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Learning Neural Force Manifolds for Sim2Real
Robotic Symmetrical Paper Folding
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and Mohammad Khalid Jawed , Member, IEEE

Abstract— Robotic manipulation of slender objects is challeng-
ing, especially when the induced deformations are large and
nonlinear. Traditionally, learning-based control approaches, such
as imitation learning, have been used to address deformable mate-
rial manipulation. These approaches lack generality and often
suffer critical failure from a simple switch of material, geometric,
and/or environmental (e.g., friction) properties. This article
tackles a fundamental but difficult deformable manipulation task:
forming a predefined fold in paper with only a single manip-
ulator. A sim2real framework combining physically-accurate
simulation and machine learning is used to train a deep neural
network capable of predicting the external forces induced on
the manipulated paper given a grasp position. We frame the
problem using scaling analysis, resulting in a control framework
robust against material and geometric changes. Path planning
is then carried out over the generated “neural force manifold”
to produce robot manipulation trajectories optimized to prevent
sliding, with offline trajectory generation finishing 15× faster
than previous physics-based folding methods. The inference speed
of the trained model enables the incorporation of real-time visual
feedback to achieve closed-loop model-predictive control. Real-
world experiments demonstrate that our framework can greatly
improve robotic manipulation performance compared to state-of-
the-art folding strategies, even when manipulating paper objects
of various materials and shapes.

Note to Practitioners—This article is motivated by the need
for efficient robotic folding strategies for stiff materials such as
paper. Previous robot folding strategies have focused primarily on
soft materials (e.g., cloth) possessing minimal bending resistance
or relied on multiple complex manipulators and sensors, signifi-
cantly increasing computational and monetary costs. In contrast,
we formulate a robust, sim2real, physics-based method capable
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of folding papers of varying stiffness with a single manipulator.
The proposed folding scheme is limited to papers of homogeneous
material and folding along symmetric centerlines. Future work
will involve formulating efficient methods for folding along
arbitrary geometries and preexisting creases.

Index Terms— Deformable object manipulation, sim2real
paper folding, data-driven models, closed-loop model-predictive
control.

I. INTRODUCTION

FROM shoelaces to clothes, we encounter flexible slender
structures throughout our everyday lives. These structures

are often characterized by their ability to undergo large
deformations when subjected even to moderate forces, such
as gravity. Therefore, the robotic manipulation of deformable
objects is highly nontrivial as a robot must be able to take
into account future deformations of the manipulated object in
order to complete manipulation tasks successfully.

Prior research has focused primarily on manipulating either
cloth or ropes [1], [2], and, as a result, the challenge of
robotically manipulating many other deformable objects still
lacks robust solutions. This article addresses a particularly
difficult deformable manipulation task — folding paper. Paper
is similar to cloth but typically possesses a significantly higher
bending stiffness and a slippery surface. Therefore, when
compared to folding garments and fabrics, the folding of paper
requires more delicate and insightful manipulations. In fact,
in our experiments, we observe that state-of-the-art methods
for robotic fabric/cloth folding [3], [4], [5] perform poorly
when transferred to paper.

To tackle these challenges, we propose a framework that
combines physically accurate simulation, scaling analysis, and
machine learning to generate folding trajectories optimized to
prevent sliding. With scaling analysis, we make the problem
non-dimensional, resulting in both dimensionality reduction
and generality. This allows us to train a single nondimen-
sionalized neural network, whose outputs are referred to as
a neural force manifold (NFM), to continuously approximate
a scaled force manifold sampled purely from simulation.
Compared to numerical models that require the entire geo-
metric configuration of the paper, NFMs map the external
forces of the paper given only the grasp position. Therefore,
we can generate trajectories optimized to minimize forces (and
thus minimize sliding) by applying path-planning algorithms.
Furthermore, the nondimensionality of the NFM allows us
to generate trajectories for papers of various materials and
geometric properties even if such parameters were not present
in the training dataset. We show that our approach is capable
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Fig. 1. Half valley folding for A4 paper with (a) intuitive manipulation
and (b) our designed optimal manipulation. An intuitive manipulation scheme
such as tracing a semicircle experiences significant sliding due to the bending
stiffness of the paper, resulting in a poor fold. By contrast, our optimal
manipulation approach achieves an excellent fold by taking into consideration
the paper’s deformation to minimize sliding.

of folding paper on extremely slick surfaces with little-to-no
sliding (Fig. 1(b)).

Overall, our main contributions are as follows:
1) We formulate a solution for folding materially homo-

geneous sheets of paper along symmetrical centerlines
in a physically robust manner using scaling analysis,
resulting in complete generality concerning the modulus
and density of the material, size of the paper, and
environmental properties (e.g., friction).

2) Next, we generate accurate non-dimensional simulation
data to train a “neural force manifold” for optimal
trajectory generation. We exploit the high inference
speed of our trained model with a perception system
to construct a robust and efficient closed-loop model-
predictive control algorithm for the folding task in near
real-time.

3) Finally, we demonstrate full sim2real realization through
an extensive robotic case study featuring 360+ folding
experiments involving paper sheets of various materials
and shapes. We compare our method against both natural
paper folding strategies as well as the previous state of
the art in robotic rectangular fabric folding [3], [5].

Moreover, we offer demonstration videos and release all our
code as open-source software.1

The remainder of the article is organized as follows: We
begin with a review of related work in Sec. II. A brief
description of the folding problem is presented in Sec. III.
The formulation of a reduced-order physics-based model is
discussed in Sec. IV, where we formulate the folding problem
using scaling analysis. In Sec. V, we formulate our learning
framework as well as algorithms for optimal path planning.
Next, in Sec. VI, we introduce our robotic system and
formulate our closed-loop visual feedback pipeline. Exper-
imental results for a robot case study and analysis of the

1See https://github.com/StructuresComp/deep-robotic-paper-folding

results are given in Sec. VII. Subsequently, Sec. VIII provides
additional discussion regarding performing multiple folds and
the importance of single-manipulator folding. Finally, we make
concluding remarks and discuss the potential of future research
avenues in Sec. IX.

II. RELATED WORK

The majority of prior work addressing the folding prob-
lem can be roughly divided into four categories: mechanical
design-based solutions, vision-based solutions, learning-based
solutions, and model-based solutions.

Mechanical design-based approaches typically involve tack-
ling the folding problem using highly specialized manipulators
or end effectors. Early approaches involved specialized
punches and dies for sheet metal bending [6]. More recently,
highly specialized manipulators for robotic origami folding
have also been developed [7]. Such methods can reliably
produce repeatable folding but are often limited to a highly
specific fold, geometry, and/or material.

Vision-based approaches involve folding deformable mate-
rials by generating folding motions purely from visual input.
These techniques are commonly applied to tasks such as
folding clothes, where the primary focus is on detecting
garment shape or key grasp points. Techniques for key feature
extraction involve random decision trees [8], RGB-D sensing
data analysis [9], [10], and fitting strategies where the detected
state of deformed clothes are compared against precomputed
shapes [11], [12]. Given the soft nature of clothes, subsequent
manipulations are often formulated intuitively. While some
prior research employs models to predict optimal manipulation
sequences, these models are typically oversimplified and lack
physical details [13]. Such approaches can be effective and
rather simple to implement, but do not transfer well to paper
folding as paper has a much higher stiffness than fabric and
will attempt to restore its natural, undeformed state if not
properly handled.

Learning-based approaches involve the robot learning how
to fold through training data. The most popular has been to
learn control policies from human demonstrations, also known
as learning from demonstrations (LfD). Prior research has
demonstrated flattening and folding towels [14], [15]. Teleop
demonstrations are a popular avenue for training policies and
have been used to learn how to manipulate deformable linear
objects (DLOs) [16] as well as folding fabric [17]. To eliminate
the need for expensive human-labeled data, researchers have
also focused on tackling the sim2real problem for robotic
folding, with reinforcement learning being used to train robots
to fold fabrics and clothes completely from simulation [4],
[18], [19]. More recently, Zheng et al. [20] used reinforcement
learning to train a robot to flip pages in a binder through
tactile feedback. Pure learning-based methods have shown
promising performance, but only for specific tasks whose state
distribution matches the training data. Such methods tend to
generalize quite poorly; e.g., when the material or geometric
properties change drastically.

Model-based approaches, where the model can either be
known or learned, often use model-predictive control to manip-
ulate the deformable object. Learned models involve learning
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the natural dynamics of deformable objects through random
perturbations [21]. These models are generally fast, but they
can be inaccurate when experiencing new states. Theoretical
models are often formulated to be as physically accurate
as possible, which enables the direct application of their
predictive power in the real world. Examples of this have
been published for both strip folding [3], [5] and garment
folding [22]. Physical models are often constructed using
energy-based formulations [1], [2], [23], where various elastic
energies are computed based on the topological properties of
the simulated objects to solve their deformed shape under
manipulation. For example, Wakamatsu and Hirai [24] mod-
eled deformable linear objects (rods) with flexure (bending),
torsion, and extension (stretching), while Jia et al. [25] intro-
duced manipulation as a potential energy to compute the
deformations of deformable planar objects. However, theoret-
ical models are usually quite expensive to run and must often
face a trade-off between accuracy and efficiency.

Despite the large quantity of prior research focusing on
2D deformable object manipulation, the majority of these
efforts have limited their scope to soft materials such as towels
and cloth. Such materials are highly compliant and often do
not exhibit complicated nonlinear deformations, thus allowing
for solutions lacking physical insight. We instead tackle the
scenario of folding paper of various stiffnesses with a single
manipulator. Because of its relatively high bending stiffness
and slippery surface, paper is significantly more difficult to
manipulate since large deformations will cause sliding of the
paper on the substrate. Such an example can be observed
in Fig. 1(a), where intuitive folding trajectories that may
work on towels and cloth fail for paper due to undesired
sliding.

However, a few researchers have attempted to solve the
paper folding problem. For example, Elbrechter et al. [26]
demonstrated paper folding using visual tracking and real-
time physics-based modeling, with impressive results, but
they required expensive end effectors (two Shadow Dexterous
Hands), one end effector to hold the paper down while
folding at all times, and the paper to have AR tags for visual
tracking. Similarly, Namiki and Yokosawa [27] also achieved
paper folding through dynamic motion primitives and used
physics-based simulations to estimate the deformation of the
paper sheet, also requiring highly specialized manipulators
and an end effector to hold the paper down while folding.
By contrast, our method can fold papers reliably without any
need for holding down the paper during the folding operation
and requires only a simple 3D printed gripper.

Other researchers have also attempted to fold with a single
manipulator while minimizing sliding [3], [4], [5], but their
methods focused on fabrics whose ends were taped down
to the substrate. Though these methods have achieved favor-
able folding accuracy using a physical model for garments
and fabric, we have observed in our experiments that their
generated trajectories perform poorly when applied to paper
folding. We believe that this is due to their local optimization
strategy of solving the subsequent grasp pose using only the
current grasp. In contrast, we generate our folding trajectories
through global optimization, thus showcasing the importance

Fig. 2. States of the paper during the folding process. The manipulation
process involves two steps. The first (folding) step transitions the paper from
the initial state (a), where the paper lies flat on the substrate, to the folding
state (b), where the manipulated end is moved to the “crease target” line C .
The second (creasing) step then transitions the paper from state (b) to the
final folded state (c), which involves forming the desired crease on the paper.

of considering both current and future deformation states
during the paper manipulation process.

III. PROBLEM STATEMENT

This article studies a simple yet challenging task in robotic
folding: creating a predefined crease on a sheet of paper
of typical symmetrical geometry (e.g., rectangular, diamond,
etc.) as illustrated in Fig. 2. Only one end of the paper
is manipulated while the other end is left free. Thus, extra
fixtures are unnecessary and the folding task can be completed
by a single manipulator, which simplifies the workspace, but
slippage of the paper against the substrate must be mitigated
during manipulation, which presents a challenge.

The task can be divided into two steps. The first is
manipulating one end of the paper from the initial flat state
(Fig. 2(a)) to the folding state (Fig. 2(b)), with the goal that
the manipulated edge or point should overlap precisely with
the crease target line or point C as shown in the figure. In the
second step, the paper is then permanently deformed to form
the desired crease at C/2, thus achieving the final folded state
(Fig. 2(c)).

As creasing the paper is trivial, the main challenge lies in
minimizing the displacement of the free end of the paper
during the first step. The paper’s large nonlinear deforma-
tions and slippery surface make accurate predictions of the
folding paper’s status crucial for minimizing displacement.
Since permanent deformations are absent in the first step,
we model the paper’s nonlinear deformations using a 2D
planar rod model with a linear elastic assumption, which is
discussed in detail in the next section. This physical model is
then combined with scaling analysis and machine learning to
generate physically-informed folding trajectories optimized to
minimize sliding. With the first step concluded, simple motion
primitives are used to complete the final paper creasing.
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IV. PHYSICS-BASED MODEL AND ANALYSIS

We next present the numerical framework for studying the
underlying physics of the paper folding process. First, we ana-
lyze the main deformations of the manipulated paper and prove
that a 2D model is sufficient to learn the behaviors of the
manipulated paper so long as the sheet is symmetrical. Second,
we briefly introduce a physically accurate numerical model
based on prior work in the field of computer graphics [28].
Third, we formulate a generalized strategy for paper folding
using scaling analysis.

A. Reduced-Order Model Representation

Paper is a unique deformable object. Unlike cloth, its surface
is developable [29]; i.e., the surface can bend but not stretch.
Furthermore, shear deformations are not of particular impor-
tance as paper possesses a negligible thickness-to-length ratio.
Therefore, the primary nonlinear deformation when folding
paper in our scenario is bending deformation. We postulate
that the nonlinear behaviors of paper arise primarily from a
balance of bending and gravitational energies: ϵb ∼ ϵg .

To further understand the energy balance of the manipulated
paper, we analyze a finite element of the paper, as shown in
Fig. 3(b). The bending energy of this piece can be written as

ϵb =
1
2

kbκ
2 l, (1)

where l is its undeformed length of the piece, κ is its curvature,
and its bending stiffness is

kb =
1
12

Ewh3, (2)

where w is its undeformed width, h is its thickness, and E is
its Young’s modulus. The gravitational potential energy of the
piece is

ϵg = ρwhlgH, (3)

where ρ is its volume density, and H is its vertical height
above the rigid substrate.

From the above equations, we obtain a characteristic length
called the gravito-bending length, which encapsulates the
influence of bending and gravity:

Lgb =

(
Eh2

24ρg

) 1
3

∼

(
H
κ2

) 1
3

. (4)

The length is in units of meters, and we can observe that
it scales proportionally to the ratio of vertical height to
curvature squared, which are the key quantities describing the
deformed configuration of the manipulated paper. Note that the
formulation of Lgb contains only one geometric parameter,
the paper thickness h, which means that other geometric
quantities (i.e., length l and width w) have no influence on
the deformed configuration.

Additionally, due to the symmetrical geometry and material
homogeneity of the paper, the curvature κ should be identical
for all regions at the same height H . Therefore, we can simply
use the centerline of the paper, as shown in Fig. 3(a), to express
the paper’s configuration. We model this centerline as a 2D
planar rod since deformations are limited to the x-z plane, and

Fig. 3. (a) Schematic of paper during the folding state. (b) Bending
deformations of a small piece in the paper. (c) Reduced-order discrete model
(planer rod) representation of the paper. (d) Notations in the discrete model.

implement a discrete differential geometry (DDG) numerical
simulation to simulate the 2D planar rod. The next section
presents the details of this numerical framework.

B. Discrete Differential Geometry Numerical Model

Subsequent to the pioneering work on physics-based model-
ing and simulation of deformable curves, surfaces, and solids
in computer graphics [30], [31], [32], the community has
shown impressive results using DDG-based simulation frame-
works. For example, the Discrete Elastic Rods (DER) [28]
framework has shown remarkable efficiency and physically
validated accuracy when simulating deformable linear objects
for a wide variety of scenarios including elastic coiling [33],
deployment [34], helix bifurcation [35], overhand knot tight-
ening [36], [37], overhand knot buckling [38], flagella
buckling [37], [39], and dynamic cantilever beams [40]. Given
this success, we too choose to use DER to model the cen-
terline of the paper as a 2D planar rod undergoing bending
deformations.

As shown in Fig. 3(c), the discrete model is comprised of
N + 1 nodes, qi (0 ≤ i ≤ N ). Each node qi represents two
degrees of freedom (DOF): position along the x and the z
axes. This results in a 2N + 2-sized DOF column vector q =
[q0, q1, . . . , qN ]

T representing the configuration of the paper
sheet. Initially, all the nodes of the paper are located in a
line along the x-axis in the paper’s undeformed state. As the
robotic manipulator imposes boundary conditions on the end
node qN , portions of the paper deform against the substrate,
as shown in Fig. 4(a). We compute the DOFs as a function of
time q(t) by integrating the equations of motion at each DOF.

Before describing the equations of motion, we first outline
the elastic energies of the rod as a function of q. Kirchhoff’s
rod theory tells us that the elastic energies of a rod can
be divided into stretching Es , bending Eb, and twisting Et

energies. First, the stretching elastic energy is

Es =
1
2

ks

N−1∑
i=0

(
1−
∥qi+1 − qi∥

1l

)2

1l, (5)

where ks = E A is the stretching stiffness, E is Young’s
modulus, A = wh is the cross-sectional area, and 1l is the
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Fig. 4. (a) Side view of a symmetrical paper during folding with coordinate
frame and relevant notations. (b) Sampled λ forces for a particular l̄s of 4.10.
This shows one of the sampled “partial” force manifolds that we use to train
our neural network on.

undeformed length of each edge (segment between two nodes).
The bending energy is

Eb =
1
2

kb

N−1∑
i=2

(
2 tan

φi

2
− 2 tan

φ0
i

2

)2 1
1l

, (6)

where kb =
Ewh3

12 is the bending stiffness, w and h are the
width and thickness, respectively, φi is the “turning angle” at
a node (Fig. 3(d)), and φ0

i is the undeformed turning angle
(0 for paper). Finally, since deformations are limited to a 2D
plane, we can ignore twisting energies. The total elastic energy
is therefore Eel = Es + Eb.

Indeed, a ratio ks/kb ∼ 1/h2
≫ 1 indicates that stretching

strains will be minimal, which matches our intuition as paper is
usually easy to bend but not stretch. Therefore, the stretching
energy item in (5) acts as a constraint to prevent obvious
stretching for the modeled planar rod.

We can now write the equations of motion as a simple force
balance

Mq̈+
∂ Eel

∂q
− Fext

= 0, (7)

where M is the diagonal lumped mass matrix, the dots denote
time derivatives of q, ∂ Eel

∂q is the elastic force vector, and Fext

are the external forces acting on the paper. Newton’s method
can be used to solve (7), allowing for full simulation of the
2D planar rod under manipulation.

C. Generalized Solution and Scaling Analysis

As mentioned in Sec. III, the core of the folding task is to
manipulate the end qN to the target position C starting from
an initially flat state shown in Fig. 4(a). To do so, we analyze
the physical system in order to achieve a solution capable of
minimizing sliding during manipulation.

We first denote several quantities to describe the deformed
configuration of the paper. We introduce a point qC , which
is the node that connects the suspended (z > 0) and contact
regions (z = 0) of the paper. We focus solely on the sus-
pended region as deformations occur primarily in this region.
An origin o is defined for our 2D plane which is located at
the initial manipulated end qN , as shown in Fig. 4(a). For the
manipulated end, the robot end-effector imposes a position
qN = (x, z) and an orientation angle α to control the pose of
the manipulated end (Fig. 4(a)). We impose a constraint that
the curvature at the manipulated end is always zero so that

sharp bending deformations are prevented, which is crucial to
preventing permanent deformations during the folding process.
On the connective node qC , the tangent is always along the
x-axis. With these definitions, we can now modify (7) with
the following constraints:

Mq̈+
∂ Eel

∂q
− Fext

= 0,

such that qN = (x, z),
dqC

ds
= (−1, 0),

MN = 0,

ls ≡

∫ qN

qC

ds = qC · x̂, (8)

where MN is the external moment applied on the manipulated
end, s is the arc length of the paper’s centerline, and ls is the
arc length of the suspended region (from qC to qN ).

We can solve (8) with the numerical framework presented in
Sec. IV-B resulting in a unique DOF vector q. Note that when
q is determined, we can then obtain the external forces from
the substrate along the paper Fsubstrate = Fx + Fz , orientation
angle α of the manipulated end, and the suspended length
ls . Recall that through (4), Young’s modulus E , thickness h,
and density ρ were determined to be the main material and
geometric properties of the paper. Therefore, we can outline
the following physical relationship relating all our quantities:

λ =
∥Fx∥

∥Fz∥
,

(λ, α, ls) = f (E, h, ρ, x, z), (9)

where f is an unknown relationship. It is then trivial to see
that to prevent sliding the relationship

λ ≤ µs (10)

must be satisfied, where µs is the static friction coefficient
between the paper and the substrate. Therefore, a trajectory
that minimizes sliding is one that minimizes λ along its path.

One glaring problem remains in that the relation f must be
known to generate any sort of trajectory. In the absence of an
analytical solution, the numerical framework from Sec. IV-B
can be used to exhaustively find mappings between the inputs
and outputs of f . However, generating tuples in this fashion
requires solving the high-dimensional problem in (8). Such
a method would be horribly inefficient and would make
real-time operation infeasible. Instead, we opt to obtain a
regression approximation of f by fitting a neural network
on simulation data. This approach has several shortcomings,
however. For one, directly learning f is time-consuming
given that (9) is a high-dimensional mapping that depends on
five parameters as input. Furthermore, since the formulation
directly depends on intrinsic parameters of the paper (E , ρ,
and h), an enormously exhaustive range of simulations must
be run to gather enough data to accurately learn f .

To proceed, we reduce the dimensionality of the problem
by applying scaling analysis. According to the Buckingham
π theorem, we construct five unitless groups: x̄ = x/Lgb;
z̄ = z/Lgb; l̄s = ls/Lgb; α, and λ = Ft/Fn , where Lgb is
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the gravito-bending length (4). This results in the following
unitless formulation of (9):

(λ, α, l̄s) = F
(
x̄, z̄

)
. (11)

Note that the mapping F is now independent of quantities
with units; e.g., material and geometric properties of the
paper. As the dimensionality of our problem has been reduced
significantly, we can now express λ as a function of just
two parameters x̄, z̄. Therefore, training a neural network to
model F is now trivial as non-dimensionalized simulation data
from a single type of paper can be used. Furthermore, the
low dimensionality of F allows us to easily visualize the λ
landscape along a non-dimensional 2D-plane.

We will detail the steps to model F in the next section.

V. DEEP LEARNING AND OPTIMIZATION

A. Data Generation

To learn the force manifold, we solve (8) for many sam-
pled (x, z) points. An example of the partial force manifold
produced from this sampling can be observed for a single
suspended length in Fig. 4(b). For a specific (x, z) location,
we apply incremental rotations along the y-axis and find
the optimal rotation angle α that results in MN = 0 on
the manipulated end. For a particular configuration (x, z, α),
we then record the suspended length ls as well as the tangential
and normal forces experienced on the clamped end. This
leads to a training dataset D consisting of six element tuples
(Ft , Fn, α, ls, x, z). We then non-dimensionalize this dataset to
the form (λ, α, l̄s, x̄, z̄).

With our simulation framework, we generated a dataset
D comprising a total of 95,796 training samples within a
normalized suspended length of l̄s ≤ 6.84 (which adequately
covers the workspace of most papers), consuming 3.54 hours
of compute time on an AMD Ryzen 7 3700X 8-core processor.

B. Learning Force and Optimal Grasp Orientation

To train a neural network model of F ,

(λ, α, l̄s) = FNN(x̄, z̄), (12)

we employed a simple fully-connected feed-forward nonlinear
regression network with 4 hidden layers, each containing
392 units. Aside from the final output layer, each layer is
followed by rectified linear unit (ReLU) activation. In addition,
we preprocessed all inputs through the standardization

x′ =
x− x̄D

σD
, (13)

where x is the original input, x̄D is the mean of the dataset
D, and σD is the standard deviation of D.

We used an initial 80-20 train-val split on the dataset D
with a batch size of 128. Mean absolute error (MAE) was
used as the training error. We alternated between stochastic
gradient descent (SGD) and the Adam optimizer whenever
training stalled. Furthermore, we gradually increased the batch
size up to 4,096 and trained on the entire dataset once the
MAE dropped below 0.001. Using this scheme, we achieved
an MAE of less than 0.0005.

Algorithm 1 Uniform Cost Search

Input: x̄ s, z̄s, x̄g, z̄g,M
Output: τ ∗

1 Func UCS(x̄ s, z̄s, x̄g, z̄g,M):
2 W ← valid workspace of M
3 Ls ← ls penalty region
4 h← initialize min heap priority queue
5 c← initialize empty list
6 ns ← node with location (x̄ s, z̄s) and cost 0
7 ng ← node with location (x̄g, z̄g) and cost 0
8 h.push(ns)
9 while len(h) > 0 do

10 ni ← h.pop()
11 if ni == ng then
12 τ ∗← path from start to goal
13 break
14 c.append(ni )
15 for (x̄ j , z̄ j ) ∈ neighbors of ni do
16 if (x̄ j , z̄ j ) /∈W \ Ls then
17 continue
18 n j ← node with location (x̄ j , z̄ j ) and cost

λ j from M
19 if n j ∈ c then
20 continue
21 if n j ∈ h and cost ofn j is higher then
22 continue
23 h.push(n j )
24 τ ∗← perform trajectory smoothing on τ ∗

25 return τ ∗

C. Constructing the Neural Force Manifold

The neural force manifold (i.e., λ outputs of FNN for the
workspace set) is discretized into a rectangular grid consisting
of δ̄ × δ̄ blocks, where δ̄ = δ/Lgb. For each of the blocks,
we obtain and store a single λ value using the midpoint of
the block. This results in a discretized neural force manifold
M represented as a m × n matrix. For the purposes of path
planning, we add two components to our manifold. First,
we do not allow exploration into any region not covered
by our training dataset (l̄s > 6.84). We do so by defining
a workspace W as all (x̄, z̄) pairs within the convex hull
of the input portion of the dataset D. Secondly, we also
exclude regions within a certain l̄s threshold. This is done
as positions with small suspended lengths and large α angles
may result in high curvatures that could cause collision with
our gripper and/or plastic deformation, both of which we wish
to avoid. We denote this region as the penalty region Ls .
Fig. 5(a) shows a visualization of M with the workspace W
and penalty boundary Ls regions. The α values corresponding
to the manifold are also shown in Fig. 5(b).

D. Path Planning Over the Neural Force Manifold

Given the discretized manifold M, we can now generate
optimal trajectories through traditional path planning algo-
rithms. Indeed, we find that there exist two local minima
regions (dark blue in Fig. 5(a)) in the neural force manifold
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Fig. 5. Visualization of the trained neural network’s non-dimensionalized λ force manifold M (a) and α manifold (b). An extremely low δ̄ discretization is used
to showcase smoothness. For the force manifold, we observe two distinctive local minima canyons. Note that regions outside the workspace W are physically
inaccurate, but are of no consequence as they are ignored. For the α manifold, we observe continuous smooth interpolation throughout, which is crucial for
producing feasible trajectories. Both manifolds showcase the trajectories used in the experiments for folding paper in half for Lgb ∈ [0.048, 0.060, 0.132].
(c) The three trajectories in (a) and (b) scaled back to real space. These are the actual trajectories used by the robot. (d) Arbitrary trajectories for various Lgb
with identical start and goal states, highlighting the effect of the material property on our control policy.

Fig. 6. Example of our perception system with a top-down view of the folding procedure. (a) Shows the intuitive baseline results while (b) shows our
open-loop algorithm for Lgb = 0.048 and C = 0.25 m. As in Fig. 2, the solid green line indicates the desired end effector position while the dashed blue
line indicates the crease location. For this case, we observe that the intuitive baseline suffers from considerable sliding while our open-loop algorithm has
near-perfect performance.

M. However, note that these two minima regions are not
connected, which means that improper local optimization may
result in undesired traversal through high force regions later.
As mentioned previously, prior mechanics-based efforts on
folding shell-like structures (cloth) have used either physi-
cal simulations or energy-based optimization to compute the
optimal subsequent grasp based solely on the current status
of the manipulated object [3], [5]. We show that this local
optimization approach performs poorly for paper folding in
Sec. VII. By contrast, we generate globally optimized trajec-
tories that take into account both current and future states of
the paper. To do so, we define an optimal trajectory τ ∗ as one
that reaches the goal state while minimizing the sum of λ:

τ ∗ = arg min
τ∈T

L−1∑
i=0

λi , (14)

where L is the length of the trajectory and T is the set of all
valid trajectories from the desired start to goal state. We define

a valid trajectory as one that is contained within the acceptable
region

(xi , zi ) ∈W \ Ls ∀ (xi , zi ) ∈ τ, (15)

and whose consecutive states are adjacent grid locations. Given
the discretization of the NFM, we can treat M as a graph
whose edge weights consist of λ. Therefore, we use uniform
cost search to obtain τ ∗. Algorithm 1 provides the pseudocode
of the path planning algorithm.

VI. ROBOTIC SYSTEM

A. Dual Manipulator Setup

For our experiments, we use two Rethink Robotics’ Sawyer
manipulators, as shown in Fig. 7. One arm has an elongated
gripper designed for folding, while the other arm has a
spring-compliant roller for creasing and an Intel Realsense
D435 camera for visual feedback. The elongated gripper has
rubber attached to the insides of the fingers for tight gripping.
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Fig. 7. Experimental apparatus: Two robot manipulators, one for folding
(1) and the other for creasing (3). An elongated gripper (2) is used to grab
the manipulated end of the paper. A roller (5) with compliant springs (6) is
used to form the crease. An Intel RealSense D435 camera (4) attached to the
creasing arm offers visual feedback during the folding procedure. All gripper
attachments were 3D printed.

Fig. 8. Overview of our robotic paper-folding pipeline. The top row shows
offline components while the bottom row shows online ones. On the offline
side, we use our trained neural network to generate the necessary force mani-
fold for planning. Then, given an input tuple (xs , zs , xg, zg, Lgb), we generate
an end-to-end trajectory using uniform cost search. This end-to-end trajectory
is then split up into partial trajectories that are carried out by the robot. At the
conclusion of each partial trajectory, we measure paper sliding and replan the
next partial trajectory to rectify the error.

B. Perception System

For perception, we take an eye-in-hand approach by attach-
ing an Intel Realsense D435 camera to the roller arm. We do
not use the range output of the camera as it points down along
the world z-axis and the distance from the camera to the table
is known. To determine the pose of the paper, we use simple
color detection to segment the paper and then use Shi-Tomasi
corner detection [41] to obtain the position of the bottom edge.
Fig. 6 shows an example of the top-down view as well as the
poses detected by the vision system.

C. Model-Predictive Control via Visual Feedback

Although we minimize λ with our proposed framework,
sliding could still occur due to a substrate’s low friction

Algorithm 2 Closed-Loop Control Pseudocode
Input: (xs, zs), (xg, zg), Lgb, δ, N ,FNN

1 M←DiscretizeManifold (FNN, δ)
2 x̄ s, z̄s, x̄g, z̄g ← non-dimensionalize with Lgb

3 τ̄ ∗← UCS (x̄ s, z̄s, x̄g, z̄g,M)
4 update τ̄ ∗ with αs using FNN
5 τ ∗← convert τ̄ ∗ to real space with Lgb

6 τ ∗0 , . . . , τ ∗N−1 ← SplitTrajectory (τ ∗, N )
7 S ← extract start and goal states
8 carry out τ ∗0 on robot
9 for (xi , zi , αi ) and (xi+1, zi+1, αi+1) ∈ S do

10 1x ← detect sliding of paper
11 xc

i ← xi −1x
12 x̄c

i , z̄i , x̄ i+1, z̄i+1 ← non-dimensionalize with Lgb

13 αc
i ← FNN(x̄c

i , z̄i )

14 1α← αi − αc
i

15 τ̄ ∗i ← UCS (x̄c
i , z̄i , x̄ i+1, z̄i+1,M)

16 L ← len(τ̄ ∗i )
17 αi ← obtain αs of τ̄ ∗i using FNN
18 αc

i ← αi +1α[1, (L − 1)/L , . . . , 1/L , 0]T

19 append τ̄ ∗i with αc
i

20 τ ∗i ← convert τ̄ ∗ to real space with Lgb

21 carry out τ ∗i on robot
22 crease paper with roller

surface and/or jittering of the robot’s end-effector. Notice that
the optimal trajectory τ ∗ generated as described in Sec. V-D
assumes that the origin o of our coordinate system, shown in
Fig. 4(a), is fixed. We can define the origin as o = q0−lx̂,
where l is the total length of the paper. Any amount of sliding
indicates that q0 is moving along the x-axis and, therefore, the
origin o also moves an identical amount. When this occurs, our
position within the manifold during traversal deviates from the
optimal trajectory. Furthermore, without adaptive replanning,
the amount of sliding 1x will directly result in 1x amount
of error when creasing. To circumvent this, we introduce a
model-predictive control approach that mitigates the effects of
sliding through trajectory corrections via visual feedback.

We acquire visual feedback at N evenly spaced inter-
vals along the trajectory τ ∗, as shown in Fig. 8. To do
so, we first partition τ ∗ into N partial trajectories. Aside
from the first partial trajectory τ ∗0 , we extract the start and
goal states of the other 1 ≤ i ≤ N partial trajectories
resulting in a sequence of N evenly spaced out states S =
{(x1, z1, α1), . . . , (xN , zN , αN )} when accounting for overlaps.
After carrying out τ ∗0 , we detect the amount of sliding 1x
and incorporate this error by updating the start state and
non-dimensionalizing as

x̄c
i =

xi −1x
Lgb

. (16)

We then replan a partial trajectory τ ∗i from the updated start
state (xc

i , zi ) to the next state (xi+1, zi+1) in the sequence and
carry out this updated trajectory. This is repeated until reaching
the goal state. By properly accounting for sliding, we ensure
that the traversal through the NFM is as accurate as possible.
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Note that this scheme allows us to obtain corrected partial
trajectories in near real time once N becomes sufficiently
large, as each partial trajectory’s goal state approaches its start
state, allowing for uniform cost search to conclude rapidly.
We refer the reader to our supplementary videos (Footnote 1),
which showcase the speed of the feedback loop.

The sliding 1x is not the only error we must rectify.
Recall that we assume an optimal grasp orientation α for each
position within the manifold. When the origin of our NFM
moves, the true position does not match the intended position,
resulting also in an angular error

αc
i = FNN(x̄c

i , z̄i ),

1α = αi − αc
i . (17)

Simply applying a −1α update to the first point in a partial
trajectory results in a large rotational jump that only exacer-
bates the sliding issue. Furthermore, so long as sliding is not
extremely large, the incorrect α at the current position within
the manifold is still fairly optimal. Therefore, the 1α error is
incorporated into the trajectory gradually:

τ ∗i = UCS(x̄c
i , z̄i , x̄ i+1, z̄i+1,M),

αi = FNN(τ ∗i ),

αc
i = αi +1α[1, (L − 1)/L , . . . , 1/L , 0]T , (18)

where UCS denotes uniform cost search and L is the length
of trajectory τ ∗i . This gradual correction ensures that we min-
imize sliding while maintaining smoothness of the trajectory.
Algorithm 2 provides the pseudocode for our full closed-loop
method.

VII. EXPERIMENTS AND ANALYSIS

A. Measuring the Material Property of Paper

To use our framework, we must develop a way to accurately
measure the parameter Lgb. Recall that Lgb is composed of
the bending stiffness kb = Eh3/12 and density ρ. Therefore,
we need only measure this single quantity to describe the
paper’s material properties. We next propose a simple way
to measure the parameter.

As shown in Fig. 9(a), when one end of the paper is fixed,
it will deform due to the coupling of bending and gravitational
energy. As Lgb encapsulates the influence of bending and
gravity on the paper, we have the following mapping:

L(ϵ) = l̄ =
l

Lgb
, ϵ =

lh

l
, (19)

where lh is the vertical distance from the free end to the fixed
end and l is the total length of the paper. We can obtain
the mapping L(ϵ) using numerical simulations (Fig. 9(b)).
With this mapping known, simple algebra can be performed to
obtain Lgb. First, we measure the ratio ϵ = lh/ l for a particular
paper to obtain its corresponding normalized total length l̄.
Then, the value of Lgb can be calculated simply by Lgb = l/l̄.
Once we obtain Lgb, we can now use the non-dimensionlized
mapping (11) to find the optimal path for manipulating the
paper.

Fig. 9. (a) Schematic of a hanging plate. The manipulation edge is fixed
horizontally. (b) Relationship between the ratio ϵ = lh/ l and normalized total
length of the paper l̄ = l/Lgb .

Fig. 10. Comparison of trajectories computed by the folding algorithms for
US letter paper with C = 0.27 m.

B. Baseline Algorithms

To demonstrate the benefits of our folding algorithm,
we compared it to both an intuitive and a state-of-the-art
baseline. We can think of an intuitive baseline algorithm as
one that would work if the opposite end of the paper were
fixed to the substrate. Naturally, such a trajectory would be one
that grabs the edge of the paper and traces the half perimeter
of a circle with radius R = C/2:

dθ = π/M,

τB = {(R cos(idθ), R sin(idθ), idθ), ∀i ∈ [0, M]}, (20)

where M is an arbitrary number of points used to sample the
trajectory. We chose M = 250 for all our experiments.

Additionally, we conducted comparisons against the state-
of-the-art mechanics-based folding algorithm presented by
Petrìk et al. [3], [5], to which we refer as the “SOTA baseline”,
which uses a beam model to compute folding trajectories for
fabric minimizing sliding. However, this baseline considers
only the current status of the deformed material when com-
puting subsequent optimal grasp and, consequently, is unable
to handle the challenging task of paper folding. Examples of
the computed trajectories are shown in Fig. 10.

C. Experimental Setup

We tested folding on 4 different types of paper:
1) A4 paper, Lgb = 0.048 m,
2) US Letter paper, Lgb = 0.060 m,
3) cardboard paper (US Letter dimensions), Lgb =

0.132 m,
4) square origami paper, Lgb = 0.043 m.

For the rectangular papers (1–3), we performed two sets
of experiments. The first involved folding the papers to an
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TABLE I
OFFLINE TRAJECTORY COMPUTATION TIMES FOR PAPERS AND CREASE TYPES [S]

Fig. 11. Experimental results for all folding scenarios. Each column indicates a folding scenario while the top row (a) shows the fold length and the bottom
row (b) shows the spin error. Boxplot results are shown color coded for the intuitive baseline, the SOTA baseline [3], open-loop control, and closed-loop
control algorithms. Medians are shown as orange lines, means as turquoise circles, and the desired target value as a light blue horizontal line. Both our
open-loop and closed-loop algorithms yield significant improvements over the intuitive baseline and the SOTA baseline, as shown by the broken axis in (a).
Our algorithms also exhibit significantly less variance.

arbitrary crease location (C = 0.25 m for A4 and C = 0.20 m
for US Letter and cardboard), while the second involves fold-
ing the papers in half. For the square origami paper, we chose
an arbitrary crease location of C = 0.30 m. This resulted
in a total of 7 folding scenarios. For each of the scenarios,
we conducted experiments using 4 different algorithms—the
intuitive baseline, the SOTA baseline, our open-loop approach,
and our closed-loop approach. We completed 10 trials for each
of these algorithms, resulting in 280 experiments.

We also validated our model’s non-dependence on the
paper’s width w (Sec. IV-A) through additional experiments
involving narrow strip folding. We created strips of width
w = 2.5 cm for both A4 and cardboard and performed 10 trials
for each algorithm, resulting in 80 additional experiments for
a total of 360 experiments in our extensive case study.

D. Metrics

The metrics used for the experiments were the average
fold length and the spin error. The average fold length was
calculated by simply taking the average of the left and right
side lengths up until the crease. The spin error was calculated
as the angle θerr that results in the difference between the left
and right side lengths. For square papers, the fold length was
defined as the perpendicular length from the tip to the crease
and the spin error was the angular deviation from this line to
the true diagonal.

E. Parameters

The neural force manifold M was discretized using δ̄ =

0.0548 as we found this discretization to be a good com-
promise between accuracy and computational speed. All

rectangular papers used a penalty region Ls defined by l̄s <

0.958 while the square paper used one defined by l̄s < 1.137.
This discrepancy is due to the fact that the diagonal paper has
a smaller yield strength compared to the rectangular paper;
i.e., to prevent extremely high curvatures, a larger suspended
length l̄s range must be avoided.

For closed-loop control, we chose to split all trajectories into
N = 5 intervals regardless of trajectory length. Furthermore,
we used a slick (i.e., low friction) table to demonstrate the
robustness of our method. Note that smaller friction coeffi-
cients result in a significantly harder manipulation problem
due to the lower threshold for sliding. This is made evident by
the excessive sliding of the baseline algorithms shown later.
Using an empirical method, we conducted measurements to
determine the static coefficient of friction between the papers
and substrate, yielding an approximate value of µs = 0.12.

F. Results and Analysis

In Table I we report the offline trajectory computation
times for all experiments using a single Intel i9-9900KF CPU,
demonstrating on average a 15× speed improvement over
the SOTA baseline. In Fig. 11, all experimental results for
non-narrow strips are reported as box plots where we show the
achieved fold lengths and spin errors. From the achieved fold
lengths, we see significant improvement over the two baselines
for all folding scenarios. As expected, the SOTA baseline
demonstrates better performance compared to the intuitive
method with the exception of cardboard paper where the for-
mer fails to fold it at all. Due to the large gap in performance,
broken axes are used to properly display the variance of the
recorded data. Note that not only do our algorithms achieve
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Fig. 12. Isometric views of different folding scenarios. (a) C = Half folding for Lgb = 0.048 paper with the intuitive baseline (a1), the SOTA baseline
(a2), and our open-loop algorithm (a3). (b) C = 0.30 m diagonal folding for Lgb = 0.043 with the intuitive baseline (b1), the SOTA baseline (b2), and our
closed-loop algorithm (b3).

significantly better performance on average, the variance of our
approach is also much lower as shown by the decreased y-axis
resolution after the axis break. We attribute the high variances
of the baseline algorithms to the increased influence of friction,
which can often cause chaotic, unpredictable results. In other
words, truly deterministic folding can only be achieved when
sliding is nonexistent.

For the vast majority of cases, incorporating visual feedback
yields a clear improvement over the open-loop algorithm.
Intuitively, we observe a trend where the performance gap
between our open-loop and closed-loop algorithms grows as
the material stiffness increases for rectangular folding. For
softer materials (Lgb = 0.048), the open-loop algorithm has
near perfect performance as shown when folding a paper in
half in Fig. 12(a3). By comparison, Fig. 12(a1)–(a2) shows the
intuitive and SOTA baselines failing with significant sliding.

The sliding problem is only exacerbated by increasing the
stiffness of the material (Lgb = 0.132). Fig. 13(a) shows
the intuitive baseline algorithm failing to fold the cardboard
paper in half by a margin almost as long as the paper
itself, while Fig. 13(b) shows how the SOTA baseline method
experiences complete failure due to a high energy snap-
ping caused by excessive deformation. By comparison, our
open-loop algorithm is capable of folding the cardboard with
significantly better results albeit with some sliding (Fig. 13(c)).

As the material stiffness increases, the benefits of visual
feedback are more clearly seen as we are able to achieve
near perfect folding for cardboard (Fig. 13(d)). All of our
findings for rectangular folding also match the results of
our diagonal folding experiment shown in Fig. 12(b1)–(b3),
where the closed-loop approach once again achieves minimal
sliding when compared to the baselines. Overall, the matching
findings across all our experiments demonstrate the robustness
of our formulation against material and geometric factors.

We observed one oddity for the folding scenario of Lgb =

0.048 and C = Half, in which the open-loop algorithm
outperformed our closed-loop variant, but the decrease in
performance is on average only 1 mm, which is attributable
to repetitive discretization error caused by N = 5 replanning.
In fact, as we use a discretization of δ = 2 mm for the man-
ifold, compounding rounding errors can easily cause 1–2 mm
errors. With this in mind, our closed-loop method achieves an
average fold length performance within a 1-2 mm tolerance
across all experiments.

In terms of spin error, we found that softer materials had
the greatest error. As the surface of the table is not perfectly
flat, any amount of sliding will directly result in uneven spin,
as shown in Fig. 12(a). As the material stiffness increases,
the spin errors became more uniform across the methods
as the influence of friction is not enough to deform the
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Fig. 13. Isometric views for folding C = Half with the stiffest paper (Lgb = 0.132): (a) shows the intuitive baseline, which fails drastically as the stiffness
of the paper causes excessive sliding during the folding process, (b) shows the SOTA baseline, which is unable to fold cardboard at all and experiences a
high energy snap caused by the large induced deformations, (c) shows our open-loop algorithm, demonstrating significant improvements over both baselines
with minimal sliding, and (d) shows our closed-loop algorithm, which improves upon our open-loop results and achieves near perfect folding.

TABLE II
EVALUATION OF THE INFLUENCE OF PAPER WIDTH

paper. Nevertheless, we can see that our open and closed-loop
algorithms resulted in less sliding than the baseline on average.

G. Effects of Paper Width on Folding Performance

Previously, we mathematically deduced that the paper’s
width w should have no influence on our folding scheme
(Sec. IV-A). We now validate this claim through experiments.
Table II reports comparisons of fold length and spin error
between narrow strips and wide sheets of paper error for
half folding A4 paper and cardboard. As expected, both our
open-loop and closed-loop methods have near identical perfor-
mance regardless of paper width. Aside from a slight exception
for open-loop narrow cardboard folding that actually benefits
from a 5 mm improvement, differences are almost impercep-
tible to the human eye. Interestingly, both baseline methods
experience significant changes in fold length (> ±1 cm) when
width is changed. The prevention of such nondeterministic
behavior is another benefit of our method.

VIII. ADDITIONAL DISCUSSION

A. Performing Multiple Folds on the Same Paper

Our optimal folding strategy can also be used to fold a
single piece of paper multiple times so long as our assumptions
regarding material homogeneity and symmetrical centerline

hold. Given our method’s exceptional accuracy, a precise
equilateral origami cube can be created using solely open-
loop control, and excellent results are shown in Fig. 14. Future
work pertaining to performing arbitrary folds is discussed in
Sec. IX.

B. Importance of Single-Manipulator Folding

To emphasize the significance of single-manipulator folding,
we next present results for half-folding cardboard using both
baselines with the incorporation of an auxiliary manipulator
used to prevent the opposing edge from sliding (Fig. 15).
The auxiliary manipulator “holds down” the edge during the
folding process and then moves out of the way at the last
possible point in the folding trajectory in order to avoid
collision. Despite the additional hardware, we can see that
the results for both baselines are near identical to the original
experiments shown in Fig. 13.

For the intuitive baseline, significant sliding occurs as soon
as the auxiliary manipulator lifts away due to the paper’s high
energy state, ultimately yielding an end result that is nowhere
near the desired half-fold. This sliding is less noticeable for
the SOTA baseline, but the sheet still suffers from buckling.
With this demonstration, we conclude that for stiff materials,
naive folding strategies can fail drastically despite the use of
auxiliary manipulators to explicitly prevent sliding. In fact, the
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Fig. 14. Folding a simple origami cube with open-loop control. The left image shows the starting strip of paper (A4), the middle images show three folding
steps to create each corner, and the right image shows the resulting cube. Note that regrasps were performed manually.

Fig. 15. Isometric views for folding C = Half with the stiffest paper (Lgb = 0.132) using an auxiliary manipulator: (a) shows the intuitive baseline while
(b) shows the SOTA baseline. Note the similarity in results to Fig. 13 despite the use of an auxiliary manipulator to prevent sliding.

use of auxiliary manipulators is a rather expensive approach,
both in terms of requiring additional hardware as well as
introducing more overall motions into the pipeline, which our
folding strategy completely avoids with its inherent sliding
prevention.

IX. CONCLUSION

We have introduced a novel sim2real robot control strategy
capable of robustly folding sheets of paper of varying materials
and geometries along symmetrical centerlines with only a
single manipulator. Our framework incorporates a combination
of techniques spanning several disciplines, including physi-
cal simulation, machine learning, scaling analysis, and path
planning. The effectiveness of the framework was demon-
strated through extensive real world experiments against both
natural and state-of-the-art paper folding strategies. Further-
more, an efficient, near real-time visual feedback algorithm
was implemented that further minimizes folding error. Our
closed-loop model-predictive control algorithm successfully
accomplished challenging scenarios such as folding stiff
cardboard with highly consistent accuracy.

In future work, we hope to tackle the difficult problem
of creating arbitrary creases along sheets of paper with
non-symmetric centerlines. Such non-symmetric paper sheets
can no longer be represented as a reduced-order 2D elastic
rod model, hence requiring a more sophisticated shell-based
formulation. Additionally, precisely folding paper with preex-
isting creases and folds will be a crucial step to accomplishing
elaborate folding tasks, such as robotic origami. We believe
that our optimal symmetrical folding trajectories can serve as a
valuable “seed” or initial guess when optimizing for asymmet-
rical folds. Moving forward, we anticipate exploring solutions
that take advantage of generalized problem formulations with
data-driven control schemes, such as reinforcement learning.
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