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1. INTRODUCTION

The Lichnerowicz Conjecture in conformal Riemannian geometry was proved
simultaneously by J. Ferrand and M. Obata. Recall that the conformal
transformations of a semi-Riemannian manifold (M, g) form the group

Conf(M, [g]) = {f € Diff(M) : f*g=e**g, A € C®(M)}

and that this is a Lie group provided dim M > 3. A subgroup H <
Conf(M, [g]) is called essential if it does not act isometrically with respect
any ¢’ = e**g in the conformal class [g] of g. The identity component of a
Lie group H is denoted by HP.

Theorem 1.1 (Ferrand ’71 [26]/ Obata '71 [33]). Let (M, g) be a compact,
Riemannian manifold with dimension n > 2. If Conf®(M, [g]) is essential,
then (M, g) is conformally diffeomorphic to the round sphere S™.
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The first attempt to characterize the round sphere by this property of its
conformal group seems to have been by A. Lichnerowicz [28] around 1964.
Ferrand actually proved a stronger result for all n > 2, that the above
conclusion holds whenever Conf(M, [g]) is essential. (In dimension 2, the
theorem is a straightforward consequence of the uniformization theorem for
Riemann surfaces.) She later proved a statement for noncompact M in [27].
The reader will find in [12] a nice account by her of the subject.

Obata’s proof is based on techniques from differential geometry and trans-
formation groups, while Ferrand’s is based on quasiconformal analysis. Two
more, totally different proofs, also covering the noncompact case, were given
in 1995 by Schoen [37], based on geometric PDEs, in particular, scalar cur-
vature theory, and in 2007 by the first author [15], using Cartan connections
and dynamical techniques.

The question whether there is a higher-signature analogue of theorem 1.1 has
been around for about thirty years (see [9, Sec 6.7]). Note that essentiality
of a conformal action on a compact Riemannian manifold is equivalent to
noncompactness of the group. In higher-signature, there is a wide, largely
uncharted array of compact pseudo-Riemannian manifolds with noncompact
isometry group. Accordingly, there is not such a simple characterization of
which conformal groups can act essentially.

Even compact Lorentzian manifolds with essential conformal group occur in
a wide variety of global geometries. The first author found infinitely-many
topological types of compact manifolds, for each n > 3, supporting infinitely-
many nonequivalent Lorentzian conformal structures admitting an essential
conformal flow, in [13]. Locally, however, they are all conformally equivalent
to Minkowski space—that is, all known essential Lorentzian examples are
conformally flat. The conjecture is:

Lorentzian Lichnerowicz Conjecture (LLC). Let (M", g)
be a compact Lorentzian manifold with n > 3. If Conf(M, [g])
is essential, then (M, g) is conformally flat.

For pseudo-Riemannian metrics of type (p, q) with p,q > 2, there are rather
simple, polynomial deformations g of the flat, (p, ¢)-Minkowski metric such
that a compact quotient of (R",g)\{0}, diffeomorphic to S* x S"~1 for
n = p+ q, is not conformally flat and admits an essential flow [18]. Thus it
seems there is no version of the Lichnerowicz Conjecture true in signature
higher than Lorentzian.

In this article, we prove the Lichnerowicz Conjecture for 3-dimensional, real-
analytic Lorentzian manifolds:

Theorem 1.2. Let (M, g) be a 3-dimensional, compact, real analytic, Lorentzian
manifold. If Conf®(M,[g]) is essential, then (M, gq) is conformally flat.



3-DIMENSIONAL LORENTZIAN LICHNEROWICZ CONJECTURE 3

1.1. Previous work on the conjecture. It is nearly understood which
connected Lie groups can act conformally and essentially on compact Lorentzian
manifolds. The expectation is that any such group admits a local monomor-
phism into O(2,n).

Let (M, g) be a compact, pseudo-Riemannian manifold of type (p, q), p+q >
3, and assume p < ¢q. Let H < Conf(M, [¢g]) be a connected subgroup.

For H semisimple, Zimmer proved that rkg H < p+ 1 [43]; moreover, if this
rank is attained, then H necessarily acts essentially. Bader—Nevo proved
that if H is simple and attains the maximal R-rank, then it is locally iso-
morphic to O(p+1, k+1), for p < k < ¢ [2]. Under the same assumptions, the
first author and Zeghib subsequently proved that M is conformally flat, and
in fact conformally equivalent to a certain compact, conformally homoge-
neous model space, up to covering spaces [23]. For g Lorentzian, Pecastaing
has shown that if H is noncompact, simple, and essential, then (M, g) is
conformally flat [35].

For H nilpotent, the authors proved in [21] that the nilpotence degree of H
is at most 2p + 1, and that, when this maximal degree is attained, (M, g)
is conformally flat and again equivalent to the homogeneous model, up to
covering spaces. Moreover, if H has the maximal nilpotence degree, it nec-
essarily acts essentially.

A recent result of the second author and Pecastaing [31], supporting the
LLC, does not assume any structure on the group, as above, but rather
topological properties of the space. The theorem states that the confor-
mal group of a compact, simply connected, analytic Lorentzian manifold
is compact. The proof shows that noncompactness of H implies conformal
flatness. By D’Ambra’s Theorem [8], H noncompact is equivalent to H es-
sential for such spaces. Conformal flatness leads to a contradiction of the
simple connectedness assumption. The proof reduces to the case that the
group is abelian.

1.2. Compact three-dimensional Lorentzian manifolds. One of our
motivations for theorem 1.2 was the thorough understanding of isometries
of compact, 3-dimensional Lorentzian manifolds. In [40], Zeghib classified
all such spaces admitting an unbounded isometric flow. The first author re-
cently improved this classification to all such spaces admitting any noncom-
pact isometry group—including in particular the case where the isometry
group is infinite and discrete [19].

There are moreover many useful classifications of homogeneous models for
3-dimensional Lorentzian manifolds (eg, [4, 7, 38, 36]). In [10], Dumitrescu
and Zeghib classified all metrically homogeneous Lorentzian spaces X such
that there is a compact, 3-dimensional Lorentzian manifold locally modeled
on X, and they proved that these are all complete.
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1.3. Overview of proof. The proof rests on the approach we have devel-
oped to conformal Lorentzian transformations in our previous papers, which
in turn is based on techniques involving the Cartan connection associated to
a conformal structure and on Gromov’s results on automorphisms of rigid
geometric structures. We moreover draw on some of the work specific to
3-dimensional Lorentzian manifolds referenced above as well as the recent
advance in [31], from which we draw two major parts of our proof.

In section 2, we use Zeghib’s classification of unbounded 3-dimensional
Lorentzian flows [40] to show that (M, g) has an essential conformal vec-
tor field. Denoting such a vector field by X, we ultimately focus on the Lie
algebra 3 of local conformal vector fields commuting with X.

In section 4 we gather local results yielding conformal flatness, based on our
previous work and Gromov’s theory, applied in this 3-dimensional, analytic
context. These are used throughout the paper, and they immediately imply
that the dimension of jx is at most 4.

The remainder of the paper comprises four more or less distinct proofs,
for each of the cases, dim 35 equals 4, 3, 2, or 1. The case dim 35 = 4
corresponds to (M, [g]) being locally conformally homogenous, which quickly
leads to the conclusion that it is conformally flat, or X is inessential, a
contradiction.

When dim 3y = 3, it can be R3, heis(3), or aff(R) @ R. In the case of
heis(3), we explicitly find a coordinate chart exhibiting g as conformally flat.
For aff(R) @ R, we find a complete (G, X)-structure on a closed, invariant
surface, and use this to show that the flow along X on this surface gives rise
to conformal flatness.

When dim 3y = 2, it is isomorphic to R%. We show in section 7.2 that
3x globalizes and integrates to a cylinder action on M. Then the situation
strongly resembles that of [31, Sec 6]; in the remainder of section 7, we follow
the outline of that proof to reach the desired conclusion.

Finally, when dim 3x = 1, we use fixed points of the flow along X, guaran-
teed by Gromov’s theory, to alternately reach a contradiction or conclude
conformal flatness. The proof in this case follows section 5 of [31].

2. EXISTENCE OF AN ESSENTIAL VECTOR FIELD

The objective of this section is to prove that, under the hypothesis that
Conf’(M, [g]) is essential, there exists an essential conformal vector field,
namely, a vector field generating an essential conformal flow. We denote by
xeonf (M) the space of all conformal vector fields on M. Our proof will be
specific to 3 dimensions, but will not require analyticity.
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Proposition 2.1. Let (M, g) be a compact, smooth, 3-dimensional Lorentzian
manifold. If Conf’(M,[g]) is essential, then it contains an essential 1-
parameter subgroup. In fact, every 1-parameter subgroup which is not rela-
tively compact is essential.

Proof: If Conf®(M, [g]) is essential, then it is necessarily noncompact. Let
{¢h} < Conf®(M, [g]) be an unbounded 1-parameter group. Suppose, for a
contradiction, that {(% } is inessential, that is, contained in Isom®(M, ¢') for
some ¢' € [g]. In this case, Zeghib’s classification of noncompact Lorentz-
isometric flows on compact 3-dimensional manifolds [40, Thm. 2] gives two
possibilities for (M, ¢'):

(1) (M, ¢) is flat and complete—that is, a compact quotient of Minkowski
space.

(2) M = G/T', for G a finite cover of PSLy(R), and I', the image of a
uniform lattice I' < G under a homomorphism Idr X p into G x G;
the image of p is in a 1-parameter hyperbolic or unipotent subgroup
{h'} < G. The metric ¢ lifts to a G x {h'}-invariant metric on G.

It is a general fact that the conformal group of a flat, complete, Lorentzian
manifold (M, ¢’) is inessential. Indeed, any f € Conf(M), can be lifted to
a conformal transformation of Minkowski space R%?, namely, an element
of Sim(R'?) = (R* x SO(1,2)) x R3. It follows that f is a homothetic
transformation, one for which the conformal distortion is a constant A. But
a homothety on a compact manifold is necessarily an isometry (consider the
formula [, dvoly = [, dvolsy).

To simplify the argument for case (2), we initially assume that G = SLa(R).
Denote by A the kernel of p : I' — {h'}, and by AZ the Zariski closure in G.
Note that A is not solvable, because I', which is commensurable to a surface
group, is not solvable. It follows that AZ = G. Denote by M the cover of M
diffeomorphic to G. Because G acts isometrically on the left on M, it acts
linearly on the finite-dimensional vector space V' of global conformal Killing
fields of M. This representation is given by an algebraic homomorphism
o : SLy(R) — GL(V). Denote by X/ (M) the subspace of V comprising
lifts of vector fields in X"/ (M). The restriction of a(A) to this subspace
is trivial, hence the same holds for AZ = G.

When G is a quotient or a connected finite cover of SLa(R), the previous ar-
guments are easily adapted: we lift or project A to SLa(R), as appropriate.
The representation of G on X" (M ) lifts to, or factors through, a repre-
sentation a of SLa(R), for which the subgroup corresponding to A is trivial
on Xeonf (M ). The same holds for the Zariski closure, hence, this subspace
is a trivial summand of a. We conclude that G centralizes X"/ (M).

Now G commutes with all lifts of elements € Conf(M). Let h be such a
lift. Choose a lift o of 29 to M, and let h*g; = )\g;~ng . Given 7 € M, let
.To
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f € G with f.Zg = Z. As f commutes with h,

h*gé = h*f*géo = f*h*ggco - f*/\g%:,.io - Ag}fz.io - /\géfﬁ

Thus £ is a homothety, and so is h. Because M is compact, h must be an
isometry. We conclude that Conf(M) is inessential. ¢

Remark 2.2. We expect proposition 2.1 to hold in any dimension, but this
fact would obviously require a more general proof.

By proposition 2.1, under the assumptions of theorem 1.2, there is an essen-
tial conformal vector field on M. We fix such a vector field and call it X.
Because we assume (M, [g]) to be real-analytic, so will X be real-analytic.
Indeed, the conformal Lorentzian structure can be viewed as an analytic re-
duction of the frame bundle of M to CO(1,2); Killing fields are determined
by the analytic condition of preserving this reduction when lifted to the
frame bundle. In what follows, we will work with the geometric structure

defined by the pair ([g], X).

3. LOCAL AND INFINITESIMAL SYMMETRIES OF ([g], X)

The conformal structure [g] on M determines a rigid geometric structure of
algebraic type, in the sense of Gromov (see [24]). It is also fruitful to consider
the canonically associated Cartan geometry, modeled on the 3-dimensional
Lorentzian Einstein space Ein'?. The latter space can be obtained as

Ein'? = (8% x S%/(1), [-d#?* ® gg2])

where ¢ is the antipodal map on both factors. It is a conformally homoge-
neous space PO(2,3)/P, for P the stabilizer of a null line in R?>3. Denote
G = PO(2, 3) with corresponding Lie algebra g. The Cartan geometry com-
prises (see [39] Ch V, [6] Sec 1.6):

e a principal P-bundle 7 : M — M ; and

e a Cartan connection w € Ql(M, g) satisfying, for all z € M,
(1) w; : T3M — g is a linear isomorphism
(2) wi.g0 Rgw = Ad g low; VgeP
B) w(4|, (@)=Y VY ep

The pair ([g], X), with X as in section 2, is also a rigid geometric structure
of algebraic type. It is not quite a Cartan geometry, but rather an enhanced
Cartan geometry, a notion which was studied in [34, Sec 4.4.1]. It is proved
there that the properties of the local orbit structure which we will use are
the same for enhanced Cartan geometries as for usual Cartan geometries.
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3.1. Local transformations and vector fields. The conformal group of
M lifts to a group of automorphisms of the Cartan bundle M preserving w.
Because w gives a parallelization of M, the action of Conf(M) on M is free
and proper (see, eg, [25, Thm. 1.3.2]).

We will denote by Conf'°(M) the pseudogroup of local conformal trans-
formations of M. As for global conformal transformations, any element of
Conf'°(M) defined on some open subset U C M lifts to an embedding of
7~ 1(U) into M commuting with the principal P-action and preserving w.
We will work below with the sub-pseudogroup Z%¢ C Conf'°°(M) centraliz-
ing X, where defined.

Let Is'(z) c Conf'“(M) be the stabilizer of a point = € M; it is a group.
Any choice of & € 7~ '(z) gives a monomorphism u; : Is'¢(z) — P, the
isotropy monomorphism with respect to &, defined implicitly by

h.z = i‘%(h)
We will denote the image I;. A different choice &/ = Z.p gives Iy = p~1L;p.

Denote Is'(z) the subgroup of Is!‘(x) centralizing X. For # € n~(x),

denote (Ix); the image of Is'°(x) under vz.

A theorem of Amores [1] says that on real-analytic manifolds, germs of local
conformal vector fields can be uniquely extended along paths. It follows that
the algebra of germs of local conformal vector fields defined around a point
x € M is independent of x, up to isomorphism. Moreover, local conformal
vector fields on the universal cover of M extend to global ones; note that
these may not necessarily be complete.

We will work below with the local conformal vector fields commuting with
X. Amores’ theorem also implies that these form a well-defined subspace of
the local conformal vector fields on M, which we will denote 3.

3.2. Gromov’s Frobenius theorem and isotropy. Under the assump-
tion that M is compact and C¥, Gromov’s Frobenius theorem [24] ensures
that, at each point z, a finite number of infinitesimal conditions are sufficient
for the production of local conformal transformations at x. In the setting
of analytic Cartan geometries, the second author showed that the jets of
the curvature x (see section 4.2 for the definition) provide this sufficient
condition [30]. The jet of order ¢ can be captured by a P-equivariant map
D@y . M — U®, where U® is a finite-dimensional vector space derived
from the curvature module, on which P acts linearly. For the enhanced
Cartan structure ([g], X), there are a corresponding curvature xkx and cor-
responding P-equivariant maps D@Wry : M — Ug? [34, Sec 4.4.1]. In this
setting, the Frobenius theorem says:

Theorem 3.1. [30, Prop 3.8], [24, 1.6.C and 1.7.A] Let (M, g) be a compact,
real-analytic, pseudo-Riemannian manifold. Let X be an analytic vector
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field on M. There exists an integer ig € N such that two points x and y are
related by an element of Conf°*(M) if and only if D) k(i) = D00k (g) for
some & € m7(x) and § € 7 1(y). The same holds for Z'¢¢ with kx in place

of k.

From theorem 3.1, the group I; coincides with the stabilizer of DU0) (i)
for the representation of P on U(0); similarly, (f x )z is the stabilizer of
Do)k x(&). This leads to the following result on the structure of isotropy
groups (which in fact holds more generally, for real-analytic rigid geometric
structures of algebraic type).

Theorem 3.2 (Gromov [24] 3.4.A ). Let (M, g) be a real-analytic pseudo-
Riemannian manifold, and let X be a real-analytic vector field. With respect
to any & € 7 (z), the isotropy images I; and (fx)x are real-algebraic sub-
groups of P; in particular, Is°°(z) and Is%(x) have finitely-many compo-

nents.

3.3. Local orbit stratification. In this section, we will focus on the struc-
ture of the Conf!°(M)-orbits in M. By the Confl°(M)-orbit of a point
x € M, we mean all points that can be reached from x by applying a finite
sequence of local conformal maps; it will be denoted O(x). The Zé?c—orbit
of the point x is defined analogously, and denoted Ox(z).

Here are consequences of Gromov’s stratification theorem which will be used
below (see also [30, Thm 4.1], [34, Thm 4.19]). This theorem stems from
the Frobenius theorem 3.1 and properties of orbits for algebraic actions.

Theorem 3.3 (Gromov [24] 3.1.A, 3.2). Let (M,g) be a compact real-
analytic pseudo-Riemannian manifold.

(1) For all x € M, the orbit O(x) is a semi-analytic subset of M. It is
locally closed and has finitely-many components. The same holds for
Ox(z). L

(2) For all x € M, the closure O(z) is locally connected and contains a
closed Conf°°(M)-orbit. The analogous properties hold for Ox (z).

Recall that a subset S of a topological space is locally closed if S is open in
the closure S. A set is semianalytic if it is locally cut out by finitely many
analytic equalities and inequalities; see [3] for properties of these sets. The
closure of a semianalytic set is again semianalytic. Local connectedness of
semianalytic sets can be found in [3, Cor 2.7].

In a slight abuse of language, we will call the jx-orbit of a point x the set
of points reachable from = by flowing along finitely many local vector fields
in 3x. A consequence of the proof of theorem 3.3 is that the 3x-orbit of z is
the connected component of Ox(z) containing x. We will implicitly make
this identification several times below.
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3.4. Recurrence produces isotropy. In [20] and [19], the first author
combined the Frobenius theorem 3.1 with Poincaré recurrence to produce
nontrivial local isotropy for isometric actions. Recall that a recurrent point
for an unbounded subgroup H < Conf(M, [¢]) is + € M with hy.x — = for
some unbounded sequence {h;} C H.

Proposition 3.4. (compare [20, Prop. 5.1], [19, Prop. 3.3]) Let (M,g)
be a compact, real-analytic pseudo-Riemannian manifold, and let {¢% } be a
conformal flow, which is not relatively compact. Then at each recurrent point

x for {ph}, the local isotropy Isk°(x) has noncompact identity component.

Proof: Let € M be recurrent for {y%}, and consider & € 7~ *(x).
There are t; — oo and {p;} C P such that ¢%¥.2.p,' — & Because
Conf(M) acts properly on M, the sequence {pr} necessarily tends to infin-
ity. Let Dy : M — Ulo) be the P-equivariant map given by theorem 3.1.
This map is also Conf(M )-invariant, so that py. D) kx () — D00 gy (z).
Now P acts algebraically on UG0) with locally closed orbits (see [42, Thm
3.1.1]), which implies pp.D@)kx (&) = €. D) kx (&) for some € tending
to the identity in P. This implies existence of a noncompact stabilizer of
D) 55 (%), coinciding with (Ix )., again by theorem 3.1. Because this sta-
bilizer is moreover algebraic in P, it has noncompact identity component.

o

4. CONFORMAL CURVATURE AND VANISHING CONDITIONS

In this section, we gather several sufficient conditions for conformal flatness,
which will be applied throughout our proof. Although some definitions and
results later in this section will be valid in higher dimensions, we assume for
now that (M, g) is a 3-dimensional, smooth Lorentzian manifold.

4.1. Cotton-York tensor. Recall that in dimension 3, the Weyl curvature
vanishes, and the obstruction to conformal flatness is the Cotton-York tensor
C eT(A*T*M @ T*M) (see [11, I1.28]):

Cyp(u,v,w) = (VyP)(u,w) — (Vo P)(v,w)

for w,v,w € T, M, where P is the Schouten tensor
1
P, (v,w) = Ricg(v,w) — ZSc(x)g;,;(v, w)

and Ric and Sc denote the Ricci and scalar curvatures of g, respectively. The
Cotton-York tensor is conformally invariant, meaning it is independent of a
choice of metric in the conformal class [g]. For f € Conf(M), in particular,

Ct) (fratty frav, fraw) = Co(u, v, w) Ve e M, u,v,we T, M

This tensor moreover satisfies the Bianchi identity, meaning it is in the kernel
of the map to A3T*M, and is totally trace-free.
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The Cotton-York tensor is a section of the vector bundle associated to the
following module U. Choose

I= 1
1

and write SO(1,2) for SO(I). Write E1, E2, E3 for the standard basis of R3,
and take & = E!I as basis for R3*, i = 1,2, 3. Denote

U= (/\QRB* ® RB*)C
the 5-dimensional SO(1, 2)-module of trace-free tensors satisfying the Bianchi

symmetry. It is the sum of five 1-dimensional weight spaces, for weights
w = —2,—1,0,1,2. The positive weight spaces are

U =R(E'A&0e)  UN=REASEoe - radd

Denote Ut = U*! + U*2. Denote Gy = R* x SO(1,2) = CO(1,2). Letting
d € R* act by the scalar d~2 extends the representation on U to Gy.

4.2. Cartan curvature. Let (M, M, w) be the canonical Cartan geometry
modeled on Ein'? associated to (M, [g]), from section 3. Recall the notation
G =P0O(2,3).
The Cartan curvature

QX,Y) = dw(X,Y) + [w(X),w(Y)]

is a semi-basic 2-form on M. It is the obstruction to (M, M,w) being
locally isomorphic to the model Cartan geometry, which in our case is
(Ein»?, G,wg), where wg is the Maurer-Cartan form of G. The values of Q
lie in the nilpotent radical p™ of p, which is identified as a Gy-representation
with R2*,
Via the Cartan connection w, the curvature €2 can be identified with a P-
equivariant function

kM — N(g/p) @pT
where the P-representation on the target is built from the adjoint representa-
tion of G restricted to P. It factors through P/P*™ = G. Correspondingly,
k factors through the quotient M /P*. As Go-modules,

/\2(g/p)* ® p—i- ~ /\2R1’2* ® R1,2*

The Cartan connection identifies T*M with M xp pT. The factorization
of k, with these identifications of Gp-modules, is the same as C' (see [6,
Cor 1.6.8]); here we are identifying Go-equivariant maps M /Pt — U with
sections of the associated vector bundle, and identifying M /PT with the
first-order conformal frame bundle. In particular, x factors through a Gp-
equivariant map to U.
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4.3. Holonomy sequences. Because M is compact, while local conformal
transformations act freely and properly on M , We can associate to an un-
bounded sequence in ConflOC(M ) an unbounded sequence in the principal
group P.

Definition 4.1. Let & € M and {fi} C Conf(M), with f defined on a
neighborhood of x = w(&) for all k. A holonomy sequence for { fx} at x with
respect to & — &, is {px} C P such that

fk.:%k.plzl =9 for some g € M
A pointwise holonomy sequence is {py} as above for which & € m—!(x) Vk.

Note that given a holonomy sequence as above, fr.xx — y, where xp =
7(21),y = 7(). Given any sequence {fx} C Confl°(M) and any zj — z €
M, we may assume, after passing to a subsequence, that fi.z; converges
in M, since M is compact. Then there are holonomy sequences, including
pointwise holonomy sequences, for {f;} at x.

A conformal transformation is, in dimension at least 3, determined by its
2-jet at a point (see, eg, [25, Sec IV.6]). A holonomy sequence captures the
2-jets of { f} along the sequence {z} and thus turns out to be a useful tool
to understand the local behavior of {fi} around {z}.

Since the 2-jet of a map can be read in different 2-frames, holonomy se-
quences are far from unique. Some of the choices involved in their construc-
tion are accounted for by vertical equivalence: two holonomy sequences {py},
{qx} are vertically equivalent if qx, = appyby for {ax},{bx} C P bounded.

4.3.1. Tazxonomy of holonomy sequences. The reductive group Gy = CO(1,2)
has a K AK decomposition, in which the R-split Cartan subgroup A is two-
dimensional. Under the embedding of G in G = PO(2, 3) as the stabilizer of
a pair of nonorthogonal isotropic lines in R%3, the torus A equals the R-split
Cartan subgroup of G. Up to vertical equivalence, a holonomy sequence in
P can be written p;, = dj 7, with dj, € A and 7, € PT.

Denote by a the subalgebra corresponding to A. The standard choice of
simple roots spanning a* comprises a long root, v, and a short root, 5. The
latter vanishes on the R-factor in the decomposition go = R®0(1,2), and it
can be thought of as the generator of the root space of 0(1,2). We take a =
~ — (; it corresponds to the negative log conformal dilation in the standard
representation on RV2. Explicitly, for the quadratic form 2zgz4 + 22123 +m§
on R?3,
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a= 0 , a,beR
—b
—a
with o and § dual to the a and b parameters, respectively.

The symmetry (a, ) — (a,—[3) can be realized by conjugation in P, by
a compact element. Denote A’ the semigroup comprising all d € A with
B(lnd) < 0. Up to vertical equivalence, a holonomy sequence in P may be
assumed to be in A’PT.

Definition 4.2. Let {dy7} be an unbounded sequence in A’PYt, and let
Dy =Indy. The sequence is said to be

of bounded distortion if a(Dy) is bounded while B(Dy) — —o0
contracting if (o + B)(Dg) — oo.

balanced if a(Dy) + B(Dy) is bounded, but each term is unbounded.
mixed if 5(Dy) — —oo and a(Dy) — oo, while (a+ B)(Dy) — —oc.

It is called linear if 7, = 1.

4.3.2. Stability and propagation of holonomy. The following definition is in-
spired by [41] (see also [9, Sec 7.4], [5, Def 2.10] for a non-approximate
version, and [16, Sec 4.4] for a related notion of stability and stable folia-
tions).

Definition 4.3. LetV be a P-module, and let {py} be a sequence in P. The
approximately stable set for {py} in V is

VA (pr) = {v =limvg € V : pp.vg is bounded}

The following proposition is a version for sequences of [5, Prop 2.9] (see [31,
Prop 3.13] for the one-line proof):

Proposition 4.4. Given a P-module V, represent a continuous, { fi}-invariant
section of the associated bundle M xpV by a continuous, P-equivariant,

{ fu}-invariant map o : M — V. Given any holonomy sequence {py} for
{fi} with respect to &}, — &, the value o (&) € VA5 (py,).

An unbounded sequence {dy7t} in A’PT is called stable if it is linear and
contracting or balanced. In general, holonomy sequences for a given { fi} C
ConflOC(M ) can be of different types at different nearby points; however,
stable sequences enjoy the property of local propagation of holonomy.

The exponential map of the Cartan connection is the vehicle for propagation
of holonomy. Any X € g defines a vector field X on M by w(X) = X.
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Denote the flow along X by {cpg(} The ezponential map at & € M is
exps(X) = ol (#) € J1

for X in a sufficiently small neighborhood of 0 in g. The alternative notation
exp(z, X) will also be used below. A holonomy sequence for {fx} at x turns
out to be also valid along certain exponential curves from x (see [17, Prop
6.3] or [31, Prop 3.9)):

Proposition 4.5. Let {px} be a holonomy sequence for fi at x, with respect
to & € ™ Y(x1). Suppose given Yy — Y € g\p for which Adpy(Yy) con-
verges. Then, provided Y is in the domain of exp;, {pr} is also a holonomy
sequence for {fy} at ' = 7 oexp;(Y) with respect to &), = expz, (Yz).

One derives easily from proposition 4.5 the following corollary.

Corollary 4.6. [16, Lem 4.3, 4.6] If {fx} has a stable holonomy sequence
{pr} at x, then {px} is also a holonomy sequence for { fi} on a neighborhood

of .

4.4. Stability implies conformal flatness. We record some immediate
consequences of the properties outlined above.

Proposition 4.7. If there is a balanced or a contracting holonomy sequence
at x € M, then the Cotton-York tensor vanishes at x.

Proof. Let {py = dp7} be a holonomy sequence at z, with {dy} C A’
satisfying the balanced or contracting condition in definition 4.2. The P-
representation on the Cotton module U factors through the projection to
Gy, which has weights 3a 4+ wf3, w = —2,—1,0,1,2. Now p; acts by dj, for
which (3a + wp)(Indy) — oo, for all possible w. Thus UA%(p;) = 0. The
conclusion follows from proposition 4.4. O

Assuming (M, g) is not conformally flat, we may thus assume that the set of
points admitting a balanced or a contracting holonomy sequence is nowhere
dense.

Proposition 4.8. Assume that (M,g) is real-analytic. If there exists an
unbounded sequence {fi,} C Conf°(M), all defined on a neighborhood U of
x € M, admitting a stable holonomy sequence at x, then (M, g) is confor-
mally flat.

Proof: A stable, unbounded holonomy sequence {py = dy7x} is balanced
or contracting. As remarked above, proposition 4.5 implies that all points in
a neighborhood V' C U of x admit the same stable holonomy sequence. By
proposition 4.7, the Cotton-York tensor vanishes on V' (see also [14, Prop
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5]). By the analyticity assumption, (M, g) is conformally flat everywhere.
¢

4.5. Big isotropy implies conformal flatness. Next we recall a key lin-
earization theorem for conformal vector fields:

Theorem 4.9 (Frances—Melnick [22] Thm 1.2). Let (M, g) be a real-analytic
Lorentzian manifold of dimensionn > 3. Let x € M and let X € X (M)
vanish at x, with local flow {p4} < Is°(x). If for some & € n~(x),
the image 1:({¢%}) < Go = CO(1,n — 1), then {%} is linearizable in a
neighborhood of x. Otherwise, (M, g) is conformally flat.

Combining the theorem above with the previous propositions yields two
useful corollaries.

Corollary 4.10. Assume that (M3, g) is real-analytic. If for some x € M,
the isotropy algebra ﬁsloc(x) contains a 2-dimensional abelian subalgebra,
then (M, g) is conformally flat.

Proof: Consider the linear part of the isotropy: given # € 7~1(x), compose
the isotropy homomorphism ()« : J5'°(x) — p with the projection to
go, to obtain Az : Js'°°(z) — go. Because (M,g) is real analytic, if \;
is not injective, then (M, g) is conformally flat by theorem 4.9. Assuming
Az is injective, it has 2-dimensional, abelian image in go = R & 0o(1,2),
necessarily containing the center. There is thus a linear, contracting 1-
parameter subgroup of Isloc(:r). Proposition 4.8 implies in this case that
(M, g) is conformally flat.

Now let X € X" (M) and x € M. Let Z%° C Conf'*(M), 3x, and Ts/¢(x)

be as in section 3.2. The Lie algebra of Is'2¢(z) is denoted Jsi° ().

Corollary 4.11. Assume (M?3,g) is real-analytic. If the dimension of

Js%¢(x) is at least 2 for some x € M, then (M, g) is conformally flat.

Proof: If X(x) = 0, namely X € Js5'%(z), then J5'%°(z) contains a two-
dimensional abelian subalgebra, and we conclude by Corollary 4.10.

loc

Otherwise, Js°(z) annihilates X (z) # 0. Again by theorem 4.9, we can
assume that the image (tz)«(J5¢(x)) is in go for some & € 7 '(z). A
0-eigenvector in RY2 of a 2-dimensional subalgebra of gq is necessarily light-
like, and the annihilator of a lightlike vector has dimension exactly 2. It
includes a diagonal subgroup {d' = e} with a(D) = —j3(D); any un-
bounded sequence {d'} has balanced, linear holonomy with respect to .
Proposition 4.8 thus applies and ensures that (M, g) is conformally flat.
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4.6. A new curvature vanishing result. We will need the following
strengthening of [22, Thm 1.4]. The proof is somewhat shorter for 3-
dimensional manifolds, so we restrict to that case here.

Theorem 4.12. Let (M, g) be a real-analytic, compact, 3-dimensional Lorentzian
manifold. Let {fr} C Conf(M,|g]) be an unbounded sequence. If { fi.} admits
a holonomy sequence at x € M contained in PT, then (M, g) is conformally

flat.

Notice that the hypothesis that {fx} admits a holonomy sequence at x € M
contained in P* is equivalent to both sequences of differentials { D, f} and
{(Dsfr)~'} being bounded. The proof of the theorem is somewhat technical,
and is deferred to section 9, at the end of the paper.

5. CASE 3x IS 4-DIMENSIONAL

We begin the proof of the main theorem 1.2. Recall that (M,g) is 3-
dimensional, compact, real-analytic, and Lorentzian. The group Conf®(M, [g])
is assumed to be essential. By proposition 2.1, it admits an essential confor-
mal vector field X € X"/ (M). Denote by 3x the algebra of local conformal
vector fields on M commuting with X (see section 3.2). By corollary 4.11,
the dimension of 3x is at most four, if M is not conformally flat. Of course,
X € 3x, so it has dimension at least one. We will prove theorem 1.2 by
analyzing each possible value of this dimension.

Suppose 3x has dimension four and M is not conformally flat. Corollary
4.11 implies that all 3x-orbits have dimension 3, hence there is only one
such orbit. In particular, (M, g) is locally conformally homogeneous and X
is nowhere vanishing. Given € M, the isotropy Isi“(z) fixes the nonzero
vector X (z). By theorem 4.9, (M, g) is conformally flat, or there exists
& € 7 '(z) with (Ix); < Go. This subgroup is 1-dimensional, and it is
algebraic by theorem 3.2; two cases may occur.

If (f x)z < Go does not act by unimodular transformations on g/p, then it
is conjugate in Gy to a diagonal subgroup {diag(1,\,A\?) | A € R*}. Any
unbounded sequence of this group is balanced and linear. Then proposition
4.8 ensures that (M, g) is conformally flat.

Next suppose (f x )z acts by unimodular transformations on g/p. Then there
is Ay € [g]x on T M which is preserved by D, f for every f € Is'(x). Given
y € M, choose f € Zé?c sending x to y, and define Ay, = fi\;. This does
not depend on the choice of f, because for another choice, say h € Z%¢, the
difference h 1o f € Isl)?c(;v), which preserves ;. The result is a metric A € [g]
which is Zé?c—invariant. Note that X is analytic; indeed, given y € M, there
are Y, Z,T € 3x defined on a neighborhood of y, with values at y spanning
TyM. The map (u,v,w) — ¢} o ¢ o Y} (y) provides a local analytic chart



16 CHARLES FRANCES AND KARIN MELNICK

around y, in which X is analytic. We conclude that {¢% } is inessential, a
contradiction.

6. CASE 3x IS 3-DIMENSIONAL

The center of 3x is nontrivial because it contains X. Thus if 35 is 3-
dimensional, it could be isomorphic to R?, heis(3), or aff(R) @ R. For
the sake of efficiency, we will assume for the rest of this section that (M, g)
is not conformally flat, in order to arrive at a contradiction with the fact
that {¢Y } is essential. The results collected thus far lead to:

Proposition 6.1. (1) The flow {¢%} has no singularities.
(2) All 3x-orbits have dimension at least two.
(3) There is a closed 3x-orbit ¥, which is a torus or a Klein bottle, on
which X s lightlike.

Proof: If there were a singularity z, the differential {D, ¢’} at 2 would
fix two linearly independent vectors, the values at x of two elements of 3
linearly independent modulo X. From the fact that the differential preserves
gz up to scale, simple linear algebra leads to the conclusion that D¢l =
Idr, s for all ¢, a contradiction with theorem 4.9.

Point (2) follows from corollary 4.11.

If g(X, X) were nonvanishing, then {¢% } woud preserve g/g(X, X) and be
inessential. Thus the zero set A of g(X, X) is nonempty and closed. By
theorem 3.3 (2), there exists € A such that the jx-orbit X of x is closed. If
¥ is 3-dimensional then it equals M, and the identity component of Isé‘}c(y) is
trivial at each y € M. But since M is compact, the flow {¢% } has recurrent
points, which leads to a contradiction with proposition 3.4. Thus Y must be
a closed surface. It is a torus or a Klein bottle because X is nonvanishing.

By construction, X is lightlike on . Point (3) is proved. ¢

Arguments follow for each possible isomorphism type of 3.

6.1. Case 3y is isomorphic to R3. Let ¥ be a 2-dimensional orbit, as
guaranteed by proposition 6.1 (3), and let € . Because 3x is abelian, the
isotropy at x fixes two linearly independent vectors, spanning 7,3. As in
the proof of proposition 6.1 (1), we have a contradiction with theorem 4.9.

6.2. Case 3y is isomorphic to heis(3). In this case, X generates the center
of heis(3).

First suppose there exists an open j3x-orbit ). On a sufficiently small open
subset U C (2, there is go € [g]|;; such that (U, go) is isometric to an open
subset of Heis(3) endowed with a left-invariant Lorentzian metric. Left-
invariant Lorentzian metrics on Heis(3) were classified in [36]; there are
three isometry types, according to the sign of (X, X). If (X, X) = 0, the
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metric is flat. By the analyticity assumption, (M, g) is conformally flat,
contradicting our current hypothesis. If (X, X) # 0, the isometry group of
the metric on Heis(3) is 4-dimensional and centralizes the center of Heis(3).
Then 35 has dimension at least 4, contradicting our current assumption that
it is 3.

We conclude that the 3x-orbits are all 2-dimensional. The following propo-
sition, when combined with our analyticity assumption, concludes this case.

Proposition 6.2. Let (M, g) be a smooth, 3-dimensional, Lorentzian mani-
fold. Suppose there is a nonempty open subset Q@ C M with a local conformal
action of heis(3), such that all pseudo-orbits are 2-dimensional. Then (M, g)
is conformally flat.

Proof: Let Y and Z be the further generators of heis(3), such that
[X,Y]=[X,Z] =0, and [Y, Z] = X. Since X and Y commute and span a
2-dimensional space at each point of €2, there exist local coordinates (z,y, 2)
in which X = a% and Y = 8%‘ Because the 3x-orbits are 2-dimensional, Z

is of the form )\% + '“8% for some functions A and p. The bracket relations
lead to

aXx  Ou  Ou oA
= ——= — = — - = 1
0 or Odx 0Oy and dy
Hence we can write
0 0
7 = — +b(z)—.
(v +a(2)) 5 + ) 5

Observe that replacing Z by Z — a(0)X — b(0)Y will not affect the bracket
relations between Z, Y and X, so we may assume that a(0) = b(0) = 0.

Given a point p = (p1, p2, p3) in the domain of such a coordinate chart, the
vector field U = Z — (p2 + a(p3)) X — b(p3)Y is nonzero and vanishes at p.
At p,

9] _ 01 _ 9 1590 _wionl _wipn
|:U> Bac] _07 |:U7 8y:| - 830’ |:U) 82] - a(p3)8.’1} b(p3)ay

Since U belongs to heis(3), hence is conformal for g, the matrix

0 -1 d(ps)
A= 0 0 ¥V(ps)
0 0 0
which is the matrix of VU(p) in the basis {8%, 8%, %}, must satisfy the
identity
gP(A'7 ) +gp('aA') = Qagp, @ € R

The matrix A generates a l-parameter group {4} in R x O(1,2), which is
nontrivial because the rank of A is at least 1. If the rank of A were 1, then
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{et4} would fix two linearly independent vectors. But no nontrivial flow in
R x O(1,2) has this property, so that we infer b’ (p3) # 0.

As p was arbitrary, we may assume the derivative b’ does not vanish at
any point of such a coordinate chart. Now let ¥ be a smooth diffeomor-
phism on an interval around 0 such that ¢(0) = 0 and b(¢(z)) = z. The
transformation

P (‘T’y7 Z) — (Sﬂ,y - a(¢(2))a¢(z))
then yields a local diffeomorphism fixing the origin. Applying (¢~!), to the
generators yields

_ o ., _ 0 y_ 0
_y8$+z(‘)y’ Y = oy and X =5

which are conformal for the metric ¢’ = ©*g.

Z/

Again, let p = (p1, p2, p3) be a point in our coordinate chart. The vector field
U' = Z'—py X' —p3Y”’ vanishes at p and is conformal for ¢’. A straigthforward
computation yields

0 15) 0 0 0
19 _ r 90 _ 9 r Y1 __ 9
[U’am} v [U’ay} oz ¢ [U’az] oy

everywhere. Now the matrix

010
B=|0 01
0 00
satisfies
9p(B",) + g,(. B) = ag,, a €R
The matrix of gp in the basis {a%’ a%’ %} is thus of the form

0 0 —B(p
0 B 0 , B(p) >0
B 0  ~()

Replace ¢’ by g which amounts to assuming 5 = 1.

Now, X’ and Y’ are conformal Killing fields for ¢’. But ¢'(Y',Y’) = 1,
and Y’ commutes with X’ and Y’. It follows that X’ and Y’ are actually
isometric Killing fields for ¢’. In particular, the function v only depends on
the variable z, and the metric ¢’ is:

~—

—2dxdz + dy* + v(2)dz>.
Now, if ((z) is an antiderivative of v(z)/2, then the change of coordinates

(z,9,2) = (. +((2),9, 2)

converts g’ to —2dxdz + dt?>. We conclude that the conformal class [g],
restricted to a nonempty open subset of €2, contains a flat metric.
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6.3. Case 3x is isomorphic to aff(R) & R. Let ¥ be as in proposition 6.1
(3) and xg € 3. Let Y and Z be further generators of 3x on a neighborhood
of xg such that [Y, Z] = Z and all other brackets are zero. The isotropy at
o can be of three types:

e isotropy generated by U € 3x transverse to Span(Z, X ): The tangent
vector X (xg) is lightlike and fixed by the isotropy. Rescaling U if
necessary gives

1 0 0
Dyoy=10 € 0
0 0 e

By theorem 4.9 and proposition 4.8, (M,g) is conformally flat, a
contradiction.

e isotropy generated by Z: Then D, ¢, is trivial, which implies con-
formal flatness by theorem 4.9. We thus discard this case too.

e isotropy generated by Z+cX with ¢ # 0: We handle this case below.

First we construct a model for the geometry on ¥. Consider R? with co-
ordinates (z,y), and denote by H* the upper half-space defined by y > 0.
On HT, let A = ya%, B = y%, and C' = 8%' The only nontrivial bracket
relation is [A, B] = B, so that the Lie algebra b generated by A, B, and
C' is isomorphic to aff(R) @ R. These vector fields are complete and inte-
grate to a genuine action of H ~ Aff(R) x R on H™ given by the affine

transformations:
1 b c
<Oea>+<0>,a,b,ceR.

On HT, the isotropy for the local action of h is always generated by an
element of Span(B, C) transverse to RC. Thus the local action of 3x on ¥
is locally modeled on that of h on H™T.

Let G be the 4-dimensional Lie group given by the following transformations
of H:

(x,y) = (@ + Py +yIn(y) +7,¢%)  «,B,7,7€ER
In coordinates («, 3,7,7), the subgroup comprising elements of the form

(0, 8,7, 7) is normal and abelian. The action of («,0,0,0) on it is given by
the matrix:

e 0 0
0 1 0
0 —ao 1

The group G is thus isomorphic to a semi-direct product R x R3.

Observe that H is a subgroup of G, corresponding to v = 0. We have the
following Liouville Theorem for (G, H™):
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Lemma 6.3. Let U and V be two connected open subsets of H, and f :
U — V a diffeomorphism such that f.C' = C and f.(h) =b. Then f is the

restriction of a unique element of G.

Proof: Because f preserves C| it is of the form f(x,y) = (z +n(y), ¥ (y)).
Now f also preserves b, hence f, acts as an automorphism of . In particular
f«+B = bB, with b # 0. We get ¥(y) = %y, showing that b > 0. Set b = e“.
Next, f«(A) has the form A + ¢B + dC, from which we deduce

ny) =By+yl(y)+7,  B,7.7€R
&

Corollary 6.4. The surface ¥ is endowed with a (G, H™)-structure.

Proof: Given an open subset U C X, denote 35 (U) the Lie algebra of
all local conformal vector fields defined on U commuting with X. For each
xo € 3, there exists a small neighborhood U containing zg, an open subset
V C H7, and a diffeomorphism 1 : U — V such that ¢.(3x(U)) = b|;, and
1« (X) = C. The corollary then follows from Lemma 6.3. {

Lemma 6.5. The (G, H™)-structure on ¥ is complete.

Proof: Let X be the universal cover of ¥ and § : ¥ — H T a developing
map, with associated holonomy morphism p : 71(3) — G. By construction,
6,(X) = C, where X is the lift of X to X. In particular, the relation
do gp?( = ¢}, 0 § shows that §(X) is a union of lines y = ¢, for ¢ € R. Thus
§(%) is a horizontal strip in H*.

Next observe that G preserves the degenerate metric hg = dy?/y? on H*,
from which ¥ inherits a degenerate metric h. On a 2-fold cover of ¥, there
is W € X(X) transverse to X and satisfying h(W,W) = 1. For & € 3,
the trajectory ¢ ((p’%/ai) is a curve in H T with velocity of constant hg-length
1, defined on R since W is complete on . This curve must cross every
horizontal line in H*; we conclude that §(X) = H*. In fact, the open
set Q) = {go%gof;v.i | s,t € R} C ¥ is mapped diffeomorphically by & onto
H*. The boundary 99 is empty. Indeed, if z € 99, then there is 2’ € Q
satisfying d(z') = 6(z) = y. Disjoint neighborhoods of both z and z’ in 3
map diffeomorphically under ¢ to a neighborhood of y. On the other hand,
both neighborhoods in ¥ intersect €, which contradicts injectivity of § on
Q. We conclude that 2 = ¥, and completeness follows. <

The developing map ¢ identifies 71(X) with a discrete subgroup of G, and
by proposition 6.1 (3), this discrete group contains an index 2 subgroup A
isomorphic to Z2. There must be in A an element g = (v, S0, Y0, 7o) With
ag # 0, otherwise A would preserve the lines y = ¢ in ‘H*, and could not
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act cocompactly. Now it is readily checked that the centralizer L of 7p in G

comprises elements of G of the form (a, eago_l (e —1), 3—204, 7') ,a, T € R.

Hence L is isomorphic to R?, and {¢}} acts by translations on the torus

L/A. Because {¢L} is compact in L/A, this would make {¢’} relatively
compact in Diff (¥). Then there are t;, — oo and z € ¥ such that {Dx(cpt)’g Z)}

-1
and {(Dx(gog’; 2)> } are bounded. Since ¥ has codimension one, this
1

implies boundedness of ngog’g and (ngog’g)_ .

Then there is a holonomy
sequence for {(pg’}} at x contained in PT, which implies conformal flatness
by theorem 4.12. We have reached the desired contradiction.

7. CASE j3x IS 2-DIMENSIONAL

The case in which 3y is 2-dimensional, necessarily isomorphic to R?, is the
most involved. What we will actually prove in this section is the following:

Theorem 7.1. Let (M, g) be a 3-dimensional, compact, real-analytic, Lorentzian
manifold. Assume that {¢Y%} is 1-parameter group of conformal transfor-
mations, which does not have compact closure in Conf(M,[g]). If the Lie
algebra 3x is 2-dimensional, then (M, g) is conformally flat.

7.1. Ideas of the proof. For the reader’s convenience, we outline below
the general strategy to prove theorem 7.1. The proof is by contradiction,
and our standing assumption throughout section 7 will thus be that (M, g)
is not conformally flat. There are basically four steps, the last three ones
heavily relying on section 6 of [31]—also the most difficult part of the proof
in that paper—to arrive at a contradiction.

Step one. We first show in subsection 7.2 that the infinitesimal local action
of 3x integrates into a global conformal action of a cylinder Zy ~ S' x R
on M.

Step two. In Section 7.3, we carefully analyze the orbits of the action of Zx
on M. We show in Proposition 7.6 that orbits are of exactly two kinds.
First, there are 2-dimensional lightlike orbits, which fill a dense open subset
Q) C M. Each such 2-dimensional orbit accumulates on one or two closed,
lightlike, 1-dimensional orbits. The union of those 1-dimensional orbits is a
closed, analytic, nowhere-dense subset of M, which we denote by A. Our
assumption that M is not conformally flat moreover provides precise infor-
mation about the isotropy on 1-dimensional orbits: It is linearizable and
unipotent.
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Step three. The main issue is now to understand how 2-dimensional orbits
accumulate on 1-dimensional ones, which is the purpose of sections 7.4 and
7.5. A fundamental tool is to show in lemma 7.11 that on a dense, open sub-
set Q (the subset where the Cotton tensor does not vanish), 2-dimensional
orbits enjoy a nice geometric structure, making them akin to totally geodesic
hypersurfaces: They are projections of leaves of an integrable distribution
in a reduction of the Cartan bundle over 2.

In the same way, any point in a 1-dimensional orbit is also contained in a
distinguished degenerate surface, which we call distinguished plaques. Actu-
ally, these distinguished plaques turn out to be analytic continuations of the
2-dimensional orbits in the following sense. Any 2-dimensional orbit accu-
mulating on a point in some 1-dimensional orbit must intersect the distin-
guished plaque of this point in an open subset. A crucial consequence is that
each 1-dimensional orbit can attract at most countably-many 2-dimensional
ones (corollary 7.17).

Step four. In this last step, we investigate in more details the analytic set
A comprising all 1-dimensional orbits. If this set is 1-dimensional, it is a
finite union of 1-dimensional orbits. When A has dimension 2, then a care-
ful analysis of the smooth 2-dimensional part of A shows that this smooth
part is a union of distinguished plaques. By step three, no 1-dimensional
orbit staying in this 2-dimensional smooth part can be accumulated by a
2-dimensional orbit. It follows that only finitely many 1-dimensional orbits
can be accumulated, yielding that there exists at most countably many 2-
dimensional orbits by step three. This contradicts the fact that such orbits
fill an open subset.

7.2. Global conformal action on M. The result of this subsection is
that, possibly after passing to a finite cover of M, the vector fields in 3
are globally defined, necessarily complete, generating a conformal action of
a cylinder Zx.

Recall that we are assuming that {¢% } is not relatively compact, and (M, g)
is not conformally flat. From these assumptions we can immediately deduce
the following facts about 3x-orbits:

Lemma 7.2. (1) There is no 3x-orbit of dimension 0.
(2) There ezists a closed 3x-orbit ¥ of dimension 1

Proof: Corollary 4.11 rules out any 3x-orbit of dimension 0. Because M is
compact, there are recurrent points for {(pfx} At such points, the isotropy
is nontrivial by proposition 3.4, and the jx-orbit is of dimension 1. It is
closed because of theorem 3.3 (2) and point (1). <

Now we prove:
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Proposition 7.3. After possibly replacing M by a finite cover, every local
conformal vector field on M commuting with X extends to a conformal vector
field defined on all of M. The resulting subalgebra of X" (M), isomorphic
to 3x, integrates to a subgroup group Zx < Conf(M) isomorphic to S* x R,
acting locally freely on an open, dense subset of M.

Proof: Let M be the universal cover of M, with group of deck transfor-
mations I' < Conf(M). Denote the lifts of X and 3x to M also by X and
3x. By Amores’ theorem [1] (see section 3.2), the lifts of 3x form a globally
defined subalgebra of xconf (M ). Let I'g be the kernel of the holonomy rep-
resentation of I on 3y, and set M =M /To. We will again denote by jx
the corresponding subalgebra of X"/ (M’). The manifold M is a quotient
of M’ by a group I = I'/Ty, and the holonomy representation of I" on 3y
is faithful.

Lift the closed orbit ¥ given by lemma 7.2 to M’, and let g) be a connected
component of this lift. It is the 3y-orbit of a point Zg in M’.

Lemma 7.4. The manifold ¥ C M’ is a circle.

Proof: Assume, for the sake of contradiction, that Y is diffeomorphic to
R. In this case, the stabilizer of ¥ in I is a cyclic subgroup I"i = (y) 2 Z.
First suppose X (&) # 0, which implies X is nonvanishing on Y. Then
there is Ty # 0 such that 'ycpio € Is'%°(Zg). This group has finitely-many
components by theorem 3.2, so a power
14
(rex)" = 'eX° = v
on a neighborhood U of Zj, where Z is a generator of Jsx(Z¢), and we
assume ¢, is defined on U for all t € [0,1]. Let Y = Z —¢T,X. For t € [0,1]

and z € U, the composition go;(tTO o ¢!, (x) is well-defined. Because X and
Z commute, ¢4 () = " 0 !, (x), and now
oy ly =" ‘

Then (7)Y = Y on U, which implies by analyticity that (v*),Y =Y on
M'. Because I' fixes X and Y is independent of X, the element * # 1
would centralize 3y, contradicting faithfulness of I on 3.

Next suppose X (%) = 0, which implies X = 0 on %, and let Z € 3, \RX.
Such Z is nonvanishing by corollary 4.11. There is Ty # 0 such that
gpr‘go (o) = 7v(Zo), and ¢!, is defined on a neighborhood U of &y for all
t € [0,Tp]. Then 7_19050 € Is'(#0) on U. Again by theorem 3.2, the latter
group contains {¢%} as a finite-index subgroup. Thus, for some k € Z and

So € R,
k

— T S
(v IOSOZO) :QPXO
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on a neighborhood of .
Because [X, Z] = 0, the differential Diogoio(Z(a?o)) = Z(Zp). Next

Ds, (v~ 0 ) (Z(&0)) = £2(0) = (v, ' Z)(d0)
Then v.(Z) = £Z 4 X for some 3 € R. If v,.(Z) were congruent to —Z
modulo RX, then, given that cp}TO'y(:EO) = To, we would have

7 (@) = 7wy (o) = ¢7 (Fo) = (&)
which is absurd, since I' acts freely and v has infinite order. Thus 7.(Z) =
Z + 8X. Now there is S such that

1 —k S
(v ho )k =R € Isi%(%0)

Thus, for some So,

7= PR
on U. Let Y = 53X +ToZ. As above, the flow along Y is well-defined on
U for t € [0,1], and

eyl =" ‘U
This leads again to (7*).Y =Y on M’ yielding a contradiction with the
faithfulness of the action of I on 3x. &
Next we show that 3x globalizes on a neighborhood of the closed orbit 3.

Lemma 7.5. There exists Y € 3x, and N an open neighborhood of ¥, such
that for all y € N, the orbit {p} .y} is defined on R, included in N, and
1-periodic.

Proof: If X (%) # 0, then {¢% .%o} is periodic. Because Isloc( 0) has
finitely-many components, there are Ty > 0, So € R such that goX o ng
is trivial on a neighborhood of Z(, where Z generates Jsx(Zo). Note that,
for any S, the flow {¢%} is defined for s € [0,S] in some neighborhood of
To, and it commutes with {¢%}. Now Y = TpX + SyZ € 3x generates a
periodic flow {gprTo o @TZSO} defined for r € R in a neighborhood U of Z.
We can then put N := Uier cp%,(U ), which is indeed an open neighborhood

of ¥ satisfying the conclusions of the lemma.

If X vanishes on %, then by corollary 4.11, any Z € 3 x \RX does not vanish
onY. Then Z = Z |5, is nonvanishing and complete because ¥ is compact
by lemma 7.4. Let Ty > 0 be such that 902 .o = Zo. The flow along Z

is defined on [0,7p] in a neighborhood N of ¥. By theorem 3.2, {%} has

loc(

finite index in Is'y“(Zp) and is noncompact by assumptlon After replacing

T, by a finite integer multiple, and shrinking N if necessary, © ZO <p§<° will be

trivial in restriction to N, for some Sy € R. Because X is complete and
[Z,X] =0, the flow along Y = Ty Z + So X restricted to N is periodic with



3-DIMENSIONAL LORENTZIAN LICHNEROWICZ CONJECTURE 25

period 1 and complete. Again, N = Uier gog,(U) is an open neighborhood
of ¥ satisfying the conclusions of the lemma. <

Let Q = Uier @}.N, an open set; let Y be as in lemma 7.5. For every
y € Q, the pseudo-orbit {¢} .y} is defined for every t € R, included in €,
and 1-periodic. Any Z € 3x equals rgX + sgY, for some r¢ and sg, so for
every y € M, we have oy = go?éo o go%f“.y, for all ¢ such that the expression
is defined. For y € Q, in particular, ¢’y is defined for every ¢ € R and
lies in Q. All vector fields of 3x| are thus complete, defining an action
of a 2-dimensional abelian Lie group Zx on (). For the time being, we
consider Zy as a subgroup of Conf(€). Since the flow {¢} } is cyclic on Q,
we infer that Zx is isomorphic to a cylinder S' x R or a torus T2. The

latter possibility would mean that {¢% } is compact in Conf(£2), hence in

Conf(M’), and finally in Conf(M), contradicting our standing hypotheses.

Now assume Zx is a cylinder. There exists a homomorphism p : IV —
Aut(Zx) integrating the representation I'' — Aut(3x). Indeed, for v €
I and Z € jx the local flows {y¢%y ™1} and {3 7} coincide on ; in

particular, yoL~y ! is well-defined on Q and belongs to Zx.

Because p(I”) fixes % for all ¢, it follows that |p(I")] < 2. Because p
is faithful, [IV] < 2. Then M’ is compact, and all vector fields of 3y are
complete. Thus 3y integrates to the action of a group Zy = S' x R, as
claimed in the proposition.

We replace M by M in the sequel. To complete the proof of the proposition,
it remains to check that the action of Zx is locally free on a dense open
subset of M. If not, there would be a nonempty open subset U on which all
Zx-orbits have dimension 1. The identity component of the isotropy group
Is%¢(x0) at a point g € U would fix a nonzero vector v tangent to the orbit
and act trivially on the quotient T, M /Ruv. Basic linear algebra shows that
the differential of the isotropy at xg, identified with a subgroup of CO(1,2),
must be trivial in this case. On the other hand, theorem 4.9 says, given
our assumption on (M, g), that the isotropy must be linearizable, yielding a
contradiction. <

Now we replace M by the finite covering given by the above proposition.

7.3. Description of the Zx-orbits.

Proposition 7.6. There are two types of Zx-orbits in M, both of which
occur:

(1) Circular lightlike orbits, with linear, unipotent isotropy. These form
an analytic subset A of M.

(2) Cylindrical orbits on which the metric is degenerate. Fach of these
contains an orbit of type (1) in its closure. These fill an open, dense
subset Q1 of M.
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Proof: By corollary 4.10, there are no Zx-fixed points; moreover, all 1-
dimensional orbits are closed—otherwise, there would be a fixed point in
the closure by theorem 3.3 (2). The closed, lightlike orbits are precisely
the zero-set of the analytic function, given by a choice of metric g in the
conformal class and Y € 35 \RX by

p(r) = 92(X, X)* + 62(Y,Y)? + g:(X, Y)?

Since we assume that (M,g) is not conformally flat, the elements of the
isotropy algebra can be assumed linearizable by theorem 4.9. In a 1-dimensional,
lightlike orbit, the Zx-isotropy fixes a lightlike tangent vector. Such isotropy

is easily seen to be balanced or unipotent. In the first case, the isotropy is
stable and leads to conformal flatness by proposition 4.8. We have proved
all the claimed properties of orbits of type (1).

Let € be the set on which Zx acts locally freely; it is open and dense by
proposition 7.3. If there were a closed, 2-dimensional orbit, then {¢% } would
have a recurrent point on this orbit, contradicting proposition 3.4. Thus
every 2-dimensional orbit is not closed, and, by theorem 3.3 (2), contains a
closed 1-dimensional orbit in its closure.

Now we focus on the linear part of a holonomy sequence {p;} for an un-
bounded sequence {hi} C Zx at x € Q. By proposition 4.4, the subspace
3x(z) C T, M is approximately stable for {D,hy}, because Zx centralizes
3x. This means that wz(3x) belongs modulo p to (g/p)*%(ps), for any
# € 77 !(x). Assuming pj, is in A’ P*-form, the presence of a 2-dimensional
approximately stable subspace in g/p makes it contracting, balanced, mixed,
or of bounded distortion, as in definition 4.2.

Let 2 C Q be the open subset where the Cotton tensor is nonzero; by
our standing assumption, it is also dense. For z € €2, a holonomy sequence
{pr} as above is of bounded distortion or mixed type by proposition 4.7.
For these types, (g/p)°(pi) is a degenerate plane. Thus all orbits in €
are degenerate. On the other hand, if a point = € ; has Riemannian or
Lorentzian orbit, then so do the points in a neighborhood of x. Since 2 is
open and dense, we conclude that all orbits of {2y—that is, all 2-dimensional
orbits—are degenerate.

We rule out nondegenerate orbits of dimension 1 in lemma 7.7 directly below,
which completes the proof.

Lemma 7.7. There are no 1-dimensional spacelike or timelike orbits.

The proof of this lemma makes use of the exponential map of the Cartan
connection, defined in subsection 4.3.2. The exponential map will appear
frequently in the remainder of this section.
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Proof. If a point z has a 1-dimensional timelike orbit, then some Y € 3x X
is timelike in a neighborhood of . This neighborhood intersects the open,
dense set from above in which all orbits are degenerate, a contradiction.

Now suppose that 2 has a 1-dimensional spacelike orbit, and let & € 771(x)
be such that the isotropy image (Ix); is linear, contained in Gy = CO(1, 2).
It fixes a spacelike vector, which makes it conjugate in Gg to a 1-parameter
diagonal group
{iLt D(xt 2?, 23) s (efat, 2? et}

Let Z € co(1,2) be the generator of {ﬁt}, corresponding under ¢z to a
generator Z € Jsx(x). Note that the corresponding linear vector field Z on
R!2 is timelike along the line R(FE; + E3) (with the metric I of section 4.1).

Let 4(t) = exp;(t(E1 + E3)) and v = o 4. The lift 4 determines a metric
along ~ in the conformal class [g] by
_ (=D (=1
(U, V)51 =1 (w&(t) i, ws v)

where w(~1) is the component of w on g_; = RY2, and 4,9 are any lifts of
u,v to Ty M. We will approximate (Z, Z), ;) by computing

4

dt

A N2) = (B + By)p~D(2)
0

where F 4+ Fj5 is the vector field on M satisfying w(El + Eg) = F1 + Es.
Using that sz(El + Eg) = 0, the Cartan curvature gives
0= Q@(El + Eg,Z) = (El + Eg)j.W(Z) + [El + Ej3, Z}

Thus
. 1) . (-1)
(B + E3)s0"V(2) = [Z, B + E3:| — B, — Es
Now
wh ) (Z) = t(By — By + R(1)), lim R(t) = 0
and

<Zv Z>'y(t) =1 (t(El — FE3 + R(t))v t(El — E3+ R(t)))
= t3(-2+Q(1)) lim Q(t) = 0
t—0
For sufficiently small ¢, this inner product is negative along . This would

mean that Z € 3 is timelike on a nonempty open set, contradicting that
all Zx-orbits in the open, dense set {2; are degenerate. O

Corollary 7.8. Let {hi} C Zx be an unbounded sequence, and suppose that
hig.x —y forx € Q and y € A. Then any holonomy sequence for {hy} at x
s of mized type.



28 CHARLES FRANCES AND KARIN MELNICK

Proof. We established during the proof of proposition 7.6 above that holo-
nomy sequences at points of ) are of bounded distortion or mixed type.

By proposition 7.6, there is Z € 3;x with Z(z) spacelike. It is also ap-
proximately stable for {D,hy}. If {h;} has bounded distortion at z, then
limy D hi(Z) is a nonzero spacelike vector tangent to the orbit of y. This
would contradict the result from proposition 7.6 above that the orbit of y is
one-dimensional and lightlike. O

7.4. Zx-orbits in the Cartan bundle. In this section we construct a Zx-
invariant reduction of M ‘Q and show that Zx-orbits there are tangent to
a special distribution defined by the Cartan connection. These properties

will be key to controlling the accumulation of 2-dimensional orbits in {2 on
1-dimensional orbits in 0.

7.4.1. Adjoint approzimately stable spaces. As in [31], we will call {p;} an
ACL holonomy sequence at x € Qy if it is in A’P*-form; it corresponds to
hi.x — y for y € A; and the isotropy in Zx with respect to g = lim hk.:ﬁk.pgl
is linear. Every ACL holonomy sequence at x €  has (g/p)*%(pr) = Ef,
because its linear component is of mixed type by corollary 7.8.

We will next describe g4 (py,), which also reflects the nonlinear part of {p;}.
We use the Go-invariant decomposition g = g_1 @ go @ g1 with g_; = R1?
to identify Ef with a subspace of g.

Proposition 7.9 ([31] Prop 6.5). For {p;} an ACL holonomy sequence at
T €,
Ei- < g™ (pr)

Proof: Write {py = di7i}. By [31, Lem 6.4], {{x = In7y} is contained
in the line REII C pt = RYM?*. Moreover, for Dy = Indy, the sequence
{ePPr)g) is bounded. Now, it follows that for {p;} as above and v € Ef-,

Ad(pr)-v = Ad(dy) (v + [, v]) = Ad(dg).v + " PP [, ],

noting that [§, v] is in the root space gg and [, [k, v]] = 0. This expression
is bounded, so the desired inclusion follows.

7.4.2. Reduction of M over . Write Qf = M 0 Recall that Zx acts

f
locally freely in €2 with degenerate orbits, by proposition 7.6. Given x € Qy,
the orthogonal n(x) to the orbit of = is a lightlike line, tangent to the
orbit. We define a reduction of 2y given by the conformal frames in which
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this orthogonal is the line [E4], as follows. Denote A the null cone of the
Lorentzian inner product I in R"2, and by P(N) its projectivization. Let

n:Qf — PW)
()

where n(z) is any lift of n(z) to T3M, and w1 denotes the component
on g_; = RY2. This map is well-defined, and in fact analytic, in Q ¢- The
level set of [F1] is a reduction R’ C Qf to Qo x PT, where Qg < Gy is
the stabilizer of [E;]. The Zx-action preserves orbits, so it preserves the
orthogonals, and it leaves w invariant; thus Zy preserves R'.

I = w

Now we restrict to Q = M o Let q; be the annihilator of E; in p* = RL2,

with corresponding connected subgroup Q1 < P*. Let Q = Qo X Q1 < P.
Define

R={i€Q:w;(E) C TR}

This construction and the following proposition are very similar to [31, Sec
6.2].

Proposition 7.10. The set R is a Zx-invariant reduction on to Q.

Proof: Let x € . By proposition 7.6, there is hy — 00 in Zx such that
hr.x — y € A, and the isotropy at y is linear and unipotent. There is thus
an ACL holonomy sequence {py} for {hx} with respect to & € 7#—!(z). By
corollary 7.8 it is of mixed type. As observed in the proof of proposition 7.6,
w3 (3x ) belongs modulo p to (g/p)*% (py), which equals Fi-. For z = (&), the
projection jx(x) is the tangent space to the orbit of . Thus the orthogonal
n(z) corresponds under w to [Ey], and & € R'. Whenever there is an ACL
holonomy sequence of mixed type with respect to & € Q, then & € R'.

By proposition 7.9, Ef- C g*%(p). By proposition 4.5, for all X € Ei, for s
sufficiently small, {py} is also a holonomy sequence at 4(s) = exp;(sX), and
this point is in (. Thus A(x) is in R/, for s sufficiently small, which implies
wj_l(X ) € T;R'. Then & € R; moreover, every n-fiber of {) intersects R.

To verify that R is a reduction of R’ to @, we will express it as the level
set of a smooth—actually, analytic—map on R/. As R’ is a reduction of Q,
there is, at each Z € R’, a two-dimensional subspace of w(T;R’) projecting
modulo p to Ell, varying smoothly with Z. This subspace can be expressed
as the graph of a linear homomorphism Ei- — p, unique up to addition of a
homomorphism Ej — qo X pT, corresponding to addition of vertical vectors
tangent to R’. Then we compose with the projection to p/p™ = gg to define

®: R’ — Hom(E{", go/q0)
Observe that 2 € R’ belongs to R if and only if ®(%) = 0.
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The map ® is Qo x P*-equivariant, where, for ¢ € Hom(E{, go/dqo),
(9-7)(p) = (Adgly,sq,) 0o (Adg™"| 1) + (AdT —1d)| 1

For 7 € P*, the image Ad 7(E{ + qo) = Ef + qo mod p* if and only if
7 € Q;. The affine Qp x P*-action on Hom(Ef,go/qo) factors through
Aff(R). The orbit of 0 is 1-dimensional, with stabilizer Q.

Because every w-fiber of Q) intersects R, which is in turn contained in R/,
the image of the latter under ® is contained in the orbit of 0. Now R, the
inverse image of 0, is a smooth @-reduction of M over Q. It is Zy-invariant
and analytic because R’ and w are. {

The geometric interpretation of R is as the conformal normalized 2-frames
at points € Q in which the orbits are totally geodesic (infinitesimally at
The fact from the proof of proposition 7.10 that {p} is also a holonomy
sequence at 4(s) = exp;(sX) for all X € Ei- gives that 4(s) € R, for all s
such that y(s) = mo4(s) € Q. It follows that wgl(ElL) CT:R.

7.4.3. Foliation of R. Let D = w™Y(E{ +q), an analytic distribution on M.
The restriction to R is tangent to R because, from the previous paragraph,
w™Y(FE{) C TR, and R is a principal Q-bundle. When M is 3-dimensional,
we can prove integrability of D in R without using the Cartan curvature.

Lemma 7.11. The distribution @’R 1s integrable. The projection on M of

the leaves of this distribution coincide with Zx-orbits in €.

Proof: The key fact here is that the Zx-orbits in R are tangent to D. In-
deed, as noted in the proofs of propositions 7.6 and 7.10, wz(3x) is congruent
modulo p to ElL if there is a mixed ACL holonomy sequence with respect to
Z, and more generally, if £ € R. Because R is Zx-invariant, 3x(z) C Tz R.
Thus 35 (&) C D; for all & € R.

The (Zx x Q)-orbits in R are integral leaves for D, projecting to the two-
dimensional, degenerate Zx-orbits in . <

7.5. Accumulation of 2-dimensional orbits on 1-dimensional orbits.
Before applying the results of the previous section, we focus on the geometry
around 1-dimensional Zx-orbits.

7.5.1. Plaques at 1-dimensional orbits. We define a distinguished degenerate
surface around each 1-dimensional orbit. The following proposition is an
aggregate of propositions 6.11 and 6.12 (see also remark 6.14) of [31].

Proposition 7.12. Let y € M have closed, isotropic Zx-orbit and suppose
that Isx (y) is linear and unipotent with respect to §j € 7~ (y). Then:
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(1) The point §j belongs to the closure R.

(2) Let v : [0,1] — M a continuous path, smooth on [0,1), such that
~v([0,1)) € Q and v(1) = y. Then there exists a continuous lift 7 :
[0,1] = M, smooth on [0,1), such that 4(]0,1)) C R, and 5(1) =

(3) There is a neighborhood U of 0 in E{ + q such that exp;(U) is an
integral submanifold of D.

The third point of the proposition follows rather easily from the first, because
by analyticity, integrability of D on R extends to the closure.

Definition 7.13. Let expg(Z/{) be as in proposition 7.12. For U small
enough, m(expy(U)) is a degenerate 2-dimensional submanifold of M. It
will be called a plaque at y, and denoted Py.

Observe that if § and ¢’ are two points of 7~!(y) such that Isx(y) is linear
and unipotent with respect to § and ¢/, then 3§’ = §.¢, where g € Q (actually
q belongs to the subgroup Qo x Q) C @, where Q] is the 1-dimensional
subgroup of @ normalized by Qg). In particular Ad(¢ ") (E{ + q) =
Ei + g. The relation expy (Ad(g~1).U) = expy(U).q is a consequence of
the second axiom for w part (2), and implies that the projections on M of
expy (Ad(¢~1).U) and exp,(U) are the same. Thus all plaques at y have the
same germ, in the sense that if P, and 733’/ are two of them, then Py N 733’/ is
open in P, and P.

Proposition 7.14 (see [31] Rem 6.17). Let A be a 1-dimensional Zx -orbit.
Let Py be a plaque at y € A. If O is a 2-dimensional Zx-orbit of Q0 con-
taining y in its closure, then Py N O has nonempty interior in P,.

Proof: By theorem 3.3 (1), the orbit O is a semi-analytic set. We will use
the following result, known as the “curve selecting lemma.”

Lemma 7.15 (see [29] Sec 19, Prop 2). Let S be a semi-analytic subset of
M, and y € S. Assuming y is not an isolated point of S, there exists an
analytic arc v : [0,1) — S extending continuously to 1, with v(1) = y.

This lemma applied to S = O provides a continuous path v : [0,1] — M,
which is smooth on [0, 1), and satisfies v([0,1)) C O C 2, as well as y(1) =

Let § € 7~ (y) with linear, unipotent holonomy. Ppropos1t10n 7.12 (2) yiel

a continuous lift 4 of v, such that 4 is smooth on [0, 1), 4([0,1)) C R, and
7(1) = 9.

Because v([0,1)) C O, the image 4((0,1)) lies in an integral leaf of D (this
leaf is the preimage of (’) in R). Let U be a neighborhood of 0 in g sufficiently
small that for every ¢ € [0,1], the set U is mapped diffeomorphically by
exps(y onto its image. Set V = U N (E{ +q) and £; = expy(y) (V) for
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t € [0,1]. A suitable choice of U ensures that V is connected and that 7(L;)
is a hypersurface for all t.

Lemma 7.16. Fort close enough to 1, L, contains j.

Proof: For ty close enough to 1, the image U = expﬁ(to)(l/{) contains g.
Let (X1,...,X,,) be a basis of Ef- + q, and X1,...,X,, the corresponding
vector fields on M with w(X;) = X; Vi. Write

¥t =Y a®Xi(3t) Ve (to—el)
=1

where a; : (top — €,1) — R are some smooth functions. The ODE

m

B(t) = ai(t)Xi(3(t)

i=1
is defined on the open set expsq) (i), but also on the submanifold Ly,.
Uniqueness of solutions with the intial condition S(tg) = §(t¢) implies that
Y([to,1)) C Ly,. Then § = 4(1) € Ly, because Ly, is closed in exps ) (U).
¢
A plaque Py at y is, by definition, the projection of expy(W), where W is a
neighborhood of 0 in Ej- 4 q. Now exp; (W) and Ly, are two integral leaves
of D having a common point §. It follows that the intersection exp;(W)N Ly,

is open in both expy (W) and Ly,. Projecting to M gives an open subset of
P,NO. &

Corollary 7.17. Let A be a 1-dimensional orbit of Zx. The set of 2-
dimensional Zx-orbits in ) containing A in their closure is at most count-
able. In particular, the set of 1-dimensional Zx-orbits which are accumu-
lated by 2-dimensional orbits is uncountable.

Proof: Given y € A, the set of 2-dimensional Zx-orbits O C € with
A C O coincides with the set of orbits @ with y € O. Denote this set of
orbits Z,. Let Py be a plaque containing y. For every O € 7, the interior of
ONPy is nonempty by proposition 7.14. Choose Up a connected component
of this interior. If O # O’ are two distinct orbits in Z,, then Up N Upr = 0.
A collection of pairwise disjoint nonempty open subsets of P, is at most
countable, so Z, is also countable. <

7.6. Stratification of the set of 1-dimensional orbits, conclusion.
Now we denote by A the complement of 2. By proposition 7.6, A is a
nowhere dense, analytic subset of M, comprising the points with 1-dimensional,
closed, lightlike Zx-orbits orbits. For k € N, we denote by A®*) the set of
smooth points of dimension k£ in A—namely, the points contained in some
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k-dimensional analytic submanifold of M contained in A. Observe that
A®) = § for every k > 3, since A is nowhere dense.

For a semi-analytic set A, the dimension of A equals the maximal integer k,
denoted kmaz, such that A®) £ (. The set of singular points of A, denoted
Asging, is the complement A\A(*maz). By [29, Thm 4] (see also [3, Thm 7.2]
and [3, Rem 7.3]), Aging is a closed, semi-analytic subset of A, of dimension
less than dim A.

Lemma 7.18. The complement of A in A is a finite union of 1-dimensional
Zx -orbits, possibly empty.

Proof: If dim A = 1, then A® = ), and Asing is actually empty. In-
deed, if Aging # 0, it is a closed semi-analytic set of dimension 0, namely,
a finite number of points. These are all Zy-fixed points because Agjng is
Zx-invariant. But corollary 4.11 rules out any Zx-fixed points. Thus A is
a compact, Zx-invariant, analytic submanifold of M, which means it is a
finite union of circular Zx-orbits.

If dim A = 2, then A,y is the complement of A® in A, If nonempty, it
has dimension 1 or 0. Let Aging be the singular set of Agpg. If A;ing + 0,
then dim Alsmg = 0, and, as above, it is a nonempty set of Zx-fixed points,
which leads to a contradiction. Therefore A’, = (), which means Asing is
a closed, 1-dimensional, Zx-invariant, analytic submanifold of M, again a

finite union of circular Zx-orbits. <

Here is the key proposition leading to a contradiction.

Proposition 7.19 (see [31] Sec 6.4). Let y € AP, Then there exists a
distinguished plaque Py containing y and contained in A®?),

Proof: We recall here the main points of the argument from [31] that A
is covered by finitely-many plaques, with some simplifications for dimension
3. Denote by uy the unipotent subalgebra of gy annihilating FEjy; it is 1-
dimensional in our case. Let a: (—e, €) — A be a differentiable path through
y, which we can assume is contained in A®). For each t, there is a point
a(t) € mHa(t)) with way (3x) € RET modulo p and with uy C wag)(3x),
by proposition 7.6. In fact, there is a differentiable lift & of « satisfying these
conditions. Note that by proposition 7.12 (1), the image of & is contained
in R.

Because uy C wg(y)(3x) for all ¢, the latter subspace, which is 2-dimensional,
is abelian, a standard fact that can be deduced from part (2) of the second
axiom for w. Together with a generator U of u, it is spanned by an element
of the form Ey + A + £ with A € a and £ € g, the centralizer of uy in p¥,
which is contained in q;. Note that centralizing u; means A € ker 5. An
argument similar to that in the proof of lemma 7.7 shows that if «(A) # 0,
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then an element of 3x would be timelike somewhere (see also [31, Lem 6.13]),
contradiciting proposition 7.6. Therefore A = 0, and w44 (3x) is spanned
by U and E; + £ for some & € q).

On the other hand, if A,, = w(&/(tp)) were transverse to Ei- + g, then
calculations with the formula
], 0 = () 7

(see the end of [31, Sec. 6.4]) would give that ws(4)(3x) is not contained in the
subspace spanned by U and Fy +¢ for t close to tg. From this contradiction,
we conclude that &'(t) € D for all t. It follows that & is contained in an
integral leaf of D, and so « is contained in Py for t near ty. Varying o over
paths through y in A® gives that a neighborhood of y in A® is contained
in a plaque P,. Because both sets are smooth surfaces near y, we can shrink
P, so that it is contained in AD O

Proposition 7.19 together with proposition 7.14 shows that no 1-dimensional
orbit of A® can be accumulated by a 2-dimensional orbit, because the
latter is contained in Q. By lemma 7.18, the complement of A in A is
a finite union of 1-dimensional orbits. We infer that only finitely many 1-
dimensional orbits can be accumulated by 2-dimensional orbits. This is a
contradiction to corollary 7.17.

8. CASE 3x IS 1-DIMENSIONAL

We are still considering, on a real-analytic Lorentzian manifold, a conformal
Killing field X generating a 1-parameter group of conformal transformations
{¢%}. We assume here that there are no additional local Killing fields
commuting with X, and we are going to prove:

Theorem 8.1. Let (M, g) be a compact, real-analytic, Lorentzian manifold
of dimension 3. Let {¢'} be a closed, noncompact 1-parameter group of
conformal transformations of M. Suppose that 3x = RX. Then (M,g) is
conformally flat.

Again, the proof is by contradiction, and we assume throughout this section
that (M, g) is not conformally flat.

The 1-dimensional orbits of Zx = {¢% } cannot be closed by theorem 3.2.
Theorem 3.3 then ensures that the closure of every 1-dimensional orbit of
Zx contains some 0-dimensional orbits. Hence, the set of fixed points of Zx
is nonempty. Call it Fx.

Let xg be a point of Fx. By theorem 4.9, and because we are assuming
M is not conformally flat, X is linearizable at zg. Let &g € 7 !(zo) with

wzy(X) = X € go. Recall from theorem 3.2 that (Iy )z, is algebraic, which
means that it is closed under real Jordan decomposition (see, eg, [32, Thm
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4.3.3]). Thus X is R-semisimple, nilpotent, or elliptic in R & 0(1,2). There
are no elliptic fixed points; indeed, this would contradict noncompactness of
Zx, since the isotropy monomorphism ¢; : Is"¢(x) — P (see section 3.2) is
proper for all Z.

Lemma 8.2. The set of points for which the Zx-orbit accumulates on Fx
has Lebesgue measure zero.

This immediately leads to a contradiction, because we already observed that
points having a 1-dimensional Zx-orbit do accumulate on Fx, and such
points fill a dense open subset of M. Hence Theorem 8.1 follows directly
from the lemma.

Proof: Consider a covering of F'x by finitely many open subsets V1,..., Vg,
on which {¢%} is linearizable. More precisely, for each j = 1,...,s, there
is a diffeomorphism h; : V; — V, with V' the Euclidean unit ball in R3,
conjugating the action of {¢f } ‘Vj , where defined, with that of a linear flow

{wﬁ} < CO(1,2) on V. For each j =1,...,s, let

sz{yéV}: EIT;F>OSuchthat<p§(.y€Vth>Tj+}
and

S;:{yEVj: 3T, < 0 such that gog(.yEVth<77}.
The sets hj(Sji) will be denoted Sji

If {ng} is a unipotent 1-parameter subgroup in O(1,2), then for every point
y € V which is not a fixed point of {1/);},

. t o
lim [ty = oo

(The norm is the Euclidean one). It follows that 5’;5 comprises the fixed

points of {zﬂ;} in V, hence has Lebesgue measure zero. The same is true for
+

S5

If {¢§} is an R-split 1-parameter subgroup of Gy = CO(1,2), then, after

conjugating in Gy, it is of the form

1/151 Nz, y,2) (et(b*a)x, ey, et(*a*b)z) for some a,b € R

If this subgroup were balanced or contracting—meaning monotone, un-
bounded sequences are balanced or contracting as in definition 4.2—, then
(M, g) would be conformally flat by proposition 4.8. Hence, after possibly
replacing X by —X, we may assume that 0 < a < b. For points y € Sji,
||¢§y|\ does not tend to infinity as ¢ — Zoo, respectively. In particular,
points of Sj U §j_ satisfy £ = 0 or z = 0, proving that S’JJr U 57 has
Lebesgue measure zero. The same is thus true for S;r U Sj_.
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For any 1-dimensional Zx-orbit , the closure @ is of the form @ = {x¢}UaU
{z1}, where ¢, 1 are fixed points, not necessarily distinct. This is proved
in [31, Lem 5.4], based on the reasonable topological properties of the orbit
closure @ guaranteed by semi-analyticity as in theorem 3.3.

Thus any y for which Zx.y accumulates on a point xg € Fx satisfies
limy o0 gog(.y =xgast — occort — —oco. It follows that the set of points ac-

cumulating on Fly can be written as the countable union (J;_; U,,en cp;("(SJ?L)U

¢ (S;), which has Lebesgue measure zero. The lemma follows. <

9. APPENDIX: PROOF OF THEOREM 4.12

This appendix is devoted to the proof of theorem 4.12. We will actually
prove a more general statement, for smooth manifolds and sequences of
local conformal transformations.

Theorem 9.1. Let (M, g) be a smooth, compact, 3-dimensional Lorentzian
manifold. Let {fi,} C Conf°(M, [g]) be an unbounded sequence defined on a
common neighborhood U of x € M. If {fix} admits a holonomy sequence at
x contained in PT, then there exists a nonempty open subset U C M which
is conformally flat.

It is clear that theorem 4.12 follows directly from theorem 9.1

9.1. Conformal geodesic segments. The strategy to prove theorem 9.1
is to exhibit dynamical properties of the sequence { fx} which force confor-
mal flatness on an open subset. The dynamical behavior of {fx} around a
point x is understood via the action of its holonomy sequences on conformal
geodesics in the model space, introduced below.

The 3-dimensional Minkowski space will be taken to have the quadratic form
q(z) := 2x123 + 22, and will be denoted by R"2. A conformal immersion
j° : RY? — Ein'? is given in homogeneous coordinates on RP* by the
formula
Jo i lle:xg::cgz—Q(;) ,
mapping the origin in RY2 to o € Ein'2. For us a conformal geodesic
segment of Ein»? emanating from o will be a curve « : [0,1] — Ein'? of the
form
s > p.j°(sw),

where p € P and w € R"2.

9.2. Local dynamics via conformal geodesic segments. Let {p;} be a
holonomy sequence for {f;} C Conf!°*(M) at = € M. It is an unbounded se-
quence of conformal transformations of Ein'? fixing o, which in turn admits
holonomy sequences at other points of Ein'?. The following proposition,
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borrowed from [17], explains how conformal geodesic segments relate holo-
nomy sequences of {fi} and {py}.

Proposition 9.2 (see [17] Prop 6.3). Let (M,g) be a smooth Lorentzian
manifold. Let {fr} < Conf(M,[g]) with holonomy sequence {py} along T, —
& in M. Assume that there exists a conformal geodesic segment (3 : [0,1] —
Eintn! emanating from o such that limy_,~ p.[8] = 0. Then any pointwise
holonomy sequence of {py} at 5(1) admits a subsequence which is a holonomy
sequence for { fi} with respect to some converging sequence J — § in M.

This proposition, together with proposition 4.8, brings us closer to theorem
9.1, through the following corollary:

Corollary 9.3. Let (M,g) be a smooth, 3-dimensional, Lorentzian mani-
fold. Let {pr} be a holonomy sequence for { fi.} along &, — & in M. Suppose
there exists a conformal geodesic segment 3 : [0,1] — Ein'? emanating from
o such that limg_,oo pi.[8] = 0. If {pr} admits a pointwise holonomy se-
quence at (1) which is stable, then a nonempty open subset U C M is
conformally flat.

Recall definition 4.2 for stable holonomy sequences.

9.3. Lemma ensuring stable holonomy sequence. Theorem 9.1 is a
direct consequence of Corollary 9.3 and Lemma 9.4 below, which is the
main technical result of this section.

Lemma 9.4. Let {p} be a sequence of PT. After passing to a subsequence,
there exists a conformal geodesic segment  : [0,1] — Ein'? emanating
from o such that limy_, . pg.[5] = 0, and such that {py} admits a pointwise
holonomy sequence at 3(1) which is stable.

Proof: Denote the Euclidean norm on R? by ||-||. Write

2
1 tkv,’; _Lqévk)
pe=1| 0 I3 —tyu € Pt <0(2,3).
0 0 1
Here vy, is a sequence of RY2 satisfying ||v| = 1, and #; > 0. The expression

v} stands for v/, where I is as in section 4.1. Observe that {p;}, hence {t;},
is unbounded, because {fx} is unbounded. After taking a subsequence, we
assume that ¢ — oo, and that there is a vector v = lim vy.

Recall the conformal immersion j° : R1"? — Ein'? from section 9.1 above.
Let 7, — = € R, For u € [0,1], and k € N, define By (u) := j°(uxy),
and f(u) := j°(uzx). Observe that each S and 8 are conformal geodesic
segments emanating from o. Define xy(u) := (5°) " (pg.Br(u)). From the
matrix expression of pi, and the formula for j°,
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(1)
-1
:):k(u) — <1 + tku<xkavk> + WW) . (uxk + tkUQQ(xk)vk> .

4 2

After possibly taking a further subsequence of {py}, we may assume that
tr|q(vg)| converges in [0, 00]. There are two subcases:

First case: ti|q(vg)| — oo. In this case, ¢(vg) is nonzero for k large enough,
so that after perhaps taking a subsequence of {py}, we may assume that the
sign of q(vy) is constant. Choose e = £1 so that eq(vy) > 0 for all sufficiently
large k. Choose x such that

(a) eq(x) is positive.
(b) (x,v) is positive.

Let u € (0,1] and write:

t2u?q(v x eq(x Tg, U 1

4 4 utpeq(vp)  u?tieq(vy)

Under the assumption ti|q(vi)| — oo,

T (€ R 1 _ eq(z)
(45 Sito * )

4 utpeq(vg)  u’tieq(vy) 4 7

k—o0

so that for k big enough,
<€(J($k) L o) 1 ) 5 )
(vk)

4 utpeq(vy)  ultieq 8

If tyu > 1, we can infer from (1) and the previous inequalities that
8 |Q($k)|>

2 zp(u)]| < ——— < x| + .

2 (@] < ;s (o

Observe that (2) also holds trivially if u = 0.

Suppose tru < 1, and note that conditions (a) and (b) on = imply that for
k big enough,

1+ tpulzg, vg) + tiu2q(zk)q<xk) > 1.
Then for k£ large enough,
® ol < wag + S < L (4 1G0T
From (3), we infer:
() lim sup [lee(u)| = 0.

k=00 ye00,1]



3-DIMENSIONAL LORENTZIAN LICHNEROWICZ CONJECTURE 39

Taking zj = x gives limg_, o pr([B]) = 0. Moreover, (4) shows that
lim py(j°(zk)) = 0
k—o0

for any xp — x. In particular, {py} is stable at j°(x) = £(1) in the sense
of [16, Def. 4.1]. It was proved in [16] Lemma 4.3, that if {p;} has this
stability property at some point z, it admits a pointwise stable holonomy
sequence at z. Lemma 9.4 is thus proved in this case.

Second case: limg_,o0 trq(vy) = a € R. This time, take z € R"? such that:
(a) g(x) = 0.
(b) (z,v) >0

Let u € (0, 1], and write

2u2a(v)al u
1+ trulzp, o) + M =1+ tu ((xk, vg) + —tkq(vk)q(:vk)> .

4 4
Because (zy, vx) + $trq(vi)q(zs) tends to (z,v) as k — oo,

tiu? 1
1+ tpu(zg, vg) + W > itku@,v) for k large enough.
We infer from (1) that:
2 (llzkll  laCew)|
) < .
) ool < 72 (L4 1262

This inequality holds trivially for u = 0, giving

lim sup |zk(u)| = 0.

k=00 40,1
Taking zj = x gives limg_,o0 px([5]) = 0. Moreover, if {x;} is any sequence
converging to z, inequality (5) shows that limg o pr(j°(2r)) = 0. As in
the first case, this implies that {p;} admits a pointwise, stable holonomy
sequence at j°(z) = B(1), and Lemma 9.4 is proved. {
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