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Rapid Design of Fully Soft Deployable Structures Via

Kirigami Cuts and Active Learning

Leixin Ma,* Mrunmayi Mungekar, Vwani Roychowdhury,* and M.K. Jawed*

Soft deployable structures — unlike conventional piecewise rigid deployables
based on hinges and springs — can assume intricate 3-D shapes, thereby
enabling transformative soft robotic and manufacturing technologies. Their
virtually infinite degrees of freedom allow precise control over the final shape.
The same enabling high dimensionality, however, poses a challenge for
solving the inverse problem: fabrication of desired 3D structures requires
manufacturing technologies with extensive local actuation and control, and a

1. Introduction

Morphing planar geometry to 3D shapes
can find a wide variety of engineering
applications!!! from additive and subtrac-
tive manufacturing to soft actuators!>?!
and architecture.*°*/ Multiple mech-
anisms have been reported for the
2D to 3D transformation, including

trial-and-error search over a large design space. Both of these shortcomings
are addressed by first developing a simplified planar fabrication approach that
combines two ingredients: strain mismatch between two layers of a
composite shell and kirigami cuts that relieves localized stress. In principle, it
is possible to generate targeted 3-D shapes by designing the appropriate
kirigami cuts and the amount of prestretch (without any local control).
Second, a data-driven physics-guided framework is formulated that reduces
the dimensionality of the inverse design problem using autoencoders and
efficiently searches through the “latent” parameter space in an active
learning approach. The rapid design procedure is demonstrated via a

range of target shapes, such as peanuts, pringles, flowers, and pyramids.
Experiments and our numerical predictions are found to be in

good agreement.

L. Ma, M. Mungekar, M. Jawed

Dept. of Mechanical and Aerospace Engineering
University of California

Los Angeles, CA 90095, USA

E-mail: leixin.ma@asu.edu; khalidim@seas.ucla.edu
L.Ma

School for Engineering of Matter, Transport & Energy
Arizona State University

Tempe, AZ 85287, USA

V. Roychowdhury

Dept. of Electrical and Computer Engineering
University of California

Los Angeles, CA 90095, USA

E-mail: vwani@g.ucla.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/admt.202301305
© 2024 The Authors. Advanced Materials Technologies published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial License, which permits
use, distribution and reproduction in any medium, provided the original
work is properly cited and is not used for commercial purposes.

DOI: 10.1002/admt.202301305

Adv. Mater. Technol. 2024, 9, 2301305 2301305 (1 of 14)

residual  stress-induced  bending,!”]
temperature-induced growth,®l inflat-
able membranes,!”! composite materials
controlled by external stimuli (e.g., tem-
perature and pH),!") paper folding,!'!
swelling,[''!  mechanical loads, and
boundary conditions.['>1*] The fabrica-
tion of these shape-morphing structures
often requires detailed local control of the
geometry, curvature, and stress.[17:13-1]
Even though optimizing and realizing
arbitrary 3D deformed shapes, such as
a human face, is possible, this is often
done at a cost of complicated fabrication
technique.['?%]  Moreover, the inverse
design problem of optimizing the phys-
ical parameters to achieve the targeted
shape typically requires a trial and error
search over a high-dimensional space.

Is it possible to rapidly design targeted shape-morphing struc-
tures by using structural global instability? To address such prob-
lems, this work introduces a new paradigm for planar manufac-
turing. A soft kirigami composite (a bilayer shell) deforms from
2D plane to the target 3D shape due to two key mechanisms,
which are the kirigami (i.e., material removal)**-23] and strain
mismatch.[*#?°] Due to the strain mismatch between the lay-
ers, the structure experiences global out-of-plane buckling. Com-
pared to fabrication techniques requiring precise control of vari-
ous parts of the structure, the reported technique first developed
in ref. [26] is much easier to implement.

Nevertheless, the convenience of this manufacturing approach
alone may not ensure its widespread adoption. To achieve pro-
grammability of diverse classes of target shapes, we need to
locally learn how to remove materials, by introducing specific
kirigami cut patterns. Otherwise, the buckling patterns may be
limited to only a few buckling modes.[2+2%]

Then, the design problem reduces to rapidly optimizing
kirigami patterns in 2D (i.e., marking the areas where material
has to be removed) that would morph the planar structure to a
desired 3D shape. However, kirigami cuts have highly nonlocal
impact on the structure. A cut at a certain location may affect the
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Figure 1. The inverse problem aims at designing target 3D shapes by finding the optimal fabrication strategies. Six target shapes are shown on the
left, while the six experimental results of soft kirigami composites correspond to the target shapes shown on the right. The planar fabrication uses a
kirigami layer and a bottom layer under radial prestrech is shown in the middle. For the kirigami layers, we considered three classes kirigami patterns, 1)
unidirectional strips, 2) reflectional symmetry, and 3) fourfold radial symmetry. The machine learning-based optimization is conducted iteratively until
the manufactured soft kirigami composite sufficiently resembles the target shapes.

global shape of the deformed shell. Hence, the kirigami pattern
optimization for target 3D shapes cannot be conducted locally
in space, but requires a global approach to explore the large de-
sign space.

Such inverse design problems where new structures and mate-
rials are designed for target functionalities have received a signif-
icant boost from recent advances in machine learning (ML). Var-
ious ML algorithms, such as Variational Autoencoder (VAE)!?:28]
and Generative Adversarial Network?3% have been successfully
applied. However, most of these ML-aided inverse design meth-
ods still depend on the generation of a computationally pro-
hibitive number of forward simulation data.[?3!l A network is
then trained to learn the inverse map in a supervised manner,
with the output of the forward simulation used as input, and
the corresponding design parameters as the desired output. This
computational overhead of generating forward simulation data
is particularly severe for our case. Given a kirigami pattern and
other parameters, it takes minutes of computing time to gener-
ate corresponding 3D shapes. To train an inverse ML system, one
could require millions of such forward simulations, making such
inverse approaches computationally intractable for our applica-
tion.

In this paper, to solve the global design and optimization prob-
lem for buckling-induced morphing soft composites, we make a
judicious use of recent advances in dimension reduction tech-
niques (e.g., VAEs), and integrate them with active learning
techniques (e.g., Bayesian optimization), where forward compu-
tations are done on-demand. Such active learning techniques,
when used by themselves, typically do not work well for high-
dimensional search spaces in our application. The use of model
reduction techniques of ML makes these methods practicable.
We commence by generating sets of candidate kirigami patterns
with symmetry properties mirroring the target 3D shape. A VAE
parameterizes these symmetric patterns using low-dimensional
latent features, thereby reducing the dimensionality of the in-
verse problem and enabling the generation of more versatile pat-
terns compared to alternatives.*2! Subsequently, we iteratively
seek optimal latent features using the Bayesian Optimization
framework.33] We validate our approach through numerical sim-
ulations and controlled tabletop experiments, successfully gener-
ating target 3D shapes with various symmetric properties. The
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strong agreement between experimental results and simulations
highlights the potential of this method for algorithmic metama-
terial design.

2. Overall Concept

2.1. Problem Description

The inverse problem aims at designing target 3D shapes by find-
ing the optimal fabrication strategies, as shown in Figure 1.
The proposed fabrication technique is shown in Figure 2A(i)
to A(ii). We start from two thin, flexible and stretchable plates
(Figure 2A(i)). The maximum radius of the top layer is R.
First, strain mismatch between two plates or layers is created
by radially stretching the bottom one with the amount of pre-
stretch A (Figure 2A(ii)). Then, the top layer of the same ra-
dius as the stretched bottom layer is glued onto the bottom layer
(Figure 2A(iii)). The strain mismatch between the two layers
induces out-of-plane buckling (Figure 2A(iv)), since bending is
less energetically expensive than compression for thin shells.['!]
However, using strain mismatch in composite shells yields a lim-
ited number of structural modes,**?%1 and the elastic shells may
easily wrinkle (localized deformation) to relax the compressive
stresses instead of a global change in shape.l**] Hence, material
needs to be strategically removed from the top layer to create
kirigami patterns in order to yield a target 3D shape. The the-
oretical characterization of these kirigami-aided stress relief is
still not fully available. The material removal expands the possible
number of attainable 3D shapes from 2D, with the out-of-plane
buckling depending on both the magnitude of prestretch and ge-
ometric parameters (including kirigami cuts).!*>*¢l Based on this
rapid fabrication technique, we aim at inversely designing the op-
timal kirigami patterns, size of the structure (measured by radius
R), and prestretch A such that a target 3D shape can be achieved.

2.2. Machine Learning Framework for Design of Soft Kirigami
Composite Structure

To tackle the challenges of Edisonian searches, our machine
learning-aided design process is illustrated in Figure 2B(i),(ii),
and discussed in more detail below.

© 2024 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Figure 2. A) Overview of the fabrication concept: The composite structure with a kirigami layer and a substrate layer bend to a free buckling shape under
radial prestretch. B) Flow chart of the data-driven design and optimization of soft kirigami composite. B(i) A VAE to reduce the dimension of kirigami
patterns to a small number of latent variables. B(ii) A Bayesian Optimization loop that iteratively searches the optimal combination of latent kirigami

pattern variables, size of the structure, and amount of prestretch that results to the target 3D topology.

2.3. Dimension Reduction: Compact and Continuous
Representation of Kirigami Patterns

A kirigami pattern can be represented by an N X N binary im-
age, where the pixels in the uncut areas are represented by 1’s.
This would correspond to a very high (N?) dimensional search
space. Recent advances in Computer Vision (CV), however, have
shown that such a family of images typically lies on a much
smaller dimensional (say D) manifold, referred to as the latent
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space. One can then search only over a D-dimensional space (e.g.,
D = 6 in our design), leading to considerable computational sav-
ings. A VAE is one ideal computational model that can be used
to learn a generative model of kirigami patterns by learning the
underlying distribution of the patterns to generate new samples
from that distribution. In a VAE model, a) every kirigami image
can be mapped to a D-dimensional vector using an Encoder net-
work, and b) every D-dimensional vector in the latent space can
be mapped to a sample kirigami image using a Decoder network.
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The Encoder and Decoder networks are trained simultaneously,
such that the latent features are representative enough for vari-
ous kirigami patterns. Once trained, any active learning frame-
work can view the space of kirigami patterns as a D-dimensional
continuous space. This allows one to train the VAE using only
a limited set of representative kirigami patterns, and using the
VAE to interpolate and generate potentially infinite number of
similar kirigami patterns. The detailed architecture and hyperpa-
rameters for the VAE are described in the Supporting Informa-
tion Text.

2.4. Design of Numerical Experiments Using Active Learning

Optimal design parameters, including the kirigami latent fea-
tures (D-dimensional), structure size (measured by radius),
and prestretch that yield the target 3D shape, were searched
by performing iterative Bayesian Optimizations, as shown in
Figure 2B(ii), which is one kind of active learning method. The
detailed algorithm for active learning is described in Experimental
Section. To search global optimums, the optimization aims to “ex-
plore” (prioritizing regions with large uncertainty) and “exploit”
(focusing on the regions with minimum loss function) the high
dimensional parametric spaces, until a suitable loss function is
minimized.l’)

To initialize the optimization process, we randomly sampled
ten combinations of latent features, structure sizes, and pre-
stretches. For each combination of the proposed kirigami pat-
terns and prestretch, numerical experiments were performed via
finite element simulations. A Gaussian process regression model
was constructed to approximate the unknown effect of the design
variables on the loss function, which is the error of the 3D shape
between the simulations and the design target. A common way to
represent 3D data is via the projected image of the height.[*®) The
negative structural similarity index is chosen as the loss function,
which is used to characterize the dissimilarity between two im-
ages. Compared to the mean squared error, the structural similar-
ity index (SSIM) is a perceptually-motivated loss function, which
is found to have better performance for image restoration tasks
than the squared I, norm of the error.*”) The SSIM ranges be-
tween 0 and 1, where values closer to 1 indicate a higher degree of
similarity between two images. A detailed definition of the SSIM
is included in the Supporting Information Text.

Once the Gaussian process model is constructed, an expected
improvement function,**! that increases with both the mean of
the loss function and its uncertainty, is calculated, as described
in Experimental Section. Then, the combination of latent features
trained per kirigami pattern family, size of the structure, and pre-
stretch that maximizes the expected improvement function is se-
lected. The corresponding kirigami patterns for that combination
of latent features can be recovered from the trained decoder net-
work. The recovered patterns are used to create the mesh for
the kirigami layer to perform the next round of finite element
simulation. The negative SSIM between the results of finite ele-
ment simulation and target shape is used to update the Gaussian
process model and reassess the expected improvement function.
Such a process continues iteratively. Once the optimization con-
verges, we verify its effectiveness using precision desktop exper-
iments.
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2.5. Generation of Candidate Kirigami Patterns for VAE Training

We tested the performance of three classes of candidate kirigami
patterns, as shown in Figure 3A(i) to (iii). The first class, as shown
in Figure 3A(i), is made of uni-directional fibers. For example,
Hanakata et al.[?’] demonstrated that the uni-directional patterns
have good expressive power and can be used to interpolate a va-
riety of mixed kirigami cuts. The other classes of kirigami pat-
terns exhibit the same type of symmetric property as the target
3D shapes, as shown in Figure 3A(ii),(iii). We will see later in
the paper that the peanut and pringle-like shapes have reflec-
tional symmetry with respect to the two principal axes, while the
flower shape has fourfold radial symmetry. To create symmetric
kirigami patterns, the kirigami cuts are created in certain regions,
with the patterns in the remaining regions directly created via ro-
tations or reflections (see Supporting Information Text). Both types
of non-symmetric and symmetric patterns are augmented via ro-
tation. After rotating the kirigami patterns two to four times, the
total number of images for each class is 40955, 40955, and 24573,
respectively. These images are used to train VAE models to find
low-dimensional representations.

3. Physical and Numerical Experiments

3.1. Desktop-Scale Physical Experiments

Figure 3B(i) to (iv) present our experimental setup and the key
steps in fabrication. The experimental setup consists of four lin-
ear translation stages (250 mm travel, Thorlabs). The substrate
and the kirigami layers are made of hyper-elastic materials (3M,
VHB tapes). We used a laser cutter to cut the desired kirigami
patterns. In the process, if there are a lot of isolated pieces of the
kirigami design, during the fabrication, we maintain a minimal
connection between the isolated pieces (such as a bounding circle
which can be easily cut-off later) until the moment they are posi-
tioned on the substrate. If the isolated pieces are too small (order
of magnitude of approximately 2mm), they can be ignored with
no effect on the final shape. A large substrate layer is applied with
the four corners fixed to the four stages (Figure 3B(i)). Then, to
impose the radial strain upon the substrate, we stretch the sub-
strate layer with the same amount in the horizontal and vertical
directions (Figure 3 B(ii)). Once stretching is complete, a kirigami
layer is glued on top of the substrate (Figure 3B(iii)). We ensure
that the central region of the substrate layer — onto which the
kirigami layer is glued - is uniformly stretched, not affected by
the boundaries. Afterward, Figure 3B(iv) shows that the excess
substrate is cut away along the outline of the circular substrate.
The composite structure then morphs to a certain 3D shape due
to the strain mismatch in the two layers.

3.2. Finite Element-Based Numerical Simulations

The finite element software, Abaqus,[“°! is used to model the
nonlinear large deformation of the hyper-elastic composite struc-
tures. In the simulations, we use incompressible Mooney Rivlin
model to simulate the hyper-elastic materials of the substrate
and the kirigami layer being tested. The material constants in
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Figure 3. A) Examples of different classes of kirigami patterns: A(i) unidirectional fibers, A(ii) shapes of reflectional symmetry with two lines of symmetry,
A(iii) fourfold radial symmetry. B) Experimental setup. B(i) Schematic representation of the system consist of two-knob stages (1) on 250 mm tracks (2)
knobs to adjust the stage location. B(ii) Snapshot of the system when the substrate layer (3) is stretched. B(iii) Attach a kirigami layer (4) on top of the
substrate layer. B(iv) Release the prestretch by cutting along the outline of the circular substrate.

the model C; and C, for the substrate and the kirigami layers
are listed in Table 1. Each layer of the composite structure is
modeled as a shell to reduce the computational cost. In the fi-
nite element simulations, the substrate and kirigami layers are
meshed using three-node triangular shell elements. The sub-
strate layer was divided into 2772 triangle elements. The num-
ber of elements are found to be large enough to prevent wrin-
kling, and stress concentration. The material properties for the
substrate and kirigami layer are listed in Table 1. The two shell
structures are constrained so that their normals match. The cen-
ter of the composite structure is fixed. The prestretch is modeled
as isotropic thermal expansion (see Supporting Information Text).
The equivalent temperature corresponding to the prestretch is
computed. Then, the dynamics of the composite structure (for
the given candidate kirigami pattern) is modeled by ABAQUS as
the substrate is cooled back to the reference temperature. The
resulting 3D shape is obtained after each such simulation con-
verges. A nonlinear quasi-static simulation is conducted for each
design inputs.

The final 3D shape when the active learning search converges
will be referred to as the optimal predicted shape; the corre-
sponding kirigami patterns, radius, and prestretch are the pre-
dicted optimal parameters. The detailed structural properties of
the composite structure are included in the “Experimental Sec-
tion”. The numerical simulation is the most time-consuming
step, which takes about 1-3 min wall clock time on a desktop
computer (Ryzen 2950wx CPU @ 2.4 GHz). In total, 100 simu-
lations take about 5 h. Since forward simulations are expensive,
cutting down the number of runs is important. In this study, we
are able to reduce the total number of forward runs from millions
to just around 100, while obtaining accurate target shapes. Such
computational tractability without compromising performance

Table 1. Material parameters for the substrate and kirigami layer.

Parameter Value
c 2.4 KPa
G 23.4KPa
Thickness t* 1.1 mm
ck -2.6 KPa
Ck 185.8 KPa
Thickness 1.4 mm
Outer radius of the circular substrate 30 mm

Adv. Mater. Technol. 2024, 9, 2301305 2301305 (5 of 14)

is one of the key advantages of the proposed machine learning-
aided framework.

4, Results

In this section, we test drive the framework with a few example
target shapes with different distributions of curvatures and sym-
metric properties. We have described the details to mathemati-
cally generate target shapes in the Supporting Information Text.
During the optimization, the range of radii of the kirigami struc-
ture is constrained between 24 mm and 39 mm while the amount
of prestretch A = 1 + € is searched between 1.05 to 1.4, which
means that the bottom layer is stretched by € = 5% to ¢ = 40%
along both directions.

4.1. Target 3D Shapes with Two Axes of Reflectional Symmetry

As an exemplar of this class, we pick a bilobe structure, re-
sembling a peanut, as the target shape. Automatically generated
40,955 (64 by 64) binary kirigami images with reflectional sym-
metry are used to train the VAE. After experimenting on different
sizes of latent features in Supporting Information text, we find
that just a 6D latent space can reconstruct the training kirigami
data with very high accuracy (measured by SSIM = 0.97). Thus,
the search space of kirigami patterns have been reduced from a
4096D binary image space to only a 6D continuous search space.
New kirigami patterns can be generated by the VAE, and they
are also found to exhibit reflectional symmetry, as demonstrated
in the Supporting Information Text. More importantly, as demon-
strated in Figure 4, the interpolated new kirigami patterns are
often needed to generate 3D shapes that best match the target
shapes. We next illustrate some of the salient characteristics of
our inverse design framework.

4.2. Search Trajectory in the SSIM Space

The evolution of the design solutions via iterations to create a
target peanut shape is demonstrated in Figure 4A and Movie
S1 (Supporting Information). The red dots in Figure 4A plots
the variation of SSIM over iterations. The maximum SSIMs be-
fore certain iteration steps are connected via the blue line. The
maximum SSIM improves significantly from 0.7 (in the first ten
random searches) to around 0.91 over time. Some red dots are

© 2024 The Authors. Advanced Materials Technologies published by Wiley-VCH GmbH
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Figure 4. A) Search trajectory Variation of SSIM between target peanut shape and predicted free buckling shape over iterations. B) Multiple optimal solu-
tions B1-B4) The top four optimal design solutions, including the kirigami patterns, prestretch and kirigami size. The corresponding height distribution
for each design is presented at the bottom. C) Exploration during optimization C(i)-C(ii)) Two examples showing the algorithm explores new kirigami
patterns, that does not lead to closer solutions. D) Interpolated kirigami patterns are often required to better approximate target 3D shapes: D(i)-D (ii))
Two nearest neighbors for kirigami patterns found at iteration No. 78, whose free buckling shape gives lower SSIM. E) Effect of initialization E(i)-E(ii))
We tested different initialization of the Bayesian Optimization, and presented the results of optimized design parameters and free buckling shape over

100 iterations.

clustered near the optimal blue line, while some others scatter
around the blue line. This suggests that during the Bayesian opti-
mization, the model explores and exploits the design space inter-
changeably. It will not only locally exploit optimal solutions (such
as between iteration 78 and 79 in Figure 4B, with materials con-
centrated to the left and right sides), but also explore unknown
design space (such as iteration 81 and 82 in Figure 4C. More ma-
terials cover the top and bottom side of the planar structure).

Adv. Mater. Technol. 2024, 9, 2301305 2301305 (6 of 14)

4.3. Multiple Optimal Solutions Give SSIM Around 0.9 out of 1

Figure 4B shows that multiple latent feature combinations can
lead to similar 3D deformed shapes. The prestretch and radius
are important in governing the total elastic energy of the com-
posite structure. The similar prestretches and radius for opti-
mal peanut shapes suggests similar elastic energy is required
to buckle 2D shapes to the peanut-like 3D shapes. Even though
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these optimal patterns look different, they share the common
characteristics of having more material concentrated near the left
and right ends of the kirigami. The different kirigami patterns
suggest that not every material in the kirigami layer is important
in affecting the global buckling-induced 3D shapes. While, the
similarity suggests that the regions with more material compress
the bare regions in between where the stiffness is lower, and such
a compression leads to a ridge in the middle.

4.4. Interpolated Kirigami Patterns are Often Required to Better
Approximate Target 3D Shapes

We also explored the generalization capability of VAE and the role
it plays in optimization. For example, the optimal design shown
in Figure 4B2 is an interpolated pattern generated by the VAE,
and not in the patterns used to train it. We find the nearest neigh-
bors of this optimal generated pattern using K-nearest neighbors
algorithm.[*!] If we replace the generated pattern with its neigh-
bors in Figure 4D, we find a decrease in the SSIM. This suggests
the importance of interpolation capability in the latent space to
achieve more accurate design solutions.

4.5. The Optimal Solutions can be Different to the Initializations

We repeat the optimization process several times with differ-
ent initializations (described in Supporting Information Text).
For different initializations that lead to similar values of SSIM
(around 0.91) over 100 iterations, the optimized kirigami patterns
are different from each other, as presented in Figure 4E(i), (ii).
However, the optimized prestretch and the radius are close to
each other. This suggests that there exists a region of optimal
strain-mismatch and structural size that leads to the target 3D
shape.

Besides the peanut shapes in Figure 5A, we also use the same
class of input kirigami patterns to create a pringle and a ship
hull-like 3D shape, presented in Figure 5B, C. The optimized
SSIM over 100 iterations is as high as 0.92 and 0.90, respectively.
While the maximum SSIM over ten random searches is at 0.70
and 0.73, respectively. This suggests the importance of strate-
gic search in creating target shapes. The largest errors are found
to be near the sharp edges, where the local curvature has sharp
changes.

4.6. Target 3D Shapes with FourFold Radial Symmetry

Inspired by flowers in nature and man-made pyramids, we fur-
ther aim to create two corresponding deformed soft structures.
Both targets are composed of shapes of fourfold radial symmetry.
For example, for each petal in a flower, the structure is bilaterally
symmetric, where each half is a mirror image of the other half.
The generation of such radially symmetric kirigami patterns are
described in Supporting Information Text. These kirigami patterns
can also be represented by six latent features, without sacrificing
the high reconstruction accuracy (measured by SSIM = 0.99). As
shown in Figure 5, we get very high SSIM. For the flower-like
shape, the maximum SSIM increases from 0.81 in the first ten
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random combinations to 0.92 within 100 iterations. The maxi-
mum SSIM slightly increases from 0.83 in the first ten random
searches to 0.87 for the pyramid shape.

4.7. Experimental Validation

We carried out the entire end-to-end design process involving five
shapes, shown in Figure 5. We picked one optimal design for
each target shape from our algorithm. Next, we used these op-
timal design parameters to manufacture the corresponding 3D
structures. As Figure 5 shows, the target, the predicted and the
manufactured 3D shapes have the same structural forms, validat-
ing our design process. Given such structural similarity, the max-
imum height (H) of the 3D structure is an easily measured metric
for comparison. As shown in the fifth and the sixth columns of
Figure 5, the H values are in good agreement between the pre-
dicted and manufactured 3D structures.

Meanwhile, we also find good agreement measured by other
shape metrics. For example, for the optimal peanut-shaped struc-
ture we predicted in the simulation, the maximum length and
width are 44 and 29 mm, respectively. While the maximum
length and width of the fabricated peanut are 42 and 28 mm, re-
spectively. The maximum width of the flower shape is 50 mm,
which is also close to 49.8 mm measured in the experiment. In
section 5.5, we employ a 3D scanning technology to conduct a
more detailed local comparison in the shapes between predic-
tions and experiments.

One can further explore the physics of the kirigami patterns
discovered by our design framework. For example, for the four-
fold radial symmetry involving the flower and the pyramid target
shapes, the optimal kirigami patterns are shown in Figure 5D,
E. The kirigami pattern for the flower shape has materials con-
centrated in the four lobes and has material removed in the cen-
ter. This can explain the final shape: the bending of the areas
covered with kirigami creates a ridge of slightly lower height in
the middle, giving rise to the four lobed flower pattern. In con-
trast, the pyramid shape with the maximum height in the center
requires more material concentrated in the center, as shown in
Figure 5D.

5. Discussion

5.1. Kirigami Invariance: Scaling Law

We address the problem of manufacturing the same shape but
with different scales (e.g., pyramids with different heights), with-
out having to solve for optimal design parameters for each scale.
Recall that designing a target 3D shape requires around hundreds
of optimization steps, each involving an expensive forward sim-
ulation step. Thus, if we can identify a scaling law involving the
radius R, prestretch 4, and the scale of the target shapes —while
fixing the kirigami patterns— then such a scaling law can guide
designers to quickly vary the scale of the deployable 3D soft struc-
tures.

For a given material property and kirigami pattern, the
maximum normalized height H/R is affected by prestretch
A =1 + ¢, and normalized radius R/t, where H is the
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A. Peanut
‘ A=1.24
O —22 mm R=27 mm Hinmax=16.4 mm Hmo=17.5 mm
B. Pringle ’
- A= 1.05 P — . -
R=25mm Hmoz=9.7 mm Hmaz=9.4 mm
C. Ship hull (inverted)
. O A=1.12 ( ) .
R: 28 mm Hma.m=130 mm Hmam=153 mm
D. Pyramid
R= 29 mm Hina=11.8 mm Hinae=12.2 mm
E. Flower
A=1.20 “
R=32mm Hnw=133mm  Hnw=13.6 mm

Figure 5. Inverse design framework: manufacturing programmable soft 3D structures. We illustrate the end to end design and manufacturing process.
Target 3D shapes: the first column shows five different 3D shapes (a peanut, pringle, ship hull, pyramid, flower) input to the optimization algorithm.
Height-coded 2D image representations: the second column shows distribution of height for the target 3D shape. Optimal design parameters: the
third column presents the optimized kirigami patterns, prestretch, and radius selected after 100 iterations. Height-coded 2D image representations
of the optimal predicted shapes: the fourth column presents the height distribution of predicted 3D topology obtained from finite element simulation
using the optimal design parameters. The SSIM are approximately in 0.9. The predicted 3D shapes: the fifth column shows the predicted 3D shape in
simulation. The maximum heights for the 3D images are shown in the bottom. Experimentally realized morphing 3D soft structures with desired shapes:
the sixth column shows the experimental result of the 3D topology given the optimal parameters and following the manufacturing setup illustrated in
Figure 3. [Correction added on February 5, 2024, after first online publication: figure 5 has been replaced in this version.]

maximum height of the free buckling shape, and R and ¢ rep-
resent the radius and thickness of the planar structure, respec-
tively (see Figure 6). We derive an analytical relationship by
balancing the stretching-induced energy (pre-buckling) in the
bottom layer and the bending-related energy dominated by the
kirigami layer. We find that for a pyramid like 3D shape, the

maximum normalized height H/R scales with £/ L (see
t E, 1+€

Supporting Information Text), where E; and E, are the Young's
moduli of the substrate and the kirigami, respectively. Such a
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relationship can directly extend the design of soft composite
structures from one maximum height to different heights by
changing the original radius of the composite structures and
prestretch.

As an example, we choose the optimized kirigami pattern
that leads to a pyramid shape, and investigate how the normal-
ized height is scaled with the variation of normalized radius and
prestretch. Figure 6A shows the maximum normalized height
H/R as a function of normalized radius R/t and prestretch. The
star symbol in Figure 6A denotes the optimal combination of
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Figure 6. Scaling law and kirigami invariance: the same kirigami can be used to design target shapes with varying size parameters H/R by selecting
prestretch and radius of the composite structure A) Distribution of H/R with the variation of size ratio R/t and the amount of applied prestretch . The
star symbol denotes the optimal size and prestretch combination that gives the target pyramid shape. The black dots denote the regions where the size
and prestretch is perturbed around the optimal point. B) Typical free buckling shapes that correspond to the black dots in (A) Both the height-coded 2D
image representation and the corresponding 3D structure are presented. C) A normalized shape parameter Ht/R? as a function of normalized radius
R/t at different amount of prestretch. The line horizontal dashed lines indicates the scaling prediction: H/R scales linearly with R/z.

prestretch and radius that leads to the target pyramid shape over
100 iterations. The black dots are the selected examples where
the radius and prestretch are perturbed around the optimal val-
ues. If we want to design taller pyramids, we can slightly in-
crease the normalized radius from Figure 6B(i) to (ii). When we
slightly increase the prestretch around the optimal point from
Figure 6B(i) to (iii), the height of the 3D shape also increases,
but the radius of the deformed geometry decreases. Similar phe-
nomena can be observed by varying from Figure 6B(ii) to (iv).
The increase of H/R is proportional to the increase of the nor-
malized radius R/t in Figure 6C. This agrees with the scaling
analysis of elastic energies. When the prestretch is larger, the
stretching energy in the deformed (i.e., post-buckling) configura-
tion becomes larger, which causes H/R to deviate from the linear
relationship with R/t. As R/t decreases, the more important the
post-buckling stretching energy becomes, but such stretching en-
ergy is not considered in the current analytical derivation, which
is based on balancing only the pre-buckling stretching energy.
This suggests that the coupling between stretching and bend-
ing are important in these conditions, which needs more com-
plicated models beyond the scaling analysis to explain the cou-
pling and hence the shape variation. Similar phenomena are also
found for other target shapes, such as flower and peanut, and
more detailed discussion can be found in Supporting Information
Text.

5.2. Importance of Symmetry

In this section, we aim to demonstrate that an arbitrarily con-
structed large class of kirigami patterns may still be limited in
forming target 3D shapes. The free buckling shape assumed
by the symmetry-constrained shapes and unidirectional strips,
which doesn’t guarantee the reflectional or fourfold radial sym-
metry, are compared. Figure 7A shows that even though the
unidirectional strips are able to predict the ship hull like shape
with reasonable accuracy, it fails to predict the flower shape in
Figure 7B. The optimized kirigami patterns and the correspond-
ing 3D shapes after 100 iterations are also compared with the
target shape in Figure 7. Even though the VAE models can gen-
erate new patterns, with mixed combination of multi-directional
strips, few of the generated patterns are exactly radially sym-
metric. This causes the free buckling shape to bend more in a
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preferred direction. The desired reflectional symmetry of a ship
hull like target shape is also not guaranteed using the combi-
nations of unidirectional strips. The comparisons demonstrate
the importance of constraining the design space with appro-
priate symmetric property at the very beginning of the design
process.

5.3. The Advantage of Proposed VAE and Bayesian Optimization
Combined Approach Over Evolutionary Algorithms

We also compare the optimization results from the proposed
framework with that using genetic algorithm (GA), which is
a standard evolutionary algorithm (see Supporting Information
Text). The purpose of the comparison is to compare the proposed
machine learning-aided algorithm against traditional evolution-
ary search. In the evolutionary search, the inputs are not the la-
tentvariables. Instead, we have overall 16 input variables from the
geometric, and material parameters. We set the variables to be 13
binary integers representing the presence of kirigami materials
in the 13 divided regions in Figure S1 A(ii), B(ii), and C(ii) (Sup-
porting Information). Another discrete integer is used to indicate
the amount of rotation applied to the kirigami patterns, and two
other continuous variables are introduced to represent the radius
of the structure, and the amount of prestretch to be applied. The
population size in the standard algorithm is chosen as ten, and
the maximum number of iterations is set as 20. This means that
we need to perform 200 numerical simulations per design; re-
call that this is twice the number of forward simulations used in
our design framework, thus giving the GA approach a computa-
tional advantage.

Figure 7 compares the result of applying the genetic algo-
rithm to the unidirectional or symmetric shapes. The comparison
suggests that the proposed VAE and Bayesian Optimization com-
bined approach can search the optimal combinations of kirigami
and prestretch faster, and can achieve 3D deformed shapes closer
to target shapes, compared to the evolutionary search. Without
the VAE-aided reduced dimensional and continuous kirigami
search space, the standard evolutionary optimization is limited
to searching only the discrete design space. The comparison be-
tween the third and the fifth column of Figure 7A, B demon-
strates that the incapability of generating new kirigami patterns
beyond the input dataset restricts the conventional optimization
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Figure 7. Comparison of the optimal kirigami patterns and height distribution of assumed 3D shape using different optimization methods. Target
shapes: The first column shows the distribution of height for the target shapes, A) Ship hull B) Flower shape. The optimizations are conducted using
four approaches. VAE+Bayesian optimization with symmetric patterns: the second column presents the optimal solution found in 100 iterations using
VAE+Bayesian optimization with symmetric patterns. VAE+Bayesian optimization with unidirectional strips: the third column shows the optimal solution
in 100 iterations using VAE+Bayesian optimization with unidirectional strips. Genetic algorithm with symmetric patterns: the fourth column shows the
optimal solution in 200 iterations using genetic algorithm with symmetric patterns. Genetic algorithm with unidirectional strips: the fifth column shows

the optimal solution in 200 iterations using genetic algorithm with unidirectional strips.

approaches from interpolating between the candidate kirigami
patterns to achieve desired free buckling shapes.

5.4. Extension to General Target Shapes and Limitations of the
Approach

There are a few limitations to the approach we employed. First,
we are restricted to a circular substrate and uniform prestretch
in the substrate. This limits the types of target shapes to those
without sharp changes in local curvature. Second, so far, we
have restricted ourselves to shapes that exhibit certain types of
symmetry. To address this limitation, creating more generic pat-
terns of the kirigami cuts is necessary. However, when dealing
with target shapes featuring arbitrary symmetry and orientations,
direct assessment of similarity becomes challenging. The pre-
dicted and target shapes have distinct centers of mass and ori-
entations, requiring an extension of the metric to be orienta-
tion and translation invariant — a potential avenue for future
research.

Adv. Mater. Technol. 2024, 9, 2301305 2301305 (10 of 14)

In an initial attempt to model more general shapes in Figure 8,
our focus shifts to creating 3D shapes with only one axis of sym-
metry. To create kirigami patterns of one axis of symmetry, we
use the six latent features to reconstruct the 2D kirigami pattern
in half of the plane with reflectional symmetry, and use another
six latent features to reconstruct the 2D kirigami pattern in the
other half of the plane with reflectional symmetry. Consequently,
the total number of features optimized amounts to 14, which in-
cludes the 12 latent features describing the kirigami patterns, a
parameter for the radius of the substrate, and a parameter for the
uniform prestretch.

To compare the similarity of 3D shapes, we align the center of
mass of the target and predicted shapes before using the SSIM
metric to measure their similarity. As an illustrative example, we
applied this approach to create an asymmetric peanut shape in
Figure 8A and a butterfly shape with only one symmetric axis
in Figure 8B. The results suggest that within 200 iterations, the
active learning approach effectively determines optimal kirigami
patterns, radial prestretch, and structure size, achieving targeted
3D shapes with an SSIM of 0.9.
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SSIM=0.90
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A=1.28
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Figure 8. Inverse design framework with asymmetric soft 3D structures. Target 3D shapes: the first column shows two different 3D shapes (A) an asym-
metric peanut and (B) a butterfly) as input to the optimization algorithm. These are asymmetric about an axis. Height-coded 2D image representations:
the second column shows distribution of height for the target 3D shape. Optimal design parameters: the third column presents the optimized kirigami
patterns, prestretch, and radius selected after 200 iterations. Height-coded 2D image representations of the optimal predicted shapes: the fourth column
presents the height distribution of predicted 3D topology obtained from finite element simulation using the optimal design parameters. The SSIMs are
approximately 0.9. The predicted 3D shapes: the fifth column shows the predicted 3D shape in simulation. The maximum heights for the 3D images are
shown in the bottom. Experimentally realized morphing 3D soft structures with desired shapes: the sixth column shows the experimental result of the

A= 1.16
R=25mm

3D topology given the optimal parameters and following the manufacturing setup illustrated in Figure 3.

5.5. 3D Scanning and Pointwise Comparison

We obtained 3D scans of the experimental structures from
Figures 5 and 8 using a 0.1 mm resolution 3D scanner. The scan-
ner gave us a point cloud (Cartesian coordinates of a large num-
ber of points on the surface of the structure), enabling a route
to quantitative comparison with our computational framework.
Figure 9A shows a qualitative comparison between the experi-
mental 3D scans (gray surface) with the predicted shape outputs
(green point clouds) for seven different target shapes. For quanti-
tative comparison, we introduce a relative error parameter, §, that
compares the z-coordinate of each point (representing the height
of the point) in the 3D scan data with its numerical prediction.
This parameter can be expressed as

N, ZL i
pred Zscan

5= (1)

max ( scan i=1

where N, is the number of points in the point cloud, 2. is the

scan
z- coordmate of the i-th point in the 3D scan data, and zpre Rt
the z-coordinate of the same point in the numerical predicted
shape. The symbol || indicates absolute value, and max(|zscm|)
is the maximum of the absolute values of the z-coordinates in
the 3D scan data. Figure 9B shows a plot of this error met-
ric across various shapes. The error is usually < 10% and the
maximum deviation, that occurs for the ship, remains within
20%. We find this agreement to be excellent since the compu-
tational framework simulates the material using a hyperelastic
model (Mooney-Rivlin) and ignores any viscous characteristics.
In practice, there is a small amount of time dependent viscous
deformation that was ignored. The Mooney-Rivlin model is phe-
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nomenological in nature and cannot capture the material with
complete accuracy.

6. Concluding Remarks

We numerically and experimentally explored the capability of
deforming a planar composite structure to target 3D shape
via kirigami cutting and strain-mismatch. The design space
is very high dimensional to be optimized directly. We formu-
lated a VAE and active learning combined approach to tackle
the design challenges. A VAE is used to represent originally
high-dimensional design variables to a much lower dimen-
sional continuous search space. The Bayesian optimization is
then conducted to quickly obtain multiple optimal design so-
lutions that achieve similar target free buckling shapes, rang-
ing from shapes inspired by a peanut to a pyramid. We found
that the nonlinear interplay between the strain mismatch, size
of the composite structure, and the kirigami patterns strongly
affect the free buckling shapes. We also studied the effect of
imposing symmetry constraints on the machine learning-aided
design results. The comparison of the results with and with-
out symmetry constraints demonstrates that the symmetry con-
straints at the beginning of the machine learning process are
important in better approximating the target shapes. A scal-
ing law is used to guide scaling of the target shapes from
one size to another, without having to search for the opti-
mal design parameters. We also discussed the advantage of the
proposed framework over traditional approaches, such as ge-
netic algorithm. The proposed framework accelerates the de-
sign of a series of shape morphing, fully soft composite struc-
tures from weeks and months of running millions of simu-
lations to a few hours of strategically examining around 100
examples.
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Figure 9. Comparison between experiments and numerical results. A) Qualitative comparison between the experimental 3D scans (gray surface) and
the predicted shapes (green point cloud): (i) Peanut (ii) Pringle (iii) Ship (iv) Pyramid (v) Flower (vi) Asymmetric Peanut (vii) Butterfly. B) Quantitative
comparison: The bar graph shows the relative error between experiments and numerics across various shapes considered in this paper. The error bars

represent standard deviation of the error.

The inverse design method can provide a systematic way
to solve a variety of form finding problems not limited to
soft kirigami structures, but also to the manufacturing of
gridshell*>#] and compressive buckling-induced 3D architec-
tures using micro ribbons!**! which can find applications in a
range of areas including soft robotics, additive manufacturing,
and architecture. In our future work, we plan to improve fabrica-
tion accuracy even further by potentially incorporating controls
that can induce local deformations into our planar-only manu-
facturing platform.

7. Experimental Section

Bayesian Optimization: Bayesian optimization was a sample-efficient
approach for solving a wide range of global optimization problems. See
Ref. [33] for details; a short summary follows. This approach aims to solve
an optimization, expressed as

0" = argmax, f () 2)

where fis a black box model which is expensive to evaluate. The function
was approximated by a Gaussian process model, rather than a neural net-
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work. Matern similarity kernel with homoscedastic noise was selected as
the covariance of the likelihood function ®(D|6). The noise in the function
was also modeled as a Gaussian distribution ®,,,(¢), which had zero
mean and variance chosen as 0.0001.

Given the available data D, the posterior distribution of the parameters
®(0|D) is computed via the Bayes’ theorem,

@(01D) o @(DIO) D, (0) ©)]
Based on the current posterior distribution, the acquisition function El can
be calculated as,

EI(0) = E[u(0)] = E[f () —f (6))]"] *)

where E is computing the expectation, 8, is the best point observed
so far. When £ (6) > £(6;), u(6) =1 (6) — £ (67). While when £ (0) < f(6}),
f(6;) = 0. The next data to be sampled 6, , ; is selected such that the ac-
quisition function was maximized, i.e., 0,,, = argmax, El (). Then, the
Gaussian process and acquisition functions were updated. Such a pro-
cess iterates several times until the optimal solution converges. Since the
expected improvement function was increasing with both the mean predic-
tion of the unknown black box model fand the uncertainty of the model.[33]
Hence, by maximizing the Expected Improvement function, global
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optimums could be quickly searched rather than being stuck with specific
local minimums.
The algorithm was implemented using the Scikit-Optimize package.
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