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Single-cell RNA sequencing has been widely used to investigate cell

state transitions and gene dynamics of biological processes. Current
strategies to infer the sequential dynamics of genes in a process typically
rely on constructing cell pseudotime through cell trajectory inference.
However, the presence of concurrent gene processes in the same group

of cells and technical noise can obscure the true progression of the
processes studied. To address this challenge, we present GeneTrajectory,
anapproach thatidentifies trajectories of genes rather than trajectories
of cells. Specifically, optimal transport distances are calculated between
gene distributions across the cell-cell graph to extract gene programs
and define their gene pseudotemporal order. Here we demonstrate that
GeneTrajectory accurately extracts progressive gene dynamics in myeloid
lineage maturation. Moreover, we show that GeneTrajectory deconvolves
key gene programs underlying mouse skin hair follicle dermal condensate
differentiation that could not be resolved by cell trajectory approaches.
GeneTrajectory facilitates the discovery of gene programs that control the

changes and activities of biological processes.

Dynamic gene expression changes often specify mechanisms through
which cells determine state and function. Indeed, tightly regulated
gene cascades underlie a myriad of fundamental processes, such as
cell cycle (CC)/mitosis' * and tissue/organ differentiation® . With the
emergence of single-cell RNA-sequencing (scRNA-seq) platforms,
cell trajectory inference techniques®* are widely applied to study
the cellular dynamics of biological processes. These techniques use
single-cell whole-transcriptome data to organize cells into lineages
and infer aunidimensional latent variable (that is, pseudotime®) that
describes a cell’s position along a lineage process. After pseudotime

construction, gene dynamics underlying a biological process can be
inferred by tracking the changing patterns of their expression levels
along the cell pseudotime’>>?,

However, when cells undergo multiple processes in parallel (for
example, CC coupled with cell differentiation* or circadian clock®) and
each process is governed by a different set of genes, cell pseudotime
learned by organizing cells using the collective genes becomes less
informative, as it mixes the effects of multiple processes. Mathe-
matically, when multiple processes that are not strongly correlated
with each other co-occur in the same group of cells, cell geometry
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(determined by these processes) cannot be effectively parametrized
by a common single latent variable. Hence, organizing cells into
unidimensional lineages is no longer appropriate.

Toaddressthis challenge, we propose GeneTrajectory,anapproach
to studying dynamic processes that does not rely on unidimensional
parameterization of the cell manifold. GeneTrajectory allows us to
deconvolve multiple, independent processes with sequential gene
dynamics. In contrast to cell trajectory approaches, GeneTrajectory
constructs trajectories of genes rather than trajectories of cells. Our
algorithm dissects out gene programs from the whole transcriptome,
eliminating the need for initial cell trajectory construction or the
specification of the initial and terminal cell states for each process.
Using this method, genes that sequentially contribute to a given
biological process can be extracted and organized into a respective
gene trajectory that reveals the successive order of gene activity.

In this work, we begin by showing GeneTrajectory’s efficacy
for unraveling gene dynamics through simulation experiments and
application to a human myeloid lineage dataset. Subsequently, we
use our approach onamouse embryonic skin dataset to demonstrate
that GeneTrajectory can resolve critical cell state transitions during
the early-stage development of hair follicles***. Our results indicate
that GeneTrajectory extracts gene geometry without the need for
constructing cell pseudotime, revealing independent trajectories of
concurrent processes that are otherwise obscured by cell pseudotime
approaches.

Results

Computing optimal transport between genes over the cell
graph

A progressive dynamic biological process is usually governed by a
finely regulated gene cascade®?, in which genes are activated and
deactivated in a temporal order along the process, dictating the
transcriptomic changes of underlying cell states. Moreover, cells can
participatein multiple processes simultaneously, eitherinadependent
or independent manner. For instance, we illustrate two contrasting
scenarios by considering the concurrence of a linear process (for
example, differentiation) and a cyclic process (for example, CC;
Fig.1a). When these two processes are strictly dependent on each other,
they can be parameterized by acommon latent variable and resultin
aone-dimensional cell curve. In this scenario, it is straightforward
to assign a meaningful pseudotime for the cells by ordering them
along the curve. However, deconvolving genes into two processes
and retrieving their pseudotemporal order in each process is not
immediately apparent, which requires additional postprocessing
(for example, clustering gene dynamics along the cell pseudotime™).
In contrast, when these two processes are independent, cells fall into
amanifold (as a Cartesian product of these two processes) with an
intrinsicdimension >1. These processes do not shareacommon latent
variable, thus gene dynamics inference based on unidimensional
interpolation along the cell-cell manifold is no longer appropriate.
Inpractice, the weak and stochastic nature of the dependency between
concurrent biological processes can complicate the extraction of the
cell path and the construction of cell pseudotime.

Here we present GeneTrajectory, an approach to inferring
gene processes through learning the gene-gene geometry without
one-dimensional parameterization of the cell manifold (Fig. 1b).
Specifically, GeneTrajectory quantifies the distance of genes based
on their expression distributions over a cell graph using optimal
transport (OT) metrics (Fig. 1d). Previously, OT metrics (for example,
Wasserstein distance) have been appliedinawide range of scenariosin
single-cell analysis, including (1) defining a distance measure between
cells?®** or cell populations®, (2) constructing cell trajectories®*?,
(3) spatial reconstruction of single-cell transcriptome profiles®**and
(4) multi-omics data integration®. In these works, the dissimilarity
was quantified either between a pair of cells or between a pair of cell

populations. In our work, we distinctively define the graph-based
Wasserstein distance between pairs of genes to study their underlying
pseudotemporal dynamics. Specifically, we normalize the expression
ofageneintoaprobabilistic distribution over cells and then compute
the Wasserstein distances between gene distributionsinthe cellgraph
(Fig. 1d). Here the cell graph is constructed in a way that provides a
representation of cells, which preserves the cell manifold structure
in the high-dimensional space (Fig. 1c). In this construction, the
graph-based Wasserstein distance between pairwise gene distributions
hasthe following characteristics: (1) it takes into account the geometry
of cells; that s, it assigns a higher cost to transport a point mass from
one cell to a distant cell as compared to its adjacent neighbors. (2) It
prevents the transport across the ambient cell space, whichis often a
problematicissue when using spatial distance measures (for example,
the Euclidean distance in the cell space).

In our approach, the computation of gene-gene Wasserstein
distances is based on the following two steps (Table 1):

« Construct a cell graph. As an initial step, we learn a reduced-
dimensional cell embedding that can capture and represent the
cell manifold structure in the original high-dimensional space.
Next, we construct a k-nearest neighbor (kNN) graph of cells based
on their relative distances in the cell embedding (Fig. 1c). This
establishes a cell-cell connectivity map that serves as the
‘roadmap’ for transporting gene distributions in the next step.
Here, for a given pair of cells u and v, we search for the shortest
path connecting theminthe kNN cell graph and denote its length
as the graph distance dg(u, v) between cells u and v. This graph
distance willbe used to define the cost of transporting a point mass
between cells u and vin the next step.

- Compute gene-gene Wasserstein distances over the cell graph.
We model the expression level of genes as discrete distributions
on the cell graph. Specifically, we divide the original expression
level of agiven gene in each cell by the sum of its expression level
inall cells. We then define the distance between two gene distribu-
tions by the graph-based Wasserstein-p distance (W, distance,
1< p<;Fig.1c,d). Accordingly, the transport cost between cells
uandvisdefinedas C,, = ds(u, vY’.Here pis a user-defined para-
meter, and p = 1refers to the well-known Earth Mover’s distance.
Algorithmic details are described in ‘Step 2. Compute graph-based
Wasserstein distances between genes’.

Inpractice, computing the Wasserstein distance between all pair-
wise gene distributions can be computationally expensive. When the
cellgraphis large, the time cost for finding the OT solution increases
exponentially. In our framework, we have designed two strategies to
accelerate the computation based on (1) cellgraph coarse-graining, and
(2) gene graph sparsification (detailsin ‘Step 2. Compute graph-based
Wasserstein distances between genes’).

Gene trajectory construction
The gene-gene Wasserstein distance captures the pseudotemporal
relations of genes in the sense that if two genes are activated consec-
utively along a biological process, their distributions are expected
to have a substantial overlap in the cell graph and thus have a small
Wasserstein distance between each other (Fig. 1e). To visualize the
geometry of all genes, we convert pairwise gene-gene Wasserstein
distances into gene-gene affinities and use diffusion map to geta
low-dimensional representation of genes. If dynamical cascades of
gene activation and deactivation exist in the data, viewing the gene
embedding by a combination of leading diffusion map eigenvectors
delineates trajectories of genes (Fig. 1f). Each trajectory s linked with a
specific gene program that dictates the underlying biological process.
Inourapproach, theextractionof gene trajectories is performedin
asequential manner (Fig.1g). Toidentify the first trajectory, we search
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Fig.1| Overview of GeneTrajectory. a, lllustration of two scenarios whena
linear process and a cyclic process are dependent or independent of each other,
resulting in cell manifolds with different intrinsic dimensions and requiring
distinct pseudotime parametrizations. b, Schematic representation of the major
workflow of GeneTrajectory. ¢, Construction of cell (NN graph. d, Computation
of graph-based OT (Wasserstein) distances between paired gene distributions
(four representative genes are shown) over the cell graph. Gene distributions

are defined by their normalized expression levels over cells. e, Heatmap of OT
(Wasserstein) distances for genes g;-g, ind. f, Construction of gene graph based
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on gene-gene affinities (transformed from gene-gene Wasserstein distances).
g, Sequential identification of gene trajectories using a diffusion-based strategy.
The initial node (terminus 1) is defined by the gene with the largest distance from
the originin the diffusion map embedding. Arandom-walk procedure is then
used onthe gene graph to select the other genes that belong to the trajectory
terminated at terminus 1. After retrieving genes for the first trajectory, we
identify the terminus of the subsequent gene trajectory among the remaining
genes and repeat the steps above. This is done iteratively until all detectable
trajectories are extracted. h, Diffusion map visualization of gene trajectories.

for the gene that has the largest distance from the origin of diffusion
map embedding, which serves as the terminus of the first gene trajec-
tory. Toretrieve the other genes along the first trajectory, we take that
terminus gene as the starting point of a diffusion process. Specifically,
we assign a unit point mass to that gene and then diffuse the mass to
the other genes. As the probability mass propagates along the gene
trajectory from its terminus, the trajectory can be retrieved by a heu-
ristic thresholding procedure (‘Step 3. Construct gene trajectories’).
Afterretrieving genes for the first trajectory, weidentify the terminus
of the subsequent gene trajectory among the remaining genes and
iterate the same procedure, until all detectable gene trajectories are
extracted (Fig.1g,h).

To order the genes along a given trajectory, we retain only these
genes to recompute a diffusion map embedding based on their pair-
wise gene-gene Wasserstein distances. The obtained first nontrivial

eigenvector of the diffusion map embedding provides an intrinsic
ordering of the genes along that trajectory’*?,

To examine how the gene order along a given gene trajectory
is reflected over the cell graph, we can track how these genes are
expressed across different regionsin the cellembedding. Specifically,
wefirstgroup genes alongeachgenetrajectory into successive binsand
generate acellembedding ‘snapshot’ for each bin.Ineach snapshot, we
color the cells according to the fraction of genes (from that bin) that
they express. By plotting the expression level of each gene bin on the
cellembedding, we can visualize how the underlying biological process
progresses across cell populations.

Assessing GeneTrajectory’s performance using simulation
Assuming that a progressive biological processis temporally dictated
by a sequence of genes, we simulated several artificial sScRNA-seq
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Table 1| List of core notations in Methods

u,v Index of cells

i, j Index of genes

m Original number of cells

n Original number of genes

m' Reduced number of cells after coarse-graining

6P (p,p’)  Wasserstein-P distance between distributions p and p’

de(u, v) Euclidean distance between cell u and v

ds(u, v) Graph distance between cells u and v

C Transport cost matrix on the cell graph. C,, represents the cost
of transport between cell u and v

(e} Transport cost matrix on the coarse-grained cell graph

M kNN membership matrix for the cell graph. M(u, a)=1/|a| if and
only if the cell u belongs to the ath subset, where |a| represents
the number of cells in that subset; otherwise M(u, a)=0

A Gene-gene affinity matrix
Row-normalized gene-gene affinity matrix (as the random-walk
matrix)

S Diffusion map (spectral) embedding of genes

datasets with a variety of gene dynamics by modeling the change
of gene expression over time (Extended Data Fig. 1a,b; ‘Workflow of
gene dynamics simulation’). Specifically, forageneinvolvedinagiven
biological process, we simulate its expected expression level A(¢) as a
function of time ¢. For clarity, we note that ¢ represents the pseudotime
of abiological process, linked with the cell state (for example, differ-
entiation status) rather than the actual time (for example, specific day
of a developmental process). Here we use multiple parameters to
account for the heterogeneity of gene expression profilesin single-cell
data, including the variation of duration time and expression intensi-
ties (details in ‘Workflow of gene dynamics simulation’). For each cell
state at t along a biological process, we apply a Poisson sampling to
generate the observed expression level of each gene by taking A(¢) as
the mean of Poisson distribution. In these simulation experiments,
we know the ground truth of both the pseudotime of each cell in the
corresponding biological process and the temporal order of genes
that dictate each process. Finally, we incorporate an optional step to
account for sequencing depth. This is achieved by sampling a speci-
fied number of nonzero entries from the original count matrix. This
procedure enables us to generate an artificial dataset with varying
levels of missing data.

Wefirst simulated (1) acycling process inwhich the change of gene
expression shows a periodical pattern over time (Fig.2a and Extended
DataFig.1c),and (2) aprocess withabranching point where it diverges
into two different lineages (Fig. 2b and Extended Data Fig. 1d). Inspec-
tion of the gene trajectories in these two simulation examples reveals
similar layouts with their cell embeddings (Fig. 2a,b). The ordering of
genes along each gene trajectory shows a high concordance with the
ground truth (Supplementary Table 1).

We next, created two scenarios that simulate a mixture of two
concurrent processes (Fig. 2c,d and Extended Data Fig. 1e,f). Speci-
fically, one process mimics cell differentiation (linear or branched
in a multilayered fashion), and the other mimics the CC. In these two
scenarios, each cell state is determined by two independent hidden
variables—a pseudotime along the differentiation process and a
pseudotime in the CC. For each process, we simulated an exclusive
set of genes with distinct dynamic characteristics (Extended Data
Fig. 1e,f; ‘Workflow of gene dynamics simulation’), generating a cell
manifold withacylinder-shaped or a coral-shaped structure (Fig.2c,d).
In both scenarios, our approach deconvolves the original mixture

of two processes into two gene trajectories representing a (linear or
tree-like) differentiation process and a (circular) CC process. Along
each trajectory, genes are ordered in high concordance with the
ground truth (Supplementary Table 1), indicating that GeneTrajectory
allows deconvolving a mixture of biological processes that take place
simultaneously in the same group of cells.

GeneTrajectory resolves myeloid gene dynamics

We demonstrate GeneTrajectory’s application using myeloid
lineage differentiation, a classical biological system with a well-defined
bifurcation of two major lineages®®*’. We extracted human myeloid
cells from a public 10x Genomics peripheral blood mononuclear cell
(PBMC) dataset and identified four cell types based on canonical mark-
ers (Fig. 3a and Extended DataFig. 2b,c). These included CD14" mono-
cytes, intermediate monocytes with high expression of HLA-DR (Human
Leukocyte Antigen - DRisotype), CD16" monocytes and myeloid type-2
dendritic cells. The UMAP visualization of the cellembedding shows a
continuum of cell states underlying myeloid lineage genesis, compris-
ing monocyte maturation and dendritic cell differentiation. Human
monocyte maturation involves the upregulation of CD16 on a subset
of CD14" classical monocytes*. Specifically, CD14* monocytes first
transition into an intermediate subset of monocytes and then differ-
entiateinto CD16" nonconventional monocytes with distinct effector
functions.

We used GeneTrajectory to identify three gene trajectories, each
representing a specific aspect of the myeloid lineage differentiation
process (Fig.3b). Viewing the gene bin plots of Trajectory lillustrates
that a subset of CD14* monocytes start a differentiation cascade and
gradually shift toward CD16" monocytes, which suggests Trajectory 1
captures the gene dynamics underlying the early stage of monocyte
maturation (Fig.3c). Notably, CLEC5A,RETN, CCR2and SELL (CD62L) are
known to be associated with the initial CD14* monocyte cellular state*
and are highlighted as part of Trajectory 1(Fig. 3b). Subsequently, the
ordering of genes that define Trajectory 2 provides a pseudotemporal
view onthe later stage of CD16" monocyte differentiation (Fig.3d). This
processis primarily drivenin response to cytokine colony-stimulating
factor1(CSF1) and requires CSFIR*. While ordered after CSFIR,ICAM2
is known to be constitutively expressed in CD16" monocytes and is
necessary for their patrolling ability across the endothelium of blood
vessels*2, Coming toward the end, CIQA, C1QB* and FCGR3A markers
broadly expressed by fully differentiated CD16" monocytes areidenti-
fied.Inaddition, weretrieved athird gene trajectory (Trajectory 3) that
marks the differentiation of type-2 dendritic cells as a distinct myeloid
lineage (Fig. 3e). Myeloid type-2 dendritic cells have the following two
subsets: CD14" and CD14 . Specifically, the CD14" subset shares over-
lapping features with CD14" monocytes, whereas the CD14™ subset is
delineated here as corresponding with a separate gene trajectory**.In
contrast to CD16" monocytes, these CD14 dendritic cells differentiate
inresponse to GMCSF and /L4, in line with expression of CCRS, CD2,
CLECI0A, CD72, CDIC and PKIB* (Fig. 3b and Extended Data Fig. 2a).
Notably, GeneTrajectory does not necessitate specification of the ini-
tialand terminal cell states for each process, while those states canbe
automatically revealed by inspecting the cell population that express
the endpoint genes of each gene trajectory.

Deconvolving gene processes in dermal condensate genesis
Hair follicle dermal condensates (DCs) emerge in the skin dermis
around embryonic day 14.5 (E14.5) and have an essential role in
hair follicle formation. Morphogenetic signals, including Wnt/f3-
catenin signaling, are critical for the differentiation of DC cells****,
We collected skin from E14.5 wild-type (WT) and paired K14Cre;
Whntless"? (WIs) mutant embryos for scRNA-seq (Fig. 4a). The genetic
defect in the mutant results in attenuated dermal Wnt signaling
and a lack of DCs and hair follicles**® (Fig. 4b—c and Extended Data
Fig.3a).
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Fig. 2| GeneTrajectory performance assessment based on simulation
experiments. a, Simulation of a cycling process (CC). The cell embedding and
gene embedding showcase the same topology that has aring-shaped structure.
b, Simulation of a differentiation process with two lineages. The cell embedding
and gene embedding showcase the same topology that has a bifurcating tree
structure. ¢, Simulation of a linear differentiation process coupled with CC. The
cellembedding and gene embedding showcase distinct topologies. Cells are
organized along a cylinder-shaped manifold that has an intrinsic dimension of
two. Genes that contribute to the two processes are deconvolved and organized
alongaring-shaped trajectory and a linear trajectory. d, Simulation of a
multilevel lineage differentiation process coupled with CC. The cell embedding

Gene expression level Gene pseudo-order

(in each lineage/process)
and gene embedding showcase distinct topologies. Cells are organized along
acoral-shaped manifold that has anintrinsic dimension of two. Genes that
contribute to the two processes are deconvolved and organized along aring-
shaped trajectory and amultilayered-tree-structured trajectory. (aand bare
visualized by ¢-SNE (¢-distributed stochastic neighbor embedding); cand d are
visualized by UMAP (uniform manifold approximation and projection). The first
column shows the cell embedding; the second column delineates the progressive
dynamics of the simulated process with five genes selected along each process;
the third to seventh columns show the expression of selected genes in the cell
embedding following their pseudotemporal order; the eighth column displays
the embedding of genes, colored by the ground truth of gene pseudo-order).

Visualizing cells on UMAP reveals a continuum of cell states com-
posed of lower dermal cells (Dkk2") and Wnt-activated upper dermal
cells (DkkI* or LefI"), whichinclude DC cells (Sox2*; Fig. 4c and Extended
DataFig.3a). We applied GeneTrajectory to the combined dermal cell
populations and extracted three prominent gene trajectories that cor-
respond to lower dermis (LD) differentiation, DC differentiationand CC
(Fig.4d).Specifically, we examined the CC gene ordering by checking
the distribution of genes associated with different CC phases along
the gene trajectory (Extended Data Fig. 3b). Wnt signaling pathway
genes (for example, LefI and DkkI) and SHH (Sonic Hedgehog) signal-
ing pathway genes (for example, Ptchl and Gli1), two morphogenetic

signals shown to be necessary and sufficient for DC differentiation’,
are present in the DC gene trajectory. Notably, the upper dermal cell
embedding integrates a mixture of biological processes (CC and DC
differentiation) that co-occur within the same cell population. By
using GeneTrajectory, each biological process can be deconvolved
from the other and independently examined. Viewing the gene bin
plots for the CC and DC gene trajectories together reveals that DC
progenitors actively proliferate throughout all stages and then exit
the CCatthe terminus of DC differentiation (Fig. 4e). These dataimply
that DC cells are the immediate progeny of proliferative progenitors
inthe upper dermis.
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showing the gene expression activities along each gene trajectory (Trajectory 1
(c), Trajectory 2 (d) and Trajectory 3 (e)) over the cell embedding. Genes along
each trajectory are ordered and then splitinto five equal-sized bins. Gene bin
score is defined by the proportion of genes (from each bin) expressed in each cell.
Arrows indicate the path of gene distribution progression over the cells.

Gene bins core

GeneTrajectory identifies biological defects in WIs mutant

We next use GeneTrajectory to examine how attenuated Wnt sign-
aling affects the DC differentiation gene program. By tracking the
expression status of genes along each gene trajectory in the WT and
mutant cells (Fig. 5a), we did not detect a difference between the mutant
and control withrespecttothe CCand LD genetrajectories (Extended
DataFig.4a,b). However, along the DC gene trajectory, Wis mutant cells
fail to expresslater-stage DC markers, indicating the defect is specific
to DCdifferentiation. Visualizing gene bin plots for the DC gene trajec-
tory shows that mutant cells fail to progress in the DC differentiation
process (Fig. 5e,f).

Moreover, gene trajectory inference allows us to define a specific
stage of cell state transition by specifying a gene window along the
gene trajectory. To understand how genetic mutation affects DC dif-
ferentiation, we use GeneTrajectory to stratify the pool of progenitors
by different stages of DC differentiation. Considering genes in each

binas markers indicative of aspecific DC differentiation stage, we first
identified cells that express more than half of the genesin the last bin as
cellsinthe final stage of differentiation (stage 7). Among the remaining
cells, we identified the cells that express more than half of the genes
in the sixth bin as progenitors in stage 6. We repeated this procedure
iteratively until all seven gene bins were associated with their matched
cell populations (Fig. 5e,f and Extended Data Fig. 4¢).

By comparing the composition of progenitors in different stages
between the WT and WIs mutant, we found that mutant cells fail to
express most of the markers after stage 4, when key markers in Wnt (for
example, LefI) and SHH (for example, GliI and Ptchi) signaling path-
ways are upregulatedinthe WT condition (Fig. 5e,f and Supplementary
Table 2). The average expression level of Wnt target genes is uniformly
lower in the mutant than in the WT condition (Fig. 5c and Extended
DataFig. 4d), while the proportion of cells in the G1 phase of the CC is
higher in the mutant across all stages (Fig. 5b). Consistent with this,

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-024-02186-3

a b
WT -
(CTL)
ScRNA-seq ‘3-
library o
KO
(WLs)
[+ .
Condition CC phase
N
o
<
% oD
® uD
UMAP1
e Gene bin-1 Gene bin-2 Gene bin-3

Gene bin-4

Control

* Trajectory-DC
Trajectory-LD
Trajectory-CC

Other

L/ 1

Gene bin-5 Gene bin-6 Gene bin-7

Trajectory-DC

Trajectory-LD

Trajectory-CC

ol
Fig. 4| GeneTrajectory deconvolves two mixed processes during DC genesis.
a, Experimental design of extracting skin tissue from a pair of WT and Wis KO
embryos at day E14.5 for scRNA-seq. b, FISH images (scale bar = 50 pm) showing
the spatial distribution of Lef1, Sox2, EdU nucleotide and DAPIin the upper
dermis of WT and WIs KO. EdU is a nucleotide that isincorporated by cellsin
the S phase of the CC.n=8 (WT) and n =9 (KO) embryos examined over four
biologically independent experiments with similar results. ¢, UMAP of cells color
coded by cell types, conditions and CC phases. d, DM (Diffusion Map) embedding

M ' Gene bin score

ofthe gene graph to visualize three identified gene trajectories (two different
combinations of leading nontrivial eigenvectors are displayed). e, Gene bin
plots delineating the dynamics of each process (including DC differentiation, LD
differentiation and CC), in which genes along each trajectory are splitinto seven
equal-sized bins. Gene bin score is defined by the proportion of genes (from
each bin) expressed in each cell. Arrows indicate the path of gene distribution
progression over the cells. Upper dermis, UD; lower dermis, LD; dermal
condensate, DC; cell cycle, CC; wildtype, WT; control, CTL; knockout, KO.

the rate of EAU nucleotide incorporation (S phase) is lower in the Wls
mutant (Figs.4b and 5d). These data suggest that higher levels of Wnt
signaling are necessary to maintain a normal rate of cell proliferation
across the DC differentiation process until DC progenitors exit the CC
atstage7. These results alsoraise the notion that dermal proliferation
itself may directly regulate dermal cell state progression during the
DC differentiation process.

Comparison of GeneTrajectory to cell trajectory methods

We compared GeneTrajectory with five cell trajectory methods as
follows: Monocle 2 (ref. 16), Monocle 3 (ref. 10), Slingshot’, PAGA™
and CellRank®. In the simulations of two co-occurring processes,

we assessed performance by calculating the Spearman correlation
betweenthe gene orderinginferred fromeachapproach and the ground
truth. To order genes based on these cell trajectory inference methods,
we first constructed the cell pseudotime using their default pipelines
(‘Comparing GeneTrajectory with cell trajectory methods in terms of
gene ordering inference’). Subsequently, we fitted generalized addi-
tive models (GAM)***° to find the peak location of each gene expres-
sionalongthe cell pseudotime. The genes were then ordered based on
these peak locations. GeneTrajectory achieved the best performancein
recovering gene order for both cyclicand linear processes (Fig. 6a,b) in
simulation experiments, showing remarkable robustness to variations
in cell numbers and sparsity levels of the count matrix.
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In our real-world example of DC development, we examined
the order of known markers during DC differentiation (Fig. 6¢,d).
GeneTrajectory recovered the correct ordering—Wnt target genes
Dkk1/Gremi/Lefl and Bmp4emergefirstalong this process. Dermal Wnt
signaling is known to be required for SHH activation*”*%, Accordingly,
the emergence of Wnt target genes is succeeded by the expression of
SHH target genes (Glil/Ptchl), which precedes the upregulation of the
CCinhibitor, Cdknla, and terminates with the expression of mature DC
markers (S0x2/Sox18/FoxdI). In contrast, SlingShot, Monocle 2 and

Monocle 3 were unsuccessful in generating a reasonable sequence
for these genes. PAGA failed to generate a distinguishable ordering of
later-stage markers. CellRank incorrectly placed the DC marker (Sox2)
before Glil and failed to define the ordering for Bmp4/Lefl and Cdknla.

Moreover, manually regressing out known coexisting biological
effects (for example, CC) does not guarantee an accurate recovery
of gene dynamics when using cell trajectory inference methods. For
instance, in our dermal example, regressing out CC effects resulted
in persistent incorrect gene orderings for SlingShot, Monocle 2,
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Fig. 6 | GeneTrajectory outperforms other methods ininferring gene
ordering along concurrent processes. a,b, Comparison of GeneTrajectory
with other approaches on simulated data (corresponding to the third simulation
example in Fig. 2) of simultaneous linear process (a) and cyclic process (b),

with varying sample size and sparsity level of the count matrix (the numbersin
the vertical gray boxes correspond to sample size, and those in the horizontal

gray boxes correspond to the percentage of nonzero entries in each count
matrix). ¢, Schematic representation of the key genes activated during the DC
differentiation process. d, Gene ordering results obtained by different methods
onthe DC genesis data. Box plots: the box represents the IQR, with the line inside
the box indicating the median. Whiskers extend to a maximum of 1.5x IQR beyond
the box, with outliers represented as individual points. IQR, interquartile range.

Monocle 3, PAGA and CellRank (Extended Data Fig. 5), suggesting
that CCregressionisnot sufficient to deconvolve the intertwined gene
dynamics. Thisunderscores the advantage of GeneTrajectory thatitis
capable of detecting and disentangling multiple gene programs when
they are present.

Discussion
We developed GeneTrajectory, an approach for constructing gene
trajectories where each trajectory comprises genes organized in
a pseudotemporal order that characterizes the transcriptional
dynamics of a specific biological process. GeneTrajectory uses
optimal-transport-based gene-gene dissimilarity metrics. These
metrics naturally leverage the underlying geometry of the cell-cell
graph to reveal a coherent relation among genes that are involved
in progressive processes. Importantly, GeneTrajectory bypasses the
need for constructing cell pseudotime, which isacommon requirement
in existing methods. This renders it broadly applicable in scenarios
where cells do not forminto clear lineages.

It is worthwhile to note that cell trajectory inference and gene
trajectory inference can complement each other to address different

types of questions. Cell trajectory inference aims to define biological
processes by lineages of cells, while gene trajectory inference associ-
ates each process with a sequence of genes. As demonstrated above,
when cells participate in concurrent processes, cell trajectory inference
may fail to deconvolve them. Similarly, when one gene participatesin
multiple biological processes, theoretically, it should be placed at the
joint of gene trajectories. However, if that gene is expressed across
many cells, it may have a small Wasserstein distance to genes that are
homogeneously expressed (uninformative genes). As aresult, it willbe
colocalized with uninformative genes in the gene embedding, causing
difficulty for GeneTrajectory to distinguish them. Moreover, there
are multiple aspects of our proposed algorithm that could be further
refined. For instance, the branch identification procedure requires
interactive optimization and might exhibit instability if the branches
differ substantially inlength and size. In addition, GeneTrajectory can-
not automatically infer the directionality of progression along each
trajectory. The directionality can be determined by checking whether
the endpoint genes in each trajectory are initial stage markers or ter-
minal stage markers of the corresponding process. Anotherimportant
aspect is that the idea of using the OT distance between genes over
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cell-cell graphs could have other potential applications beyond the
inference of gene programs and their dynamics. Intuitively, after we
compute the gene-gene affinity matrix, we can iteratively improve
the organization of cells by an OT distance between the cells over the
gene-gene graph. This approach warrants further investigation from
theoretical and practical perspectives.

In this work, we demonstrated the utility of GeneTrajectory to
unravel gene dynamics using scRNA-seq data. However, our method
can be generalized to other single-cell modalities, including but not
limited to scATAC-seq’ and spatial transcriptomics®2. Specifically,
we anticipate that GeneTrajectory can be applied to resolve biologi-
cal processes using dual modalities® at the same time. For instance,
we can quantify the pairwise distances between the distributions of
gene expression and chromatin accessibility, which facilitates under-
standing the interplay between epigenetic dynamics and transcrip-
tomic dynamics that underlie biological processes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-024-02186-3.
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Methods

Workflow

The major workflow of GeneTrajectory comprises the following four
main steps. Core notations are listed in Table 1.

» Step1-build a cell-cell kNN graph in which each cell is con-
nected to its kNNs. Find the shortest path connecting each pair
of cells in the graph and denote its length as the graph distance
between cells.

« Step 2—compute pairwise graph-based Wasserstein distance
between gene distributions, which quantifies the minimum
cost of transporting the distribution of a given gene into the
distribution of another gene in the cell graph.

« Step 3—generate alow-dimensional representation of genes
(using diffusion map by default) based on the gene-gene
Wasserstein distance matrix. Identify gene trajectoriesina
sequential manner.

e Step 4—determine the order of genes along each gene trajectory.

Step 1. Construct a cell-cell graph and define graph distances.
Data preprocessing. The data preprocessing contains the following
steps:

(1) standard preprocessing of the count matrix (m cellsand n
genes).
(2) dimension reduction.

Standard preprocessing—the original count matrix (cell-by-gene)
is first preprocessed by using the standard pipeline in single-cell
analysis, including library normalization, top variable gene selection
and scaling.

Dimension reduction—due to the low-rank nature of single-cell
data, we rundimensionality reduction on the original count matrix to
generate a low-dimensional representation of the cell geometry (cell
embedding). Commonly used methodsinclude PCA, t-SNE, UMAP and
diffusion maps. By default, we apply PCA for the initial step of dimen-
sionality reduction and retain the leading n (typically around 30-100)
principal components (PCs). Then we use diffusion map to generate a
manifold-preserving low-dimensional representation of cells. Specifi-
cally, foragiven pair of cells uand v, we calculate the Euclidean distance
di(u,v) between their coordinates of the leading n PCs. We then convert
itinto an affinity measure a(u, v) using the following Gaussian kernel
with alocal-adaptive bandwidth:

a(u,v) = %(exp{—dé(u’u)}+exp{—dé(u’u) }) wv=1--,m,

o) o)

where o(u) represents the Euclidean distance between cell u and its
kNNs in the PC space. Using a local-adaptive bandwidth allows us to
automatically adjust the kernel size based on the local cell density in
the original cell space. After we get the affinities between all pairs of
cells, we apply the diffusion map algorithm and retain its leading n’
eigenvectors as alow-dimensional representation of cells for the sub-
sequent cell graph construction, which preserves the geometric
information of the cell manifold.

Cell-cell graph distance computation. When cell geometry presents
alow-dimensional manifold structure, the OT should be always done
across the cell manifold instead of taking a shortcut through empty
regions in the ambient space where there are no cells. Here we build
a cell kNN graph in which we connect each cell to its kNNs in the
dimensionality-reduced cell space. For agiven pair of cellsuand v, we
search for the shortest path connectingtheminthe kNN cellgraph and
denote its length as the graph distance d;(u, v) between cells uand v.
Theoretically,in thelimit of alarge number of cells, the graph distances
constructed in this way reveal manifold geodesic distances, whichare
theintrinsic cell-cell distances®**.

Step 2. Compute graph-based Wasserstein distances between
genes. We model the expression level of a gene as a discrete distribu-
tion on the cell graph. Specifically, let g,(u) represents the expression
level of geneiin cell u, we then define the distribution of gene i by:

piw) =giw) [ Y gi(v). (6]
v=1

Ithas the following properties: (1) p; € R%; (2) ¥ p,(v) =1. We then define
the distance between two genes by the W, distance (1<p <)
between their distributions on the cell graph. Namely, the W, distance
6P (p, p;) between gene i and gene j quantifies their dissimilarity.
Technically, the W, distance can be computed by solving a discrete
OT mapping over the cell graph. Details are described below.

W, distance formulation and computation. Here we set up some
mathematical notations as follows: for a graph consisting of m nodes
V=1{1, .., m}, a graph distribution is a non-negative vector p € R7
such that the sum of its elements is equal to one and the distribution
assigns measure p(u) to node u. We assume the graph is equipped
with a graph ground distance d;(u, v) for u, v € V. Specifically, the
graph distance d; is used to specify the cost of the OT, that is, the cost
matrix Cis definedas C,, = ds(u, v)’. Asmentioned in Step 1. Construct
a cell-cell graph and define graph distances, we denote the shortest
path distance on a kNN graph as d;;, while the computational method
also allows other options of d;; or even letting the cost matrix take a
moregeneral form. For twographdistributions pand p’, the W, distance
isdefined as:

§P(p,p") = min (F.0)/", @)
el

where M,, ={FF,, >0, YoFuw =p forall u, 3 F,, = p'(v) forall v}
denotes the set of transport plan Fthat pushes from the source distri-
bution p to the target distribution p'.

Improve computational efficiency. In practice, the minimization in
equation (2) can be solved by linear programming, which is compu-
tationally prohibitive on large cell graph and between all the pairs of
genes. To reduce the cost of computing gene-gene W, distances, we
have designed two strategies to accelerate the computation based
on (1) cell graph coarse-graining and (2) gene graph sparsification.
Briefly, cell graph coarse-graining aims to reduce the cell number by
aggregating the nearest cells into ‘meta-cells’. Gene graph sparsifica-
tion aims to skip the computation for two gene distributions if they
arevery faraway from each other ata coarse-grained level, as they are
unlikely to participate in the same biological process. We note that
while coarse-graining the cell graph to a crude scale can make it fast
for computation, it maylose accuracy and compromise the resolution.
Hence, users should judiciously choose the level of coarse-graining
based on the capacity of their computing resources.

(1) Cellgraph coarse-graining. We coarse-grain the cell graph by
aggregating m cells into m’ ‘meta-cells’ using the k-means
clustering algorithm. Specifically, let M be the m-by-m’
membership matrix where M(u, a) =1/|a| if and only if the cell
ubelongs to the ath subset where |a| represents the number
of cells in that subset, otherwise M(u, a) = 0, then we define an
updated transport cost matrix C’ on the coarse-grained cell
graph by M"CM. Accordingly, the expression level of a given
gene in each ‘meta-cell’ is defined by the sum of its expression
levelin all the cells in that subset. Intuitively, this procedure
can be viewed as providing an approximation of a cell graph
with fewer cell nodes.

(2) Gene affinity graph sparsification. We sparsify the gene
affinity graph by zeroing out the entries where their pairwise
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Wasserstein distances are greater than a threshold. The
threshold is selected such that affinities associated with
distances greater than it will be exponentially small and thus
contribute negligibly to the gene affinity graph. The threshold
is adaptively estimated for each cell using the approximate
Wasserstein distance on a coarse-grained cell graph (strategy 1)
which allows fast computation.

Specifically, this is formulated in the following way: if we want
to construct the gene-gene Wasserstein distance matrixona
cell graph of an original size m, we first coarse-grain m cells
into m’ ‘meta-cells’ using the procedure in strategy 1,

where m'is a size that can be quickly handled. Based on the
gene-by-gene Wasserstein distance matrix constructed

on m’ ‘meta-cells’, we identify the ak nearest neighbors for
each gene (where ais the predefined parameter and k is the
neighborhood size to construct the local-adaptive kernel for
computing the diffusion map). Going back to the computation
on the original cell graph, we then only compute the
Wasserstein distance between a pair of genes if one of them is
included in the other’s ak nearest neighbors. Practically, this
can reduce the running time to 2ak/m of the original, which
computes Wasserstein distances for all pairs of genes.

Step 3. Construct gene trajectories. After we obtain the gene-gene
Wasserstein distance matrix, we convert it into an affinity matrix
A using a local-adaptive Gaussian kernel. Specifically, the kernel
bandwidth for each gene is defined by the distance to its kNN (similar
to ‘Step 1. Construct a cell-cell graph and define graph distances’).
The affinity between gene i and genejis defined by:

®)(p;,p:)° ©)(p;, p;)
Ai,j = %(epr_ﬁ(p—l’zpj)I + exp{_m})_ 3)

(o) @)

Here p; represents the distribution of gene i and g, represents the kth
smallest Wasserstein distance between gene i and other genes. Kis an
integer parameter to be specified by the user, which controls the size of
thelocal neighborhood on the graph (in the sense that A;is only large
onasubject of genesjthat are sufficiently close to ). The affinity matrix
Ainequation (3) isused to construct arandomwalk on the gene-gene
graph (see below in the bullet point—diffusion of probability mass
on the gene graph). The random walk constructed from affinity A
allows us to apply Diffusion Map to obtain alow-dimensional embed-
ding of the genes.

Next, extracting gene trajectories is processed in a sequential
manner when the gene graph exhibits a tree structure. Briefly, we first
identify an ‘extremum’ gene as the terminus for the first gene trajec-
tory and then use a diffusion strategy to retrieve genes belonging to
that trajectory where the terminus gene serves as the initial node of
the diffusion process.

The details are summarized below:

« Selection of the initial node. We retain the top d nontrivial
diffusion map eigenvectors as the low-dimensional spectral
embedding of genes, denoted by S. Let S; represents the spectral
coordinates of gene i, we choose the gene with the largest L,
embedding norm max [1S;]|> as the starting point of diffusion on

the gene graph. The assumption here is that the gene with the
largest distance from the origin of spectral embedding corres-
ponds to the terminus of a specific gene trajectory.

- Diffusion of probability mass on the gene graph. The diffusion
is performed by propagating a point mass from the initial node
in the gene graph. Here the initial probability mass p, can be
formulated as the following unit vector:

Po =(0,...,0,1,0,...,0).

Suppose genej is selected as the initial node; then only the jth entry
of pyisequalto1, while all other entries are zeros. We then constructa
random-walk matrix Pby row-wise normalizing the gene-gene affinity
matrix A. Specifically, Pis defined by:

P=D74,

where Dis the degree matrix of A (that s, D is a diagonal matrix where
D;=3A;). Calculating p, = Pp, gives the updated probability mass
(over genes) after the first time of diffusion. We run the diffusion up
to t times (the integer ¢ is a tunable parameter) on the gene graph to
get the t-step probability mass p, = Pp,. We then select the genes
{J.s.t.p(J) > 1o max; p(j)} as members of the first gene trajectory.
Here 7,is athresholding parameter, which in practice can be set to be
inthe range of 0.02-0.05. Throughout the experiments in this paper,
we choose 7,=0.02.

After the genes that belong to the first gene trajectory are extracted,
we repeat the abovementioned procedure on the remaining genes
to get the second gene trajectory, and then the third, etc. This algo-
rithm allows retrieving a series of gene trajectories successively until
all detectable trajectories are identified.

Step 4. Order genes along each trajectory. To determine the gene
orderingalongagivengenetrajectory, wefirstextract the correspond-
ing submatrix of gene-by-gene Wasserstein distances as computed in
‘Step 2. Compute graph-based Wasserstein distances between genes'.
That s, we only focus on the genes that are the members of that trajec-
tory. We thenrecompute the diffusion map on the Wasserstein distance
submatrix to obtain a new spectral embedding of genes in that trajec-
tory. The first nontrivial eigenvector (EV2) of the new diffusion map
embedding provides an ordering of the genes along that trajectory,
accordingtothe spectral convergence theory of diffusion map**. Spe-
cifically, genes are ordered based on ranking their coordinates along EV2.

Experiments and analyses

Here we present the details for the following: (i) simulation experiments
(‘Workflow of gene dynamics simulation’ and ‘Generalizing count
model using negative binomial distribution to account for overdisper-
sion’), (ii) the biological experiments of mouse embryo skin sample
preparation (‘Experimental details of mouse embryo skin sample
preparation’), (iii) the analyses on real-world biological datasets (‘Ana-
lytical details of real-world examples’), (iv) comparing Wasserstein
distance with other canonical metrics for learning gene geometry
(‘Comparing the Wasserstein metric to other canonical metrics for
learning gene geometry’), (v) comparing GeneTrajectory with cell
trajectory methods in terms of gene ordering inference (‘Comparing
GeneTrajectory with cell trajectory methodsin terms of gene ordering
inference’) and (vi) the robustness evaluation experiments and guide-
lines on parameter selection (‘Hyperparameter selection guidelines
and robustness evaluation’).

Workflow of gene dynamics simulation. We present the details of
our simulation framework for the four examples in Fig. 2, including

(1) acyclicprocess,

(2) adifferential process with two lineages,

(3) alinear differentiation process coupled with CC,

(4) amultilevel lineage differentiation process coupled with CC.

Forillustrative purposes, we firstintroduce the simulation procedure
on a simple linear process. The corresponding plots are shown in
Extended Data Fig.1a,b.

lllustrative example: a linear process. To demonstrate the simplest
scenario (Extended Data Fig. 1a,b), we simulate a linearly progressive
biological process in [0, T], where t = 0 corresponds to the initial cell
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stateand ¢ = T corresponds to the terminal cell state. We simulate a set
ofgenesig,i=1,---,n}, where eachg;is anon-negative vectorin R and
g(u) represents the gene expressionatcellu,u=1, ---, m.

In this example, we let each cell u be uniquely associated with
a pseudotime ¢, whichis i.i.d. uniformly distributed on [O, T]. Our
procedure is to first construct for each gene i a continuous function
A(t) ont € [0, T] and then obtain the gene expression vectors g; from
A(t) based on Poisson sampling. Specifically, the simulation procedure
consists of the following two steps:

- Simulate expected gene expression levels along the process.
For each i, we define a function A,(t), where A(¢,) represents the
expected gene expression level of gene i at cell u. The function
A{0) is associated with a ‘peak time’ ¢/, which represents the time
point when gene i reaches the peak of its expected expression
level. The time ¢} is uniformly sampled from [0, T]. The function
A(t) then takes a parametric expression as

et
_ 1

A(0) = yrae vad} ) 4)

where parameters y, and y, are predefined positive scalars, and a;and d,
are positive random variables to account for the variation in duration
lengthand expressionintensity of different genes. Specifically, we draw
d;and a;from log-normal prior distributions as below:

d; ~IN(ug,0%);  a; ~ LN (e, 02).

« Sample gene reads from a Poisson distribution.
In reality, the sequencing process is based on capturing molecules
(for example, DNA or RNA fragments) in arandom manner. To
mimic the randomness in the sequencing process, we simulate
g,(u) as from a Poisson distribution with a rate A(¢,), namely,

&) ~ PoiA,(t,)), u=1--.m, &)

independently across all uand i. This gives g; € RT as desired.

«  (Optional) sparsify the count matrix by sampling nonzero entries.
Finally, we incorporate an optional step to account for sequenc-
ing depth. This is achieved by randomly selecting a specified
number of entries from the original count matrix without
replacement and subsequently zeroing out the remaining
entries. The probability that an entry is selected is proportional
to its original expression value. This procedure enables us to
generate an artificial dataset with varying levels of missing data.

ExampleA:acyclic process. To simulate a biological process with cyclic
dynamics (for example, CC) (Fig. 2a), based on the former setup of
the linear process simulation, we only need to modify equation (4) as

. % * * 2
min (e ¢, |+ T ], |t - T—¢])
)’zC{iZ

A = nae (6)

All other details are the same as in ‘Workflow of gene dynamics
simulation’.

Example B: a differentiation process with two lineages. To simulate a
biological process with abifurcating structure (for example, myeloid
lineage differentiation) (Fig. 2b), we represent the underlying cell state
by a generalized pseudotime vector T comprising three pseudotime
variables
1, = (6. 0.6). @)
Here £ e [0, 7] represents the pseudotime along the initial
process before lineage differentiation, £ e [0, T®],£? € [0, T®)]

each represents the pseudotime along the process of lineage 1 and
lineage 2 differentiation.

Specifically, if a cell u is along the initial process, then
9500 =(2=0.If a cell uis along lineage 1, then £ =
7O D >0,/ =0. If a cell uis along lineage 2, then £ =
7O,V = 0,62 > 0.

Similarly, we generate 7 = (£, £, £2*) based on the same
procedure as described above to represent the ‘time point’ that
geneireachesthe peak of its expected expression level. Here the expec-
tation of the expression level of gene i at the time point Tis given by:

2
It =71

Vzdf )

A = nae (8)

Parametersy,, y,, a;and d;are defined based on the same procedurein
‘Workflow of gene dynamics simulation’. We then simulate

&) ~ PoiAy(ty)), u=1,--.m, )

independently across uand i, similarly asin equation (5).

Example C: a linear differentiation process coupled with CC. In this
example (Fig. 2¢), we simulate genes for a linear process and a cyclic
process independently and then put them together. Specifically, we
associate each celluwithageneralized pseudotime vector T comprising
two pseudotime variables T, = (¢, £?). Here £ e [0, T®] represents
the pseudotime along the linear process, while £? € [0, T@]represents
the pseudotime along the cyclic process. The sampling processes to
generate {£"}and {#?} areindependent.

Next, we simulate two sets of genes using the procedure sameasin
‘Workflow of gene dynamics simulation’ but with a different definition
ofthe Poissonrate functionA(t). Specifically, the firstlist of genes {g},
1<i<n,, issimulated with

|t(1) _ tgl)* |2

A1) = nae yzd"Z (10)

The second list of genes {g}, n, <j < n,is defined with

. 2
min (€@ — 62|, (@ + T — 627,142 - 7@ — ("))

- d?
(@) = naje V24

(1)

Notably, the first list of genes contributes to the linear process,
while the second list of genes contributes to the cyclic process.
This simulation results in a cylinder-like cell manifold in the high-
dimensional space.

Example D: a multilevel lineage differentiation process coupled with CC.
In this example (Fig. 2d), we simulate genes for a two-level tree-
structured process and a cyclic process independently and then put
themtogether.Inthe general case, let us consider simulating a n-level
bifurcating process, in which the initial process P, first splits into two
lineages (P, and P,), then each lineage proceeds independently and fur-
ther splitsinto another two sublineages (P,;and P,,, P,;and P, ,), and each
sublineage divides againin aniterative manner until a n-level tree struc-
ture is generated. At the same time, all the cells are involved in a cyclic
process. Here each cell u can be associated withageneralized pseudotime
vector T comprising 2" pseudotime variables t, = (£, £, ..., £2"),
eachofthefirst2"—1pseudotime variables correspondstoa pseudotime
location along Py, Py, Py, P11, P13, P21, Pas, - s Py 15 s Pas.. 2, TESPECTI-
n n
vely. For generating theinstances of these 2" - 1 pseudotime variables,
we adopt the similar framework as applied in ‘Workflow of gene
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dynamics simulation’ by requiring that whenacell zis along a daughter
lineage, its pseudotime variables corresponding to all the parent
processes are set to the largest possible values, and its pseudotime
variables corresponding to other processes (excluding the daughter
lineage itself) are all set to 0. Besides, £%" represents the pseudotime
of celluinthecyclic process, whichisindependent fromthe other2" -1
pseudotime variables.

Next, we simulate two sets of genes using the procedure sameasin
‘Workflow of gene dynamics simulation’ but with a different definition
ofthe Poissonrate functionA(t). Specifically, thefirstlist of genes {g;},
1<i<n, issimulated with

2
n n
(e =1l = 1620 = 277))
Vzdf

A(D) = nage (12)

Thesecond list of genes {g}, n, <j < n, is defined with
min (|t(2") — (20| 6@ 4 T@D (20| (e e - tfz")*|)2
J | J ’ J

Vad?

A(T) = naje J

3)

Notably, the first list of genes contributes to the tree-structured
differentiation process, while the second list of genes contributes to
the cyclic process. This simulation results in a coral-like cell manifold
inthe high-dimensional space.

Details of the simulation examples. For the examples shown in Fig. 2,
the evaluation outputs can be found in Supplementary Table 1. Each
example was tested through ten replicates. Specifically, in the first
example, we simulated 1,000 cells, 500 genes underlying the cyclic
process. In the second example, we simulated 1,000 cells, 500 genes
for theinitial process and 250 genes for each daughter lineage process.
Inthe third example, we simulated 5,000 cells, 500 genes for the linear
process and 500 genes for the cyclic process. Inthe fourthexample, we
simulated 10,500 cells, 400 genes for the cyclic process and 200 genes
for each sublineage process. For all these samples, we adopted the fol-
lowing model parameters:y, =25, u,=0,u,=0,0,=0.25,0,=0.25.We
chose T=10in the fourth example, while T=15in the other examples.
We chose y, =2 for simulating the cyclic process, while y, = 8 for simu-
lating the other processes. In simulation experiments, genes along a
circulartrajectory are ordered by their angular coordinates of the first
two nontrivial diffusion map eigenvectors.

Generalizing count model using negative binomial distribution to
account for overdispersion. To investigate the impact of dispersion
on the performance of GeneTrajectory, specifically in terms of gene
ordering, we performed a negative binomial variant of our second
and third simulation experiments in Fig. 2. For each dataset, we
simulated three distinct sparsity levels (5%, 10% and 20%). For each
sparsity level, we tested four different dispersion levels (parameter-
ized by 0), each comprising ten technical replicates. A lower 8 value
indicates higher dispersion. We evaluated the consistency between
the inferred gene ordering and the ground truth by calculating
their Spearman correlation (Supplementary Fig. 1). It shows that
GeneTrajectory exhibits remarkable stability across all sparsity and
dispersion levels.

Experimental details of mouse embryo skin sample preparation.
Mice. K14Cre (ref. 56) mice were bred to Wntless™ (ref. 57) mice. A
random population of both male and female embryos was used for all
experiments. All procedures involving animal subjects were performed
under the approval of the Institutional Animal Care and Use Committee
of'the Yale School of Medicine.

EdU administration. To assess proliferation, EQU was administered
to pregnant mice intraperitoneally (25 pg gm™) and embryos were
collected after 1.5 h.

Insitu hybridization.Intotal, 10% of formalin-fixed paraffin-embedded
(FFPE) whole embryos were used for histological analysis. FFPE
specimens were subsectioned at 10 um thickness. The RNAscope
Multiplex Fluorescent Detection Kit v2 (ACDBio, 323110) was used for
single-molecule fluorescence in situ hybridization (FISH) according
to the manufacturer’s protocol. Briefly, subsections were deparaffi-
nized and permeabilized with hydrogen peroxide followed by antigen
retrieval and protease treatment before probe hybridization. After
hybridization, amplification and probe detection were done using
the Amp 1-3 reagents. Probe channels were targeted using the pro-
vided HRP-C1-3 reagents and TSA (tyramide signal amplification)
fluorophores—Cy3 (Akoya Biosciences, NEL744001KT), Cy5 (Akoya
Biosciences, NEL745001KT) and fluorescein (Akoya Biosciences,
NEL741001KT). EdU staining was done using the Click-it EdU ImagingKit
Alexa 488 (Life Technologies, c10338) according to the manufacturer’s
instructions. Nuclear counter-stain was done using Hoechst 33342
(Invitrogen, H3570) before mounting with SlowFade Mountant. RNA
scope probesused (ACDBio)—Mm-Lef1(441861) and Mm-Sox2 (401041).

Microscopy. FISH paraffin-embedded images were acquired using the
Leica TCS SP8 Gated STED 3X super-resolution confocal microscope
with a x40 oil immersion (Numerical Aperture 1.3) objective lens,
scanned at 5 pm thickness, 1,024 x 1,024 pixel width, 400 Hz.

Single-cell dissociation. Embryonic dorsolateral/flank skin was micro-
dissected from E14.5 littermate control and mutant embryos and dis-
sociated into a single-cell suspension using 0.25% trypsin (Gibco,
Life Technologies) for 20 min at 37 °C. After genotyping, two to three
embryos were pooled by condition. Single-cell suspensions were then
stained with DAPI (Thermo Fisher Scientific, NBP2-31156) just before
fluorescence-activated cell sorting.

Fluorescence-activated cell sorting. DAPl-excluded live skin cells were
sorted onaBD FACS Ariall (BD Biosciences) sorter withal00 pm noz-
zle. Cells were sorted in bulk and submitted for 10X Genomics library
preparation at 0.75-1.0 x 10° ml™ concentration in 4% fetal calf serum/
phosphate buffered saline (FCS/PBS) solution.

H-score quantification. For quantification based on FISH, cells with
4-5dotswere considered positive (according to the RNAScope manu-
facturer’sinstructions) and subsections from a total of n = 4 different
embryos were examined. To measure RNA expression levels, Hscores
were calculated according to ACDBio manufacturer’s instructions—a
cell with O dot is scored 0, 1-3 dots is scored 1, 4-9 dots is scored 2,
10-15dotsand/orless than10% clustered dotsis scored 3and more than
15 dots and/or more than 10% clustered dots is scored 4; then the
final Hscore of agiven cell type Ais calculated by summing the (% cells
scored Bwithin all cellsin A) x Bfor score Bin 0-4.

SCRNA-seq and library preparation. Chromium Single Cell 3’ GEM
Library and Gel Bead Kit v3.1 (PN-1000121) were used according to the
manufacturer’s instructions in the Chromium Single Cell 3’ Reagents
Kits V3.1 User Guide. After cDNA libraries were created, they were
subjected to Novaseq 6000 (lllumina) sequencing. For each scRNA-seq
experiment, control and littermate mutant samples were prepared
in parallel at the same time, pooled and sequenced on the same lane.

Analytical details of real-world examples. Human myeloid dataset
analysis. Myeloid cells were extracted from a publicly available 10x
scRNA-seq dataset (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3). QC (quality
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control) was performed using the same workflow in https://github.
com/satijalab/Integration2019/blob/master/preprocessing_scripts/
pbmc_10k_v3.R. After standard normalization, highly variable gene
selection and scaling using the Seurat R package®®, we applied PCA and
retained the top 30 PCs. Four subclusters of myeloid cells were identi-
fied based on Louvain clustering with a resolution of 0.3. Wilcoxon
rank-sum test was used to find cluster-specific gene markers for cell
type annotation.

For gene trajectory inference, we first applied diffusion map on
the cell PCembedding (using alocal-adaptive kernel, each bandwidth
is determined by the distance toits kNN, k = 10) to generate a spectral
embedding of cells. We constructed a cell-cell kNN (k=10) graph based
on the coordinates of the top five nontrivial diffusion map eigenvec-
tors. Among the top 2,000 variable genes, genes expressed by 0.5-75%
of cells were retained for pairwise gene-gene Wasserstein distance
computation. The original cell graph was coarse-grained into agraph of
size1,000. We thenbuilt agene-gene graph where the affinity between
genes is transformed from the Wasserstein distance using a Gaussian
kernel (local-adaptive, k = 5). Diffusion map was used to visualize the
embedding of the gene graph. For trajectory identification, we used
a series of time steps (11, 21 and 8) to extract three gene trajectories.
Gene ordering was done based on the algorithm described in ‘Step 4.
Order genes along each trajectory’.

Mouseembryo skindata analysis. We separated dermal cell populations
from the newly collected mouse embryo skin samples (‘Experimental
details of mouse embryo skin sample preparation’; aligned to the
mouse genome mm10 by CellRanger v6.1.2). Cells fromthe WT and the
WIs mutant were pooled for analyses. After standard normalization,
highly variable gene selection and scaling using Seurat, we applied
PCA and retained the top 30 PCs. Three dermal cell types were strati-
fied based on the expression of canonical dermal markers, including
Sox2, Dkk1 and Dkk2. For gene trajectory inference, we first applied
diffusion map on the cell PCembedding (using alocal-adaptive kernel
bandwidth, k=10) to generate a spectral embedding of cells. We con-
structed acell-cell kNN (k=10) graph based on the coordinates of the
top ten nontrivial diffusion map eigenvectors. Among the top 2,000
variable genes, genes expressed by 1-50% of cells were retained for
pairwise gene-gene Wasserstein distance computation. The original
cellgraph was coarse-grained intoagraphofsize1,000. We then built
a gene-gene graph where the affinity between genes is transformed
from the Wasserstein distance using a Gaussian kernel (local-adaptive,
k =5). Diffusion map was used to visualize the embedding of the gene
graph. For trajectory identification, we used a series of time steps (9,
16 and 5) to sequentially extract three gene trajectories. To compare
the differences between the WT and the Wls mutant, we stratified
Wnt-active upper dermal cells into seven stages according to their
expression profiles of the genes binned along the DC gene trajectory.

CCgene trajectory validation. We extracted the Cyclebase*® gene list
fromSupplementary Table 5Sinref. 60, in which genes are categorized
into groups of G1/S, S, G2, G2/M and M phase markers. We also incor-
porated histone genes into the S phase gene list as they are upregu-
lated during the S phase for the active synthesis of histone proteins®’.
We plotted the distribution of genes from different phases along the
genetrajectory associated with the CC processin the dermal example
(Extended Data Fig. 3b). We observed that genes corresponding to
the G1/S phase were located around the start of the gene trajectory,
followed by a group of genes highly expressed during the S phase.
G2M-related genes were located along the second half of the gene
trajectory. Specifically, G2 genes appeared in the middle of the trajec-
tory, followed by agroup of genes regulating the switch from G2 to M.
Genes associated with the M phase were found around the end of the
trajectory. Thisindicates that GeneTrajectory can effectively capture
gene dynamics associated with different phases of the CC.

Different visualizations of gene embedding. Gene embedding visuali-
zationis agnostic to gene-gene distance computation and trajectory
identification. Different ways of gene embedding visualization for the
two real-world examples included in the manuscript are shown and
compared in Supplementary Fig. 2. We would advise users to apply
diffusion-based visualization techniques, for example, diffusion map
or PHATE®, to display the trajectories, as they were designed to capture
and reveal the connectivity of graphs.

Assessing the stability of capturing gene processes in the dermal
example. After identifying three prominent gene trajectories by run-
ning GeneTrajectory on the original cell graph (with the maximum
of iteration = 5,000 when calculating gene-gene distances), we con-
structed a new cell graph using only the genes extracted from each
gene trajectory. We then reran the gene trajectory inference on each
new cell graph for (1) all the genes and (2) the same set of genes that
were used to construct the new cell graph (Supplementary Fig. 3). We
found that the ordering of the genes used to define the new cell graph
stayed in a high degree of consistency with their original ordering
inferred by our method (when we constructed the cell graph using all
genes). This consistency highlights the stability of GeneTrajectory in
inferring gene dynamics underlying each process, unaffected by the
presence of coexisting gene programs and biological effects.
Meanwhile, we observed potential caveats of iteratively running
GeneTrajectory onthe cell graphs constructed using the genes along a
previouslyidentified gene trajectory. Thisis because, in eachiteration,
the cellgraphis only determined by the subset of genes corresponding
to a specific process. There is no theoretical guarantee that the cell
graphstillencodes the geometricinformationnecessary foridentifying
agenetrajectory associated withadifferent process. In other words, the
new cell graph may distort the cell geometry for the other processes.

Comparing the Wasserstein metric to other canonical metrics for
learning gene geometry. We conducted an extensive benchmark on
using different metrics (including the Earth Mover’s distance, Euclidean
distance, Pearson correlation distance, Spearman correlation distance,
Cosine similarity, total variation distance (equivalent to L1 distance or
Manhattan distance in its discrete form), Jensen-Shannon distance
and Hellinger distance) tolearn gene geometry in simulation datasets
(SupplementaryFig.4). Datasets for evaluation were generated based
on simulations (corresponding to the second and third simulation
examplesin Fig. 2). Specifically, we simulated datasets with three dif-
ferent sequencing depths (that is, the percentage of nonzero entries
in the gene-by-cell count matrix = 2.5%, 5% and 10%), each having ten
replicates. To evaluate the performance, we calculated the Spearman
correlationbetween eachinferred gene ordering and the ground truth.
The Wasserstein distance recovers gene ordering more accurately and
robustly than other metrics.

Comparing GeneTrajectory with cell trajectory methods in terms
of gene ordering inference. We performed a benchmark to com-
pare GeneTrajectory with five representative cell trajectory inference
methods, Monocle 2 (ref. 16), Monocle 3 (ref. 10), Slingshot’, PAGA™
and CellRank". We assessed their performances on the following two
types of datasets:

« simulation datasets (corresponding to the third simulation
example in Fig. 2) with varying sparsity levels of the count matrix
(that s, the percentage of nonzero entries in the gene-by-cell
count matrix = 2.5%, 5%,10% and 20%) and different numbers of
cells (500,1,000 and 2,500).

« thereal-world dermal dataset depicted in Figs. 4 and 5 with or
without cell cycle effects regression.

For these cell trajectory inference approaches, after cell pseudo-
time inference, we leveraged GAM using the mgcv® (Mixed GAM
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Computation Vehicle with Automatic Smoothness Estimation)
R package to smooth the gene expression along the cell pseudotime,
followed by ordering the genes based on their peak locations. For the
simulation datasets, we calculated the Spearman correlation between
the true gene order and the inferred gene order by each method. For
the dermal dataset, the assessment is done by examining the ordering
of experimentally verified markers during DC differentiation.

In summary, Monocle 2 and Monocle 3 require the specification
of astarting (root) cell state to generate cell pseudo-order. In simula-
tion experiments, we chose the cell with the ground truth pseudotime
t=0as the starting cell state. In the dermal dataset, we first looked at
the diffusion map embedding of cells to define the tip cell (express-
ing Sox2) as the terminal cell state of DC differentiation process. We
then chose the upper dermal cell that has the largest distance (in the
transcriptome space) to the terminal cell state as the starting cell state.
PAGA and SlingShot require the specification of astarting cell cluster to
create cell pseudotime. Based on the same strategy as described above,
we chose the cluster containing the starting cell state as the starting
cell cluster. The core steps in each analysis workflow for cell trajectory
inference methods are summarized below.

< SlingShot—we used the getLineages function to construct
the minimum spanning tree(s) on cell clusters. We then fitted
principal curves using the getCurves function, which served as
the basis for cell pseudotime construction.

«  PAGA-—cells were reclustered using the Leiden method imple-
mented in the Scanpy toolkit. We constructed the PAGA graph of
these cell clusters and inferred the progression of cells through
geodesic distance along the graph using scanpy.tl.dpt.

* Monocle 2—we used the built-in DDRTree method for cell dimen-
sion reduction. We used the orderCells function to generate the
cell ordering while the root state was defined by the starting cell
state as noted above.

» Monocle 3—cells were partitioned using the built-in Louvain
method. We learned the principal graph across all partitions and
then ordered the cells using the order_cells function.

« CellRank—for the simulation experiments, because we don’t
have the information about the spliced and unspliced read
counts, we used CellRank’s CytoTRACEKernel to infer the transi-
tion dynamics and cell pseudotime. For the dermal example, we
applied CellRank based on RNA velocity inference. Specifically,
the spliced/unspliced counts were quantified by the velocyto
toolkit. We used scVelo’s dynamical model®* to infer RNA
velocities. CellRank was then applied to infer the initial states
and terminal states of transition and construct cell lineages.

We selected the cell lineage that terminates its transition at the
DC cell population and fitted GAM models (built-in CellRank)
to order the genes along the cell pseudotime of the selected
lineage.

Hyperparameter selection guidelines and robustness evaluation.
Wewould advise users to choose and determine the parameters accord-
ing to the following standards:

« Ifusers choose to use diffusion maps (or PCA) to generate a cell
embedding. The number of eigenvectors (or PCs) for cell graph
dimensionality reduction can be ascertained by examining the
eigenvalues in descending order to identify an eigengap or the
point where the spectrum starts to flatten out.

« Thekincell kNN graph construction is a user-defined hyperpa-
rameter. The chosen value for k should ensure the cell graph is
fully connected.

« The number of gene programs is determined by the number of
branches (gene trajectories) identifiable from the gene graph.
This determination is made interactively during the process of
branch identification. Specifically, when a new branch is being

extracted, we exclude the genes that have already been assigned
to existing branches. Subsequently, we identify one of the
remaining genes that is most distant from the origin of diffusion
embedding as the tip of the next branch. If the remaining genes
visually form an indistinct cloud that does not exhibit a trajec-
tory structure, we cease the process of branch identification.

e Thetimestep t for random walks in each iteration of branch
identification is interactively determined by inspecting the gene
embedding. Specifically, when ¢t increases, a greater number
of genes are incorporated as the members of the branch to be
extracted. The optimal ¢ for extracting each branch should yield
the longest trajectory without incorporating the genes in the
indistinct cloud.

« The number of gene bins for visualization is determined by the
resolution users wish to inspect for shifting patterns in gene
distributions over cell embedding. An ideal number would be
between 5 and 10. The choice of bin number does not affect gene
trajectory inference.

We conducted an extensive evaluation to assess the robustness
of GeneTrajectory with varying combinations of parameters. These
parameters included k for constructing cell-cell kNN graphs, ng;,, for
dimensionality reduction and k, for determining local-adaptive kernel
bandwidthsindiffusion map construction. To assess GeneTrajectory’s
performance on simulated datasets, we computed the Spearman
correlation between theinferred gene ordering and the ground truth
ordering. For the real-world examples, we performed a cross-validation
by examining the Spearman correlation between all pairs of inferred
gene orderings. The results of this evaluation are depicted in Supple-
mentary Figs. 5-7. Specifically, these experiments include:

« Wesimulated bifurcation datasets and cylindrical datasets
(corresponding to the second and third simulation examples
in Fig. 2) with varying sparsity levels (that is, the percentage of
nonzero entries in the gene-by-cell count matrix =2.5%, 5%, 10%
and 20%, each has ten replicates; each replicate includes 1,000
cells). We tested GeneTrajectory using a combination of k=5, 10,
15,20, 25 and ng;, = 5, 10, 15, 20, 25. The evaluation outputs are
shown in Supplementary Fig. 5.
Using the same simulation datasets mentioned above, we tested
GeneTrajectory using k, =5, 10, 15, 20, 25 for constructing the
diffusion embedding of cells. The evaluation outputs are shown
in Supplementary Fig. 6.
In two real-world examples included in this manuscript, we
tested GeneTrajectory on cell graphs constructed using
different numbers of eigenvectors (ng, = 5,10, 15, 20, 25).
The evaluation outputs are shown in Supplementary Fig. 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The human PBMC scRNA-seq dataset is available at https://support.
10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_10k v3.Themouseembryonicskindatasetgeneratedandanalyzed
in this study is available from the Gene Expression Omnibus with the
accession GSE255534. The processed Seurat data objects for these two
datasets are available at Figshare (https://doi.org/10.6084/m9.
figshare.25243225). The Cyclebase gene list was extracted from Sup-
plementary Table 5inref. 60.

Code availability
TheR package of GeneTrajectory and the code used for dataanalysis are
available on GitHub (https://github.com/KlugerLab/GeneTrajectory).
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modeled as abell-shaped function of ¢, its real expression level in agiven cell is
drawn from a Poisson distribution (see details in Methods). b. GeneTrajectory
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Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-024-02186-3

ICAM2

cb1C

s
1 .

CCR5 PKIB

UMAP2

UMAP1

Intermediate monocytes

CD14+ monocytes

CD16+ monocytes

Myeloid type-2 dendritic cells

Extended Data Fig. 2| Myeloid cell type stratification. a. UMAPs of selected
well-studied myeloid gene markers identified along gene trajectories.
b. Heatmap of cell-type specific gene markers (showing for each cell type the

Selected gene markers involved in gene trajectories

FCGR3A SELL

CD2

CD72

CLEC5A

: 20
15

i 10

; 05
00

CSF1R

b

S100A12
acoxsap (TN

VCAN J
\ H H I H \

CYP1B1
NCF1
stcoas \ il | I
RBP7 | H IH
SELL \ \ \ \
LGALS2
HLA-DRB1
HLA-DPB1
HLA-DMA
CPVL
HLA-DPAL
HLA-DMB
D2
FCGR3A
CDKNIC
RHOC
TCF7L2
LYPD2
SMIM25
MS4AT
IFITM2
cpic
FCER1A
CLEC10A
HLA-DQAL
HLA-DQA2
HLA-DQB1

Identity
® CD14+ monocytes
Intermediate monocytes
# CD16+ monocytes

» Myeloid type-2 dendritic cells

Expression

Percent Expressed

0
¢ 25
® 50
® 75

0 6"’@\’0\’@‘2 9‘2‘"\&
&

RS
e @3\\

genes with the highest fold change in the average expression between that cell

e%

A
S «,\?f;fg@
OJR

@ 100

type and the remaining ones). c. Dot plot of cell-type specific gene markers
inb. The color hereindicates the average expression level of each gene in the
corresponding cell type (after scaling).

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article https://doi.org/10.1038/s41587-024-02186-3

a b
Cyclebase gene list
Dkk2 Dkk1 Sox2 y 9
i 2
% i 0.10
i B 1 phase
0 G1/s
= s
w
Ccnbl & G2
© 005
: G2M
€ ﬁ 20 M
! 15
b it 10
< 2 ) 05
=) : 0.0 0.00

0 20 40 60 80

Gene ordering
UMAP1

Extended Data Fig. 3 | Dermal cell type stratification. a. UMAPs of gene expression profiles. b. Distribution of genes associated with different cell cycle phases along
the CC gene trajectory.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article https://doi.org/10.1038/s41587-024-02186-3

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
a
Wildtype
Knockout
b
Wildtype
Knockout
d Lef1 (Wnt) level change across stages
c Stage of DC differentiation
) Wildtype
Wildtype Knockout mean
2 I 15
E’ 1.0
1 05
Other 00
® Staget .
: g::g:g Stage1 Stage2 Stage3 Sl‘aged Stage5 Stage6 Stage7
stage
® Stage4
® Stage5 Knockout e
o ® Stage6 2 s
<§( © Stage7 - l
) 2 1.0
1 i ' i 05
UMAP1 | | . 00
Stage1 s:gez Stage3 S(a.geA S(a.geﬁ Stage6 Sla_ge7
stage
Extended Data Fig. 4| Gene dynamics comparison between the wild type Lefllevelis uniformly lower in the WiIs KO thanin the wild type. The box
and Wis mutant. a. Gene bin plots of the LD gene trajectory, split by condition. represents theinterquartile range (IQR), with the line inside the box indicating
b. Gene bin plots of the CC gene trajectory, split by condition. c. Cell UMAPs are the median. Whiskers extend to amaximum of 1.5x IQR beyond the box, with
colored by the cell states which are categorized into multiple stages, split by outliers represented as individual points.

two conditions. d. Change of LefI (Wnt) level across all stages, split by condition.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article https://doi.org/10.1038/s41587-024-02186-3

GeneTrajectory

@ . FST Foxd1 Sox18
Grem1 Ptch
(Grem1) (Gi (Ptch1] Cdknial

S
0 25 50 75 -
Gene ordering
Slingshot
Dkk1 i
Ptch1

Gy 1ot
S
>

0 25 50 75
Gene ordering

Monocle2

(Git) [Bmp4)

Front)

S
0 25 50 75 -
Gene ordering
Monocle3
~__ |Grem1 [ﬁ Bmp4
e ot ([Ptchf | (Cdkn1g)
S
0 25 50 75 -
Gene ordering
PAGA
Left
ohs
S
0 25 50 -
Gene ordering
CellRank
[Pich1 | [Sox2
S 1 G (So2)  (Empa)
Dt Grem ] (Foxd1] (Clik{1a) it
S
0 25 50 75 -

Gene ordering

Extended DataFig. 5| Gene ordering results obtained by different methods on the dermal condensate genesis data. The orderings of key genes activated during
the dermal condensate differentiation process are delineated. Cell cycle effects were regressed out when constructing the cell graph.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

nature portfolio

Corresponding author(s):  Yuval Kluger, Peggy Myung, Richard A. Flavell

Last updated by author(s): 02/18/2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

)
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
wv
[
3
=
Q
<

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 [O0XX [ XIS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection A mouse embryonic skin dataset (including scRNA-seq data generated from a pair of wildtype and Wntless knockout mice) was collected for
data analysis in this study.

Data analysis GeneTrajectory 0.1.0, Seurat 4.3.0, mgcv 1.9-0, slingshot 2.8.0, monocle 2.22.0, monocle3 1.3.4, cellrank 1.5.1, scvelo 0.2.5, velocyto 0.17.17,
Cellranger 6.1.2, scanpy 1.9.1

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

1c0c Y2Io

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The human peripheral blood mononuclear cell (PBMC) scRNA-seq dataset is available at https://support.10xgenomics.com/single-cell-gene-expression/
datasets/3.0.0/ pbmc 10k v3. The mouse embryonic skin dataset generated and analyzed in this study is available from the Gene Expression Omnibus (GEQ) with




the accession number GSE255534. The processed Seurat data objects for these two datasets are available at Figshare (dx.doi.org/10.6084/m9.figshare.25243225).
The Cyclebase gene list was extracted from the Supplementary Table 5 in https://doi.org/10.1038/s41467-017-00039-z..

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender n/a

Population characteristics n/a
Recruitment n/a
Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size GeneTrajectory was applied to multiple simulation datasets (each with 10 replicates) and two real-world biological datasets. The number of
datasets involved in the study was determined based on the availability of data and the complexity of the research question. For the mouse
skin experiments, n =8 (WT)and n =9 (KO) embryos examined over 4 biologically independent experiments with similar results.

Data exclusions  PBMC myeloid example: Data was downloaded from https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_10k_v3. QC was performed using the same workflow in https://github.com/satijalab/Integration2019/blob/master/
preprocessing_scripts/pbmc_10k_v3.R. Myeloid cells were extracted and retained in the analyses using markers CD14, FCGR3A, CD1C.
Dermal condensate example: Cells with nGene <= 1000 or nGene >= 6000 or mitochondrial ratio > 10% were removed for QC. Dermal cells
were extracted and retained in the analyses using markers Dkk1, Dkk2, Lef1, Sox2.

Replication For WIs KO and control samples, scRNA-seq inferences and gene expression were validated using quantitative FISH as well as other data not
shown (whole mount volumetric immunofluorescent staining of dermis and epidermis with Sox2, Sox9, EdU). The phenotype and finding
were repeated n=4 for biological experiments and 2 embryos per condition were pooled for scRNA-seq experiments. The RNA findings are
consistent with FISH results (where both females and males were used) and another unpublished scRNA-scATAC-seq (multiome) experiment
(data not shown), which will be provided to reviewers if requested.

Randomization  Embryos were randomly prepared simultaneous for scRNA-seq preparation and pooled only after genotyping for mutant alleles. Biological
experiments were not randomized, as it would be impractical to randomly select samples to perform FISH (only 25% mutant per litter).
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Laboratory animals Species: mus musculus, strain K14Cre;Wisflox/flox (Dassule et al., 2000 and Carpenter et al., 2010); age: E14.5.
All mice were housed according to an approved IACUC protocol within a limited-access animal facility that maintains a strict light
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differences between sexes at this gestational age with respect to dermal differentiation genes or clusters.

Field-collected samples  No field collected samples were used in the study.

Ethics oversight All procedures involving animal subjects were performed under the approval of the Institutional Animal Care and Use Committee of
the Yale School of Medicine. All other regulatory standards were met in accordance with Yale’s Environmental Health and Safety
standards.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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