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Abstract— We create a mechanism inspired by bacterial
swimmers, featuring two flexible flagella with individual
control over rotation speed and direction in viscous fluid
environments. Using readily available materials, we design
and fabricate silicone-based helical flagella. To simulate the
robot’s motion, we develop a physics-based computational
tool, drawing inspiration from computer graphics. The frame-
work incorporates the Discrete Elastic Rod method, modeling
the flagella as Kirchhoff’s elastic rods, and couples it with the
Regularized Stokeslet Segments method for hydrodynamics,
along with the Implicit Contact Model to handle contact.
This approach effectively captures polymorphic phenomena
like bundling and tumbling. Our study reveals how these
emergent behaviors affect the robot’s attitude angles, demon-
strating its ability to self-reorient in both simulations and
experiments. We anticipate that this framework will enhance
our understanding of the directional change capabilities of
flagellated robots, potentially encouraging further research
into the mobility of microscopic robots for a variety of tasks,
including drug delivery in blood.

I. Introduction
Bacterial locomotion has long stood as a captivating

frontier in the realm of robotics and bio-inspired engi-
neering [1]. The design and control of highly maneuver-
able robotic systems have been informed by the propul-
sion mechanisms observed in nature, especially those
employed by motile bacteria [2]. The Scallop theorem
implies that traditional propulsion mechanisms, like fins,
paddle, and wings, become inefficient in highly viscous
environment [3]. The microorganisms, like Einstead,
often equipped with slender helical appendages protrud-
ing from their cells, exhibit remarkable agility in their
aquatic environments [4], [5]. Drawing inspiration from
the natural world’s efficiency and adaptability, roboti-
cists have sought to emulate these bacterial propulsion
methods with single [6], [7], [8] or multiple flagella [9],
[10], [11]. Multi-flagellated swimmer have mainly two
modes of locomotion, i.e., run and tumble, via the intri-
cate interplay of multiple slender flagella [12]. However,
current research primarily emphasizes the running ability
of multi-flagellated robots, with less attention directed
toward the realization of direction-changing mechanisms.

Recognizing this gap, we delve into the realm of
attitude adjustment for multi-flagellated robots. The
slender structure of these robots exhibits intriguing
polymorphic transitions, including buckling, bundling,
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and tumbling [13], [14], [15], [16], [17], setting them apart
from traditional rigid robots. Their soft, deformable flag-
ella provide them with remarkable agility and the ability
to navigate intricate and confined spaces. However, the
intricate nonlinear nature of their structure, coupled
with the complexities of fluid and contact interactions,
underscores the need for in-depth exploration.

Since it is difficult to systematically manipulate the
physical parameters of microscopic natural bacteria, we
choose an analog robotic system which can - in turn -
inform the original natural system that motivated its
design.This macroscopic bi-flagellated system is affixed
to a ball joint, to facilitate the characterization and
quantification of its attitude adjustment capabilities. As
visualized in Figure 1, the robot is submerged in viscous
fluid medium to faithfully emulate the environment
bacteria thrive in. This robotic system exhibits the
capacity to rotate along different body axes, i.e., yaw and
pitch angle, reproducing the bacterial ability. Further-
more, to understand this phenomenon and explore the
parameter space governing attitude adjustment, we in-
troduce a comprehensive computational framework. This
framework addresses critical aspects such as elasticity,
long-range hydrodynamics, and the handling of physical
contacts, each of which has demonstrated its efficacy in
prior research [18], [10].

Fig. 1. Attitude adjustment of bi-flagellated robot in the viscous
fluid (glycerin). (a) Rotation in the horizontal plane (pointing
opposite to gravity direction). (b) Rotation in the vertical plane
(pointing out to the paper).

The paper is structured as follows. Section II provides
a comprehensive overview of the experimental setup
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and robot structure, offering valuable insights into the
practical aspects of our study. In Section III, we delve
into the details of the computational framework, which
integrates various methodologies, including the Discrete
Elastic Rod (DER) [19], Regularized Stokeslet Segments
(RSS) [20], and Implicit Contact Model (IMC) [18].
This section also addresses the specific considerations
for modeling the rotational dynamics of the bi-flagellated
robot. Moving on to Section IV, we present a fundamen-
tal analysis of the attitude adjustment, encompassing
critical aspects such as the reaction forces, the stability
of Euler angles, and the range of attainable attitudes for
the robot. This section delves into the core findings of
our work, providing profound control application of the
bi-flagellated robot. Lastly, in Section V, we conclude our
work by summarizing our key discoveries and outlining
potential directions for future research in this exciting
field.

II. Experiment Setup
A. Robotic structure

The robot illustrated in Figure 2(a) consists of an
assembly base and two helical flagella connected to motor
shafts. The base, with mass m of 94 g, features a central
cylinder with a radius rh of 13.5 mm and a height h
of 37.5 mm. Two small brushed DC motors, rated at 6
V voltage and capable of a stall current of 1.5 A, are
positioned on opposite sides of the cylinder at a distance
d of 45 mm. The motors are powered through pulse-
width modulation (PWM) signals from a microcontroller
(Arduino Nano). Additionally, the robot is equipped with
an inertial measurement unit (IMU) (MPU6050) located
on the bottom plane of the base. This IMU tracks the
robot’s orientation in terms of Euler angles, including
yaw ψ, pitch θ , and roll ϕ . These angles are defined in
the body frame xB−yB− zB and are illustrated in Figure
2(b).

Referring to Figure 3, the soft flagella are fabricated
using VPS material (Elite Double 32). To modulate
the silicone elastomer’s density, the base and catalyst
are blended with iron powder. The resulting mixture is
then injected into pre-shaped PVC tubes, and after tube
slitting, the soft flagellum is assembled onto the robot
base. These helical flagella have specific dimensions,
including a fixed cross-sectional radius r of 6 mm, a
helix radius R of 8.89 mm, a helix pitch λ of 76 mm,
and a helix axial length l of 196.2 mm. The silicone
composite exhibits a slender profile, possessing a Young’s
modulus E of 1.255×106 Pa, Poisson’s ration ν of 0.5,
and density ρ of 1450 kg/m3. Each flagellum is actuated
within a range of 0 to 90 rpm, ensuring that the Reynolds
number Re remains below 0.1, as defined by the formula
Re= ρωRr0/µ.

B. Experimental platform
The experimental setup, as depicted in Figure 1,

includes a glycerin tank measuring 122 cm in length, 45

(a) (b.1)

(b.2)

(b.3)

Ball Joint

Connector
IMU

Flagellum 2

DC Motor

Flagellum 1

Base

Fig. 2. Robot schematic and attitude representation. (a) The bi-
flagellated robot comprises an assembly base and two identical soft
flagella. Each flagellum with length l, cross-sectional radius r, helix
pitch λ , and helix radius R is actuated by a miniature brushed DC
motor. The robot is affixed to a ball joint to reorient. (b) Yaw angle
ψ (b.1), Pitch angle θ (b.2), and Roll angle ϕ (b.3) signifies the
angular displacement around the vertical axis zB, lateral axis yB,
and longitudinal axis xB, respectively.

(a) (b) (c)

+

VPS Iron Mold

PVC tube

Syringe

Flagella

Fig. 3. Fabrication of a soft flagellum. (a) Step 1: blending VPS
with iron powder to precisely calibrate the density of the silicone
composite. (b) Step 2: using a syringe to inject the mixture into
the PVC tube preformed by a mold. (c) Step 3: slitting the tube
to extract the silicone elastomer.

cm in width, and 51.5 cm in height. Glycerin, chosen
for its density ρ f of 1.26 g/ml and viscosity µ of 1
Pa·s at 25◦ Celsius, serves as the surrounding viscous
medium. To restrict the robot’s motion, it is secured
in place by a positioning frame featuring a ball joint
that permits limited rotational movement. This setup
ensures that the IMU located on the robot’s central
axis can accurately measure yaw, pitch, and roll angles
over time. The IMU data is transmitted to an external
microcontroller, responsible for both data processing and
the independent control of the DC motors, enabling us
to adjust their rotational speed and direction.

III. Numerical method
The computational framework for a bi-flagellated sys-

tem comprises three key components: (1) the Discrete
Elastic Rods method for modeling the nonlinear struc-
tural elasticity, resulting in flagella deformation and
buckling, (2) the Regularized Stokeslet Segments method
for handling long-range hydrodynamics, resulting in fluid
interaction induced by flagella rotation, and (3) the
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Implicit Contact Model for realistic contact interactions,
resulting in flagella bundling. To simulate the dynamic
behavior of the system, we incorporate all the reaction
forces and moments generated by these methods into
the governing equation of rotation. This comprehensive
approach enables an effective modeling and analysis of
the system’s motion response.

Fig. 4. Computation framework of bi-flagellated robot. (a) Dis-
cretization scheme. Each soft flagellum is discretized into N nodes
(denoted as xi) and N−1 edges (denoted as ei), and connected to the
base node xN. (b) Representation of material frame ([mi−1

1 ,mi−1
2 , ti−1]

and [mi
1,m

i
2, ti]) and reference frame ([di−1

1 ,di−1
2 , ti−1] and [di1,di2, ti]).

The signed angle from di1 to mi
1 is θ i and twist at node xi is

τi = θ i − θ i−1. (c) Regularized Stokeslets Segments. This method
establishes a connection between the velocity ẋm at a point xm and
the forces acting on the nodes xi and xi+1. (d) Implicit contact
model. The artificial contact energy is defined by the minimal
distance ∆ij between two edges ei and ej.

A. Discrete elastic rods
Figure 4(a) provides a discrete schematic of the

bi-flagellated robot. In our modeling approach, each
flagellum is represented using Kirchhoff’s elastic rod,
commonly employed in computer graphics. The DER al-
gorithm discretizes each Kirchhoff rod into N nodes with
the segment length ∆l of 5 mm, denoted as x0,x1, ...,xN−1
and xN+1,x1, ...,x2N. To simulate the rotation dynamics
of the robot, we introduce an additional node, xN,
which represents the robot base and connects with the
endpoints of the two rods. Notably, there is no relative
motion among node xN−1, xN+1, and xN. Consequently,
the system comprises a total of 2N+1 nodes (denoted as
nx), characterized by X= {x0,x1, ...,x2N}, corresponding
to a total of 2N edge vectors (denoted as ne), expressed
as E= {e0,e1, ...,e2N−1}, with ei = xi+1−xi.

As depicted in Figure 4(b), each edge ei is associated
with two sets of orthonormal frames, responsible for

accounting for rotation. These frames include a reference
frame, denoted as {di1,di2, ti}, and a material frame,
expressed as {mi

1,m
i
2, t

i}. Notably, both frames share the
tangent vector ti = ei/|ei| as one of their directors. The
reference frame is initialized at time t = 0 and is updated
at each time step through time-parallel transport. In
contrast, the material frame can be calculated based on
a scalar twist angle, θ i.

Consequently, for each flagellum (in this case, we focus
on flagellum 1 for simplicity), the spatial positions of
nodes, xi = (xi,yi,zi), and the twist angle θ i collectively
constitute the degrees of freedom (DOF) vector, which
has a size of 4N−1, i.e.,

q= [x0,θ 0,x1, ...,xN−2,θN−2,xN−1]
T ,

where superscript T represent transpose. The equations
of motion (EOM) of the i-th DOF is

miq̈i+
∂Epotential

∂qi
+ f external = 0,

where Epotential is formulated in the remainder of this
part, f external consists of external hydrodynamics forces
fh and contact force fc that are addressed in the Section
III-B and III-C. Note that mi stands for mass (unit: kg) if
qi corresponds to spatial position and moment of inertia
(unit: kg-m2) if qi corresponds to twist angle.

According to Kirchhoff’s rod theory, the potential
energy can be assumed to be a sum of elastic stretching,
bending, and twisting energies, i.e.,

Epotential = Es+Eb+Et

=
N−2

∑
i=0

Es
k+

N−2

∑
i=1

Eb
k +

N−2

∑
i=1

Et
k.

Stretching energy. The axial stretch, ε, of edge ei is

ε i =
∥ei∥
∥ēi∥

−1,

where ∥ēi∥ is length of the edge in undeformed state.
The stretching energy along edge ek is

Es
i =

1
2
EA(ε i)2∥ēi∥,

where EA = Eπr2 is the stretching stiffness, E is the
Young’s modulus, and r is the rod radius.

Bending energy. Bending strain is measured at each
node xi through the curvature binormal vector

(κb)i =
2ei−1× ei

∥ek−1∥∥ei∥+ ei−1 · ei
.

The scalar curvatures along the first and second
material directors using the curvature binomial are

κ(1)
i =

1
2
(mi−1

2 +mi
2) · (κb)i,

κ(2)
i =

1
2
(mi−1

1 +mi
1) · (κb)i.
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The bending energy at node xk is

Eb
i =

1
2
EI
∆li

[(κ(1)
i − κ̄(1)

i )2+(κ(2)
i − κ̄(2)

i )2],

where ∆li = 1
2 (∥ē

i−1∥+ ∥ēi∥) is the Voronoi length for
the i-th node, κ̄(1)

i and κ̄(2)
i are the material curvatures

in undeformed state, and EI = Eπr4/4 is the bending
stiffness.

Twisting energy. The twist between two consecutive
edges at node xi is

τi = θ i−θ i−1+∆mi,ref,

where ∆mi,ref is the reference twist, which is the twist of
the reference frame as it moves from the (i−1)-th edge
to the i-th edge. The twisting energy is

Et
i =

1
2
GJ
∆li

(τi− τ̄i)2,

where τ̄i is the twist along the centerline in the unde-
formed state, GJ = Gπr2/2 is the twisting stiffness, and
G is the shear modulus.
B. Regularized Stokeslets Segments

We employ the Regularized Stokeslets Segments
method to model the long-range hydrodynamics interac-
tion between two flagella and viscous fluids. This method
establishes a linear relationship between the velocity
vector U (size 3nx) at the node set X and the hydrody-
namic force vector F (size 3nx) acting upon them. This
relationship is defined by a geometry-associated matrix
A (size 3nx×3nx), i.e.,

U= AF. (1)
Referring to Figure 4(c), the RSS method characterizes

the flow arising from a singular point force. It establishes
a connection between the velocity ẋm at a point xm and
the forces exerted by each node on the fluid, i.e.,

8πµ ẋm =
N−2

∑
i=0

(Ai
1f

h
i +Ai

2f
h
i+1),

where fhi (size 3) signifies the force vector corresponding
to the force applied by the i-th node onto the fluid. This
force is equal in magnitude but opposite in direction
to the hydrodynamic force acting on the i-th node.
The construction of matrices Ai

1 and Ai
2 follows the

procedures in [11].
Matrix A is then assembled from matrices Ai

1 and
Ai
2 with proper rearrangement. At each time step, by

calculating the positions X and velocities U using the
DER method, we initially derive matrix A. Subsequently,
we employ the Equation 1 to evaluate the hydrodynamic
forces at each node and compute the resultant forces of
each flagellum, i.e.,

F1 =−
N−1

∑
i=0

fhi ,F
2 =−

2N

∑
i=N+1

fhi .

Lastly, we apply F1 = [F1
x ,F

1
y ,F

1
z ] and F2 = [F2

x ,F
2
y ,F

2
z ] on

node xN−1 and xN+1 to study the rotation dynamics in
Section III-D.

C. Implicit contact model
In light of the physical rod-on-rod interaction be-

tween two flagella, we introduce the Implicit Contact
Model to handle the contact interactions between the
impenetrable edges. IMC is a fully implicit penalty-
based frictional contact method that has demonstrated
its capability to accurately capture challenging contact
scenarios, including instances like flagella bundling. In
contrast to previous studies [10], which employed an
adaptive contact model (Euler forward) in conjunction
with DER, we have opted to replace this explicit
approach with IMC for two compelling reasons: (i)
The implicit (Euler backward) implementation of IMC
can effectively circumvent numerical convergence issues,
enhancing the stability and reliability of the simulation.
(ii) The model’s capacity to accommodate larger time
steps without compromising accuracy greatly accelerates
the simulation, contributing to computational efficiency
and a more streamlined modeling process.

Referring to Figure 4(d), we examine an edge-to-edge
contact pair denoted as xij := (xi,xi+1,xj,xj+1) from the
node set X. Detailed in [18], the formulation of frictional
contact forces follows the subsequent steps: (i) computing
the minimal distance ∆ij between two edges ei and ej,
(ii) assessing the contact energy E(∆ij,δ ) with respect
to the rod cross-sectional radius r and contact distance
tolerance δ of 0.01 mm, and (iii) determining the contact
forces as the negative gradient of the contact energy, i.e.,

fcij =−k∇xE(∆ij,δ ),

where k is the contact stiffness to ensure the non-
penetration.

D. Rotation dynamics
Building upon the previously outlined computational

framework, we delve into the development of the ro-
tational dynamics for the bi-flagellated robot, which
is attached to a ball joint. The primary objective of
this analysis is to explore the potential for adjusting
the robot’s attitude. To mitigate the common sin-
gularity issues associated with Euler angles, we opt
for quaternions represented as qo = [qw,qx,qy,qz] ∈ R4

and angular velocity components along the body axes
xB,yB,zB, denoted as ωo = [ωx,ωy,ωz]∈R3, to describe the
robot’s orientation. If needed, the Euler angles [ψ,θ ,ϕ ]
can be easily converted by quaternions, e.g., quat2eul
function available in MATLAB. The governing equation
for rotation is articulated as follows

dqo
dt

=
1
2
qo⊗

[
0

ωo

]
,

dωo

dt
= J−1(M−ωo× (Jωo)),

(2)

where J represents the moment of inertia matrix, ⊗
signifies quaternion multiplication, and M= [Mx,My,Mz]
corresponds to the external torque applied to the robot’s
base along the xB, yB,zB axes.
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Taking into account the impact of hydrodynamics and
inertia, we derive the expression for the external torque
as

Mx = (F1
x −F2

x )×0+Mhx,

My = (F1
z −F2

z )×
d
2
+Mr+Mhy,

Mz = (F1
y −F2

y )×
d
2
+Mhz,

where F1
x ,F

2
x ,F

1
z ,F

2
z ,F

1
y ,F

2
y are the flagella forces as de-

scribed in Section III-B. It’s worth noting that although
F1
x ,F

2
x have nontrivial values, they do not effectively

apply a torque to the robot since the lever arm is zero.
Furthermore, Mr represents the righting moment, which
seeks to restore a tilted robot to an upright position
due to the mass center shift rm measuring 2 mm, with
expressioin

Mr = mgrm sinθ , (3)

where m is the base mass, θ is the titled pitch angle,
and g is gravitational acceleration.

Lastly, we consider the viscous drag exerted on the
robot base due to the angular velocity ωo, i.e.,

Mhx =−2πµCrxr3hωx,

Mhy =−2πµCryr3hωy,

Mhz =−2πµCrzr3hωz,

where Crx,Cry,Crz accounts for the nonsphericity of the
robot’s base and can be empirically determined, µ is the
viscosity, and rh is the base radius.

IV. Results and discussion

A. Analysis of force reaction
The interaction between the flagella and the surround-

ing fluid medium leads to a distinct force reaction,
illustrated in Figure 5(a). The flagella exhibit not only a
stable propulsion thrust Fz (blue curves), but also induce
periodic forces Fx and Fy (orange and yellow curves,
respectively).

The propulsion thrust F1
z and F2

z are generated by the
two flagella at a distance d. This thrust gives rise to a
torque that effectively changes the pitch angle θ within
the xB − zB plane. Simultaneously, the periodic forces,
F1
y and F2

y , possessing different phases and magnitudes,
exert a torque responsible for altering the yaw angle ψ
within the xB− yB plane.

However, it is important to note that due to the points
of reaction being situated along the xB axis, the forces
F1
x and F2

x do not contribute to changes in the roll
angle ψ within the yB− zB plane. As a result, we deduce
that in the context of bi-flagellated robots, the effective
adjustment of attitude angles is limited to yaw and pitch.
To modify the roll angle, additional flagella placed off
the longitudinal axis xB or alterations in the positioning
angle between the two flagella would be required.

(b)(a)

0 60 120
-20

20

0

0

80

40

-0.01

0.01

0

-0.01

0.01

0

0 5 10

Sim Exp

Sim Exp

Fig. 5. Time evolution of reaction forces and attitude angles under
dual actuation of ω1 = 50 rpm and ω2 = 10 rpm. (a) Examination
of Flagellum 1 (Top) and Flagellum 2 (Bottom) reveals that the
vertical force component, Fz, rapidly stabilizes after an initial
transition, while the horizontal forces, Fx and Fy, exhibit sinusoidal
behavior. For a right-handed helix, the counter-clockwise rotation
(ω > 0) generates an downward propulsion force. (b) Yaw angle ψ
and pitch angle θ eventually stabilize, reaching steady-state values
of ψss = 60.76◦ and θss =−3.29◦ in simulation, and ψss = 67.95◦ and
θss =−4.96◦ in experiment.

B. Stabilization of attitude angle

Using Equation 2, we investigate the time-dependent
evolution of yaw and pitch angle while actuating two
flagella with different speeds. Figure 5(b) displays the
response of Euler angles when the force input follows
the pattern presented in Figure 5(a). Notably, the
two angles exhibit a convergence to stable values of
60.76◦ and −3.29◦, respectively, which closely align with
experimental results. In this section, we delve into an
analysis of the factors contributing to the convergence
observed in two attitude angles.

For the pitch angle θ , the impact of the righting
moment Mr in Equation 3 becomes particularly evident.
The propulsion thrust does not lead to endless changes
in the pitch angle θ , and instead, it contributes to the
establishment of a stable equilibrium value associated
with the system’s intrinsic properties. Similarly, the
evolution of the yaw angle ψ experiences constraints due
to the presence of viscous drag in the fluid. This drag
force acts as a restraint, preventing the yaw angle from
continuously increasing and thereby contributing to the
overall stability of the system.

As a consequence of these underlying principles, we
observe that, for a given actuation of the two flagella, the
robot’s attitude always undergoes a gradual transition to
a steady state, denoted as ψss and θss. This intriguing
evolution provide valuable insights into the dynamic
behavior of the bi-flagellated robot under the specified
actuation conditions.
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C. Visualization of attainable attitude
With the established convergence of attitude angles,

we gain confidence in the robot’s ability to attain a
stable attitude over time. This stable attitude is defined
in terms of the actuation speeds, ω1 and ω2, providing
insight into the attitude adjustment possibilities of the
bi-flagellated robot.

In our simulation, we systematically vary ω1 from −90
rpm to 90 rpm and ω2 from 0 to 90 rpm in 10 rpm inter-
vals, resulting in a total of 190 trials. In the experimental
setup, we randomly select speed pairs (ω1,ω2) from the
same range, totaling 75 trials. Each trial is conducted
over an extended period, approximately 120 seconds, to
ensure the emergence of attitude stability. To visualize
the results, we present the steady-state values |ψss| and
|θss| (where | · | denotes the absolute value) in a colormap,
using actuation speeds ω1 and ω2 as the x and y axes,
respectively.

(a)

(b)

0

180

0

90

180

0

90

90-90 0 90-90
0

90

45

0

16

0

8

90-90
0

90

45

0

16

0

8

90-90

Simulation

Simulation

Experiment

Experiment

Fig. 6. The steady-state values of (a) yaw angle |ψss| and (b) pitch
angle |θss| are depicted in response to actuation speeds ω1 and ω2.
The generated maps represent results from simulations (left) and
experiments (right), based on 180 and 75 trials, respectively. ×
marks the experimental data points. Motor speed was controlled
by varying PWM values and evaluated through videos.

The results, depicted in Figure 6, unveil the robot’s
remarkable capability to adjust its yaw and pitch angles
through specific actuation configurations. For instance,
to achieve the maximum yaw angle, one should explore
the upper right corner of Figure 6(a) with |ψss| = 180◦

and (ω1,ω2) = (+90,+90) rpm. Conversely, for maxi-
mum pitch angle, one should examine the upper left
corner of Figure 6(b) with |θss| = 16◦ and (ω1,ω2) =
(−90,+90) rpm. This information allows us to predict
the expected attitude for any given actuation. For
example, when (ω1,ω2) = (0,+45) rpm, the attitude will
stabilize at |ψss|= 56.22◦ and |θss|= 3.45◦.

Notably, two distinctive lines become evident in both

experimental and simulation results: ω2 =−ω1 in Figure
6(a) and ω2 = ω1 in Figure 6(b). Along these lines, the
steady state value |ψss| or |θss| reaches a local minimum
in their respective neighborhoods. This intriguing be-
havior can be interpreted as follows. The minimal yaw
angle region (ω2 =−ω1) arises from the opposing forces
F1
y and F2

y generated by the two flagella, which effectively
cancel each other out and prevent any significant rotation
torque from being applied to the robot. Conversely, for
minimal pitch angle region (ω2 = ω1), the thrust forces
F1
z and F2

z remain balanced, resulting in no flip torque
being applied to the robot. Consequently, the pitch
angle remains largely unaffected. Therefore, to achieve
simultaneous changes in both yaw and pitch angles, an
unbalanced speed for the two flagella is necessary.

In conclusion, the generated map not only illustrates
all potential attitudes for the bi-flagellated robot but also
serves as a valuable tool for pinpointing actuation speed.
This map’s applicability extends to various aspects of
robot design, including flagellum geometry, elasticity,
fluid viscosity, and robot structure. For clarity, we
highlight four dimensionless variables influencing the
map’s pattern, including

ωµ l4

EI
,
d
l
,

λ
L
,
R
L
.

These insights provide a solid foundation for the
efficient control of attitude through strategic actuation
configurations, with wide applications including unteth-
ered robots requiring precise reorientation.

V. Conclusions and future work

In summary, this study delves into the attitude
adjustment capabilities of a scaled up bi-flagellated
system. The investigation begins with an analysis of force
reactions resulting from the flagella’s interaction with the
fluid, encompassing stable propulsion thrust and periodic
forces. The research further explores the stabilization
of the attitude angles, shedding light on the factors
contributing to their convergence. A significant outcome
is the visual representation of attainable attitudes in
the generated map. Actuation speeds are systematically
varied through simulations and experiments, illustrating
the robot’s capacity to fine-tune its yaw and pitch angles
in response to specific actuation configurations.

The study emphasizes the practical applicability of
this map for designing and controlling bi-flagellated
robots, offering valuable insights into critical design
parameters. Ultimately, we conclude these findings lay a
strong foundation for precise attitude control of unteth-
ered robots.
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