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Gene trajectory inference for single-cell data 
by optimal transport metrics

Rihao Qu1,2,3,11, Xiuyuan Cheng4,11, Esen Sefik    3, Jay S. Stanley III5, Boris Landa5, 
Francesco Strino    6, Sarah Platt2,7, James Garritano5, Ian D. Odell3,7, 
Ronald Coifman5,8,9, Richard A. Flavell    3,10,12, Peggy Myung    2,7,12 & 
Yuval Kluger    1,2,5,12 

Single-cell RNA sequencing has been widely used to investigate cell 
state transitions and gene dynamics of biological processes. Current 
strategies to infer the sequential dynamics of genes in a process typically 
rely on constructing cell pseudotime through cell trajectory inference. 
However, the presence of concurrent gene processes in the same group 
of cells and technical noise can obscure the true progression of the 
processes studied. To address this challenge, we present GeneTrajectory, 
an approach that identi!es trajectories of genes rather than trajectories 
of cells. Speci!cally, optimal transport distances are calculated between 
gene distributions across the cell–cell graph to extract gene programs 
and de!ne their gene pseudotemporal order. Here we demonstrate that 
GeneTrajectory accurately extracts progressive gene dynamics in myeloid 
lineage maturation. Moreover, we show that GeneTrajectory deconvolves 
key gene programs underlying mouse skin hair follicle dermal condensate 
di"erentiation that could not be resolved by cell trajectory approaches. 
GeneTrajectory facilitates the discovery of gene programs that control the 
changes and activities of biological processes.

Dynamic gene expression changes often specify mechanisms through 
which cells determine state and function. Indeed, tightly regulated 
gene cascades underlie a myriad of fundamental processes, such as 
cell cycle (CC)/mitosis1–4 and tissue/organ differentiation5–8. With the 
emergence of single-cell RNA-sequencing (scRNA-seq) platforms, 
cell trajectory inference techniques9–19 are widely applied to study 
the cellular dynamics of biological processes. These techniques use 
single-cell whole-transcriptome data to organize cells into lineages 
and infer a unidimensional latent variable (that is, pseudotime20) that 
describes a cell’s position along a lineage process. After pseudotime 

construction, gene dynamics underlying a biological process can be 
inferred by tracking the changing patterns of their expression levels 
along the cell pseudotime12,15,21.

However, when cells undergo multiple processes in parallel (for 
example, CC coupled with cell differentiation22 or circadian clock23) and 
each process is governed by a different set of genes, cell pseudotime 
learned by organizing cells using the collective genes becomes less 
informative, as it mixes the effects of multiple processes. Mathe-
matically, when multiple processes that are not strongly correlated 
with each other co-occur in the same group of cells, cell geometry 
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populations. In our work, we distinctively define the graph-based 
Wasserstein distance between pairs of genes to study their underlying 
pseudotemporal dynamics. Specifically, we normalize the expression 
of a gene into a probabilistic distribution over cells and then compute 
the Wasserstein distances between gene distributions in the cell graph 
(Fig. 1d). Here the cell graph is constructed in a way that provides a  
representation of cells, which preserves the cell manifold structure 
in the high-dimensional space (Fig. 1c). In this construction, the 
graph-based Wasserstein distance between pairwise gene distributions 
has the following characteristics: (1) it takes into account the geometry 
of cells; that is, it assigns a higher cost to transport a point mass from 
one cell to a distant cell as compared to its adjacent neighbors. (2) It 
prevents the transport across the ambient cell space, which is often a 
problematic issue when using spatial distance measures (for example, 
the Euclidean distance in the cell space).

In our approach, the computation of gene–gene Wasserstein 
distances is based on the following two steps (Table 1):

•	 Construct a cell graph. As an initial step, we learn a reduced- 
dimensional cell embedding that can capture and represent the 
cell manifold structure in the original high-dimensional space. 
Next, we construct a k-nearest neighbor (kNN) graph of cells based 
on their relative distances in the cell embedding (Fig. 1c). This 
establishes a cell–cell connectivity map that serves as the  
‘roadmap’ for transporting gene distributions in the next step. 
Here, for a given pair of cells u and v, we search for the shortest 
path connecting them in the kNN cell graph and denote its length 
as the graph distance d

G

(u, v) between cells u and v. This graph 
distance will be used to de!ne the cost of transporting a point mass 
between cells u and v in the next step.

•	 Compute gene–gene Wasserstein distances over the cell graph. 
We model the expression level of genes as discrete distributions 
on the cell graph. Speci!cally, we divide the original expression 
level of a given gene in each cell by the sum of its expression level 
in all cells. We then de!ne the distance between two gene distribu-
tions by the graph-based Wasserstein-p distance (Wp distance, 
1 ≤ p < ∞; Fig. 1c,d). Accordingly, the transport cost between cells 
u and v is de!ned as C

u,v

= d

G

(u, v)

p. Here p is a user-de!ned para-
meter, and p = 1 refers to the well-known Earth Mover’s distance. 
Algorithmic details are described in ‘Step 2. Compute graph-based 
Wasserstein distances between genes’.

In practice, computing the Wasserstein distance between all pair-
wise gene distributions can be computationally expensive. When the 
cell graph is large, the time cost for finding the OT solution increases 
exponentially. In our framework, we have designed two strategies to 
accelerate the computation based on (1) cell graph coarse-graining, and 
(2) gene graph sparsification (details in ‘Step 2. Compute graph-based 
Wasserstein distances between genes’).

Gene trajectory construction
The gene–gene Wasserstein distance captures the pseudotemporal 
relations of genes in the sense that if two genes are activated consec-
utively along a biological process, their distributions are expected 
to have a substantial overlap in the cell graph and thus have a small  
Wasserstein distance between each other (Fig. 1e). To visualize the 
geometry of all genes, we convert pairwise gene–gene Wasserstein 
distances into gene–gene affinities and use diffusion map to get a 
low-dimensional representation of genes. If dynamical cascades of 
gene activation and deactivation exist in the data, viewing the gene 
embedding by a combination of leading diffusion map eigenvectors 
delineates trajectories of genes (Fig. 1f). Each trajectory is linked with a 
specific gene program that dictates the underlying biological process.

In our approach, the extraction of gene trajectories is performed in 
a sequential manner (Fig. 1g). To identify the first trajectory, we search 

(determined by these processes) cannot be effectively parametrized 
by a common single latent variable. Hence, organizing cells into 
unidimensional lineages is no longer appropriate.

To address this challenge, we propose GeneTrajectory, an approach 
to studying dynamic processes that does not rely on unidimensional 
parameterization of the cell manifold. GeneTrajectory allows us to 
deconvolve multiple, independent processes with sequential gene 
dynamics. In contrast to cell trajectory approaches, GeneTrajectory 
constructs trajectories of genes rather than trajectories of cells. Our 
algorithm dissects out gene programs from the whole transcriptome, 
eliminating the need for initial cell trajectory construction or the 
specification of the initial and terminal cell states for each process. 
Using this method, genes that sequentially contribute to a given 
biological process can be extracted and organized into a respective 
gene trajectory that reveals the successive order of gene activity.

In this work, we begin by showing GeneTrajectory’s efficacy 
for unraveling gene dynamics through simulation experiments and 
application to a human myeloid lineage dataset. Subsequently, we 
use our approach on a mouse embryonic skin dataset to demonstrate 
that GeneTrajectory can resolve critical cell state transitions during 
the early-stage development of hair follicles5,24. Our results indicate 
that GeneTrajectory extracts gene geometry without the need for 
constructing cell pseudotime, revealing independent trajectories of 
concurrent processes that are otherwise obscured by cell pseudotime 
approaches.

Results
Computing optimal transport between genes over the cell 
graph
A progressive dynamic biological process is usually governed by a 
finely regulated gene cascade25–27, in which genes are activated and 
deactivated in a temporal order along the process, dictating the 
transcriptomic changes of underlying cell states. Moreover, cells can 
parti cipate in multiple processes simultaneously, either in a dependent 
or independent manner. For instance, we illustrate two contrasting 
scenarios by considering the concurrence of a linear process (for 
example, differentiation) and a cyclic process (for example, CC; 
Fig. 1a). When these two processes are strictly dependent on each other, 
they can be parameterized by a common latent variable and result in 
a one-dimensional cell curve. In this scenario, it is straightforward 
to assign a meaningful pseudotime for the cells by ordering them 
along the curve. However, deconvolving genes into two processes 
and retrieving their pseudotemporal order in each process is not 
immediately apparent, which requires additional postprocessing 
(for example, clustering gene dynamics along the cell pseudotime12). 
In contrast, when these two processes are independent, cells fall into 
a manifold (as a Cartesian product of these two processes) with an 
intrinsic dimension >1. These processes do not share a common latent 
variable, thus gene dynamics inference based on unidimensional 
interpolation along the cell–cell manifold is no longer appropriate. 
In practice, the weak and stochastic nature of the dependency between 
concurrent biological processes can complicate the extraction of the 
cell path and the construction of cell pseudotime.

Here we present GeneTrajectory, an approach to inferring 
gene processes through learning the gene–gene geometry without 
one-dimensional parameterization of the cell manifold (Fig. 1b). 
Specifically, GeneTrajectory quantifies the distance of genes based 
on their expression distributions over a cell graph using optimal 
transport (OT) metrics (Fig. 1d). Previously, OT metrics (for example, 
Wasserstein distance) have been applied in a wide range of scenarios in 
single-cell analysis, including (1) defining a distance measure between 
cells28,29 or cell populations30, (2) constructing cell trajectories31,32,  
(3) spatial reconstruction of single-cell transcriptome profiles33,34 and 
(4) multi-omics data integration35. In these works, the dissimilarity 
was quantified either between a pair of cells or between a pair of cell 
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for the gene that has the largest distance from the origin of diffusion 
map embedding, which serves as the terminus of the first gene trajec-
tory. To retrieve the other genes along the first trajectory, we take that 
terminus gene as the starting point of a diffusion process. Specifically, 
we assign a unit point mass to that gene and then diffuse the mass to 
the other genes. As the probability mass propagates along the gene 
trajectory from its terminus, the trajectory can be retrieved by a heu-
ristic thresholding procedure (‘Step 3. Construct gene trajectories’). 
After retrieving genes for the first trajectory, we identify the terminus 
of the subsequent gene trajectory among the remaining genes and 
iterate the same procedure, until all detectable gene trajectories are 
extracted (Fig. 1g,h).

To order the genes along a given trajectory, we retain only these 
genes to recompute a diffusion map embedding based on their pair-
wise gene–gene Wasserstein distances. The obtained first nontrivial 

eigenvector of the diffusion map embedding provides an intrinsic 
ordering of the genes along that trajectory36,37.

To examine how the gene order along a given gene trajectory 
is reflected over the cell graph, we can track how these genes are 
expressed across different regions in the cell embedding. Specifically, 
we first group genes along each gene trajectory into successive bins and 
generate a cell embedding ‘snapshot’ for each bin. In each snapshot, we 
color the cells according to the fraction of genes (from that bin) that 
they express. By plotting the expression level of each gene bin on the 
cell embedding, we can visualize how the underlying biological process 
progresses across cell populations.

Assessing GeneTrajectory’s performance using simulation
Assuming that a progressive biological process is temporally dictated 
by a sequence of genes, we simulated several artificial scRNA-seq 
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Fig. 1 | Overview of GeneTrajectory. a, Illustration of two scenarios when a 
linear process and a cyclic process are dependent or independent of each other, 
resulting in cell manifolds with different intrinsic dimensions and requiring 
distinct pseudotime parametrizations. b, Schematic representation of the major 
workflow of GeneTrajectory. c, Construction of cell kNN graph. d, Computation 
of graph-based OT (Wasserstein) distances between paired gene distributions 
(four representative genes are shown) over the cell graph. Gene distributions 
are defined by their normalized expression levels over cells. e, Heatmap of OT 
(Wasserstein) distances for genes g1–g4 in d. f, Construction of gene graph based 

on gene–gene affinities (transformed from gene–gene Wasserstein distances). 
g, Sequential identification of gene trajectories using a diffusion-based strategy. 
The initial node (terminus 1) is defined by the gene with the largest distance from 
the origin in the diffusion map embedding. A random-walk procedure is then 
used on the gene graph to select the other genes that belong to the trajectory 
terminated at terminus 1. After retrieving genes for the first trajectory, we 
identify the terminus of the subsequent gene trajectory among the remaining 
genes and repeat the steps above. This is done iteratively until all detectable 
trajectories are extracted. h, Diffusion map visualization of gene trajectories.
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datasets with a variety of gene dynamics by modeling the change 
of gene expression over time (Extended Data Fig. 1a,b; ‘Workflow of 
gene dynamics simulation’). Specifically, for a gene involved in a given 
biological process, we simulate its expected expression level λ(t) as a 
function of time t. For clarity, we note that t represents the pseudotime  
of a biological process, linked with the cell state (for example, differ-
entiation status) rather than the actual time (for example, specific day  
of a developmental process). Here we use multiple parameters to 
account for the heterogeneity of gene expression profiles in single-cell 
data, including the variation of duration time and expression intensi-
ties (details in ‘Workflow of gene dynamics simulation’). For each cell  
state at t along a biological process, we apply a Poisson sampling to 
generate the observed expression level of each gene by taking λ(t) as 
the mean of Poisson distribution. In these simulation experiments, 
we know the ground truth of both the pseudotime of each cell in the 
corresponding biological process and the temporal order of genes 
that dictate each process. Finally, we incorporate an optional step to 
account for sequencing depth. This is achieved by sampling a speci-
fied number of nonzero entries from the original count matrix. This 
procedure enables us to generate an artificial dataset with varying 
levels of missing data.

We first simulated (1) a cycling process in which the change of gene 
expression shows a periodical pattern over time (Fig. 2a and Extended 
Data Fig. 1c), and (2) a process with a branching point where it diverges 
into two different lineages (Fig. 2b and Extended Data Fig. 1d). Inspec-
tion of the gene trajectories in these two simulation examples reveals 
similar layouts with their cell embeddings (Fig. 2a,b). The ordering of 
genes along each gene trajectory shows a high concordance with the 
ground truth (Supplementary Table 1).

We next, created two scenarios that simulate a mixture of two 
concurrent processes (Fig. 2c,d and Extended Data Fig. 1e,f). Speci-
fically, one process mimics cell differentiation (linear or branched 
in a multilayered fashion), and the other mimics the CC. In these two 
scenarios, each cell state is determined by two independent hidden 
variables—a pseudotime along the differentiation process and a 
pseudotime in the CC. For each process, we simulated an exclusive 
set of genes with distinct dynamic characteristics (Extended Data 
Fig. 1e,f; ‘Workflow of gene dynamics simulation’), generating a cell 
manifold with a cylinder-shaped or a coral-shaped structure (Fig. 2c,d). 
In both scenarios, our approach deconvolves the original mixture 

of two processes into two gene trajectories representing a (linear or 
tree-like) differentiation process and a (circular) CC process. Along 
each trajectory, genes are ordered in high concordance with the 
ground truth (Supplementary Table 1), indicating that GeneTrajectory 
allows deconvolving a mixture of biological processes that take place 
simultaneously in the same group of cells.

GeneTrajectory resolves myeloid gene dynamics
We demonstrate GeneTrajectory’s application using myeloid  
lineage differentiation, a classical biological system with a well-defined 
bifurcation of two major lineages38,39. We extracted human myeloid 
cells from a public 10× Genomics peripheral blood mononuclear cell 
(PBMC) dataset and identified four cell types based on canonical mark-
ers (Fig. 3a and Extended Data Fig. 2b,c). These included CD14+ mono-
cytes, intermediate monocytes with high expression of HLA-DR (Human 
Leukocyte Antigen – DR isotype), CD16+ monocytes and myeloid type-2 
dendritic cells. The UMAP visualization of the cell embedding shows a 
continuum of cell states underlying myeloid lineage genesis, compris-
ing monocyte maturation and dendritic cell differentiation. Human 
monocyte maturation involves the upregulation of CD16 on a subset 
of CD14+ classical monocytes40. Specifically, CD14+ monocytes first 
transition into an intermediate subset of monocytes and then differ-
entiate into CD16+ nonconventional monocytes with distinct effector 
functions.

We used GeneTrajectory to identify three gene trajectories, each 
representing a specific aspect of the myeloid lineage differentiation 
process (Fig. 3b). Viewing the gene bin plots of Trajectory 1 illustrates 
that a subset of CD14+ monocytes start a differentiation cascade and 
gradually shift toward CD16+ monocytes, which suggests Trajectory 1 
captures the gene dynamics underlying the early stage of monocyte 
maturation (Fig. 3c). Notably, CLEC5A, RETN, CCR2 and SELL (CD62L) are 
known to be associated with the initial CD14+ monocyte cellular state40 
and are highlighted as part of Trajectory 1 (Fig. 3b). Subsequently, the 
ordering of genes that define Trajectory 2 provides a pseudotemporal 
view on the later stage of CD16+ monocyte differentiation (Fig. 3d). This 
process is primarily driven in response to cytokine colony-stimulating 
factor 1 (CSF1) and requires CSF1R41. While ordered after CSF1R, ICAM2 
is known to be constitutively expressed in CD16+ monocytes and is 
necessary for their patrolling ability across the endothelium of blood 
vessels41,42. Coming toward the end, C1QA, C1QB43 and FCGR3A markers 
broadly expressed by fully differentiated CD16+ monocytes are identi-
fied. In addition, we retrieved a third gene trajectory (Trajectory 3) that 
marks the differentiation of type-2 dendritic cells as a distinct myeloid 
lineage (Fig. 3e). Myeloid type-2 dendritic cells have the following two 
subsets: CD14+ and CD14−. Specifically, the CD14+ subset shares over-
lapping features with CD14+ monocytes, whereas the CD14− subset is 
delineated here as corresponding with a separate gene trajectory44. In 
contrast to CD16+ monocytes, these CD14− dendritic cells differentiate 
in response to GMCSF and IL4, in line with expression of CCR5, CD2, 
CLEC10A, CD72, CD1C and PKIB45 (Fig. 3b and Extended Data Fig. 2a). 
Notably, GeneTrajectory does not necessitate specification of the ini-
tial and terminal cell states for each process, while those states can be 
automatically revealed by inspecting the cell population that express 
the endpoint genes of each gene trajectory.

Deconvolving gene processes in dermal condensate genesis
Hair follicle dermal condensates (DCs) emerge in the skin dermis 
around embryonic day 14.5 (E14.5) and have an essential role in  
hair follicle formation. Morphogenetic signals, including Wnt/β- 
catenin signaling, are critical for the differentiation of DC cells5,24,46.  
We collected skin from E14.5 wild-type (WT) and paired K14Cre; 
Wntlessfl/fl (Wls) mutant embryos for scRNA-seq (Fig. 4a). The genetic 
defect in the mutant results in attenuated dermal Wnt signaling  
and a lack of DCs and hair follicles47,48 (Fig. 4b–c and Extended Data 
Fig. 3a).

Table 1 | List of core notations in Methods

u, v Index of cells

i, j Index of genes

m Original number of cells

n Original number of genes

m′ Reduced number of cells after coarse-graining

δ

(p)

(ρ,ρ

′

)

Wasserstein-P distance between distributions ρ and ρ′

dE(u, v) Euclidean distance between cell u and v

dG(u, v) Graph distance between cells u and v

C Transport cost matrix on the cell graph. Cu,v represents the cost 
of transport between cell u and v

C′ Transport cost matrix on the coarse-grained cell graph

M kNN membership matrix for the cell graph. M(u, a) = 1/∣a∣ if and 
only if the cell u belongs to the ath subset, where ∣a∣ represents 
the number of cells in that subset; otherwise M(u, a) = 0

A Gene–gene affinity matrix

P Row-normalized gene–gene affinity matrix (as the random-walk 
matrix)

S Diffusion map (spectral) embedding of genes
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Visualizing cells on UMAP reveals a continuum of cell states com-
posed of lower dermal cells (Dkk2+) and Wnt-activated upper dermal 
cells (Dkk1+ or Lef1+), which include DC cells (Sox2+; Fig. 4c and Extended 
Data Fig. 3a). We applied GeneTrajectory to the combined dermal cell 
populations and extracted three prominent gene trajectories that cor-
respond to lower dermis (LD) differentiation, DC differentiation and CC 
(Fig. 4d). Specifically, we examined the CC gene ordering by checking 
the distribution of genes associated with different CC phases along 
the gene trajectory (Extended Data Fig. 3b). Wnt signaling pathway 
genes (for example, Lef1 and Dkk1) and SHH (Sonic Hedgehog) signal-
ing pathway genes (for example, Ptch1 and Gli1), two morphogenetic 

signals shown to be necessary and sufficient for DC differentiation5, 
are present in the DC gene trajectory. Notably, the upper dermal cell 
embedding integrates a mixture of biological processes (CC and DC 
differentiation) that co-occur within the same cell population. By 
using GeneTrajectory, each biological process can be deconvolved 
from the other and independently examined. Viewing the gene bin 
plots for the CC and DC gene trajectories together reveals that DC 
progenitors actively proliferate throughout all stages and then exit 
the CC at the terminus of DC differentiation (Fig. 4e). These data imply 
that DC cells are the immediate progeny of proliferative progenitors 
in the upper dermis.
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Fig. 2 | GeneTrajectory performance assessment based on simulation 
experiments. a, Simulation of a cycling process (CC). The cell embedding and 
gene embedding showcase the same topology that has a ring-shaped structure. 
b, Simulation of a differentiation process with two lineages. The cell embedding 
and gene embedding showcase the same topology that has a bifurcating tree 
structure. c, Simulation of a linear differentiation process coupled with CC. The 
cell embedding and gene embedding showcase distinct topologies. Cells are 
organized along a cylinder-shaped manifold that has an intrinsic dimension of 
two. Genes that contribute to the two processes are deconvolved and organized 
along a ring-shaped trajectory and a linear trajectory. d, Simulation of a 
multilevel lineage differentiation process coupled with CC. The cell embedding 

and gene embedding showcase distinct topologies. Cells are organized along 
a coral-shaped manifold that has an intrinsic dimension of two. Genes that 
contribute to the two processes are deconvolved and organized along a ring-
shaped trajectory and a multilayered-tree-structured trajectory. (a and b are 
visualized by t-SNE (t-distributed stochastic neighbor embedding); c and d are 
visualized by UMAP (uniform manifold approximation and projection). The first 
column shows the cell embedding; the second column delineates the progressive 
dynamics of the simulated process with five genes selected along each process; 
the third to seventh columns show the expression of selected genes in the cell 
embedding following their pseudotemporal order; the eighth column displays 
the embedding of genes, colored by the ground truth of gene pseudo-order).
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GeneTrajectory identifies biological defects in Wls mutant
We next use GeneTrajectory to examine how attenuated Wnt sign-
aling affects the DC differentiation gene program. By tracking the  
expression status of genes along each gene trajectory in the WT and 
mutant cells (Fig. 5a), we did not detect a difference between the mutant 
and control with respect to the CC and LD gene trajectories (Extended 
Data Fig. 4a,b). However, along the DC gene trajectory, Wls mutant cells 
fail to express later-stage DC markers, indicating the defect is specific 
to DC differentiation. Visualizing gene bin plots for the DC gene trajec-
tory shows that mutant cells fail to progress in the DC differentiation 
process (Fig. 5e,f).

Moreover, gene trajectory inference allows us to define a specific 
stage of cell state transition by specifying a gene window along the 
gene trajectory. To understand how genetic mutation affects DC dif-
ferentiation, we use GeneTrajectory to stratify the pool of progenitors 
by different stages of DC differentiation. Considering genes in each 

bin as markers indicative of a specific DC differentiation stage, we first 
identified cells that express more than half of the genes in the last bin as 
cells in the final stage of differentiation (stage 7). Among the remaining 
cells, we identified the cells that express more than half of the genes 
in the sixth bin as progenitors in stage 6. We repeated this procedure 
iteratively until all seven gene bins were associated with their matched 
cell populations (Fig. 5e,f and Extended Data Fig. 4c).

By comparing the composition of progenitors in different stages 
between the WT and Wls mutant, we found that mutant cells fail to 
express most of the markers after stage 4, when key markers in Wnt (for 
example, Lef1) and SHH (for example, Gli1 and Ptch1) signaling path-
ways are upregulated in the WT condition (Fig. 5e,f and Supplementary 
Table 2). The average expression level of Wnt target genes is uniformly 
lower in the mutant than in the WT condition (Fig. 5c and Extended 
Data Fig. 4d), while the proportion of cells in the G1 phase of the CC is 
higher in the mutant across all stages (Fig. 5b). Consistent with this, 
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the rate of EdU nucleotide incorporation (S phase) is lower in the Wls 
mutant (Figs. 4b and 5d). These data suggest that higher levels of Wnt 
signaling are necessary to maintain a normal rate of cell proliferation 
across the DC differentiation process until DC progenitors exit the CC 
at stage 7. These results also raise the notion that dermal proliferation 
itself may directly regulate dermal cell state progression during the 
DC differentiation process.

Comparison of GeneTrajectory to cell trajectory methods
We compared GeneTrajectory with five cell trajectory methods as  
follows: Monocle 2 (ref. 16), Monocle 3 (ref. 10), Slingshot9, PAGA11 
and CellRank15. In the simulations of two co-occurring processes, 

we assessed performance by calculating the Spearman correlation 
between the gene ordering inferred from each approach and the ground 
truth. To order genes based on these cell trajectory inference methods, 
we first constructed the cell pseudotime using their default pipelines 
(‘Comparing GeneTrajectory with cell trajectory methods in terms of 
gene ordering inference’). Subsequently, we fitted generalized addi-
tive models (GAM)49,50 to find the peak location of each gene expres-
sion along the cell pseudotime. The genes were then ordered based on 
these peak locations. GeneTrajectory achieved the best performance in 
recovering gene order for both cyclic and linear processes (Fig. 6a,b) in 
simulation experiments, showing remarkable robustness to variations 
in cell numbers and sparsity levels of the count matrix.
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In our real-world example of DC development, we examined 
the order of known markers during DC differentiation (Fig. 6c,d). 
GeneTrajectory recovered the correct ordering—Wnt target genes 
Dkk1/Grem1/Lef1 and Bmp4 emerge first along this process. Dermal Wnt 
signaling is known to be required for SHH activation47,48. Accordingly, 
the emergence of Wnt target genes is succeeded by the expression of 
SHH target genes (Gli1/Ptch1), which precedes the upregulation of the 
CC inhibitor, Cdkn1a, and terminates with the expression of mature DC 
markers (Sox2/Sox18/Foxd1). In contrast, SlingShot, Monocle 2 and 

Monocle 3 were unsuccessful in generating a reasonable sequence 
for these genes. PAGA failed to generate a distinguishable ordering of 
later-stage markers. CellRank incorrectly placed the DC marker (Sox2) 
before Gli1 and failed to define the ordering for Bmp4/Lef1 and Cdkn1a.

Moreover, manually regressing out known coexisting biological 
effects (for example, CC) does not guarantee an accurate recovery 
of gene dynamics when using cell trajectory inference methods. For 
instance, in our dermal example, regressing out CC effects resulted  
in persistent incorrect gene orderings for SlingShot, Monocle 2, 
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Monocle 3, PAGA and CellRank (Extended Data Fig. 5), suggesting 
that CC regression is not sufficient to deconvolve the intertwined gene 
dynamics. This underscores the advantage of GeneTrajectory that it is 
capable of detecting and disentangling multiple gene programs when 
they are present.

Discussion
We developed GeneTrajectory, an approach for constructing gene 
trajectories where each trajectory comprises genes organized in 
a pseudotemporal order that characterizes the transcriptional 
dynamics of a specific biological process. GeneTrajectory uses 
optimal-transport-based gene–gene dissimilarity metrics. These 
metrics naturally leverage the underlying geometry of the cell–cell 
graph to reveal a coherent relation among genes that are involved  
in progressive processes. Importantly, GeneTrajectory bypasses the 
need for constructing cell pseudotime, which is a common requirement 
in existing methods. This renders it broadly applicable in scenarios 
where cells do not form into clear lineages.

It is worthwhile to note that cell trajectory inference and gene 
trajectory inference can complement each other to address different 

types of questions. Cell trajectory inference aims to define biological 
processes by lineages of cells, while gene trajectory inference associ-
ates each process with a sequence of genes. As demonstrated above, 
when cells participate in concurrent processes, cell trajectory inference 
may fail to deconvolve them. Similarly, when one gene participates in 
multiple biological processes, theoretically, it should be placed at the 
joint of gene trajectories. However, if that gene is expressed across 
many cells, it may have a small Wasserstein distance to genes that are 
homogeneously expressed (uninformative genes). As a result, it will be 
colocalized with uninformative genes in the gene embedding, causing 
difficulty for GeneTrajectory to distinguish them. Moreover, there 
are multiple aspects of our proposed algorithm that could be further 
refined. For instance, the branch identification procedure requires 
interactive optimization and might exhibit instability if the branches 
differ substantially in length and size. In addition, GeneTrajectory can-
not automatically infer the directionality of progression along each 
trajectory. The directionality can be determined by checking whether 
the endpoint genes in each trajectory are initial stage markers or ter-
minal stage markers of the corresponding process. Another important 
aspect is that the idea of using the OT distance between genes over 
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cell–cell graphs could have other potential applications beyond the 
inference of gene programs and their dynamics. Intuitively, after we 
compute the gene–gene affinity matrix, we can iteratively improve 
the organization of cells by an OT distance between the cells over the 
gene–gene graph. This approach warrants further investigation from 
theoretical and practical perspectives.

In this work, we demonstrated the utility of GeneTrajectory to 
unravel gene dynamics using scRNA-seq data. However, our method 
can be generalized to other single-cell modalities, including but not 
limited to scATAC–seq51 and spatial transcriptomics52. Specifically, 
we anticipate that GeneTrajectory can be applied to resolve biologi-
cal processes using dual modalities53 at the same time. For instance, 
we can quantify the pairwise distances between the distributions of  
gene expression and chromatin accessibility, which facilitates under-
standing the interplay between epigenetic dynamics and transcrip-
tomic dynamics that underlie biological processes.
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Methods
Work!ow
The major workflow of GeneTrajectory comprises the following four 
main steps. Core notations are listed in Table 1.

•	 Step 1—build a cell–cell kNN graph in which each cell is con-
nected to its kNNs. Find the shortest path connecting each pair 
of cells in the graph and denote its length as the graph distance 
between cells.

•	 Step 2—compute pairwise graph-based Wasserstein distance 
between gene distributions, which quanti!es the minimum  
cost of transporting the distribution of a given gene into the 
distribution of another gene in the cell graph.

•	 Step 3—generate a low-dimensional representation of genes 
(using di"usion map by default) based on the gene–gene  
Wasserstein distance matrix. Identify gene trajectories in a 
sequential manner.

•	 Step 4—determine the order of genes along each gene trajectory.

Step 1. Construct a cell–cell graph and define graph distances.  
Data preprocessing. The data preprocessing contains the following 
steps:

(1) standard preprocessing of the count matrix (m cells and n 
genes).

(2) dimension reduction.

Standard preprocessing—the original count matrix (cell-by-gene) 
is first preprocessed by using the standard pipeline in single-cell 
analysis, including library normalization, top variable gene selection 
and scaling.

Dimension reduction—due to the low-rank nature of single-cell 
data, we run dimensionality reduction on the original count matrix to 
generate a low-dimensional representation of the cell geometry (cell 
embedding). Commonly used methods include PCA, t-SNE, UMAP and 
diffusion maps. By default, we apply PCA for the initial step of dimen-
sionality reduction and retain the leading n (typically around 30–100) 
principal components (PCs). Then we use diffusion map to generate a 
manifold-preserving low-dimensional representation of cells. Specifi-
cally, for a given pair of cells u and v, we calculate the Euclidean distance 
dE(u, v) between their coordinates of the leading n PCs. We then convert 
it into an affinity measure a(u, v) using the following Gaussian kernel 
with a local-adaptive bandwidth:

a(u, v) =

1

2

(exp {−

d

2

E

(u, v)

σ(u)

2

} + exp {−

d

2

E

(u, v)

σ(v)

2

}) , u, v = 1,⋯ ,m,

where σ(u) represents the Euclidean distance between cell u and its 
kNNs in the PC space. Using a local-adaptive bandwidth allows us to 
automatically adjust the kernel size based on the local cell density in 
the original cell space. After we get the affinities between all pairs of 
cells, we apply the diffusion map algorithm and retain its leading n′ 
eigenvectors as a low-dimensional representation of cells for the sub-
sequent cell graph construction, which preserves the geometric  
information of the cell manifold.

Cell–cell graph distance computation. When cell geometry presents 
a low-dimensional manifold structure, the OT should be always done 
across the cell manifold instead of taking a shortcut through empty 
regions in the ambient space where there are no cells. Here we build 
a cell kNN graph in which we connect each cell to its kNNs in the 
dimensionality-reduced cell space. For a given pair of cells u and v, we 
search for the shortest path connecting them in the kNN cell graph and 
denote its length as the graph distance dG(u, v) between cells u and v. 
Theoretically, in the limit of a large number of cells, the graph distances 
constructed in this way reveal manifold geodesic distances, which are 
the intrinsic cell–cell distances54,55.

Step 2. Compute graph-based Wasserstein distances between 
genes. We model the expression level of a gene as a discrete distribu-
tion on the cell graph. Specifically, let gi(u) represents the expression 
level of gene i in cell u, we then define the distribution of gene i by:

ρ

i

(u) = g

i

(u)

/

m

∑

v=1

g

i

(v). (1)

It has the following properties: (1) ρ
i

∈ ℝ

m

+

; (2) ∑vρi(v) = 1. We then define 
the distance between two genes by the Wp distance (1 ≤ p < ∞)  
between their distributions on the cell graph. Namely, the Wp distance 
δ(p)(ρi, ρj) between gene i and gene j quantifies their dissimilarity.  
Technically, the Wp distance can be computed by solving a discrete  
OT mapping over the cell graph. Details are described below.

Wp distance formulation and computation. Here we set up some  
mathematical notations as follows: for a graph consisting of m nodes 
V = {1, ..., m}, a graph distribution is a non-negative vector ρ ∈ ℝ

m

+

  
such that the sum of its elements is equal to one and the distribution 
assigns measure ρ(u) to node u. We assume the graph is equipped  
with a graph ground distance dG(u, v) for u, v ∈ V. Specifically, the  
graph distance dG is used to specify the cost of the OT, that is, the cost 
matrix C is defined as C

u,v

= d

G

(u, v)

p. As mentioned in Step 1. Construct 
a cell–cell graph and define graph distances, we denote the shortest 
path distance on a kNN graph as dG, while the computational method 
also allows other options of dG or even letting the cost matrix take a 
more general form. For two graph distributions ρ and ρ′, the Wp distance 
is defined as:

δ

(p)

(ρ,ρ

′

) = min

F∈Π

ρ,ρ

′

⟨F,C⟩

1/p

, (2)

w h e r e  Π

ρ,ρ

′

= {F, F

u,v

≥ 0,∑

v

F

u,v

= ρ(u) for all u,∑

u

F

u,v

= ρ

′

(v) for all v}  
denotes the set of transport plan F that pushes from the source distri-
bution ρ to the target distribution ρ′.

Improve computational efficiency. In practice, the minimization in 
equation (2) can be solved by linear programming, which is compu-
tationally prohibitive on large cell graph and between all the pairs of 
genes. To reduce the cost of computing gene–gene Wp distances, we 
have designed two strategies to accelerate the computation based 
on (1) cell graph coarse-graining and (2) gene graph sparsification. 
Briefly, cell graph coarse-graining aims to reduce the cell number by 
aggregating the nearest cells into ‘meta-cells’. Gene graph sparsifica-
tion aims to skip the computation for two gene distributions if they 
are very far away from each other at a coarse-grained level, as they are 
unlikely to participate in the same biological process. We note that 
while coarse-graining the cell graph to a crude scale can make it fast 
for computation, it may lose accuracy and compromise the resolution. 
Hence, users should judiciously choose the level of coarse-graining 
based on the capacity of their computing resources.

(1) Cell graph coarse-graining. We coarse-grain the cell graph by 
aggregating m cells into m′ ‘meta-cells’ using the k-means 
clustering algorithm. Speci!cally, let M be the m-by-m′ 
membership matrix where M(u, a) = 1/∣a∣ if and only if the cell 
u belongs to the ath subset where ∣a∣ represents the number 
of cells in that subset, otherwise M(u, a) = 0, then we de!ne an 
updated transport cost matrix C′ on the coarse-grained cell 
graph by MTCM. Accordingly, the expression level of a given 
gene in each ‘meta-cell’ is de!ned by the sum of its expression 
level in all the cells in that subset. Intuitively, this procedure 
can be viewed as providing an approximation of a cell graph 
with fewer cell nodes.

(2) Gene a*nity graph sparsi!cation. We sparsify the gene  
a*nity graph by zeroing out the entries where their pairwise 
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Wasserstein distances are greater than a threshold. The 
threshold is selected such that a*nities associated with 
distances greater than it will be exponentially small and thus 
contribute negligibly to the gene a*nity graph. The threshold 
is adaptively estimated for each cell using the approximate 
Wasserstein distance on a coarse-grained cell graph (strategy 1) 
which allows fast computation. 
Speci!cally, this is formulated in the following way: if we want 
to construct the gene–gene Wasserstein distance matrix on a 
cell graph of an original size m, we !rst coarse-grain m cells 
into m′ ‘meta-cells’ using the procedure in strategy 1,  
where m′ is a size that can be quickly handled. Based on the 
gene-by-gene Wasserstein distance matrix constructed  
on m′ ‘meta-cells’, we identify the αk nearest neighbors for 
each gene (where α is the prede!ned parameter and k is the 
neighborhood size to construct the local-adaptive kernel for 
computing the di"usion map). Going back to the computation 
on the original cell graph, we then only compute the 
Wasserstein distance between a pair of genes if one of them is 
included in the other’s αk nearest neighbors. Practically, this 
can reduce the running time to 2αk/m of the original, which 
computes Wasserstein distances for all pairs of genes.

Step 3. Construct gene trajectories. After we obtain the gene–gene 
Wasserstein distance matrix, we convert it into an affinity matrix 
A using a local-adaptive Gaussian kernel. Specifically, the kernel 
bandwidth for each gene is defined by the distance to its kNN (similar  
to ‘Step 1. Construct a cell–cell graph and define graph distances’).  
The affinity between gene i and gene j is defined by:

A
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=

1
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(exp {−

δ

(p)
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j

)

2

(σ
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2

} + exp {−

δ

(p)
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i
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j
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2
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j
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2

}) . (3)

Here ρi represents the distribution of gene i and σi represents the kth 
smallest Wasserstein distance between gene i and other genes. K is an 
integer parameter to be specified by the user, which controls the size of 
the local neighborhood on the graph (in the sense that Aij is only large 
on a subject of genes j that are sufficiently close to i). The affinity matrix 
A in equation (3) is used to construct a random walk on the gene–gene 
graph (see below in the bullet point—diffusion of probability mass  
on the gene graph). The random walk constructed from affinity A  
allows us to apply Diffusion Map to obtain a low-dimensional embed-
ding of the genes.

Next, extracting gene trajectories is processed in a sequential 
manner when the gene graph exhibits a tree structure. Briefly, we first 
identify an ‘extremum’ gene as the terminus for the first gene trajec-
tory and then use a diffusion strategy to retrieve genes belonging to 
that trajectory where the terminus gene serves as the initial node of 
the diffusion process.

The details are summarized below:

•	 Selection of the initial node. We retain the top d nontrivial 
di"usion map eigenvectors as the low-dimensional spectral 
embedding of genes, denoted by S. Let Si represents the spectral 
coordinates of gene i, we choose the gene with the largest L2 
embedding norm max

i

||S

i

||

2

 as the starting point of di"usion on 

the gene graph. The assumption here is that the gene with the 
largest distance from the origin of spectral embedding corres-
ponds to the terminus of a speci!c gene trajectory.

•	 Di"usion of probability mass on the gene graph. The di"usion 
is performed by propagating a point mass from the initial node 
in the gene graph. Here the initial probability mass p0 can be 
formulated as the following unit vector:

p

0

= (0,… ,0, 1,0,… ,0).

Suppose gene j is selected as the initial node; then only the jth entry 
of p0 is equal to 1, while all other entries are zeros. We then construct a 
random-walk matrix P by row-wise normalizing the gene–gene affinity 
matrix A. Specifically, P is defined by:

P = D

−1

A,

where D is the degree matrix of A (that is, D is a diagonal matrix where 
Dii = ∑jAij). Calculating p1 = Pp0 gives the updated probability mass  
(over genes) after the first time of diffusion. We run the diffusion up  
to t times (the integer t is a tunable parameter) on the gene graph to  
get the t-step probability mass pt = Ptp0. We then select the genes 
{ j, s.t.,p

t

( j) > τ

0

max

j

′

p

t

( j

′

)}  as members of the first gene trajectory. 
Here τ0 is a thresholding parameter, which in practice can be set to be 
in the range of 0.02–0.05. Throughout the experiments in this paper, 
we choose τ0 = 0.02.
After the genes that belong to the first gene trajectory are extracted, 
we repeat the abovementioned procedure on the remaining genes 
to get the second gene trajectory, and then the third, etc. This algo-
rithm allows retrieving a series of gene trajectories successively until 
all detectable trajectories are identified.

Step 4. Order genes along each trajectory. To determine the gene 
ordering along a given gene trajectory, we first extract the correspond-
ing submatrix of gene-by-gene Wasserstein distances as computed in 
‘Step 2. Compute graph-based Wasserstein distances between genes’. 
That is, we only focus on the genes that are the members of that trajec-
tory. We then recompute the diffusion map on the Wasserstein distance 
submatrix to obtain a new spectral embedding of genes in that trajec-
tory. The first nontrivial eigenvector (EV2) of the new diffusion map 
embedding provides an ordering of the genes along that trajectory, 
according to the spectral convergence theory of diffusion map36,37. Spe-
cifically, genes are ordered based on ranking their coordinates along EV2.

Experiments and analyses
Here we present the details for the following: (i) simulation experiments 
(‘Workflow of gene dynamics simulation’ and ‘Generalizing count 
model using negative binomial distribution to account for overdisper-
sion’), (ii) the biological experiments of mouse embryo skin sample 
preparation (‘Experimental details of mouse embryo skin sample 
preparation’), (iii) the analyses on real-world biological datasets (‘Ana-
lytical details of real-world examples’), (iv) comparing Wasserstein 
distance with other canonical metrics for learning gene geometry 
(‘Comparing the Wasserstein metric to other canonical metrics for 
learning gene geometry’), (v) comparing GeneTrajectory with cell 
trajectory methods in terms of gene ordering inference (‘Comparing 
GeneTrajectory with cell trajectory methods in terms of gene ordering 
inference’) and (vi) the robustness evaluation experiments and guide-
lines on parameter selection (‘Hyperparameter selection guidelines 
and robustness evaluation’).

Workflow of gene dynamics simulation. We present the details of 
our simulation framework for the four examples in Fig. 2, including

(1) a cyclic process,
(2) a di"erential process with two lineages,
(3) a linear di"erentiation process coupled with CC,
(4) a multilevel lineage di"erentiation process coupled with CC.

For illustrative purposes, we first introduce the simulation procedure 
on a simple linear process. The corresponding plots are shown in 
Extended Data Fig. 1a,b.

Illustrative example: a linear process. To demonstrate the simplest 
scenario (Extended Data Fig. 1a,b), we simulate a linearly progressive 
biological process in [0, T], where t = 0 corresponds to the initial cell 
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state and t = T corresponds to the terminal cell state. We simulate a set 
of genes {gi, i = 1, ⋯, n}, where each gi is a non-negative vector in ℝm and 
gi(u) represents the gene expression at cell u, u = 1, ⋯, m.

In this example, we let each cell u be uniquely associated with  
a pseudotime tu, which is i.i.d. uniformly distributed on [0, T]. Our 
procedure is to first construct for each gene i a continuous function 
λi(t) on t ∈ [0, T] and then obtain the gene expression vectors gi from 
λi(t) based on Poisson sampling. Specifically, the simulation procedure 
consists of the following two steps:

•	 Simulate expected gene expression levels along the process. 
For each i, we de!ne a function λi(t), where λi(tu) represents the 
expected gene expression level of gene i at cell u. The function 
λi(t) is associated with a ‘peak time’ t∗

i

, which represents the time 
point when gene i reaches the peak of its expected expression 
level. The time t∗

i

 is uniformly sampled from [0, T]. The function 
λi(t) then takes a parametric expression as

λ

i

(t) = γ

1

α

i

e

−

|t − t

∗

i

|

2

γ

2

d

2

i

, (4)

where parameters γ1 and γ2 are predefined positive scalars, and αi and di 
are positive random variables to account for the variation in duration 
length and expression intensity of different genes. Specifically, we draw 
di and αi from log-normal prior distributions as below:

d
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∼ LN (μ
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d

) ; α

i

∼ LN (μ

α
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) .

•	 Sample gene reads from a Poisson distribution. 
In reality, the sequencing process is based on capturing molecules 
(for example, DNA or RNA fragments) in a random manner. To 
mimic the randomness in the sequencing process, we simulate 
gi(u) as from a Poisson distribution with a rate λi(tu), namely,

g

i

(u) ∼ Poi(λ

i

(t

u

)), u = 1,⋯ ,m, (5)

independently across all u and i. This gives g
i

∈ ℝ

m

+

 as desired.
•	 (Optional) sparsify the count matrix by sampling nonzero entries. 

Finally, we incorporate an optional step to account for sequenc-
ing depth. This is achieved by randomly selecting a speci!ed 
number of entries from the original count matrix without 
replacement and subsequently zeroing out the remaining 
entries. The probability that an entry is selected is proportional 
to its original expression value. This procedure enables us to 
generate an arti!cial dataset with varying levels of missing data.

Example A: a cyclic process. To simulate a biological process with cyclic 
dynamics (for example, CC) (Fig. 2a), based on the former setup of 
the linear process simulation, we only need to modify equation (4) as
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. (6)

All other details are the same as in ‘Workflow of gene dynamics 
simulation’.

Example B: a differentiation process with two lineages. To simulate a 
biological process with a bifurcating structure (for example, myeloid 
lineage differentiation) (Fig. 2b), we represent the underlying cell state 
by a generalized pseudotime vector τ comprising three pseudotime 
variables

τ

u

= (t

(0)

u

, t

(1)

u

, t

(2)

u

) . (7)

Here t(0)
u

∈ [0,T

(0)

]  represents the pseudotime along the initial  
process before lineage differentiation, t(1)

u

∈ [0,T

(1)

], t

(2)

u

∈ [0,T

(2)

]   

each represents the pseudotime along the process of lineage 1 and 
lineage 2 differentiation.

Specifically, if a cell u is along the initial process, then 
t

(0)

u

≥ 0, t

(1)

u

= t

(2)

u

= 0 . If a cell u is along lineage 1, then t(0)
u

=
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= 0 . If a cell u  is along lineage 2, then t(0)
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Similarly, we generate τ∗

i

= (t

(0)∗
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, t

(1)∗

i

, t

(2)∗

i

)  based on the same  
procedure as described above to represent the ‘time point’ that  
gene i reaches the peak of its expected expression level. Here the expec-
tation of the expression level of gene i at the time point τ is given by:
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Parameters γ1, γ2, αi and di are defined based on the same procedure in 
‘Workflow of gene dynamics simulation’. We then simulate

g

i

(u) ∼ Poi(λ

i

(τ

u

)), u = 1,⋯ ,m, (9)

independently across u and i, similarly as in equation (5).

Example C: a linear differentiation process coupled with CC. In this 
example (Fig. 2c), we simulate genes for a linear process and a cyclic 
process independently and then put them together. Specifically, we 
associate each cell u with a generalized pseudotime vector τ comprising 
two pseudotime variables τ

u

= (t

(1)

u

, t

(2)

u

). Here t(1)
u

∈ [0,T

(1)

] represents 
the pseudotime along the linear process, while t(2)

u

∈ [0,T

(2)

] represents 
the pseudotime along the cyclic process. The sampling processes to 
generate {t(1)

u

} and {t(2)
u

} are independent.
Next, we simulate two sets of genes using the procedure same as in 

‘Workflow of gene dynamics simulation’ but with a different definition 
of the Poisson rate function λi(τ). Specifically, the first list of genes {gi}, 
1 ≤ i ≤ n1, is simulated with
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The second list of genes {gj}, n1 < j ≤ n, is defined with
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(11)

Notably, the first list of genes contributes to the linear process,  
while the second list of genes contributes to the cyclic process. 
This simu lation results in a cylinder-like cell manifold in the high- 
dimensional space.

Example D: a multilevel lineage differentiation process coupled with CC. 
In this example (Fig. 2d), we simulate genes for a two-level tree- 
structured process and a cyclic process independently and then put 
them together. In the general case, let us consider simulating a n-level 
bifurcating process, in which the initial process P0 first splits into two 
lineages (P1 and P2), then each lineage proceeds independently and fur-
ther splits into another two sublineages (P1.1 and P1.2, P2.1 and P2.2), and each 
sublineage divides again in an iterative manner until a n-level tree struc-
ture is generated. At the same time, all the cells are involved in a cyclic 
process. Here each cell u can be associated with a generalized pseudo time 
vector τ comprising 2n pseudotime variables τ

u

= (t
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u

, t
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u

,… , t

(2
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) ,  
each of the first 2n − 1 pseudotime variables corresponds to a pseudo time  
location along P
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2

,P

1.1

,P

1.2

,P
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n

,… ,P

2.2….2⏟⎵⏟⎵⏟

n

, res pec ti-

vely. For generating the instances of these 2n − 1 pseudotime variables, 
we adopt the similar framework as applied in ‘Workflow of gene 
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dynamics simulation’ by requiring that when a cell u is along a daughter 
lineage, its pseudotime variables corresponding to all the parent  
processes are set to the largest possible values, and its pseudotime 
variables corresponding to other processes (excluding the daughter 
lineage itself) are all set to 0. Besides, t(2

n

)

u

 represents the pseudotime 
of cell u in the cyclic process, which is independent from the other 2n − 1 
pseudotime variables.

Next, we simulate two sets of genes using the procedure same as in 
‘Workflow of gene dynamics simulation’ but with a different definition 
of the Poisson rate function λi(τ). Specifically, the first list of genes {gi}, 
1 ≤ i ≤ n1, is simulated with
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The second list of genes {gj}, n1 < j ≤ n, is defined with
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(13)

Notably, the first list of genes contributes to the tree-structured 
differentiation process, while the second list of genes contributes to 
the cyclic process. This simulation results in a coral-like cell manifold 
in the high-dimensional space.

Details of the simulation examples. For the examples shown in Fig. 2, 
the evaluation outputs can be found in Supplementary Table 1. Each 
example was tested through ten replicates. Specifically, in the first 
example, we simulated 1,000 cells, 500 genes underlying the cyclic 
process. In the second example, we simulated 1,000 cells, 500 genes 
for the initial process and 250 genes for each daughter lineage process. 
In the third example, we simulated 5,000 cells, 500 genes for the linear 
process and 500 genes for the cyclic process. In the fourth example, we 
simulated 10,500 cells, 400 genes for the cyclic process and 200 genes 
for each sublineage process. For all these samples, we adopted the fol-
lowing model parameters: γ1 = 25, µd = 0, µα = 0, σd = 0.25, σα = 0.25. We 
chose T = 10 in the fourth example, while T = 15 in the other examples. 
We chose γ2 = 2 for simulating the cyclic process, while γ2 = 8 for simu-
lating the other processes. In simulation experiments, genes along a 
circular trajectory are ordered by their angular coordinates of the first 
two nontrivial diffusion map eigenvectors.

Generalizing count model using negative binomial distribution to 
account for overdispersion. To investigate the impact of dispersion 
on the performance of GeneTrajectory, specifically in terms of gene 
ordering, we performed a negative binomial variant of our second  
and third simulation experiments in Fig. 2. For each dataset, we  
simulated three distinct sparsity levels (5%, 10% and 20%). For each 
sparsity level, we tested four different dispersion levels (parameter-
ized by θ), each comprising ten technical replicates. A lower θ value 
indicates higher dispersion. We evaluated the consistency between  
the inferred gene ordering and the ground truth by calculating  
their Spearman correlation (Supplementary Fig. 1). It shows that  
GeneTrajectory exhibits remarkable stability across all sparsity and 
dispersion levels.

Experimental details of mouse embryo skin sample preparation. 
Mice. K14Cre (ref. 56) mice were bred to Wntlessfl/fl (ref. 57) mice. A 
random population of both male and female embryos was used for all 
experiments. All procedures involving animal subjects were performed 
under the approval of the Institutional Animal Care and Use Committee 
of the Yale School of Medicine.

EdU administration. To assess proliferation, EdU was administered 
to pregnant mice intraperitoneally (25 µg gm−1) and embryos were 
collected after 1.5 h.

In situ hybridization. In total, 10% of formalin-fixed paraffin-embedded 
(FFPE) whole embryos were used for histological analysis. FFPE  
specimens were subsectioned at 10 µm thickness. The RNAscope  
Multiplex Fluorescent Detection Kit v2 (ACDBio, 323110) was used for 
single-molecule fluorescence in situ hybridization (FISH) according 
to the manufacturer’s protocol. Briefly, subsections were deparaffi-
nized and permeabilized with hydrogen peroxide followed by antigen 
retrieval and protease treatment before probe hybridization. After 
hybridization, amplification and probe detection were done using 
the Amp 1–3 reagents. Probe channels were targeted using the pro-
vided HRP-C1-3 reagents and TSA (tyramide signal amplification) 
fluorophores—Cy3 (Akoya Biosciences, NEL744001KT), Cy5 (Akoya 
Biosciences, NEL745001KT) and fluorescein (Akoya Biosciences, 
NEL741001KT). EdU staining was done using the Click-it EdU Imaging Kit 
Alexa 488 (Life Technologies, c10338) according to the manufacturer’s 
instructions. Nuclear counter-stain was done using Hoechst 33342 
(Invitrogen, H3570) before mounting with SlowFade Mountant. RNA 
scope probes used (ACDBio)—Mm-Lef1 (441861) and Mm-Sox2 (401041).

Microscopy. FISH paraffin-embedded images were acquired using the 
Leica TCS SP8 Gated STED 3X super-resolution confocal microscope 
with a ×40 oil immersion (Numerical Aperture 1.3) objective lens, 
scanned at 5 µm thickness, 1,024 × 1,024 pixel width, 400 Hz.

Single-cell dissociation. Embryonic dorsolateral/flank skin was micro-
dissected from E14.5 littermate control and mutant embryos and dis-
sociated into a single-cell suspension using 0.25% trypsin (Gibco, 
Life Technologies) for 20 min at 37 °C. After genotyping, two to three 
embryos were pooled by condition. Single-cell suspensions were then 
stained with DAPI (Thermo Fisher Scientific, NBP2-31156) just before 
fluorescence-activated cell sorting.

Fluorescence-activated cell sorting. DAPI-excluded live skin cells were 
sorted on a BD FACS Aria II (BD Biosciences) sorter with a 100 µm noz-
zle. Cells were sorted in bulk and submitted for 10X Genomics library 
preparation at 0.75–1.0 × 106 ml−1 concentration in 4% fetal calf serum/
phosphate buffered saline (FCS/PBS) solution.

H-score quantification. For quantification based on FISH, cells with 
4–5 dots were considered positive (according to the RNAScope manu-
facturer’s instructions) and subsections from a total of n = 4 different 
embryos were examined. To measure RNA expression levels, H scores 
were calculated according to ACDBio manufacturer’s instructions—a 
cell with 0 dot is scored 0, 1–3 dots is scored 1, 4–9 dots is scored 2, 
10–15 dots and/or less than 10% clustered dots is scored 3 and more than  
15 dots and/or more than 10% clustered dots is scored 4; then the  
final H score of a given cell type A is calculated by summing the (% cells 
scored B within all cells in A) × B for score B in 0–4.

scRNA-seq and library preparation. Chromium Single Cell 3′ GEM 
Library and Gel Bead Kit v3.1 (PN-1000121) were used according to the 
manufacturer’s instructions in the Chromium Single Cell 3′ Reagents 
Kits V3.1 User Guide. After cDNA libraries were created, they were 
subjected to Novaseq 6000 (Illumina) sequencing. For each scRNA-seq 
experiment, control and littermate mutant samples were prepared 
in parallel at the same time, pooled and sequenced on the same lane.

Analytical details of real-world examples. Human myeloid dataset  
analysis. Myeloid cells were extracted from a publicly available 10×  
sc R N A- se q  d a t a se t  ( h t t p s : //su p p o r t . 10 xge n o m i c s . co m /
single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3). QC (quality  
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control) was performed using the same workflow in https://github.
com/satijalab/Integration2019/blob/master/preprocessing_scripts/
pbmc_10k_v3.R. After standard normalization, highly variable gene 
selection and scaling using the Seurat R package58, we applied PCA and 
retained the top 30 PCs. Four subclusters of myeloid cells were identi-
fied based on Louvain clustering with a resolution of 0.3. Wilcoxon 
rank-sum test was used to find cluster-specific gene markers for cell 
type annotation.

For gene trajectory inference, we first applied diffusion map on 
the cell PC embedding (using a local-adaptive kernel, each bandwidth 
is determined by the distance to its kNN, k = 10) to generate a spectral 
embedding of cells. We constructed a cell–cell kNN (k = 10) graph based 
on the coordinates of the top five nontrivial diffusion map eigenvec-
tors. Among the top 2,000 variable genes, genes expressed by 0.5–75% 
of cells were retained for pairwise gene–gene Wasserstein distance 
computation. The original cell graph was coarse-grained into a graph of 
size 1,000. We then built a gene–gene graph where the affinity between 
genes is transformed from the Wasserstein distance using a Gaussian 
kernel (local-adaptive, k = 5). Diffusion map was used to visualize the 
embedding of the gene graph. For trajectory identification, we used 
a series of time steps (11, 21 and 8) to extract three gene trajectories. 
Gene ordering was done based on the algorithm described in ‘Step 4. 
Order genes along each trajectory’.

Mouse embryo skin data analysis. We separated dermal cell populations 
from the newly collected mouse embryo skin samples (‘Experimental 
details of mouse embryo skin sample preparation’; aligned to the 
mouse genome mm10 by CellRanger v6.1.2). Cells from the WT and the 
Wls mutant were pooled for analyses. After standard normalization, 
highly variable gene selection and scaling using Seurat, we applied 
PCA and retained the top 30 PCs. Three dermal cell types were strati-
fied based on the expression of canonical dermal markers, including 
Sox2, Dkk1 and Dkk2. For gene trajectory inference, we first applied 
diffusion map on the cell PC embedding (using a local-adaptive kernel 
bandwidth, k = 10) to generate a spectral embedding of cells. We con-
structed a cell–cell kNN (k = 10) graph based on the coordinates of the 
top ten nontrivial diffusion map eigenvectors. Among the top 2,000 
variable genes, genes expressed by 1–50% of cells were retained for 
pairwise gene–gene Wasserstein distance computation. The original 
cell graph was coarse-grained into a graph of size 1,000. We then built 
a gene–gene graph where the affinity between genes is transformed 
from the Wasserstein distance using a Gaussian kernel (local-adaptive, 
k = 5). Diffusion map was used to visualize the embedding of the gene 
graph. For trajectory identification, we used a series of time steps (9, 
16 and 5) to sequentially extract three gene trajectories. To compare 
the differences between the WT and the Wls mutant, we stratified 
Wnt-active upper dermal cells into seven stages according to their 
expression profiles of the genes binned along the DC gene trajectory.

CC gene trajectory validation. We extracted the Cyclebase59 gene list 
from Supplementary Table 5 in ref. 60, in which genes are categorized 
into groups of G1/S, S, G2, G2/M and M phase markers. We also incor-
porated histone genes into the S phase gene list as they are upregu-
lated during the S phase for the active synthesis of histone proteins61. 
We plotted the distribution of genes from different phases along the 
gene trajectory associated with the CC process in the dermal example 
(Extended Data Fig. 3b). We observed that genes corresponding to 
the G1/S phase were located around the start of the gene trajectory, 
followed by a group of genes highly expressed during the S phase. 
G2M-related genes were located along the second half of the gene 
trajectory. Specifically, G2 genes appeared in the middle of the trajec-
tory, followed by a group of genes regulating the switch from G2 to M. 
Genes associated with the M phase were found around the end of the 
trajectory. This indicates that GeneTrajectory can effectively capture 
gene dynamics associated with different phases of the CC.

Different visualizations of gene embedding. Gene embedding visuali-
zation is agnostic to gene–gene distance computation and trajectory 
identification. Different ways of gene embedding visualization for the 
two real-world examples included in the manuscript are shown and 
compared in Supplementary Fig. 2. We would advise users to apply 
diffusion-based visualization techniques, for example, diffusion map 
or PHATE62, to display the trajectories, as they were designed to capture 
and reveal the connectivity of graphs.

Assessing the stability of capturing gene processes in the dermal  
example. After identifying three prominent gene trajectories by run-
ning GeneTrajectory on the original cell graph (with the maximum 
of iteration = 5,000 when calculating gene–gene distances), we con-
structed a new cell graph using only the genes extracted from each 
gene trajectory. We then reran the gene trajectory inference on each 
new cell graph for (1) all the genes and (2) the same set of genes that 
were used to construct the new cell graph (Supplementary Fig. 3). We 
found that the ordering of the genes used to define the new cell graph 
stayed in a high degree of consistency with their original ordering 
inferred by our method (when we constructed the cell graph using all 
genes). This consistency highlights the stability of GeneTrajectory in 
inferring gene dynamics underlying each process, unaffected by the 
presence of coexisting gene programs and biological effects.

Meanwhile, we observed potential caveats of iteratively running 
GeneTrajectory on the cell graphs constructed using the genes along a 
previously identified gene trajectory. This is because, in each iteration, 
the cell graph is only determined by the subset of genes corresponding 
to a specific process. There is no theoretical guarantee that the cell 
graph still encodes the geometric information necessary for identifying 
a gene trajectory associated with a different process. In other words, the 
new cell graph may distort the cell geometry for the other processes.

Comparing the Wasserstein metric to other canonical metrics for 
learning gene geometry. We conducted an extensive benchmark on 
using different metrics (including the Earth Mover’s distance, Euclidean 
distance, Pearson correlation distance, Spearman correlation distance, 
Cosine similarity, total variation distance (equivalent to L1 distance or 
Manhattan distance in its discrete form), Jensen–Shannon distance 
and Hellinger distance) to learn gene geometry in simulation datasets 
(Supplementary Fig. 4). Datasets for evaluation were generated based 
on simulations (corresponding to the second and third simulation 
examples in Fig. 2). Specifically, we simulated datasets with three dif-
ferent sequencing depths (that is, the percentage of nonzero entries 
in the gene-by-cell count matrix = 2.5%, 5% and 10%), each having ten 
replicates. To evaluate the performance, we calculated the Spearman 
correlation between each inferred gene ordering and the ground truth. 
The Wasserstein distance recovers gene ordering more accurately and 
robustly than other metrics.

Comparing GeneTrajectory with cell trajectory methods in terms 
of gene ordering inference. We performed a benchmark to com-
pare GeneTrajectory with five representative cell trajectory inference 
methods, Monocle 2 (ref. 16), Monocle 3 (ref. 10), Slingshot9, PAGA11 
and CellRank15. We assessed their performances on the following two 
types of datasets:

•	 simulation datasets (corresponding to the third simulation 
example in Fig. 2) with varying sparsity levels of the count matrix 
(that is, the percentage of nonzero entries in the gene-by-cell 
count matrix = 2.5%, 5%, 10% and 20%) and di"erent numbers of 
cells (500, 1,000 and 2,500).

•	 the real-world dermal dataset depicted in Figs. 4 and 5 with or 
without cell cycle e"ects regression.

For these cell trajectory inference approaches, after cell pseudo-
time inference, we leveraged GAM using the mgcv63 (Mixed GAM 
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Computation Vehicle with Automatic Smoothness Estimation)  
R package to smooth the gene expression along the cell pseudotime, 
followed by ordering the genes based on their peak locations. For the 
simulation datasets, we calculated the Spearman correlation between 
the true gene order and the inferred gene order by each method. For 
the dermal dataset, the assessment is done by examining the ordering 
of experimentally verified markers during DC differentiation.

In summary, Monocle 2 and Monocle 3 require the specification 
of a starting (root) cell state to generate cell pseudo-order. In simula-
tion experiments, we chose the cell with the ground truth pseudotime 
t = 0 as the starting cell state. In the dermal dataset, we first looked at 
the diffusion map embedding of cells to define the tip cell (express-
ing Sox2) as the terminal cell state of DC differentiation process. We 
then chose the upper dermal cell that has the largest distance (in the 
transcriptome space) to the terminal cell state as the starting cell state. 
PAGA and SlingShot require the specification of a starting cell cluster to 
create cell pseudotime. Based on the same strategy as described above, 
we chose the cluster containing the starting cell state as the starting 
cell cluster. The core steps in each analysis workflow for cell trajectory 
inference methods are summarized below.

•	 SlingShot—we used the getLineages function to construct  
the minimum spanning tree(s) on cell clusters. We then !tted 
principal curves using the getCurves function, which served as 
the basis for cell pseudotime construction.

•	 PAGA—cells were reclustered using the Leiden method imple-
mented in the Scanpy toolkit. We constructed the PAGA graph of 
these cell clusters and inferred the progression of cells through 
geodesic distance along the graph using scanpy.tl.dpt.

•	 Monocle 2—we used the built-in DDRTree method for cell dimen-
sion reduction. We used the orderCells function to generate the 
cell ordering while the root state was de!ned by the starting cell 
state as noted above.

•	 Monocle 3—cells were partitioned using the built-in Louvain 
method. We learned the principal graph across all partitions and 
then ordered the cells using the order_cells function.

•	 CellRank—for the simulation experiments, because we don’t 
have the information about the spliced and unspliced read 
counts, we used CellRank’s CytoTRACEKernel to infer the transi-
tion dynamics and cell pseudotime. For the dermal example, we 
applied CellRank based on RNA velocity inference. Speci!cally, 
the spliced/unspliced counts were quanti!ed by the velocyto 
toolkit. We used scVelo’s dynamical model64 to infer RNA 
velocities. CellRank was then applied to infer the initial states 
and terminal states of transition and construct cell lineages. 
We selected the cell lineage that terminates its transition at the 
DC cell population and !tted GAM models (built-in CellRank) 
to order the genes along the cell pseudotime of the selected 
lineage.

Hyperparameter selection guidelines and robustness evaluation. 
We would advise users to choose and determine the parameters accord-
ing to the following standards:

•	 If users choose to use di"usion maps (or PCA) to generate a cell 
embedding. The number of eigenvectors (or PCs) for cell graph 
dimensionality reduction can be ascertained by examining the 
eigenvalues in descending order to identify an eigengap or the 
point where the spectrum starts to ,atten out.

•	 The k in cell kNN graph construction is a user-de!ned hyperpa-
rameter. The chosen value for k should ensure the cell graph is 
fully connected.

•	 The number of gene programs is determined by the number of 
branches (gene trajectories) identi!able from the gene graph. 
This determination is made interactively during the process of 
branch identi!cation. Speci!cally, when a new branch is being 

extracted, we exclude the genes that have already been assigned 
to existing branches. Subsequently, we identify one of the 
remaining genes that is most distant from the origin of di"usion 
embedding as the tip of the next branch. If the remaining genes 
visually form an indistinct cloud that does not exhibit a trajec-
tory structure, we cease the process of branch identi!cation.

•	 The time step t for random walks in each iteration of branch 
identi!cation is interactively determined by inspecting the gene 
embedding. Speci!cally, when t increases, a greater number 
of genes are incorporated as the members of the branch to be 
extracted. The optimal t for extracting each branch should yield 
the longest trajectory without incorporating the genes in the 
indistinct cloud.

•	 The number of gene bins for visualization is determined by the 
resolution users wish to inspect for shifting patterns in gene 
distributions over cell embedding. An ideal number would be 
between 5 and 10. The choice of bin number does not a"ect gene 
trajectory inference.

We conducted an extensive evaluation to assess the robustness 
of GeneTrajectory with varying combinations of parameters. These 
parameters included k for constructing cell–cell kNN graphs, ndim for 
dimensionality reduction and ka for determining local-adaptive kernel 
bandwidths in diffusion map construction. To assess GeneTrajectory’s  
performance on simulated datasets, we computed the Spearman  
correlation between the inferred gene ordering and the ground truth 
ordering. For the real-world examples, we performed a cross-validation 
by examining the Spearman correlation between all pairs of inferred 
gene orderings. The results of this evaluation are depicted in Supple-
mentary Figs. 5–7. Specifically, these experiments include:

•	 We simulated bifurcation datasets and cylindrical datasets 
(corresponding to the second and third simulation examples 
in Fig. 2) with varying sparsity levels (that is, the percentage of 
nonzero entries in the gene-by-cell count matrix = 2.5%, 5%, 10% 
and 20%, each has ten replicates; each replicate includes 1,000 
cells). We tested GeneTrajectory using a combination of k = 5, 10, 
15, 20, 25 and ndim = 5, 10, 15, 20, 25. The evaluation outputs are 
shown in Supplementary Fig. 5.

•	 Using the same simulation datasets mentioned above, we tested 
GeneTrajectory using ka = 5, 10, 15, 20, 25 for constructing the 
di"usion embedding of cells. The evaluation outputs are shown 
in Supplementary Fig. 6.

•	 In two real-world examples included in this manuscript, we 
tested GeneTrajectory on cell graphs constructed using  
di"erent numbers of eigenvectors (ndim = 5, 10, 15, 20, 25).  
The evaluation outputs are shown in Supplementary Fig. 7.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The human PBMC scRNA-seq dataset is available at https://support. 
10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_10k_v3. The mouse embryonic skin dataset generated and analyzed  
in this study is available from the Gene Expression Omnibus with the 
accession GSE255534. The processed Seurat data objects for these two  
datasets are available at Figshare (https://doi.org/10.6084/m9. 
figshare.25243225). The Cyclebase gene list was extracted from Sup-
plementary Table 5 in ref. 60.

Code availability
The R package of GeneTrajectory and the code used for data analysis are 
available on GitHub (https://github.com/KlugerLab/GeneTrajectory).
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Extended Data Fig. 1 | Simulation framework and dataset visualization. 
a. Illustration of GeneTrajectory simulation framework. A simple linear 
differentiation process simulation is shown. Each cell is associated with a 
pseudotime t along the process. For each gene, its expected expression level is 
modeled as a bell-shaped function of t, its real expression level in a given cell is 
drawn from a Poisson distribution (see details in Methods). b. GeneTrajectory 
analysis on the simulated data in a. The first panel shows the UMAP embedding 
of cells; the second panel delineates the progressive dynamics of the simulated 

biological process with five genes selected along each process; the 3rd–7th 
panels show the expression of selected genes in the cell embedding following 
their pseudotemporal order; The 8th panel displays the UMAP embedding of 
genes, colored by the ground truth of gene pseudo-order. c–f. Gene-by-cell count 
matrices visualized by heatmaps (in log scale). Each row corresponds to a gene, 
each column corresponds to a cell. Each heatmap corresponds to a simulation 
example in Fig. 2.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 2 | Myeloid cell type stratification. a. UMAPs of selected 
well-studied myeloid gene markers identified along gene trajectories.  
b. Heatmap of cell-type specific gene markers (showing for each cell type the 
genes with the highest fold change in the average expression between that cell 

type and the remaining ones). c. Dot plot of cell-type specific gene markers 
in b. The color here indicates the average expression level of each gene in the 
corresponding cell type (after scaling).
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Extended Data Fig. 3 | Dermal cell type stratification. a. UMAPs of gene expression profiles. b. Distribution of genes associated with different cell cycle phases along 
the CC gene trajectory.
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Extended Data Fig. 4 | Gene dynamics comparison between the wild type 
and Wls mutant. a. Gene bin plots of the LD gene trajectory, split by condition. 
b. Gene bin plots of the CC gene trajectory, split by condition. c. Cell UMAPs are 
colored by the cell states which are categorized into multiple stages, split by  
two conditions. d. Change of Lef1 (Wnt) level across all stages, split by condition. 

Lef1 level is uniformly lower in the Wls KO than in the wild type. The box 
represents the interquartile range (IQR), with the line inside the box indicating 
the median. Whiskers extend to a maximum of 1.5× IQR beyond the box, with 
outliers represented as individual points.
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Extended Data Fig. 5 | Gene ordering results obtained by different methods on the dermal condensate genesis data. The orderings of key genes activated during 
the dermal condensate differentiation process are delineated. Cell cycle effects were regressed out when constructing the cell graph.
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