by construction, lie lower than typical predictions for the Sobol model, but they also
often give lower actual outcomes, which indicates that gNEHVI with the given surrogate model is
capable at picking improving points.

An attempt has been made at utilizing the OutcomeConstraint facility in Ax in hope of
reducing chances of picking the invalid combinations of the parameters by requiring number of
overlaps to be < 0. The way such constraint is handled in Ax is that it receives a surrogate model of
its own, however, the cross validation for that was not satisfactory. In practice, running optimization
without this constraint, like for GA, worked sufficiently well.

6 Software stack

As was explained earlier, pymoo and Ax frameworks were used for optimization. The detector
geometry description was implemented for SciGlass calorimeter within DD4hep framework [7]
in which the evaluation of different designs was achieved by automatically producing alternative
“compact” XML file configurations with updated numerical parameters. The job scheduling was
performed using Dask.Distributed cluster with workers running using a Slurm batch system.
The development of the software was facilitated by caching evaluations using joblib.Memory
memoization that performed well when accessing a common cache situated on network storage
despite concurrent access from multiple nodes. The results of individual experiments were tracked
using MLflow. The simulation output produced by DD4hep’s interface to the Geant4 (ddsim) was
analyzed using implementation of objective functions using Awkward Array [8] in-memory data
representation loaded using uproot5 [9].

7 Results

Optimization using both Genetic Algorithms (GA) and Bayesian Optimization (BO) approaches
were performed for the SciGlass detector targeting two objectives: Egep./Pihrown (proxy for the
detector acceptance and, partially, for the energy resolution) for 2 GeV electrons.

The result for GA is shown on fig. 6a. The narrow shape of the correlation suggests, in hindsight,
that the optimization was close to being de-facto single-objective. The optimized detector was able to
outperform the reference one in terms of pion rejection factor by a half of an order in magnitude. Full
evaluation using a benchmarking software from Detector-I technology review [10] showed (fig. 7)
how the optimal configuration trades diminished pion rejection at high transverse momentum for
increase at low transverse momentum. This is a desirable trade as pion contamination is lesser for
electron candidates with a high momentum.

The result for BO shown on fig. 6b closely resembles the one obtained from the GA method,
however shows that a potentially larger runtime, and, possibly, also additional setup, would be

!In fact, the performance in cross validation can be improved slightly by tweaking the GP kernel. Unfortunately that
one is hard-coded in the default implementation of the “FULLYBAYESIANMOO” model in the version of Ax available at the
time of this writing.
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Figure 6: Objective points from 40 iterations of NSGA-II (a) and Sobol and Bayesian Optimization
(b). The red cross indicates the reference objective point corresponding to a detector configuration
using hand-picked flaring angles and per-family tower counts.
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required to achieve benchmark performance of the GA method. Figure 8 shows real-time per-
formance of the BO method, which picks up some local optimum after about ~ 100 evaluations
(corresponding to the iterations = 1100 and further on the plot).

8 Conclusion

This work demonstrates an example of optimization of a real world projective calorimeter design
for the future EIC Facility. The SciGlass detector has a potential application as a prominent design
mid-rapidity electron measurement device in future Detector-II, and, as was demonstrated, can be
further bettered using ML optimization techniques. The described suggested method for handling
of implicit parameter constraints should be applicable for a wider range of problems, including to
the problem of integrating dimensions of subsystems in full detector optimization tasks.
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