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Abstract

Deformable linear objects (DLOs), such as rods, cables, and ropes, play important roles in daily life. However, ma-
nipulation of DLOs is challenging as large geometrically nonlinear deformations may occur during the manipulation
process. This problem is made even more difficult as the different deformation modes (e.g., stretching, bending, and
twisting) may result in elastic instabilities during manipulation. In this paper, we formulate a physics-guided data-driven
method to solve a challenging manipulation task—accurately deploying a DLO (an elastic rod) onto a rigid substrate along
various prescribed patterns. Our framework combines machine learning, scaling analysis, and physical simulations to
develop a physics-based neural controller for deployment. We explore the complex interplay between the gravitational and
elastic energies of the manipulated DLO and obtain a control method for DLO deployment that is robust against friction
and material properties. Out of the numerous geometrical and material properties of the rod and substrate, we show that
only three non-dimensional parameters are needed to describe the deployment process with physical analysis. Therefore,
the essence of the controlling law for the manipulation task can be constructed with a low-dimensional model, drastically
increasing the computation speed. The effectiveness of our optimal control scheme is shown through a comprehensive
robotic case study comparing against a heuristic control method for deploying rods for a wide variety of patterns. In
addition to this, we also showcase the practicality of our control scheme by having a robot accomplish challenging high-
level tasks such as mimicking human handwriting, cable placement, and tying knots.
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1. Introduction

Intelligent manipulation of deformable objects, such as ropes
and cloth, is necessary for beneficial and ubiquitous robots. As
most objects in the practical world are non-rigid, endowing
robots with proper manipulation skills for deformable objects
has enormous humanitarian and economic potential. Some
examples include robotic surgical suturing (Sen et al., 2016;
Stefanidis et al., 2010), wire management (She et al., 2021),
laundry folding (Miller et al., 2012), and caregiving for elderly
and disabled communities (Kapusta et al., 2019; Clegg et al.,
2018; Yuetal., 2017; Erickson et al., 2018; Pignat and Calinon,
2017). However, given the large and geometrically nonlinear
deformations of deformable objects, it is difficult to obtain an
obvious mapping from the observations of those manipulated
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objects to a concrete robotic manipulation scheme. Therefore,
developing accurate and effective strategies for manipulating
deformable objects is still an open research problem.
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Figure 1. A full end-to-end pipeline for deploying a DLO with a sim2real physics-based deployment scheme. The pipeline begins by
discretizing the DLO pattern, which can be obtained through user input via an analytical expression or a hand-drawn pattern scanned by

a perception system (Choi et al., 2023a). A neural controller trained entirely from simulation then generates an optimal manipulation path
for deploying the pattern, taking into account the shape of the pattern as well as the geometrical and material properties of the DLO.

Finally, the deployment result is evaluated using an Intel RealSense
assess the accuracy of the deployment.

Among various deformable objects, deformable linear
objects (DLOs), which include elastic rods and the exten-
sions of rods-like structures, for example, cables, ropes,
rods, and wires (Sanchez et al., 2018), have attracted sig-
nificant research interest due to their widespread industrial
and domestic applications. In this article, we focus on the
category of rod-like structures and adopt the term DLO to
refer to those solid elongated objects. DLOs usually possess
extremely complicated nonlinearity due to the coupling of
their multiple deformation modes: stretching, bending, and
twisting. Given the practicality and difficulty of manipu-
lating DLOs, there is a growing need for robust and effective
methods to manipulate DLOs.

Prior works on manipulating DLOs can be divided into
two categories. The first involves robots attempting to ma-
nipulate DLOs to satisfy some high-level conditions without
controlling the exact shapes of DLOs. This includes knot
tangling/untangling (Wakamatsu et al., 2006; Saha and Isto,
2007), obstacle avoidance (McConachie et al., 2020; Mitrano
etal., 2021), and following guidance and insertion (She et al.,
2021; Zhu et al., 2019). The second category involves robots
attempting to precisely control the exact shape of the DLOs.
For this task, a key challenge is formulating a mapping
between the robot’s motions and the shape of the manipulated
DLO (Nair et al., 2017; Takizawa et al., 2015; Lv et al.,
2022). In this article, we look into how to design a manip-
ulation scheme for controlling the shape of elastic rods
through deployment, which involves manipulating one end
of DLO in a way that gradually lays the DLO on a substrate in
a desired pattern with superhuman accuracy, sufficient effi-
ciency, and strong robustness. The full end-to-end pipeline of
our physics-based deployment scheme is shown in Figure 1.
In addition to achieving precise shape control, we show our
control method can be used to solve high-level tasks such as
reproducing human writing with a deployed DLO, cable
placement, and knot tying.

camera positioned to provide a top-down view of the pattern to

1.1. Deployment of DLOs

Deploying DLOs is instrumental in the practical world, for
example, drawing or writing on cakes with icing (Sun et al.,
2015), deploying marine cables (Whitcomb, 2000), de-
positing carbon nanotubes (Geblinger et al., 2008), and
melting electrospinning for advanced manufacturing (Teo
and Ramakrishna, 2006). Therefore, a concrete and appli-
cable deployment scheme is a perfect solution to the shape
control problem of DLOs.

Now a natural question arises: how to deploy a DLO
along a prescribed pattern accurately on a substrate? In-
tuitively, we can assume that during the deployment pro-
cess, the manipulated end q,, is directly above the contact
point qc and that the gripper’s decreasing distance along the
negative z-axis is equal to the added deployed length on the
substrate. However, this deployment strategy does not take
into consideration the nonlinear geometric deformations of
the manipulated DLO and therefore, results in a poor quality
deployment as illustrated by later experimental results. A
schematic of the intuitive deployment method inspired by
Takizawa et al. (2015) can be observed in Figure 2(a).

In this paper, we propose a framework that combines
physically accurate simulation, scaling analysis, and ma-
chine learning to generate an optimized control scheme
capable of deploying solid rod-like structures, which we
refer to as DLOs, along any feasible pattern. Our control
scheme does not currently incorporate energy dissipation
from manipulations with DLOs such as viscous threads, as
our physical-based simulation is based on the rod model.
However, the controlling scheme can be adapted by ad-
justing the physical-based simulation in our combined
framework to include these factors. We validate the scheme
with various DLOs (e.g., elastic rods, rope, and cable) in
robotic experiments. The usage of physically accurate
numerical simulations not only allows us to incorporate
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Figure 2. (a) Schematic of the intuitive control method from Takizawa et al. (2015). A DLO is being deployed along a circular pattern
shown in dashed green. During the deployment process, the manipulated position q,, deploys along the tangent of the pattern x in a
downward 45-degree angle with respect to the y-axis. The x-z-plane is shown in opaque gray. In addition, a comparison of experimental
results between the (b) intuitive control method, (c) our designed optimal control method, (d) and simulation results using the optimal
control method for the patterns of straight line, circle, and sine curve are shown. Note the effects of forgoing the influence of nonlinear
geometric deformations in the intuitive deployment scheme’s failure to follow simple patterns.

physics into our manipulation scheme but also results in full
sim2real realization. Scaling analysis allows us to formulate
the problem with generality using non-dimensional pa-
rameters, resulting in a control scheme robust against the
material properties of the manipulated rods. Finally, ma-
chine learning allows us to train a neural network to model
the controlling rules of deployment in a data-driven fashion.
The high inference speed of our neural controller makes
real-time operation feasible.

Our main contributions are as follows: (1) we formulate a
solution to the DLO shape control problem through deploy-
ment with a physically robust scheme that leverages scaling
analysis, resulting in generality against material, geometric, and
environmental factors (friction); (2) we train a neural network
(NN) with non-dimensional simulation data to serve as a fast
and accurate neural controller for optimal manipulations of
deployment tasks. The trained mechanics-based NN-solver has
remarkable efficiency and sufficient accuracy when compared
to a numerical solver; and (3) we demonstrate full sim2real
realization through an extensive robotic case study demon-
strating our control method’s success for various practical
deployment patterns with various DLOs on different substrates.
In addition, we showcase the utility of our control scheme for
complex high-level applications such as mimicking human
handwriting, managing cables, and tying different knots.

Moreover, we have released our source codes and
supplementary videos.'

1.2. Overview

The remainder of the article is organized as follows: we
begin with a literature review related to robotic DLO shape

control in Section 2. The formulation of the physics-based
numerical model is discussed in Section 3, where we also
formulate the deployment problem with scaling analysis. In
Section 4, we analyze the nonlinearity of the deployment in
detail and show how to discover optimal robot manipulation
through numerical simulation. In addition, a learning
framework is formulated to obtain a fast, generalized mo-
tion planning solution. Next, in Section 5, we introduce our
overall robotic system, including perception and motion
planning modules. Experimental results and analysis for
different deployment cases, including writing letters and
tying a knot, are given in Section 6. Finally, we provide
concluding remarks and discuss future research avenues in
Section 7.

2. Related work

Constructing a mapping relationship from observations of a
manipulated DLO to the robot’s action space is the primary
basis of controlling DLOs. To uncover this mapping rela-
tionship, prior works usually implemented models to predict
or perception systems to observe the deformations of DLOs
under various manipulations. Manipulation schemes are
then generated based on the predicted or sensed data.
Therefore, model-based and perception-based methods can
be considered two of the main categories for tackling
manipulation problems of deformable objects. Due to the
outstanding performance of machine learning algorithms
for processing and generalizing data from models and
perceptions, learning-based approaches have become an-
other mainstream solution. In fact, many prior works take
advantage of a combination of these three methods to
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develop hybrid schemes for different manipulation tasks.
Here, we carry out a systematic review of prior scholarly
contributions that have utilized techniques based on the
three delineated categories to manipulate DLOs and other
deformable objects.

Perception-based approaches involve utilizing sensors
such as tactile sensors (She et al., 2021) and cameras (Tang
etal.,2018; Yan etal., 2020; Lee et al., 2014; Maitin-Shepard
et al., 2010) to generate motions based on detected defor-
mations. While sensors can capture the deformations as the
manipulation proceeds, perception-based methods are usually
not robust against the material and geometrical differences of
the manipulated objects. In Tang et al. (2018), a learning-
based perception framework is presented based on the Co-
herent Point Drift algorithm, which is able to register states of
manipulated DLOs with captured images. Yan et al. (2020)
developed state estimation algorithms for DLOs based on
images so that a robot can perform pick-and-place manipu-
lation on the detected configuration. However, those per-
ception systems based on cameras fail to extract accurate
results when occlusions happen. To overcome this short-
coming, tactile sensors have become prevalent in the robotics
community. For example, She et al. (2021) implements
GelSight, a force feedback tactile sensor, to perform robotic
cable management. Since sensing data by itself cannot predict
future deformations of the manipulated objects, pure
perception-based methods are typically insufficient for
complex deformable material manipulation tasks.

Model-based methods usually construct a physically ac-
curate model to predict the behavior of manipulated DLOs.
Multiple methods exist for modeling DLOs (Yin et al., 2021;
Sanchez et al., 2018). A simple and widely used model, mass-
spring systems, are often used to model deformable objects
including ropes (Schulman et al., 2013; Kita et al., 2011;
Macklin et al., 2014) and fabrics (Macklin et al., 2016; Guler
et al.,, 2015). However, due to the simplification of mass-
spring systems, such models usually suffer from inaccuracies
when undergoing large deformations and lack of physical
interpretability. Position-based dynamics is another type of
modeling method that usually represents DLOs as chains of
rigid bodies (Servin and Lacoursiere, 2008; Terzopoulos and
Qin, 1994; Miiller et al., 2007) and introduces constraints
between the positions of those rigid bodies to simulate de-
formations. Though this method is straightforward and fast,
physical interpretability is also lacking.

Finite element methods (FEM) are also popular for
modeling deformable objects (Haouchine et al., 2018;
Kaufmann et al., 2009; Buckham et al., 2004). However,
FEM usually requires considerable computation resources
and is hardly suitable for online predictions. More recently,
fast simulation tools from the computer graphics commu-
nity have attracted researchers’ attention. For example,
Discrete Elastic Rods (DER) (Bergou et al., 2008, 2010) has
arisen as a robust and efficient algorithm for simulating
flexible rods. Lv et al. (2022) used DER as a predictive
modeling tool and achieved promising performance in DLO
manipulation tasks. Though various ways to model

deformable objects exists, each has their respective
strengths and weaknesses and often possesses a trade-off
between computational efficiency and accuracy.

Finally, learning-based approaches have become prev-
alent as they are capable of not only predicting the shape of
the deformable object but also higher-level information
such as forces (Choi et al., 2023b). Most prior works use
human demonstrations or robot explorations to train con-
trolling policies for different tasks. Nair et al. (2017),
Sundaresan et al. (2020), and Lee et al. (2021) fed human-
made demonstrations to robots for learning control policies
for shape control and knot tying. Due to the tedium of
constructing manual demonstrations, some researchers take
advantage of the robots’ automation to learn a policy purely
from robotic exploration (Yu et al., 2022; Wang et al., 2019).
To acquire training data more efficiently, researchers have
also looked into training policies purely from simulation
(Matas et al., 2018). Although learning-based methods have
shown promising performance for manipulating deformable
objects, the trained policies are often only valid for specific
tasks whose state distribution matches that of the training
set. In other words, learning-based approaches often fail
when parameters such as the material and geometrical
properties of the manipulated object change.

More relevant to the deployment task itself, Takizawa et al.
(2015) implemented the intuitive control method shown in
Figure 2(a) for controlling the shape of a rope to make a clove
hitch knot. They achieve a success rate of 60% but require
empirical hardcoded adjustments to their controlling scheme,
indicating the intuitive approach’s unsuitability for extreme
precision deployment. Additionally, Lv et al. (2022) use a
precise physical numerical model to predict the DLO’s
configuration during deployment. However, they use a trial-
and-error method to exhaustively solve the optimal deploy-
ment path, which is computationally expensive and slow.

Although the three discussed types of methods are suitable
to be combined when solving deformable manipulation
problems given the complementariness of their pros and cons,
how to develop a combined approach to take advantage of
different types of approaches is still an open problem in the
robotic community. We find that combining physically ac-
curate simulations and machine leamning can endow the
learned model with excellent accuracy from the simulations
and real-time performance because of the inference speed of
the neural network. In addition, scaled physics analysis, which
is a vital tool from the mathematical physics community, is
valuable for augmenting the model with high generality.

In this article, we show how physical analysis can extract
the true contributing factors of the deployment problem and
how a learning-based approach can generalize the infor-
mation from physics to offer real-time computation speed
for the manipulation task.

3. Numerical framework and physical analysis

In this section, we first discuss the numerical framework for
studying the nonlinear behaviors of the DLO during
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As shown in Figure 3(a), the centerline of a DLO can be
discretized 1nto N+ 1nodes [qo, qy, ..., qn] (q; €ER?) and N
edges [e’,e', ..., e" '] (e¢'=q; — q;_,). In this section, node-
relevant quantltles are denoted with subscripts, for example,
q;, while edge-relevant quantities are denoted with super-
scripts, €. Each edge e’ possesses two orthogonal frames: a
reference frame [d}, d5, t'] and a material frame [m}, mj, t'].
The material frame, which captures the rotation of
the centerline of the DLO, can be obtained by rotating the
reference frame by a rotation angle 6 with respect to the
shared director t'. The reference frame is arbitrarily ini-
tialized at the initial time # = Os and is updated between time
steps using time parallel transport (Bergou et al., 2010). The
following DOF vector of size (4N + 3) is constructed to
capture all the deformations of the rod
) )

q = [q0560a ql, ey qN7139N7]

where T is the transpose operator.

Based on DER (Bergou et al., 2008, 2010), the defor-
mations of a DLO can be divided into three modes, each
corresponding to a distinct type of elastic energy: stretching,
bending, and twisting. Using the formulations of these
elastic energies in DER, we can outline the equations of
motion (EOM) we must solve at each time step.

First, we write down the formulation of stretching energy

B3 5 (- e

where k; is the stretching stiffness and ||éi]| is the unde-
formed length of the i — th edge. Note that we assume that
the manipulated rod is of an isotropic linear elastic material
in this manuscript. Hereafter, all quantities with () refer to
their resting undeformed value.

Next, the bending energy is outlined as

@)

— Ki—f(iTKi—f‘i
By =k S 06 = )05~ &)

= e+ [l

(€)

where k;, is the bending stiffness, and K, ke R? are the
deformed and undeformed curvature vectors, respectively.
Here, the relationship between the turning angle ¢; and
curvature k; is given as 2 tan(¢h;/2) = ||x;||. The illustration of

Figure 3. (a) Discrete diagram of the centerline of a DLO and
relevant notations; and (b) schematic of deploying a DLO along
a prescribed pattern.

turning angle ¢b; can be seen in Figure 3(a). Note that we also
assume that the resting undeformed shape of the rod is
straight, that is, <Z>,: 0 in our study.

Finally, the twisting energy is

anwew

where £, is the twisting stiffness, 7; = 6 — 0i71+Arr‘3f is the
discrete twist, 7; is the natural twist, and A7 is the angular
difference between the reference frames on edges e~ ' and
¢’. For our DLOs, we presume 7; to be zero.

With equations (2)—(4), the internal forces of the rod can
be obtained as

“)

O(E, +E, + E)

Fint I
oq

)
We can then construct the equations of motion implicitly
based on Newton’s second law

M ) —als .
R(q) = (W90 ) o pso, (o)

q(ti) — q(t)

A (@)

q(ti) =
where M is a square lumped mass matrix of size 4N + 3, F™ is a
(4N +3) x 1 elastic force vector (from equation (5), and F*'is a

(4N +3) x 1 external force vector. The () operator represents the
derivative of a quantity with respect to time, that is, q(#;) is the
velocity vector at time #. Note that the subscript in equation (6a)
and (6b) is the time stamp. By solving equation (6a) with
Newton’s method, the nonlinear geometric deformation of the
manipulated rod over time can be simulated accurately.

3.2. Physical analysis and controlling
rule construction

When manipulating DLOs, we should consider their geo-
metrically nonlinear deformations. Moving forward, X, ¥,
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and Z refer to the unit directors of the coordinate system
defined by the connective node q. shown in Figure 2(a) and
3(b).

As shown in Figure 3(b), when a DLO is being deployed
along a prescribed pattern on a rigid substrate, it can be
divided into two parts: a deployed part on the substrate and a
suspended part that does not contact the substrate. Here, we
presume the pattern on the substrate is fixed since the DLO
should ideally be deployed along the prescribed pattern.
Therefore, the unknown deformations only exist in the
suspended part.

3.2.1. Solving the suspended part. To capture the defor-
mations of the suspended part, we introduce some quantities
to assist our analysis. First, we define q(s) to describe the
position of the manipulated DLO’s centerline, where s is the
arc length along the DLO’s centerline. Then, a material
frame m(s) = [m;, m,, t] € SO(3) is attached along the DLO
to capture the DLO’s rotation, where t = z—g is the tangent of
the DLO. With the help of q(s) and m(s), we can fully
describe the deformed configuration of the suspended part.

To solve the configuration of the suspended part, we can
treat the suspended part as an independent DLO starting
from the connective node q¢ to the manipulated node q,,.
Here, qc = q(0) is the connective node connecting the
deployed part and the suspended part. Given the continuity
of the manipulated DLO, the curvature vector & at . can be
obtained from the prescribed pattern, where the magnitude
of x is denoted as k. The manipulated end grasped by the
robot is then q,, = q(/;), where [ is the total curve length of
the suspended part. Deployment of the pattern is then
carried out purely by controlling q,, Since equation (6a)
and (6b) implies that the DLO’s configuration q(s) and m(s)
can be solved when boundary conditions are determined, we
can write down the governing equations for the suspended
part as

R(q) =0,
st q(l) = au, R = m(L,)m(0)", ™)
a(0) = qc, d(;(so) = t(0), %&?) =9

where q;, is the position and R is the orientation of the
manipulated end with respect to the connective node qc.
Note that the position of the connective node qc, tangent
t(0), and curvature vector xy can be determined from the
deployed pattern, where y is the unit vector illustrated in
Figure 3(b). By solving equation (7), we can obtain the
configuration of the suspended part for any predefined
pattern and manipulated end pose.

3.2.2. Influence of forces and friction. Once the deformed
configuration is known, we can now calculate the forces
applied on the suspended part, which is key to hyper-
accurate control of the DLO. We denote the external
forces F**' = F\.X + F,y + F.z and twisting moment M(0)

applied on the suspended part from the connective node qc.
Here, the moment M is a function of arc length s; for
example, M(s) is the twisting moment applied on the
manipulated end. The quantities F**' and M(0) are relevant
with the friction coefficient u between the substrate and the
rod, and u is an unknown and uncontrollable environment
factor. In addition, the quantities F**' and M(0) also in-
fluence the tangent t(0) at the connective node qc because of
Newton’s third law. Therefore, we must minimize quantities
F*' and M(0) to achieve an optimal controlling rule.

Despite the optimal controlling rule minimizing the
influence of friction, it is still worth clarifying the signifi-
cance of friction within this context. Though we make the
strong assumption that the deployed pattern remains fixed
during deployment, this is only upheld if the following
relation is satisfied for the deployed segment

®)

where k; is the bending stiffness of the rod, x” is the second

kaN S:uypAgy

derivative of x with respect to the arc length s (lc’ = %) s Uy

is the static friction coefficient, p is the volumetric density of
the rod, 4 is the cross-sectional area, and g is the gravi-
tational acceleration. Equation (8) is derived by analyzing
an arbitrary finite element of the deployed pattern with a
clamped-end Euler—Bernoulli beam model. Clearly, friction
plays a crucial role in the deployment process.

As a result, our designed optimal deployment strategy
maintains a reliance on adequate friction for effective ex-
ecution while the scheme mitigates external tangential
forces apart from the essential friction on the substrate.
Consequently, the scheme necessitates only a modest static
friction coefficient between the substrate and the manipu-
lated DLO.

3.2.3. Computing optimal grasp. In addition to the mini-
mization of the external forces F*' and twisting moment
M(0) applied on the suspended part, we set up a rule for the
manipulated end: the robot end-effector should induce
minimal deformations on the manipulated node q,, so that
the curvature (bending deformations) at the manipulated
end should be 0. This results in the following optimization
problem to compute the optimal grasp

(a:R") = argmin<|Fm||2 + ('Mhﬂw

dq(0) at0) )
8.t A t(0), o
d*q(l,
61(2‘) —0, R(q) = 0.

By solving equation (9), optimal grasp (q;k,f and R¥*) can
be obtained. Physical analysis tells us that a direct mapping
relationship exists between the contributing factors and the
optimal grasp. Recall from equations (2)—(4), that stretching
stiffness k;, bending stiffness k,, twisting stiffness &, density
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p, and rod radius / are the primary material and geometric
properties of a rod. By adding in additional geometric
properties such as suspended length /; and curvature «, the
mapping relationship

* *
(qMaR ) :f(l.&‘:vkaks’kb’ktyhap)’ (10)

can be constructed where f{-) is a highly nonlinear (and
unknown) function that describes the controlling rule.

Note however the high input dimensionality of equation
(10). In other words, to accurately learn the mapping f{-), we
would have to exhaustively perform large parameter sweeps
for various ranges of material and geometric parameters
within simulations. This process of collecting data quickly
gets out of hand due to the curse of dimensionality. To
circumvent this, we can perform scaling analysis to obtain
an equivalent reduced-order mapping.

3.2.4. Scaling analysis via Buckingham s © theorem. In this
article, we use Buckingham’s # theorem to reduce the di-
mensions of the mapping f{-). Buckingham’s 7 theorem is a
fundamental principle in dimensional analysis, stating that a
physically meaningful equation involving n physical pa-
rameters can be expressed using a reduced setof p=n — k
dimensionless parameters derived from the original pa-
rameters. Here, & represents the number of physical di-
mensions. Using Buckingham’s 7 theorem allows us to
obtain a reduced-order non-dimensionalized mapping F (-)
from the original function f

(@-R") = F(I.%E),

kL,
s k, > (]1)
q* q
—* Ay — e
qM - Lgb )
_ I
ls =—
Lg,
K= KLgb.

Hereafter, all quantities with () indicate normalized
quantities. In equation (11), all quantities are unitless so that
the mapping relationship F(-) maps from the unitless
groups encapsulated the geometric and material properties
to the unitless optimal robotic grasp. The benefit of doing
such is that we reduce the dimensions of the mapping
function F(-) in equation (10) and eliminate the dependence
of F(-) on the units. Note that in equation (11), we do not
consider the influence of the twisting stiffness k, in this
article since twisting energies are minimal compared to
bending and stretching. However, the influence of &, can
also be analyzed with our proposed analysis. In the fol-
lowing article, we will show how to establish the nonlinear
mapping function in equation (11).

4. Optimization and deep learning

In this section, we further analyze the optimization of the system
to obtain the nonlinear mapping function in equation (11). Given
the high nonlinearity of the system, we first solve equation (11)
with a numeric optimization solver in a data-driven way. While
doing so, we analyze the elastic instability of the system to
choose the optimal robotic grasp for the deployment task.
Afterward, we reconstruct equation (11) using a neural network
to take advantage of its high inference speed. This neural
controller is then used by our robotic system as the controlling
law to complete various deployment tasks in Section 6.

4.1. Elastic instability in deployment along a
straight line

In this section, we first take a look at an intriguing physical
phenomenon: elastic instability. Elastic instability occurs
when changes in the boundary conditions cause a deformed
structure to become unstable. When observed visually, a
small geometric perturbation of the system will lead to a
substantial change in configuration (Timoshenko and Gere,
2009). An example of this can be observed when a robot
employs the intuitive control method to deploy a DLO along
a straight line as the rod unexpectedly adopts a curved shape
on the substrate. This observation defies our intuition as the
intuitive method only manipulates the DLO in the 2D plane
(x-z plane) as illustrated in Figure 4(a). Consequently, the
suspended part should ideally experience only 2D defor-
mations within that plane, thereby avoiding significant
deformations along the y-axis. On the contrary, this ob-
served phenomenon results from the unaccounted elastic
instability of the manipulated DLO.

Given this, it is crucial to take elastic instability into
consideration when designing an optimal deployment
scheme so that the robot’s grasp and possible jittering of the
manipulator does not introduce large undesired deforma-
tions of the DLO. To achieve this, we thoroughly analyze all
potential robot grasps for manipulating a DLO in the x-z
plane to achieve a straight-line deployment. Our objective is
to identify an optimal grasp that satisfies equation (9) while
effectively preventing the manipulated DLO from buckling
due to elastic instability.

4.1.1. Discovering potential grasp region. Given the sus-
pended part’s geometric properties and boundary condi-
tions, we can write down the constraints C which should be
satisfied

(12)

These constraints enforce that (i) the suspended part should
be above the substrate and (ii) external contact responses along
the z-axis should always be larger than or equal to 0.

By solving equation (7) with constraints C, we obtain all
potential robot grasps of the manipulated end, forming a
closed manifold M for a fixed normalized suspended length
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Figure 4. Schematic of a DLO manipulated in a 2D workspace (a)
and its corresponding available region denoted by M (b).
Visualization of a specific case with /;= 17.68. The force
distribution is shown in (c), and (d) displays the maximum
geometric deformation of the suspended part under a
disturbance of Ay= 0.12 along the y-axis.

I;. The boundary condition at the connective node q is
defined as t(0) = (1, 0, 0) and = 0. Each point in the
manifold M corresponds to a position q;, and rotation R of
the manipulated end. Given that the deformed configuration
is located within the 2D x-z plane, we can use a 2 X 1 vector
Gy = (Xrop, ZTop) to express the position of q, and a scalar
value o to denote the rotation information. For example,

tangent t(/;) = (cos(a), sin(«)) is shown in Figure 4(a).
Since the manifold M is a closed set, we only need to obtain
the boundary of the manifold oM.

To discover the boundary 0M, we explore along a ray r
from the connective node q to the manipulated node q,,.
The robot grasp along the ray can be divided into three
regions as shown in Figure 4(b). When the robot grasp exists
in regions I and 111, constraints C are not satisfied. In region
I, the external force F, = F,h? /kp is smaller than 0, vio-
lating the constraints as stretching occurs, and in region III,
the manipulated end is too low, leading to contact between
the suspended part and the substrate. Thus, region II, ex-
isting between regions I and III, represents the manifold M
area that satisfies the constraints C. In this article, we im-
plement a bisection method to obtain the boundary oM of
region II. The pseudocode for the bisection method is given
in Algorithm 1.

Algorithm 1: Bisection Method for Obtaining OM

Input: I, k,, v
Output: OM o
1 Func DiscoverManifoldBoundary (lg, ks) ¢

2 0 < a small positive value

3 [ < a small positive value

4 OM < initialize an empty list

5 0 < a small positive value as tolerance
6 R < initialized rod solver with I, k, v
7 while 0 < 7 do

8 r (I cos(0), 1, sin(0))

9 do

10 r« (1+p8)r

11 F, « R(r)

12 while I, < 0

13 r.+r

14 while C is not satisfied do

15 rr—0r

16 q, F, « R(r)

17 if |r|| < O then

18 | break

19 < T

20 while |[r, —rf|| > do

21 q, F, « R(r)

2 if C is satisfied then

23 ‘ rp<—r

24 else

25 | re<r

26 r< (ro+ry)/2

27 OM.append((r cos 6, rsin 6))
28 ro<r
29 ry < (0,0)
30 while ||[r. —rs|| > 0 do

31 q, F, + R(r)

32 if C is satisfied then

33 | re<r

34 else

3 | rp+r

36 r< (rc+ry)/2
37 OM.append((r cos 6, rsin f))
38 0« 0+ 36

39 return OM

Note that 8 in Algorithm 1 is the angle between the x-axis and
ray r. A specific case for /= 17.68 is visualized in Figure 4(c).
Since deformations only occur in the x-z plane, the twisting
moment M(0) = M(0)k/k applied on the connective node
q is always 0. To achieve the optimal pose of the manipulated
end for /,= 17.68, we need to find the poses in M that

minimizes HFWH. Two local minima are found in the case
shown in Figure 4(c), corresponding to two solutions of
equation (9). As stated before, we must select the local minima
corresponding to the stable deformed suspended part.

4.1.2. Checking elastic instability via perturbations. To test
the elastic stability of these local minima, we apply a
disturbance Ay =y/Lg, along the y-axis while the
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manipulated end q, is at each local minimum. Figure 5
illustrates the changes in F, = F,h?/k;, and the configu-
rations resulting from these perturbations for each local
optimum.

For local minimum 2, we can see a sudden snapping
process, where an immediate change can be observed, while
the disturbance on local minimum 1 results in a continuous
and steady change. Therefore, we can conclude that the
optimum for deploying the DLO is at a local minimum 1
since this minimum corresponds to a configuration with
more gentle bending deformations of the suspended part.

Here, we also illustrate that the neighboring region
around the elastic instability points has a higher tendency
for significant deformations when the jittering of the ma-
nipulator occurs. In simulation, we introduce a small dis-
turbance of Ay= 0.12 along the y-axis for all potential robot
grasps on the manifold M. Figure 4(d) illustrates the
maximum displacement of the suspended part along the y-
axis Agy™ = maxos<,(q(s) - ¥) caused by this small dis-
turbance. It is evident from the results that the neighboring
region around local minimum two exhibits a higher ten-
dency for significant deformations along the y-axis. Con-
sequently, robot grasps within this region are more likely to
induce instability in the manipulated DLO.

We can now output the optimal deployment rule for a
straight line using the method introduced in this section. In
the next section, we focus on optimal 3D manipulation, that
is, deploying patterns with non-zero curvature. The fol-
lowing section discusses how to use a first-order optimi-
zation algorithm to solve equation (9) for deploying any
arbitrary prescribed pattern, where the optima for straight-
line deployment is used as seeds when searching for the
optima of more complex patterns.

4.2. Deployment in 3D workspace

As mentioned in Section 3.2, the mapping relationship F(+)
in equation (11) must be constructed to achieve optimal
deployment in the 3D workspace. For the connective node
of any prescribed pattern, since the deformations of
the pattern are only in the x-y plane, we can ensure that the
twisting moment M(0) can always be 0. Therefore, the
optimal pose of the manipulated end can be obtained by

minimizing ||Fm” by solving

—ext

—ex aF —ex
Vo [P = S =0

13
a0, (13)

As the deploying rod is a continuous system, F™ must
change when q,, changes. Therefore, we can convert
equation (13) to be a root-finding problem

F=ext

F“=o0. (14)

As discussed before, solving the configurations of
the deploying DLO is a boundary value problem. Since the
pattern’s shape determines the boundary conditions on the
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Figure 5. Change of the magnitude of normalized force F, when
adding a perturbation along the y-axis at local minimum 1 (al)
and local minimum 2 (a2), and change of the configurations of the
rod when adding the perturbations at local minimum 1 (bl) and
local minimum 2 (b2) for /= 17.68.

connective end, the external forces F™' are influenced solely
by the manipulated end pose q,,, with a unique corre-
sponding R for describing the rotation of the manipulated
end.

Given the high nonlinearity of the DLO, it is nontrivial to
solve the root-finding problem in equation (14) analytically.
Therefore, we employ a finite difference approach to calculate
the numerical Jacobian of F*. We perturb the manipulated
end along x, y, and z-axes with a small distance J and use the
finite difference to compute the numerical Jacobian

| [F @y +0%) - F (@),
5 F <6M+®)_F (qM)9 ’

—=ext

F(q, +02) - F(q,)

T

Jext — (1 5)

where T'is the transpose operator and JX, 6y and 6Z are small
perturbations along x, y, and z-axes, respectively, that is,
ox = [6,0,0]".

Here, J*'is a 3 x 3 matrix and can be used to calculate
the Newton search step so that equation (14) can be solved
with a gradient descent method. Further details of this
solving process are stated in Algorithm 2. Additionally, we
also implement a line search algorithm to help determine the
appropriate step size for the Newton search step Aq as
shown in Algorithm 3.
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Algorithm 2: Gradient Descent for Optimal Grasp

Input: I, &y, ks, v
Output: q}, L
1 Func OptimalGrasp (I, R, ks) ¢

2 k<0

3 & + a small value as tolerance

4 q%} < initialize a random pose of end-effector

5 R(-) « initialize the rod solver with I, &, kg

6 do

2 || E e r@)

8 J < equation (15)

9 Aq — (Jex[)—lFexl

10 a4+ LineSearch (qf{;), Aq, |F||, R)
—(k —(k _

11 qfw'H) — qg\j) —alAq

12 k+—k+1

13 | while [|[F|| > 6

_ _ (k)
14 Qhr < Qg
15 return qj,

Algorithm 3: Line Search Algorithm
Input: gy, Aq, fo, R

Output: o

1 Func
LineSearch (qu, Aq, fo,R,ap =1,m =0.5):

2 a4+
3 k<« 0
4 success <— False
5 do
6 qg}) —qn — CYAC[
7 F o R(q')
8 F® | F|
9 if f(*) > f, then
10 a4 ma
11 k+—k+1
12 else
13 | success +— True
14 while not success
15 return o

In this article, both position q;, and rotation e of
the manipulated end are represented as 3 x 1 vectors:
q, = (x™°P,y™°P,2T°P) and e = (e,, e,, e.). The rotation
vector e can be translated to a rotation matrix through
an axis-angle representation (€, |le]|), where ||e|| is the
rotation angle along the rotation axis € = e/||e||. For
an input tuple (I;,%, k), we can now solve for the op-

timal pose of the manipulated end (qL,e*). Visualiza-
tions of the discretely solved optimal poses obtained
from simulation are shown as red hollow circles in
Figure 6.

We now know how to obtain the optimal manipulation
pose given the input (I, %, k,) with simulations. A nu-
meric solver based on simulations for generating the
optimal trajectory for various prescribed patterns is re-
leased (see '). However, solving for the optimal poses
with the numeric solver makes real-time manipulation
infeasible as trajectory generation can take several hours.
Instead, the following section introduces using a neural

network to learn the optimal controlling rule for fast real-
time inference.

4.3. Training the neural controller

Rather than obtaining the optimal grasp through the nu-
merical solver detailed in the previous section, we train a
neural network to learn an analytical approximation of F(+)
similar to the approach in Choi et al. (2023b). We use a
simple fully connected feed-forward nonlinear regression
network consisting of 4 hidden layers, each with 392 nodes,
as the network architecture. Aside from the output, each
layer is followed by a rectified linear unit (ReLU) activation.

We frame the neural controller to have an input i € R?
and an output 0 € R®, where the input consists of the three
non-dimensional values /;, %, and k, and the output consists
of two concatenated 3 x 1 vectors: the optimal position

ﬁ; and rotation e* of the manipulated end. Using our
simulation framework, we construct a dataset D consisting
of 6358 training samples.

When training the neural controller, we first preprocess
all inputs i through the standardization

./_l_l’D

Gp ’
where ip and op are the mean and standard deviation of the
input portion of the dataset D. Afterward, we use an initial
80-20 train-val split on the dataset D with a batch size of
128. We use mean absolute error (MAE) as our loss and use
a training strategy that alternates between stochastic gra-
dient descent (SGD) and Adam whenever training stalls. In
addition, the batch size is gradually increased up to a max
size of 2048, and the entire dataset is used to train the
controller once MAE reaches <0.003. With this scheme,
we achieve a final MAE of <0.0015. The neural network’s
approximation of F(-) can be seen visualized in Figure 6.

5. Robotic system

5.1. Perception system

To obtain the Cartesian centerline coordinates of the de-
ployed DLO (or drawn patterns), we use the DLO per-
ception algorithm mBEST (Choi et al., 2023a). This
algorithm obtains the centerline coordinates of DLOs within
an image by traversing their skeleton pixel representations.
The ambiguity of path traversal at intersections is handled
by an optimization objective that minimizes the cumulative
bending energy of the DLOs during the pixel traversal. One
case of extracting discretized patterns from the handwriting
pattern is shown in Figure 7. RGB images of the deployed
DLO are obtained through an Intel RealSense D435 camera
as shown in Figure 9. Further details of the perception
algorithm itself can be found in the referenced paper.
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Figure 6. Visualization of the influence from curvature % and suspended length /; on the (al—-a3) manipulated end position and (b1-b3)
manipulated end orientation for fixed values of ky= 2087; visualization of the influence from stretching stiffness k, and curvature % on
the (c1-c3) manipulated end position and (d1-d3) manipulated end orientation with fixed values of /,= 13.68.

5.2. Motion planning with the neural controller

In Figure 1, we showcase the full end-to-end pipeline of our
proposed deployment scheme. Here, we give a full de-
scription of how to integrate the trained neural controller
into a robot motion planner.

The first step of the deployment process is to specify the
desired pattern. This pattern can be defined by either an

analytical function or detected as a drawn curve as shown in
Figure 1. Note that the pattern P(s) is treated as a function of
the curve length s. Based on the configuration of the pattern,
we can compute the required inputs for the neural controller
when the connective node qc achieves each point in the
pattern P(s). The details of generating an optimal trajectory
based on the pattern P(s) and the properties of the ma-
nipulated rod are given in Algorithm 4.
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Algorithm 4: Optimal Deployment Trajectory

Input: P, L, L, ks
Note that material parameters L, k. must be
measured in advance (Figure 8 and equation (16)).
Output: 7

1 Func OPT (L, P, Ly, ks) :

S,k, T + ProcessPattern (P)

As < step size of deployment

T < initialize an empty list

z < director along vertical direction

50

while s < S do

qc — P(s)

X+ T(s)

10 R < Kk(s)Lg

11 ls < (L —5)/Lg

12 (s, e*) < Flls, Ry ks)

13 R < AxangtoRot (&, ||e*|)

14 R, < (X,z X X,2)

15 i < qc + Redj Loy

16 R* +~ R;R

17 Append (q};,R*) to 7

18 54 s+ As

19 return 7

e ® N A ! R W N

In Algorithm 4, x and T are all functions of the arc length s
of the pattern, where T is the tangent along the pattern. With
Algorithm 4, we obtain the optimal grasp trajectory z and
then use OMPL (Sucan et al., 2012) to generate a valid
motion planning sequence on a real robot system.

One highlight of our overall robotic system is its real-time
capability. The real-time efficiency of the perception algorithm
has been validated by Choi et al. (2023a), while the average
end-to-end time to generate a full optimal deployment
motion plan is less than 1 s. Therefore, our approach is
also efficient enough for sensorimotor closed-loop con-
trol. However, as offline control has achieved excellent
deployment accuracy in our experiments, online control
is not carried out in this work.

6. Experiments and analysis

6.1. Measurement of material parameters

To carry out deployment with our proposed scheme, we must
validate its efficacy with comprehensive experiments. In this
article, we choose to deploy various DLOs on different substrates
for multiple tasks so that we can look into the robustness of the
proposed scheme against the material difference and friction.

First, we need to find the geometric and material
properties of the manipulated DLO. The geometry of the
manipulated rod, for example, total length L and rod radius
h, is trivial to measure. Measuring the material properties of
the DLO is less clear. Overall, we need to develop a way to
find the following material properties: gravito-bending
length L, and normalized stretching stiffness ;.

Here, we presume the material is linearly elastic and
incompressible. The incompressible material means the
volume of the rod will not change when deformations
happen. Therefore, Poisson’s ratio is set as v = 0.5. In
addition, bending stiffness is k, = Exh*/4, where E is
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Figure 7. Handwritten letters and the corresponding extracted
discretized patterns using mBEST Choi et al. (2023a).
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(16)

When observing equation (16), we find that the only
parameter we must obtain is Lg,. It is still unclear how to
compute this as L is relevant to Young’s Modulus £ and
the density p of the rod, which is usually hard to measure.
Here, we propose a simple method that is able to measure
Lg, by observing the geometry of the rod. When we form a
loop in a rod naturally using gravity in a 2D plane, we can
observe the geometry of the rod becomes what is shown in
Figure 8(a). Indeed, the height /4, of the loop has a linear
relationship with Lg,. Therefore, we can obtain Lg, for
different rods by simply measuring 4. According to prior
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work (Pan et al., 2020) and our validation shown in
Figure 8(b), i, = 0.9066L,.

6.2. Experiment setup

6.2.1. Materials and robot hardware. In this article, we
conducted experiments involving five distinct types of DLOs.
Among these, three are silicone-based rubber fabricated by vinyl
polysiloxane (VPS); the fourth is a commercially available rope;
and the fifth is a stiff USB cable. Note that we also validate the
robustness of the deployment scheme against different sub-
strates. The friction between the DLOs and substrates is also
qualitatively measured. Comprehensive details regarding the
parameters for each of these DLOs can be found in Table 1.

For our experiments, we used two Rethink Robotics’
Sawyer manipulators as shown in Figure 9. One arm is
attached with a gripper for manipulating the rod. The other
arm holds an Intel RealSense D435 camera which is used to
scan drawn patterns as well as obtain a top-down view of the
deployment result for evaluations. A workstation with an
AMD Ryzen 7 3700X CPU and an NVIDIA RTX 2070
SUPER GPU was used for all experiments.

6.2.2. Experiment tasks. We implement our proposed de-
ployment scheme across four distinct tasks. First, we deploy
a rod along some canonical cases obtainable through an-
alytical expressions such as a line, circle, and sine curve.
The rod is deployed using the robotic arm with the gripper.
Once the deployment is finished, the other arm with the
camera moves to scan the deployment result.

The second task involves deploying patterns drawn on
paper. Users draw patterns, subsequently scanned by the
camera to obtain ordered discretized pattern coordinates. The
robot then manipulates the rod to replicate the drawn pattern.
This article showcases deployment results for the letters “U,”
“C,” “L,” and “A” with the precise shapes detailed in
Figure 10(a). The third task is geared towards validating the
deployment scheme’s application in cable placement, a vital
aspect of cable management. The scheme’s efficacy is
demonstrated by placing cables along constrained paths with
the help of pre-installed fixtures on the substrate. Lastly, the
deployment scheme’s application for tying knots is verified.
Both robotic arms are equipped with grippers for this task.

For the first two tasks, patterns are evaluated using both
intuitive and optimal control methods. Additionally, three

different rods (DLOs #1, #2, and #3) are deployed on
substrates of various materials (fabric, steel, and foam) to
assess the method’s robustness against material disparities
and friction. In the third task, DLO #5 (USB cable) is
employed for cable placement using both algorithms. Fi-
nally, DLOs #2 and #4 are used to tie distinct knots for the
fourth task. Each experimental case is subjected to 10 trials
for each control method, culminating in a total of 1340
experimental trials.

6.3. Metrics

We now formulate the metrics used to evaluate the per-
formance of the deployment scheme. When deploying a
pattern P, we need to assess the accuracy of the deployment
result. We first discretize the pattern P into N points and
denote the i-th point of the prescribed pattern as P’. The
actual deployment pattern obtained from perception is
denoted as P, With this discretization scheme, we
compute the average error e,e., and standard deviation o as

1 N
€mean — N Zl‘

i (

ngp —P

>

— €mean )

N >

(17)
P —P

exp

for both the intuitive and optimal control results.

The accuracy evaluation is not applicable for the two
application tasks: cable placement and knot tying as they are
high-level tasks. Therefore, we simply use the success rate
of those application tasks to evaluate the performance of the
deployment scheme. In addition to accuracy, we also report
a detailed comparison of runtimes and errors between the
numerical and NN-based solvers. Details of the relevant
results and analysis are discussed in the next section.

6.4. Results and analysis

6.4.1. Accuracy. All experimental results can be seen in
Table 2. To compute the error metrics in equation (17), we
used a discretization of N = 50. From all results, we can
observe a noticeable improvement in our optimal control
method over the intuitive method for various geometrical,
material, and environmental parameters.

Table 1. Material and geometric properties of the DLOs used in the experiments.

Material and geometric parameters

DLO Material Lgb (Cm) h (IIlIl’l) L (m) v Hetabric Hsteel Hfoam
#1 Pink VPS 1.8 1.6 0.875 0.5 Low Medium High
#2 Green VPS 32 1.6 0.885 0.5 Low Medium High
#3 Rope 34 2.0 0.89 0.5 Medium Low High
#4 Pink VPS 2.86 32 0.84 0.5 Low Medium High
#5 Cable 8.01 1.8 0.87 0.5 Medium Low High
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Figure 9. Experimental apparatus: Two robot manipulators, one
for manipulation of the deploying rod (1) and the other for
holding the camera for perception (2). A gripper (3) is used

for grabbing the manipulated end of the rod. A camera (4) is used
for extracting patterns from the drawn patterns and evaluating
the deployment results.

Canonical Cases

e i
000 0.05 010 015

To better visualize our method’s generality, we visually
depict deployment outcomes across different DLOs on the
fabric surface in Figure 10. In addition, a comparative visual
representation of deployment results for a single DLO (#2)
on varying substrates is shown in Figure 11. Readers
seeking comprehensive visual comparisons of all deploy-
ment outcomes can refer to the supplementary video for
detailed insights (see Footnote ').

Among the seven deployed patterns, the first three
(straight line, circle, and sine curve) are canonical cases,
that is, their shapes have explicit analytical expressions.
Note that when deploying the circle and sine curve pat-
terns, a small “remainder” section is first deployed. This is
necessary as the circle and sine curve patterns have a non-
zero curvature at the start of their pattern. We compensate
for this by deploying a remainder part whose curvature
gradually evolves from a straight line with 0 curvature to
the prescribed curvature of the pattern’s first point. The
remainder can improve the deployment task’s accuracy as
the deployed pattern will require slight friction based on
equation (8).
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Figure 10. Experiment results of deployment along various patterns. (a) All used prescribed patterns are discretized and plotted.
Deployment results for (b) DLO #1 (pink VPS), (c) DLO #2 (green VPS), and (d) DLO #3 (rope) are shown for each prescribed pattern.
Results for the intuitive control method and optimal control method are shown for each rod.
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Table 2. Evaluation of deployment accuracy for various patterns, DLOs, and substrates.
Pattern type and accuracy enyea, = o (cm) (equation (17))

DLO SUB Control scheme Line Circle Sine Curve  Letter “U”  Letter “C”  Letter “L”  Letter “A”

Fabric INT 040+022 061+036 166+0.74 139+0.63 221 +092 1.00+0.59 4.81+227

OPT 0.14+0.09 0.15+0.07 027+0.10 022+0.07 022+0.10 035=+0.183 047 +0.23

#1 Stecl INT 142+ 066 234+124 269+1.69 3.59+239 367+193 087+055 3.64+2.09

OPT 022+0.12 022+0.08 027+0.10 024+0.13 027+0.09 042 +0.16 0.58+0.37

F INT 1.03+£021 123+045 284+152 333+193 389+129 1.13+£0.74 4.09 +2.19

oam OPT 025+0.15 0.18+0.06 029+0.16 024+0.15 041020 035+0.12 054024

Fabri INT 052+0.13 1.64+095 160+083 3.74+289 458=+1.15 1.74+1.11 495+2.63
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Figure 11. Experiment results of deployment with DLO #2 (green VPS) along various patterns on different substrates.
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We have omitted the designed remainder for the four re-
maining patterns denoted by the letters “U,” “C,” “L,” and “A”
for better visualization. Among these, patterns “U,” “L,” and
“A” exhibit a relatively low x” value during the beginning
stage of the deployment, resulting in the deployment accuracy
being minimally affected by surface friction.

Conversely, the “C” pattern demonstrates a compara-
tively higher «” value initially, leading to a possible no-
ticeable mismatch between the deployed DLO and the
intended pattern in the beginning. The impact of friction
becomes more pronounced during the rope deployment
corresponding to DLO #3 since the rope has higher bending
stiffness k&, and experiences lower friction with the sub-
strate. Fixing the free end is essential to precisely replicate
the “C” pattern with the rope as shown in Figure 10(d).
Despite this limitation, our optimized deployment strategy
consistently outperforms the intuitive approach.

6.4.2. Computational efficiency. Next, we also evaluated
the computational efficiency of our neural controller.
Table 3 compares time costs between the neural network
solver (NN-solver) and the numeric solver based on sim-
ulations. When calculating a single optimal robot grasp for a
given parameter tuple (/;, %, k), the numeric solver takes
approximately 10 to 20 s, while our NN-solver takes
roughly 0.4 s.

The difference of time costs becomes more significant
when generating a series of optimal robot grasps for a dis-
cretized pattern. Note that a discretized pattern typically
consists of 100 to 200 nodes and that the numeric solver needs
to compute the robot trajectory in sequence as the optimal
grasp for the previous step is needed as the seed for computing
the next optimal grasp. Therefore, the time costs quickly
accumulate for the numeric solver, which substantially elon-
gates the overall computation time. In contrast, the NN-solver
leverages vectorization to solve multiple robot grasps simul-
taneously, resulting in a speed advantage of several orders of

magnitude compared to the numeric solver when generating
optimal deployment trajectories.

6.4.3. Precision of the neural controller. Finally, Table 3
also presents the precision of the NN-solver. The solutions
from the numeric solver serve as the ground truth. Mean
Absolute Error (MAE) is employed to evaluate the optimal
trajectories the NN-solver generates against the ground
truth. Remarkably, the MAE consistently remains below
0.003 m for position error and 0.009 for differences in
rotation quaternions. Importantly, it’s noteworthy that none
of the solved trajectories in this analysis were part of the
training dataset. Thus, we can confidently assert that our
NN-solver exhibits robustness, efficiency, and accuracy,
rendering it well-suited for real-time control applications.

6.5. Application #1: Cable placement

In this section, we showcase the application of the de-
ployment scheme for cable placement. The importance of
cable management has surged, particularly in engineering
contexts involving tasks like wire harnessing, infrastructure
development, and office organization (Sanchez et al., 2018;
Lattanzi and Miller, 2017). Given cables’ inherent high
bending stiffness, shaping them to specific forms can be
challenging, often necessitating external fixtures to maintain
the desired configuration. When humans perform cable
management manually, meticulous placement along the
designated pattern is essential, coupled with the use of
fixtures to secure the cable in place. However, a robotic
system can autonomously execute cable placement with our
designed optimal deployment strategy.

In our experimental setup, we pre-installed external
fixtures into the stainless steel breadboard to delineate the
intended patterns. These fixtures also counteract the cable’s
rigid nature, preventing it from reverting to its original
shape. The deployment results can be visualized in

Table 3. Evaluation of computation times of various patterns for the numerical and NN-solvers with error metrics.

Patterns with number of nodes

Line Circle Sine curve  Letter “U”  Letter “C”  Letter “L”  Letter “A”
DLO  Solver times (s) and MAEs 101 nodes 156 nodes 138 nodes 190 nodes 190 nodes 190 nodes 194 nodes
Numeric solver 1572.68 2036.11 2897.17 3954.12 4015.24 4777.30 4666.55
4 NN-solver 0.402 0.393 0.395 0.431 0.431 0.400 0.417
Position error (m) 0.0008 0.0007 0.0009 0.0008 0.0007 0.0008 0.0008
Orientation error 0.0012 0.0010 0.0032 0.0025 0.0020 0.0020 0.0021
Numeric solver 776.56 1213.14 1769.66 2286.66 2226.73 2720.08 2933.90
4 NN-solver 0.397 0.391 0.396 0.419 0.408 0.404 0.406
Position error (m) 0.0016 0.0016 0.0019 0.0018 0.0016 0.0020 0.0017
Orientation error 0.0012 0.0078 0.0050 0.0042 0.0020 0.0058 0.0030
Numericsolver 666.01 1041.71 1561.12 1984.63 1972.39 2405.71 2639.44
3 NN-solver 0.400 0.407 0.395 0.407 0.420 0.405 0.411
Position error (m) 0.0016 0.0017 0.0020 0.0020 0.0016 0.0021 0.0018
Orientation error 0.0010 0.0087 0.0052 0.0055 0.0023 0.0054 0.0032
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Figure 12. Compared to the failure placement results with
the intuitive scheme, our optimal deployment scheme can
place the cable along the prescribed pattern “U” and “S” on
the substrate. We did 10 experimental trials for each de-
ployment task illustrated in Figure 12. Notably, the optimal
deployment approach achieved an impressive 90% (9/10)
success rate for both patterns, whereas the intuitive method
failed in all trials (0/10) as shown in Table 4.

Figure 12. A demonstration of cable placement along different
prescribed patterns with both intuitive and optimal control
schemes.

Table 4. Real-world application experiment results.

Experiment type Scheme Success rate
“S” cable placement INT 0/10
OPT 9/10
“U” cable placement INT 0/10
OPT 9/10
Trefoil knot INT 0/10
OPT 9/10
Reef knot INT 0/10
OPT 7/10

(a0)
Grasp
direction

1st grasp

(bo) ‘“"fjjjii"/‘L——T \
Ay

“\‘
\
2nd grasp [ l 3rd grasp

direction direction

6.6. Application #2: Knot tying

Since our optimal deployment scheme can control the shape
of various DLOs with excellent accuracy, we can use this
scheme to tie knots. First, the manipulated rod is deployed
along a predesigned pattern on the substrate. Users can draw
the predesigned pattern so that only a few extra manipu-
lations are required. Then, the camera will scan the drawn
pattern and send it as input to our designed scheme. The
deployed pattern is designed in a way that only a few simple
pick-and-place operations on certain knot segments is re-
quired to complete the tying sequence. Since the prescribed
pattern’s shape is known in advance, we can let the robot
execute the pick-and-place procedure without perception
feedback. So long as the initial deployment is accurate and
repeatable, the subsequent pick-and-place procedure should
succeed most of the time.

We showcase two knot-tying sequences in Figure 13. The
top row showcases a trefoil knot, one of the most fundamental
knots in engineering (Crowell and Fox, 2012). For this knot,
we used DLO #4. Another case is a reef knot, a prevalent knot
widely used in for various applications including shoelaces,
packaging, sewing, etc. When tying the reef knot, we used
DLOs #2 and #4. Although these two DLOs have totally
different material properties, our generalizable neural con-
troller allows two robots to deploy both DLOs accurately along
the designed patterns. With the help of the deployed patterns,
reef knots can be tied with simple pick-and-place procedures.
Such knot-tying cases strongly support the potential of our
deployment scheme in various engineering applications.

We show the results of the knot-tying tasks in Table 4.
The successful rate of knot tying is remarkable. We achieve
a success rate of 90% (9 successful trials out of 10) for tying
a trefoil knot and a success rate of 70% (7 successful trials
out of 10) with the optimal control method. Based on our
observations, all the failure cases were caused by the rod
slipping out of the gripper. In contrast, the intuitive control
method achieves a success rate of 0% for both cases as the
initially deployed pattern does not match the intended
pattern.

Figure 13. A demonstration of two knot-tying cases using the DLO deployment scheme. (a0) and (b0) are designed patterns for the
trefoil knot and the reef knot, respectively. Time marches for trefoil knot from (al) to (a6) and reef knot from (b1) to (b6).
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Therefore, the intuitive control method would require
some visual feedback to choose the pick-and-place motion
adaptively for the trefoil knot case. As for the reef knot case,
due to the deployment results being totally wrong, even
though the visual feedback is applied, it is still hard to
achieve a complete reef knot with intuitive method.

Therein, we can see the potential of the deployment
scheme in high-level robotic tasks like knot tying. In future
work, the optimal deployment scheme will be incorporated
with the perception system to automatically tie any pre-
scribed knots with the robotics system.

7. Conclusion

In this article, we have introduced a novel deployment scheme
that allows for robust and accurate control of the shape of
DLOs using a single manipulator. Our framework integrates
techniques from various disciplines, including physical sim-
ulation, machine learning, and scaling analysis, and has been
demonstrated to be highly effective in real robotic experiments.
Our results highlight the advantages of incorporating physics
into robotic manipulation schemes and showcase impressive
performance on complex tasks such as writing letters with
elastic rods, cable placement, and tying knots.

Looking to the future, we plan to leverage the precision
and efficiency of our deployment scheme to tackle some
high-level robotic tasks systematically, for example, robotic
knot tying. While exact shape control is not strictly required
during such manipulations, our deployment scheme offers
sufficient accuracy and efficiency to design the configura-
tions of the middle states of a manipulated DLO, which is
essential for robots to successfully tie complex knots. We
also aim to explore the use of generalized problem for-
mulations and data-driven control schemes, such as rein-
forcement learning, to develop more flexible and adaptive
solutions to the challenges of robotic manipulation. By
continuing to push the boundaries of robotic manipulation,
we hope to advance the state-of-the-art in this field and
enable new and exciting applications of robotic technology.
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