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Flow-Based Distributionally Robust Optimization
Chen Xu , Jonghyeok Lee, Xiuyuan Cheng , and Yao Xie , Member, IEEE

Abstract—We present a computationally efficient framework,
called FlowDRO, for solving flow-based distributionally robust
optimization (DRO) problems with Wasserstein uncertainty sets
while aiming to find continuous worst-case distribution (also
called the Least Favorable Distribution, LFD) and sample from
it. The requirement for LFD to be continuous is so that the
algorithm can be scalable to problems with larger sample sizes
and achieve better generalization capability for the induced
robust algorithms. To tackle the computationally challenging
infinitely dimensional optimization problem, we leverage flow-
based models and continuous-time invertible transport maps
between the data distribution and the target distribution and
develop a Wasserstein proximal gradient flow type algorithm. In
theory, we establish the equivalence of the solution by optimal
transport map to the original formulation, as well as the dual
form of the problem through Wasserstein calculus and Brenier
theorem. In practice, we parameterize the transport maps by
a sequence of neural networks progressively trained in blocks
by gradient descent. We demonstrate its usage in adversarial
learning, distributionally robust hypothesis testing, and a new
mechanism for data-driven distribution perturbation differential
privacy, where the proposed method gives strong empirical
performance on high-dimensional real data.

Index Terms—Flow-based generative models, distributionally
robust optimization.

I. INTRODUCTION

D ISTRIBUTIONALLY Robust Optimization (DRO) is
a fundamental problem in optimization, serving as a

basic model for decision-making under uncertainty and in
statistics for addressing general minimax problems. It aims
to identify a minimax optimal solution that minimizes an
expected loss over the worst-case distribution within a pre-
determined set of distributions (i.e., an uncertainty set). DRO
arises from various applications, including robust hypothesis
testing [23], [53], boosting [9], semi-supervised learning [7],
fair classification [49], clustering [58], and so on; see [33]
for a more complete review. Inherently, DRO leads to an
infinite dimensional problem, and thus, it faces a significant
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computational challenge in most general settings. Despite
the existing efforts to solve DRO that allow analytic or
approximate solutions, current approaches still have limited
scalability in solving high-dimensional, large-sample problems
with general risk functions. In this work, we aim to address
the computational challenge using a new neural network flow-
based approach; the connection with existing approaches is
further discussed in Section II-C.

The basic setup for DRO is given below. Let X = Rd be
the data domain. Assume a real-valued risk function R(P;φ)

taking as inputs a d-dimensional distribution P (with a finite
second moment) and a measurable decision function φ ∈ " in
a certain function class (problem specific and possibly para-
metric). Assume a pre-specified scalar loss function r : X ×
" → R so that

R(P;φ) = Ex∼P[r(x;φ)]. (1)

Some examples of the decision function φ and loss function r
include φ being a multi-class classifier and r being the cross-
entropy loss, and φ being a scalar test function and r being
the logistic loss. We are interested in solving the following
minimax problem:

min
φ∈"

max
Q∈B

R(Q;φ). (2)

In (2), B is a pre-defined uncertainty set that contains a set of
(possibly continuous) distributions that are variations from a
reference distribution P; this is known as the distributionally
robust optimization (DRO) problem [44]. In particular, we
are interested in Wasserstein DRO or WDRO (see, e.g., the
original contribution [38]), where the B is the Wasserstein
uncertainty set centered around the reference distribution
induced by Wasserstein distance. WDRO receives popularity
partly due to its data-driven uncertainty sets and no parametric
restriction on the distributional forms considered.

The worst-case distribution that achieves the saddle point
in (2) is called the Least Favorable Distribution (LFD) (also
called the “extreme distributions” in prior works, e.g., [38]).
In this work, we consider the problem of finding LFD for a
given algorithm φ, which is useful in various practical settings
such as generating worst scenarios to test the algorithm and
develop robust algorithms.

A. Proposed: Flow-DRO

In this paper, we propose a computational framework,
a flow-based neural network called FlowDRO to find the
worst-case distributions (LFDs) for DRO or solve the
inner maximization of minimax problem (2). In particular,
FlowDRO can efficiently compute worst-case distributions for
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various high-dimensional problems, thanks to the strong rep-
resentation power of neural network-based generative models.
The main idea is to connect the WDRO problem through
Lagrangian duality to a function optimization problem with
Wasserstein proximal regularization. This connection enables
us to adapt the recently developed computationally efficient
Wasserstein proximal gradient flow [14], [56] to develop
computationally efficient flow-based models parameterized by
neural networks. Our framework can be viewed as a generative
model for LFDs. It is thus suitable for many statistical
and machine learning tasks, including adversarial learning,
robust hypothesis testing, and differential privacy, leading to
computationally efficient solutions and performance gain, as
we demonstrated using numerical examples.

Our main contributions are:
• Develop a new Wasserstein proximal gradient descent

approach to find worst-case distributions (or Least
Favorable Distributions, LFDs) in WDRO by re-
formulating the problem into its Wasserstein proximal
form using Lagrangian duality. We introduce an alter-
native way to represent the LFDs through the optimal
transport maps from a continuous reference measure to
induce continuous LFD and use data to estimate.

• Algorithm-wise, we adopt a new neural-network genera-
tive model approach to find LFD, called FlowDRO. The
proposed neural network-based method can be scalable to
larger sample sizes and high dimensionality, overcoming
the computational challenges of previous WDRO meth-
ods. FlowDRO parameterize LFD by a transport map
represented by a neural network, which can learn from
training samples and automatically generalizes to unseen
samples and efficiently generate samples from the LFDs;
we demonstrate its versatility in various applications and
demonstrate the effectiveness of FlowDRO on multiple
applications with high-dimensional problems (including
images) from adversarial attack and differential privacy
using numerical results.

• Theoretically, we approach the problem in a different
route, relying on the tools of optimal transport: we
derive the equivalence between the original W2-proximal
problem and the transport-map-search problem making
use of Brenier theorem enabled by considering continuous
distributions. Our theory also shows that the first-order
condition of our W2-proximal problem using Wasserstein
calculus leads to an optimality condition of solving the
Moreau envelope without assuming the convexity of the
objective. As a by-product, we recover the closed-form
expression of the dual function involving the Moreau
envelope of the (negative) loss, consistent with existing
work, and highlight the computational advantages of
using our alternative optimal transport map reformulation.

To the best of our knowledge, FlowDRO is the first work
that finds the worst-case distributions in DRO using flow-
based models. However, we would like to emphasize that our
approach is general and does not rely on neural networks;
one can potentially use an alternative representation of the
transport maps (e.g., [29]) in low-dimensional and small sam-
ple settings for stronger learning guarantees. In the context of

minimizing an objective functional in probability space, [31]
proposed an infinite-dimensional Frank-Wolfe procedure. The
work leveraged the strong duality result in DRO [8] (see more
in Section II-A, Eqn. (8)) to compute the Wasserstein gradient
descent steps. Our work focuses on the sub-problem of finding
LFD in DRO, and our algorithm uses neural networks to tackle
distributions in high dimensional space.

B. Motivating Example: Why Continuous Density for LFD?

One may quickly realize that finding LFD is an infinite-
dimensional optimization problem that is particularly chal-
lenging in high dimensions and general risk functions. A
useful observation that occurs in such infinite-dimensional
optimization problem is that the worst-case distribution solu-
tion of the WDRO problem (2) turns out to be discrete, as
shown in the original paper [38] and various follow-up works
including [53] for the distributionally robust hypothesis test.
This particular solution structure does help to overcome the
computational challenge caused by the infinite-dimensional
optimization problem.

However, the discrete nature of LFD, as coming from the
WDRO formulation, is not desirable in practice, as explained
in the following. First, there is a significant computational
challenge. The method is not scalable to large datasets: the
discrete WDRO formulation will require solving a Linear
Program (LP) with the number of decision variables to be
O(n2), where n is the total number of training data points and
the complexity of solving an LP is typically quadratic on the
number of the decision variable. Such computational complex-
ity for problems with thousands of training data points can
be prohibitive (e.g., the MNIST handwritten digit example in
our later section uses ∼5000 samples per class). So typically,
the current WDRO formulation usually can only be used to
find discrete LFDs for small sample settings (e.g., [53], [58]).
Second, the discrete LFD will limit the generalization capabil-
ity of the resulting algorithm. In machine learning applications,
when we develop a robust detector (binary classifier) using
DRO [23], [53], the LFD is discrete with a support on the
training data set, as shown in Fig. 1(a). As a result, the optimal
detector is also only defined on the support of training data
points. Such an optimal detector does not generalize in that,
given a new test sample, we cannot directly apply it to the test
data if it does not coincide completely with one of the training
data points. An ad-hoc approach could be to “interpolate” the
optimal detector on the training samples by convolving with
a smoothing kernel (such as a Gaussian kernel); however, this
will lose the property of the original minimax optimality of
the detector. It would be better to seek continuous worst-case
distributions (LFDs) when we solve the minimax problem.
Thus, we may want to add a constraint in the formulation
and consider the uncertainty set as the intersection of the
Wasserstein uncertainty set and the set of continuous functions.

Suppose we would like to find continuous worst-case
distribution instead for the above consideration. However,
if one restricts P in the minimax problem (2) to be the
Wasserstein uncertainty set intersecting all continuous dis-
tribution functions, that will lead to an even more difficult
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Fig. 1. Comparison of WDRO and FlowDRO on the 1D example following
[53, Figure 1]. Left of (a) and (b): Empirical distributions of two sets of
training (shown in (a)) and test (shown in (b)) samples from N (0, 1) and
N (2, 1.2). Right of (a) and (b): Least-favorable distributions (LFD) found
by WDRO and FlowDRO, where LFDs are within the W2 ball (4) with
radius ε = 0.1. As expected, the LFDs overlap more with each other than
the empirical distributions do.Note that WDRO solves a convex problem to
obtain the LFD by moving the probability mass on discrete training samples.
In particular, WDRO is not generalized to a test sample unless it coincides
exactly with some of the training samples. In comparison, FlowDRO yields
a one-to-one continuous-time transport map that can be directly applied to
training and test samples. The resulting LFD is also continuous, as it is the
push-forward distribution by the transport map on the underlying continuous
data distribution.

infinite dimensional problem involving distribution functions,
and the (discrete) solution structure property no longer holds.
This brings out the main motivation of our paper: we will
introduce a neural network (NN) approach to solve minimax
problem leveraging the strong approximation power of NN
and that they implicitly regularize the solution to achieve
continuous density. To carry out the plan, we need a carefully
designed NN architecture and training scheme leveraging the
recent advances in normalizing flow to represent distribution
functions. Recently, there have also been works considering
entropy regularized Wasserstein uncertainty sets, called the
Sinkhorn DRO problems [50], which lead to continuous LFDs
with kernel-type solutions. Still, it is more suitable for low-
dimensional problems due to the nature of the kernel solutions.

C. Flow-Based Generative Models

Recently, diffusion models and closely related flow-based
models have drawn much research attention, given their state-
of-the-art performance in image generation; see [14] for
a complete summary. Flow-based generative models enjoy
certain advantages in computing the data generation and the
likelihood and have recently shown competitive empirical
performance. They can be understood as continuous-time
models that gradually transform the input distribution P into
a target distribution Q. These models are popularized in the
context of normalizing flow, where the target distribution Q =
N (0, Id), the standard multivariate Gaussian [32]. They can be
largely categorized into discrete-time flows [5], [12], [54] and
continuous-time flows [26], [40], [55], [56]. The discrete-time
flows can be viewed as Euler approximation of the underlying
continuous-time probability trajectory, where the continuous-
time flows are based on neural ordinary differential equation
(NeuralODE) [13] to learn the probability trajectory directly.

We remark that, unlike normalizing flow and flow between
arbitrary pre-specified pairs of distributions, our flow model
tries to learn the worst-case distribution Q∗ that maximizes cer-
tain risk functions. Compared with other flow-based generative

models, such as the traditional settings of normalizing flow or
pre-specified target distributions, FlowDRO does not choose
a target distribution a-priori, which is learned by maximizing
the objective function.

We also note that different from training generative adver-
sarial networks (GAN) [24] that may also generate worst-case
samples, our flow-based approach can be more stable during
training as it involves neither auxiliary discriminators nor inner
loops. Compared with recent works on flow-based generative
models [14], [56], where only KL divergence was considered
for the loss function, we consider general loss as motivated
by various applications.

D. Applications

FlowDRO can also directly benefit several applications,
which can be formulated as DRO problems, as we present in
more detail in Section V. First, in the case of an adversarial
attack, our flow model is an attacker that can find the
distribution causing the most disruption to existing systems.
This is especially important for engineering system design. For
example, in power systems, we are interested in understanding
the resiliency of a power network. Given limited historical
observations, we are interested in discovering whether any
unseen scenario may cause a catastrophic consequence to the
system. Finding such scenarios can help evaluate engineering
systems and improve network resiliency. Second, in the case
of differential privacy (DP), our flow model acts as a dis-
tributional perturbation mechanism to dataset queries. Upon
finding the worst-case distribution around the data distribution
over queries, we can provide much protection against potential
data disclosure and/or privacy loss. This is extremely useful
in high-stakes settings where sensitive information must be
protected. We also note that the existing DP framework is
largely not data-driven. Specifically, DP mechanisms often
take the simple approach of adding i.i.d. noise to each dimen-
sion of queries, and the noises are unrelated to data. There
is growing interest in developing data-driven mechanisms by
exploiting the query structure or the data distribution, which
may bring potential performance gains. However, finding such
optimal perturbation subject to the privacy constraint poses a
computational challenge, which we try to address through the
proposed FlowDRO.

The rest of the paper is organized as follows. Section II
formally introduces the framework of solving for the worst-
case distribution, along with theoretical analyses. Section IV
describes the FlowDRO method and the concrete training
algorithm. Section V considers several important applications
for which FlowDRO can be used. Section VI shows numerical
results ofFlowDRO on high-dimensional problems. Section VII
concludes the work with discussions. All proofs are delegated
to the appendix of https://arxiv.org/abs/2310.19253.

II. FRAMEWORK

Below, we focus on Wasserstein-2 (W2) in this work, and
extensions to Wp with other p are left to future studies. Let
X = Rd, and denote by P2(X ) the space of all distributions
on domain X that have a finite second moment, that is,
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P2(X ) := {P,
∫
X |x|2dP(x) < ∞}. Define Pr

2(X ) := {P ∈
P2, P ( Leb}, that is, all distributions in P2(X ) that also
have continuous densities (absolute continuous with respect to
the Lebesgue measure). We may omit (X ) in the notation P2
and Pr

2.

A. Dual Formulation and Wasserstein Proximal Problem

The W2-distance between two distributions in P2 is
defined by

W2
2 (µ, ν) := inf

π∈&(µ,ν)

∫

Rd×Rd
‖x − y‖2dπ(x, y), (3)

where &(µ, ν) denotes the family of all joint distributions
with µ and ν as marginal distributions, called the couplings
of µ and ν. For any given ν ∈ P2, the functional W2

2 (·, ν)
maps from P2 to [0,∞), by the following lemma.

Lemma 1: For any µ, ν ∈ P2, W2(µ, ν) < ∞.
Let Bε(P) be the W2-ball in P2 around the reference

distribution P of radius ε > 0, namely

Bε(P) = {Q ∈ P2, W2(Q, P) ≤ ε}. (4)

As explained in the introduction, we will focus on the case
where P has (continuous) density, that is P ∈ Pr

2. We focus on
the inner loop (the “max”) of the min-max problem (2) where
the uncertainty set B = Bε(P). For fixed decision function
φ, we cast the maximization as a minimization by defining
V(x) := −r(x;φ). The central problem we aim to solve in the
paper is to find the LFD, which can be equivalently written
as the following:

min
Q∈Bε(P)

Ex∼QV(x), {LFD problem}. (5)

The idea is to convert the uncertainty set constraint as
a regularization term of the original objective function by
introducing a Lagrangian multiplier. Then, we can leverage
this connection to build a Wasserstein gradient flow type of
algorithm to solve the LFD problem.

1) Dual Form and Proximal Problem: The constrained
minimization (5) is a trust region problem. It is well known
that in vector space, trust-region problem can be solved by
a proximal problem where the Lagrangian multiplier defined
through λ > 0 corresponds to the radius ε [42]. Specifically,
consider the dual form of the LFD problem (5), which can be
written as

sup
λ≥0

G(λ) := min
Q∈P2

Ex∼QV(x)

+ λ
(
W2

2 (P, Q) − ε2
)
, {dual form}. (6)

We restrict ourselves to the case when λ > 0, and introduce
the change of variable λ = 1

2γ for γ > 0. After dropping the
constant term λε2 in (6), we obtain the following Wasserstein
proximal problem

min
Q∈P2(X )

Ex∼QV(x) + 1
2γ

W2
2 (P, Q),{proximal problem}. (7)

The W2-proximal problem can be viewed as the Moreau enve-
lope (or the Moreau-Yosida regularization) in the Wasserstein
space [39]. Similar to the vector-space case, we will have a

correspondence between (5) and (7), see Remark 2, which
will be introduced in Section III after we derive the first-order
optimality conditions of the two problems.

2) Explicit Form of Dual Function: It has been pointed out
in several prior works that the dual form can be reformulated
using the Moreau envelope of the (negated) loss function under
different scenarios [8], [22], [57]. Specifically, the explicit
expression of the dual form (6) is written as

sup
λ≥0

G(λ) := Ex∼P inf
z

[
V(z) + λ‖z − x‖2

]
− λε2. (8)

Assuming λ > 0, the dual function G in (8) can be equivalently
written as

G
(

1
2γ

)
= Ex∼P u(x, γ ) − ε2

2γ
, (9)

where u(x, γ ) is the Moreau envelope of V defined as

u(x, t) := inf
z

[
V(z) + 1

2t
‖z − x‖2

]
, t > 0. (10)

This form of the dual function echos the observation that the
Wasserstein proximal operator for the functional in the form
of ϕ(µ) =

∫
Vdµ can be solved by the proximal operator

(Moreau envelope) of V , as has been pointed out in the PDE
literature, see e.g., [10].

We will recover the same explicit form of the dual function
under certain conditions in Section III where the Moreau
envelope has unique minimizer z for each x, see Corollary 1.
Meanwhile, from the computational perspective, the Moreau
envelope u(x, γ ) may still be challenging to solve in high
dimensions, among other algorithmic challenges. We further
discuss this and the connections to previous studies of the
dual form in Section II-C. Instead of using the dual form (8),
we propose to solve the dual problem (equivalently the W2-
proximal problem (7)) by parameterizing a transport map
T : Rd → Rd possibly by a neural network, to be detailed in
the next section.

B. Solving the Wasserstein Proximal Problem by Transport
Map

We show that the problem (7) that minimizes over Q can
be solved by minimizing over the transport map T , which
will pushforward P to Q. (Recall that for T : X → X ,
the pushforward of a distribution P is denoted as T#P, such
that T#P(A) = P(T−1(A)) for any measurable set A.) This
reformulation is rooted in the Monge formulation of the
Wasserstein distance.

When P ∈ Pr
2, the Brenier theorem allows a well-defined

and unique optimal transport (OT) map from P to any µ ∈
P2. For completeness, we include the argument as follows.
We denote by T!

P the OT map from P to ! ∈ P2, which is
defined P-a.e., and (Tµ

P )#P = µ. Given any µ ∈ P2, for any
T : Rd → Rd s.t. T#P = µ, (Id, T)#P is a coupling of P and
µ, and thus

W2
2 (µ, P) ≤ Ex∼P‖x − T(x)‖2. (11)

The problem of minimizing the r.h.s. of (11) over all T that
pushforwards P to µ is known as the Monge Problem. By
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Brenier Theorem, when P ∈ Pr
2, the OT map attains the

minimum of the Monge problem, that is,

W2
2 (µ, P) = Ex∼P‖x − Tµ

P (x)‖2. (12)

We introduce the following transport map minimization
problem corresponding to the W2-proximal problem (7)

min
T : X→X , T#P∈P2(X )

Ex∼P

(
V ◦ T(x) + 1

2γ
‖x − T(x)‖2

)
.

(13)

The formal statement of the equivalence between (7) and (13)
is by applying Proposition 1 with ϕ(µ) := Ex∼µV(x), which is
assumed to be finite for any µ ∈ P2(X ), and λ = 1/2γ > 0.
The proof follows a similar argument as in [56, Lemma A.1]
and is included in Appendix A for completeness.

Proposition 1 (Equivalent Solution by Transport Map):
Suppose ϕ : P2(X ) → (−∞,∞), P ∈ Pr

2(X ), and define
L2(P) := {v : Rd → Rd, Ex∼P‖v(x)‖2 < ∞}. For any λ > 0,
the following two problems

min
µ∈P2(X )

Lµ(µ) = ϕ(µ) + λW2
2 (P, µ), (14)

min
T∈L2(P)

LT(T) = ϕ(T#P) + λEx∼P‖x − T(x)‖2, (15)

satisfy that
(a) If T∗ is a minimizer of (15), then (T∗)#P is a minimizer

of (14).
(b) If µ∗ is a minimizer of (14), then the OT map from P

to µ∗ minimizes (15).
In both cases, the minimum L∗

µ of (14) and the minimum
L∗

T of (15) equal.
We will solve (13) by parameterizing the transport map T

by a flow network on [0, γ ] and learn T by setting (13) as the
training objective. Details will be introduced in section IV.

C. Connection to Existing Wasserstein DRO

The dual form (8) has been derived in several works under
different settings [8], [22], [33], [38], [57] - noting that we
define V to be the negative loss, thus (8) is “sup-inf”, while
the dual of the original LFD problem is “inf-sup”. Below, we
discuss the connection under our framework.

1) Reduction in the Case of Discrete Reference Measure:
We show a connection of our problem to the known result in
the literature (see, e.g., [33]): when the reference distribution
P is discrete (rather than having a density, i.e., a continuous
distribution considered in our setting), [33] proved a “strong
duality” result (16). Here, we show that the dual form (6)
will end up being in the same as the dual form therein
(which is equivalent to (8)), and the argument is via (13)
which illustrates the role played by the transport map T . This
is an interesting connection because the dual form in [33,
Th. 7] plays a role in reducing the original complex infinite-
dimensional problem to a finite-dimensional problem to solve
the discrete LFD [33], [38]. However, such reduction only
happens when the center of the uncertainty set P is discrete;
when P is not discrete rather than continuous, the case
considered in our paper, we need to develop an alternative
computational scheme.

When P is an empirical distribution (thus discrete), we
denote P = P̂ and P̂ = 1

n

∑n
i=1 δxi , for a dataset {xi}n

i=1. We
first restate [33, Th. 7] using our notations (p = 2 in Wp):

sup
Q∈Bε

(
P̂
)Ex∼Qr(x,φ)

= inf
λ≥0

{
Ex∼P̂ sup

z

[
r(z;φ) − λ‖z − x‖2

]
+ λε2

}
. (16)

Note that the dual form (the r.h.s. of (16)) is equivalent to (8)
replacing P to be P̂ (and swapping to “sup-inf”).

Recall the dual form (6) where we take P = P̂. After
dropping the constant term λε2, the following proposition
gives the explicit expression of the dual function G(λ). We
believe similar arguments have appeared in the literature, and
we include proof for completeness.

Proposition 2 (Dual Form for Discrete P): Given λ > 0,
suppose ∀i = 1, . . . , n, infz [V(z) + λ‖xi − z‖2] attains its
minimum at some point zi ∈ Rd, then

min
Q∈P2

Ex∼QV(x) + λW2
2

(
P̂, Q

)

= Ex∼P̂ inf
z

[
V(z) + λ‖x − z‖2

]
. (17)

We thus have G(λ) = Ex∼P̂ infz [V(z) + λ‖x − z‖2] − λε2.

This dual function is equivalent to the dual form on the r.h.s.
of (16), recall that V(x) = −r(x;φ).

It will be illustrative to derive the r.h.s. of (17) formally
from the transport-map-search problem (13): with P = P̂, we
obtain

min
T : Rd→Rd

1
n

n∑

i=1

(
V ◦ T(xi) + λ‖xi − T(xi)‖2

)
. (18)

Since xi are discrete points, the effective variable are zi :=
T(xi), that is, the minimization problem is equivalent to
min{zi}n

i=1, zi∈Rd
1
n

∑n
i=1(V(zi)+λ‖xi −zi‖2). This minimization

is decoupled for the n points zi, and the minimization of each zi
This gives that minT : Rd→Rd Ex∼P̂[V(T(x))+λ‖x−T(x)‖2] =
Ex∼P̂ infz [V(z) + λ‖x − z‖2].

2) Connection to the Dual Formulation of WDRO: Prior
works have also attempted to use the dual formulation to
evaluate the objective value under the worst-case distribution
L := maxQ∈B R(Q;φ). For example, the strong duality was
obtained in a general setting in [8]. This approach is helpful
to evaluate the objective function value under the worst-case
distribution directly and, thus, can help to develop a robust
algorithm φ(θ) with respect to its parameter θ . However, the
approaches along this line of thought may encounter certain
limitations in practice. First, it is well understood that general
functions do not admit explicit formulas for their proximal
operators, that is, finding the Moreau envelop, namely finding
the inner pointwise supermum problem supz∈X {r(z;φ)−λ‖z−
x‖2} does not have a closed-form solution. In cases where this
inner-loop optimization is convex and differentiable, one can
use standard iterative solvers to find the supremum z, yet this
calls for a solution of z for each x point-wisely. When the
objective r is non-linear and non-convex, there can be other
algorithmic complications; see a recent discussion in [41].
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In addition, computational challenges arise in evaluating the
expectation Ex∼P in (8). When the reference distribution P
is not discrete, the expectation may not have a closed-form
expression, or one may have to rely on sampling from P and
perform a Sample Average Approximation (SAA), and the
accuracy of SAA in high dimension relies on processing a
large number of data samples. At last, even the formulation (8)
can be useful for finding robust algorithms that minimize
the worst-case loss, the LFD cannot be identified using the
formulation, and one cannot sample from the LFD, which
is desirable for applications such as adversarial scenario
generation.

Theoretically, our analysis in this work obtains the dual
form in a different route, primarily relying on the theoretical
tools of optimal transport. We will derive the dual form (8)
in Section III by showing that the first-order condition of the
W2-proximal problem in Wasserstein calculus leads to an opti-
mality condition of solving the Moreau envelope (Corollary 1);
To justify the algorithm based on parameterizing the transport
map, we derive the equivalence between the distribution-
search problem (the original W2-proximal problem) and the
transport-map-search problem in Proposition 1 making use of
the Brenier theorem. These theoretical analyses utilize that the
LFD has a continuous density.

III. THEORY

In this section, we derive the first-order optimality con-
dition for the LFD problem (5) and the proximal
problem (7), when considering the primal formulation to
find LFD. Although the derivation is elementary, such char-
acterization seems to not exist in the literature as far as we
know, and the characterization may shed some insights into
the Wasserstein space nature of the problem. Moreover, the
first-order conditions also help establish the dual form of the
LFD problem.

A. Preliminaries

1) Notations: To state the main result, we first introduce
some necessary notations. For a distribution P on Rd, define
the second moment M2(P) :=

∫
Rd ‖x‖2dP(x). Given µ ∈

P2, the L2 space denoted by L2(µ) is for the vector fields
v : Rd → Rd. For u, v : Rd → Rd, the inner-product 〈u, v〉µ :=∫
Rd u(x)Tv(x)dµ(x), and the L2-norm is defined as ‖u‖2

µ =∫
Rd ‖u(x)‖2dµ(x).

We will use v ∈ L2(µ) as a (small) displacement field; that
is, we will consider the perturbation of µ to (Id + v)#µ. By
Lemma 2, if v ∈ L2(µ), then (Id + v)#µ remains in P2.

Lemma 2: If µ ∈ P2, T ∈ L2(µ), then T#µ ∈ P2.
We introduce notations of the following key functionals

on P2,

ϕ(µ) :=
∫

Rd
V(x)dµ(x), ψ(µ) := 1

2
W2

2 (µ, P). (19)

Then the LFD problem can be written as
minQ∈P2,ψ(Q)≤ε2/2 ϕ(Q). Because P2 lies inside the manifold
of all distributions over Rd, the notion of calculus and
convexity of ϕ and ψ in P2 are very different from the case

in vector space. However, it is reasonable to expect certain
optimization results in vector space to find the analog here.
The analysis here centers around the (sub)differential of ϕ
and ψ in P2, which has been systematically studied in the
analysis literature, see [2, Secs. IX and 10]. Our argument
follows the constructions in [2], simplifying the notions and
making the theoretical argument self-contained.

B. W2-Differentials

Recall that ϕ defined in (19) is a linear function of µ;
however, being linear generally does not imply that the
functional is “convex” on P2. Specifically, the convexity in P2
needs to be defined along geodesics (or general geodesics). As
a simple example, µ0 = δx0 and µ1 = δx1 , then the geodesic
from µ0 to µ1 in P2(Rd) will consists the Dirac measure
µt = δxt , t ∈ [0, 1] where xt lies on the geodesic from x0
to x1 in Rd namely the line connecting the two points. For
any t ∈ [0, 1], ϕ(µt) = V(xt). Then, unless the function V
is convex, the functional ϕ(µ) will not be convex along the
geodesic from µ0 to µ1.

We first introduce a lemma concerning the behavior of ϕ
when the distribution is perturbed in P2. For ϕ(µ) =

∫
Vdµ,

we introduce the following assumption on the potential V
(without assuming its convexity).

Assumption 1 (L-Smooth Loss): V is L-smooth on Rd for
some L > 0, meaning that V is C1 on Rd and ∇V is L-
Lipschitz.

Lemma 3 (Strong Differential of ϕ): Under Assumption 1,
ϕ:P2 → (−∞,∞). At any µ ∈ P2, ∇V ∈ L2(µ) and ϕ has
strong W2-differential ∇W2ϕ(µ) = ∇V, µ-a.e., in the sense
that ∀v ∈ L2(µ), ‖v‖µ = 1, and δ → 0+,

ϕ((Id + δv)#µ) = ϕ(µ) + δ〈∇V, v〉µ + o(δ). (20)

For ψ(µ) = 1
2W

2
2 (µ, P), where P ∈ Pr

2 is fixed, the P2
calculus is more conveniently derived in a neighborhood of
µ ∈ Pr

2. It is known that the W2 differential (both sub- and
super-differential) of ψ at µ ∈ Pr

2 has the expression as (Id −
TP

µ), see, e.g., [2, Corollary 10.2.7] where the subdifferential
is defined not in the “strong” sense. Here, we give a lemma on
the strong super-differential of ψ (i.e., strong subdifferential
of −ψ), which suffices for our purpose.

Lemma 4 (Strong Super-Differential of ψ): Let P ∈ P2 be
fixed, for any µ ∈ Pr

2, the optimal transport map TP
µ is defined

µ-a.e., and the functional −ψ has strong W2-subdifferential at
µ, −(Id − TP

µ) ∈ ∂W2(−ψ)(µ), in the sense that ∀v ∈ L2(µ),
‖v‖µ = 1, and δ → 0+,

ψ((Id + δv)#µ) ≤ ψ(µ) + δ〈Id − TP
µ, v〉µ + o(δ). (21)

One remark is that, in the above lemma, we only need P ∈
P2 and no need to have density. The unique existence of the
optimal transport map TP

µ needs µ to have density.

C. First-Order Condition of LFD Problem

We will analyze the first-order condition around a local
minimum of the LFD problem based on the relations (20)
and (21). While (20) holds at any µ ∈ P2, (21) requires µ ∈
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Pr
2, Thus, we assume the minimizer Q of the TR problem has

density.
Assumption 2 (Minimizer of LFD Problem in Pr

2): The
problem (5) attains a (local) minimum at Q ∈ Pr

2.
Remark 1: In our theory, we do not use the assumption

P ∈ Pr
2 explicitly, however, if P does not have density, then

usually the minimizer Q will not have density, e.g., in the
discrete LFD considered in [33], [38]. Thus, we assume P has
a density so that Assumption 2 can be reasonable.

Theorem 1 (First-Order Condition of LFD Problem): Let
P ∈ P2 be fixed, under Assumptions 1 and 2, at a local
minimizer Q of (5) which is in Pr

2,
(i) Bε constraint not tight: If W2(Q, P) < ε, then ∇V = 0,

Q-a.e.
(ii) Bε constraint tight: If W2(Q, P) = ε, then either ∇V =

0, Q-a.e. or ∃λ > 0, s.t.,

∇V + λ
(

Id − TP
Q

)
= 0, Q-a.e. (22)

Note that the statement of the proposition implies that TP
Q =

Id + 1
λ∇V , when λ > 0, and otherwise ∇V = 0, which takes

the form of complementarity condition.

D. First-Order Condition of Proximal Problem

For any γ > 0, the first-order condition of the Wasserstein
proximal problem (7) is derived in the following propo-
sition.

Theorem 2: (First-Order Condition of Proximal
Problem): Let P ∈ P2 be fixed, under Assumption 1, for
γ > 0, suppose the problem (7) attains a (local) minimum at
Q ∈ Pr

2, then

0 = ∇V + 1
γ

(
Id − TP

Q

)
, Q-a.e. (23)

Remark 2 (Correspondence Between of LFD Problem
and Proximal Problem): We can see that the con-
dition (23) matches the first order condition (22) (when
Wasserstein ball constraint is tight) by setting γ = 1/λ.

The W2-proximal problem has been studied in [2, Sec. X-
A], and in particular, Lemma 10.1.2 derived a first-order
condition (in terms of strong subdifferential of ϕ) at a
minimizer. In our case, the strong W2-differential of ϕ exists
at Q and thus the subdifferential uniquely exists, i.e., ∂W2ϕ =
{∇V}. Then the conclusion of [2, Lemma 10.1.2] directly
implies (23). We include a direct proof of the proposition for
completeness.

The first-order condition of the W2-proximal problem
allows us to prove the explicit expression of the dual form (8),
technically with small enough γ s.t. the Moreau envelope of
V has unique minimizer in the infz.

Corollary 1 Dual Form Let P ∈ P2 be fixed, under
Assumption 1, for 0 < γ < 1

L , suppose the proximal
problem (7) attains a local minimum at Q ∈ Pr

2. Then,
the Moreau envelope u(x, γ ) defined in (10) is solved at an
unique minimizer z∗ for each x, Q is a global minimum of the
priximal problem (7), and the dual function G defined
in dual form (6) has the expression as in (9).

Remark 3 (Interpretation of the Optimal Transport Map):
When the optimal transport map from P to Q also exists, it
can be interpreted as the map from x to z∗, which solves
(the unique minimizer of) the Moreau envelope as well as a
Backward Euler scheme to solve the continuous-time gradient
flow. Specifically, when P ∈ Pr

2, the optimal transport map TQ
P

is defined P-a.e., and TP
Q ◦ TQ

P = Id, P-a.e. By Theorem 2, we
have (23), which implies that

TQ
P = Id − γ∇V ◦ TQ

P , P-a.e. (24)

By a similar argument as in the proof of Corollary 1, z =
TQ

P (x) solves the unique minimizer of the Moreau envelope
u(x, γ ) = infz [V(z) + 1

2γ ‖z − x‖2]. To view the map TQ
P as

a Backward Euler scheme to solve the W2-proximal gradient
descent: Suppose we use TQ

P to pushforward from the current
distribution Pk = P to the next distribution Pk+1 = Q, then
each point xk is moved to xk+1 by TQ

P , i.e., xk+1 = TQ
P (xk),

then (24) gives that

xk+1 = xk − γ∇V(xk+1), (25)

which is a Backward Euler scheme to integrate the continuous-
time gradient descent ODE ẋ(t) = −∇V(x(t)) with step size γ .

IV. ALGORITHM: FLOW-DRO

This section presents a neural network flow-based approach
to solve the LFD problem by representing the optimal transport
maps by ResNet blocks [27]. Our framework does not need
to rely on neural networks; there can be other ways to
represent the transport map (e.g., kernel representation). For
high-dimensional data, with sufficient training data, neural
networks tend to have competitive performance due to their
expressiveness power. Below, in Section IV-A, we first param-
eterize the transport map T in (13) as the solution map of a
NeuralODE [13]. In Section IV-B, we present the block-wise
progressive training algorithm of the proposed flow model. In
Section IV-C, we explain how FlowDRO can be used as an
adversarial generative sampler. In Section IV-D, we propose
an iterative algorithm to solve the original min-max DRO
problem (2) with B being the W2 ball around P.

A. Flow-Based Neural Network Parameterization of
Transport Map

Consider a density evolution (i.e., flow) ρ(x, t) such that
ρ(x, 0) = P at t = 0, and ρ(x, t) approaches Q∗ as t
increases, where Q∗ is the minimizer of (7) (unknown a
priori). Below, we interchangeably refer ρ(x, t) both as the
marginal distribution of x(t) and its corresponding density
function. Given the initial distribution ρ(x, 0) = P, such a flow
is typically non-unique. We consider when the flow is induced
by an ODE of x(t) in Rd:

ẋ(t) = f (x(t), t), (26)

where x(0) ∼ P. Note that by the Liouville equation (the
continuity equation) (see, e.g., [14]), the marginal distribution
ρ(x, t) of x(t) satisfies ∂tρ + ∇ · (ρf ) = 0.

We choose to parameterize f (x(t), t) in (26) by a neural
network f (x(t), t; θ) with trainable parameters θ ∈ / (using

Authorized licensed use limited to: Duke University. Downloaded on July 17,2024 at 15:58:55 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: FLOW-BASED DRO 69

continuous-time NeuralODE [13]). Assuming the flow map is
within the unit interval t ∈ [0, 1), the θ -parameterized solution
map T can be expressed as

T(x; θ) = x +
∫ 1

0
f
(
x(s′), s′; θ

)
ds′, x(s) = x. (27)

Using (27), the problem of finding T in (13) thus reduces to
training θ in the following problem:

min
θ∈/

Ex∼P

(
V ◦ T(x; θ) + 1

2γ
‖x − T(x; θ)‖2

)
. (28)

There are two main benefits of parameterizing T as a flow
model with parameters θ . First, flow models are continuous
in time so that we can obtain gradually transformed samples
by integrating f (x(s), s; θ) over a smaller interval [0, t) for
t < 1. In practice, these gradually transformed samples
can be directly compared against those obtained by other
baselines, where numerical results are presented in Section VI.
Second, compared to other popular generative models such
as GAN [24], the proposed flow model based on NeuralODE
can be simpler and easier to train. This is because our
objective (28) involves no additional discriminators to guide
the training of T(·; θ), and therefore no additional inner loops
are required.

We also note a close connection between training θ in (28)
and training continuous normalizing flow (CNF) models
with transport-cost regularization [21], [40], [54]. In CNF, the
problem is to train θ so that T(·; θ)#P is close to the isotropic
Gaussian distribution PZ = N (0, Id). To do so, the CNF
objective minimizes the KL-divergence KL(T(·; θ)#P||PZ)

up to constants, upon utilizing the instantaneous change-of-
variable formula [13]. To ensure a smooth and regularized
flow trajectory, the transport cost 1

2γ ‖T(x; θ) − x‖2
2 is also

commonly used as a regularization term. Hence, the only
difference between training our FlowDRO and a transport-
regularized CNF model lies in the expression of the first term
in (28): our FlowDRO minimizes Ex∼P(V ◦ T(x; θ)), which
is guided by V dependent on the loss function r and decision
function φ, while CNF minimizes the KL-divergence between
T(·; θ)#P and PZ .

B. Block-Wise Progressive Training Algorithm

We propose a block-wise progressive training algorithm of
minimizing (28) with respect to the network parameters θ . We
build on the JKO-iFlow method in [56], originally developed
for training normalizing flows. The convergence of JKO-type
W2 proximal GD for learning a generative model (a special
case when the loss function is the KL divergence between
the data density and the multi-variate Gaussian distribution) is
shown in [14].

Specifically, we would learn K optimal transports block-
wise, where the k-th transport T(·, θk) is parameterized by
θk. After training, the final optimal transport map Tfinal is
approximated by TK ◦ · · · ◦ T1 for Tk := T(·; θ̂k) with
trained parameters θ̂k; here for two mappings T1, T2:X → X ,
T2 ◦ T1(x) = T2(T1(x)). To perform block-wise progressive
training, we first train θ1 using (28) with the penalty parameter
γ = γ1. The expectation is taken over x(0) ∼ P, the data

Algorithm 1 Block-Wise Progressive Training of FlowDRO

Require: Regularization parameters {γk}K
k=1, training data

{xi} ∼ P
1: for k = 1, . . . , K do
2: Optimize parameters θk of T(·; θk) by minimizing

the sample average approximation (SAA) version of
(28) using samples mapped through previous maps
{T(·; θ̂i)}k−1

i=1 , and regularization parameter γk by setting
γ = γk.

3: end for
Ensure: K trained flow blocks {T(·; θ̂k)}K

k=1.

distribution. Using the trained parameters θ̂1, we could thus
compute the push-forward distribution P(1) = (T1)#P. This
push-forward operation is done empirically by computing
x(1) = T1(x(0)), x(0) ∼ P using the first trained flow block.
Then, we continue training θ2 using (28) with γ = γ2, where
the expectation is taken over x(1) ∼ P(1). In general, starting
at P(0) = P, we are able to train the (k+1)-th block parameters
θk+1 with γ = γk+1 given previous k blocks, where the
expectation is taken over x(k) ∼ P(k).

This leads to a block-wise progressive training scheme of
the proposed FlowDRO, as summarized in Algorithm 1. Note
that the regularization parameters {γk} indirectly control the
amount of perturbation, which is represented by the radius
ε in the uncertainty set (4). Smaller choices of γ induce
greater regularization and hence allow less perturbation of
P by the flow model, whereas larger choices of γ impose
less regularization on the amount of transport. Regarding the
specification of these regularization parameters, we note that
the desired specification varies across different problems, but
setting an even choice (i.e., γk = γ ) or changing by a constant
factor (i.e., γk = cγk−1 for c > 0) typically work well
in practice. To further improve the empirical performance,
one can also consider adaptive step size using the time
reparameterization technique [56], which is an attempt to
encourage a more even amount of W2 transport cost by
individual blocks.

The motivation of the progressive training scheme is to
improve the end-to-end training of a single complicated block,
especially when we allow a large W2 ball around P (e.g.,
due to a large γ in (28).) Specifically, compared to training
a single large model, Algorithm 1 with multiple blocks helps
reduce the memory and computational load because each
small block has simpler architecture and is easier to train.
This allows larger batch sizes and more accurate numerical
ODE integrators when integrating f (x(t), t; θk) at block k.
Furthermore, we note that the proposed FlowDRO is adaptive:
one can always terminate after training a specific number of
blocks, where termination depends on the current performance
measured against some application-specific metric; in the case
of assuming a small W2 ball around P, it could also be
sufficient to terminate after training a single block.

We also discuss the computational complexity of
Algorithm 1. We do so in terms of the number of function
evaluations of the network f (x(t), t; θ) when computing (28),
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Fig. 2. An illustration of the FlowDRO framework, which learns a sequence
of invertible optimal transport maps that pushes the underlying population
density P to a target LFD Q∗; the maps are learned from finite training
samples. The handwritten digits represent samples in each stage that show
the gradual (continuous) transition of samples.

Fig. 3. Construction of the proposed sampler from LFD. After training the
proposed FlowDRO T

θ̂
, we train a separate generic flow model Tgen to map

between the noise distribution PZ (a multivariate Gaussian N (0, Id)) and the
data distribution P. The full sampler Tadv = T

θ̂
◦ Tgen.

as this is the most expensive step. Suppose at block k, we
break the integral of f (x(t), t; θk) over [0, 1) into S ≥ 1
smaller pieces {[ti, ti+1)}S−1

i=0 . Let the integral on each piece
be numerically estimated by the fixed-stage Runge-Kutta
fourth-order (RK4) method [47]. As a result, it takes O(4NS)

evaluation of f (x(t), t; θk) on N samples per block. The total
computation is on the order of O(4SKN) when training K
blocks. Note that the overall computation is linear in the
number of samples and thus scalable to large datasets.

C. Generative Model for Sampling From LFD

We now show how FlowDRO can be conveniently used to
generate samples from LFD. This means that we can generate
samples from the worst-case distribution Q∗, which is found
as the push-forward distribution by FlowDRO. Specifically,
let Tθ̂ be a trained FlowDRO model composed of K small
blocks. Recall that Q∗ = (Tθ̂ )#P where P is the data
distribution. Therefore, generating samples from the LFD Q∗

is straightforward: one first obtains a new sample from X ∼ P
and then computes X̃ = Tθ̂ (X) ∼ Q∗. It remains to build a
sampler for X ∼ P. To do so, one can train an alternative
generic flow model [26], [56] Tgen between P and PZ , where
PZ is the standard multivariate Gaussian N (0, Id), which is
easy to sample from.

As a result, we can build the sampler from LFD as Tadv =
Tθ̂ ◦ Tgen. This means we can first sample from multivariate
Gaussian Z ∼ PZ , propagate it through the generic generative
model Tgen to obtain a sample from P, and then propagate the
sample through the map Tθ̂ to obtain a sample from the LFD
Q∗, i.e., X̃ = Tθ̂ (Tgen(Z)) ∼ Q∗. Figure 3 illustrates the idea.

Algorithm 2 Solving Min-Max Problem Using FlowDRO
Require: Regularization parameter γ , training data {xi} ∼ P,

total iteration N, number of inner loops Ninner.
1: for i = 1, . . . , N do
2: Optimize T by minimizing the SAA of (28) for Ninner

steps.
3: Optimize φ by minimizing the SAA of R(Q;φ) defined

in (1) over the LFD Q = T#P for 1 step.
4: end for

Ensure: Trained models (φ̂, T̂).

Meanwhile, we can also perform conditional generation,
which is useful for classification problems. Suppose X =
(Xsub, Y) where Y ∈ [C] is a discrete label for Xsub. To
generate Xsub with its corresponding Y , we can follow the
suggestion in [54] to train Tgen: let Psub be the distribution
of Xsub. Then, train a flow model to map between Psub|Y and
H|Y , where H|Y is a pre-specified Gaussian mixture in Pr

2(X ).
Hence, we can sample Xsub with label c ∈ [C] by sampling
from the corresponding H|Y = c and mapping through Tgen.
The sample Xsub can then be passed through Tθ̂ to get the
sample with its corresponding label c from LFD.

D. Iterative Approach to Solve Min-Max Problem

While in this paper we focus on finding the LFD within the
W2 ball around P (i.e., solve problem (5)), we hereby propose
an iterative scheme that solves the min-max problem (2) that
leads a pair of estimates (φ̂, Q̂). In the context of supervised
learning (e.g., classification), the solution φ̂ denotes a predictor
robust against unobserved perturbation over input data to φ̂.

The high-level idea is as follows. We start from the
samplable data distribution P and randomly initialized decision
function φ and flow map T . We first update T by minimiz-
ing (28) to find the LFD Q = T#P. We then update φ by
minimizing the risk R(Q;φ) where R is defined in (1). We
finally iterate the training of T and φ for some number of steps
until the training converges. The procedure is summarized in
Algorithm (2).

We further note the similarity and difference between
Algorithm 2 and existing iterative DRO solvers (e.g., [46,
Algorithm 1]). Both approaches iterate between finding the
LFD and updating φ on samples from the LFD until con-
vergence. The main difference lies in how the LFD is
found. Our approach trains a continuous flow model T whose
push-forward distribution T#P is the LFD. In contrast, [46]
solves the sample-wise LFD by iteratively moving inputs xi
along the gradient ∇x[r(x;φ) − 1

2γ ‖x − xi‖2]. We empirically
show the benefit of our proposed flow-based approach in
Section VI-A2.

V. APPLICATIONS

We consider several applications that can be formulated as
DRO problems so that our proposed FlowDRO can be used
to find the worst-case distribution.

Authorized licensed use limited to: Duke University. Downloaded on July 17,2024 at 15:58:55 UTC from IEEE Xplore.  Restrictions apply. 



XU et al.: FLOW-BASED DRO 71

A. Adversarial Learning With Distributional Attack

It has been widely known that state-of-the-art machine
learning models are often adversarially vulnerable. Under
small but carefully crafted perturbations to the inputs, the
models can make severely wrong predictions on the adversarial
examples [3], [48]. Adversarial training thus refers to the
defense strategy in the clean training dataset augmented with
adversarial examples, upon which retraining increases the
robustness of the model on new adversarial examples.

Finding suitable adversarial examples before retraining is a
critically important step. Most methods, such as the widely-
used FGSM [25] and PGD [36], are based on the point-wise
attack. We can show that the solution of the W2 trust-
region problem (5) more effectively “disrupts” a fixed decision
function φ than the solution induced by the transport map of
point-wise attack. Specifically, let φ ∈ " be a fixed decision
function. Given x ∈ X , we define Tpoint : Rd → Rd as
the transport port associated with the following point-wise
perturbation problem:

Tpoint(x) := x + δ∗x , δ∗x = arg max
‖δx‖2≤ε

r(x + δx,φ). (29)

Denote Q∗
point = (Tpoint)#P as the push-forward distribution by

Tpoint on the data distribution P. Denote Q∗
dist as the solution

of the W2 trust-region problem (5), which is our objective of
interest. We thus have the following result in terms of reaching
higher risk under Q∗

dist, the proof is in Appendix A.
Proposition 3: For a fixed decision function φ, we have

R(Q∗
dist,φ) ≥ R(Q∗

point,φ).
Several works have also considered distributional attacks

on the input distribution to extend beyond point-wise attacks.
For example, [46] uses the Wasserstein distance to measure
the difference between input and adversarial distribution. It
then proposes to solve a Lagrangian penalty formulation of the
distributional attack problem by stochastic gradient methods
with respect to the inputs x. Additionally, [11] shows the
generality of such distributional attack methods by subsuming
different point-wise attack methods under the distributional
attack framework under a new Wasserstein cost function.
While these works share the similar goal of solving for
adversarial distributions, the proposed solutions do not solve
for a continuous-time transport map as we intend to do,
whose push-forward distribution of P yields the worst-case
distribution.

We now formally introduce the adversarial learning problem
under the current DRO framework, using image classification
as a canonical example [25]. Let X = (Ximg, Y), X ∼ P
be an image-label pair with raw image Ximg and its label
Y ∈ [C]. The decision function φ is typically chosen as a C-
class classifier taking Ximg as the input, and the loss function
r(X,φ) = − log(φ(Ximg)Y) is the cross-entropy loss. To find
an alternative distribution Q∗ on which the risk is high, it is
conventional to keep Y the same and perturb the corresponding
Ximg. Thus, for a given image-label distribution P, let Pimg =
{Ximg : X = (Ximg, Y), X ∼ P}. As a result, the W2 ball Bε(P)

with radius ε around the data distribution P is defined as

Bε(P) = {Q ∈ P2(X ):W2
2
(
Qimg, Pimg

)
≤ ε2}. (30)

Let " be the set of C-class classifiers on images Ximg. The
DRO problem under Bε(P) in (30) is

min
φ∈"

max
Q∈Bε(P)

EX∼Q
[
− log

(
φ(Ximg)Y

)]
. (31)

B. Robust Hypothesis Testing

The goal of hypothesis testing is to develop a detec-
tor which, given two hypotheses H0 and H1, discriminates
between the hypotheses using input data while reaching a
small error probability. In practice, true data distribution often
deviates from the assumed nominal distribution, so one needs
to develop robust hypothesis testing procedures to improve the
detector’s performance. The seminal work by [28] considers
the problem of using ε-contamination sets, which are all
distributions close to the base distributions in total variation.
Later, [35] considers uncertainty sets under the KL-divergence
and develops robust detectors for one-dimensional problems.
More recently, [23] developed data-driven robust minimax
detectors for non-parametric hypothesis testing, assuming the
uncertainty set is a Wasserstein ball around the empirical
distributions. In addition, [51] derives the optimal detector
by considering Sinkhorn uncertainty sets around the empirical
distributions. Compared to robust detectors under Wasserstein
uncertainty sets, the Sinkhorn-based method is applicable even
if the test samples do not have the same support as the training
samples.

We follow the notations in [23] to introduce the problem.
Given data X ∈ 1, we test between H0 : X ∼ Q0, Q0 ∈
B0,ε(P0) and H1 : X ∼ Q1, Q1 ∈ B1,ε(P1), where Bi,ε(Pi)

denotes the W2 ball of radius ε as in (4) around the cor-
responding data distribution Pi. Then, we find a measurable
scalar-valued detector φ : 1 → R to perform the hypothesis
test. Specifically, for a given observation X ∈ 1, φ accepts
H0 and rejects H1 whenever φ(X) < 0 and otherwise
rejects H0 and accepts H1. In this problem, the risk function
R((Q0, Q1),φ) is defined to provide a convex upper bound
on the sum of type-I and type-II errors. Specifically, consider
a so-called generating function f that is non-negative, non-
decreasing, and convex. The risk is thus defined as

R((Q0, Q1),φ) = Ex∼Q0

[
f ◦ (−φ)(x)

]

+ Ex∼Q1

[
f ◦ φ(x)

]
. (32)

Examples of the generating function f to defined (32) include
f (x) = exp(t), f (x) = log(1 + exp(t)), f (x) = (t + 1)2

+, and so
on. As a result of R in (32), the robust hypothesis testing can
be formulated as the following DRO problem

min
φ : 1→R

max
Qi∈Bi,ε(Pi),i=0,1

Ex∼Q0

[
f ◦ (−φ)(x)

]

+Ex∼Q1

[
f ◦ φ(x)

]
. (33)

Solving the inner maximization of (33) requires finding a pair
of worst-case distributions Q∗

0 and Q∗
1. However, using the

change-of-measure technique [23, Th. 2], we can solve an
equivalent problem of finding Q∗ within a W2 ball round the
data distribution P = P1+P2 to fit our original formulation (2).
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C. Differential Privacy

Established by [17], [18], differential privacy (DP) offers
a structured method to measure how well individual privacy
is secured in a database when collective data insights are
shared as answers to the query. In short, DP upholds robust
privacy assurances by ensuring that it is nearly impossible to
determine an individual’s presence or absence in the database
from the disclosed information. These can be realized by
introducing random perturbations to the query function output
before release.

To be more precise, consider datasets D, D′ ∈ Dn where
each consists of n rows, and D is the space where each
datum lies. We say D and D′ are neighboring datasets if
they differ in exactly a single element (i.e., in the record of
one individual), and we denote D 4 D′. An output of the
query function q : Dn → 1 is given based on the dataset. A
randomized mechanism M : Dn → 1, which maps a dataset
to a random output under the probability space (1,F ,P),
imparts randomness to the answer to the query by perturbing
q(D). Differentially private randomized mechanisms secure
privacy by ensuring that the outputs of M from neighboring
datasets are nearly indistinguishable.

The most represented standard for DP is (ε, δ)-DP [17]
(without causing confusion, here ε is not related to the radius
of the uncertainty set ε). Given ε, δ ≥ 0, a randomized
mechanism M is (ε, δ)-differentially private, or (ε, δ)-DP, if
P(M(D) ∈ A) ≤ eεP(M(D′) ∈ A) + δ for any D 4
D′ ∈ Dn and A ∈ F . When δ = 0, we simply say
that M is ε-DP. Besides, numerous variants of DP with
rigorous definitions such as f -DP [16], Renyi DP [37], and
Concentrated DP [20] have been established and studied; for
a comprehensive overview, see [15].

The randomized mechanisms exhibit a clear trade-off: the
more they secure privacy, the more they sacrifice statistical
utility [1]. Therefore, the constant focus of research has been
to design mechanisms that minimize the perturbation and thus
the loss of utility (based on specific criteria such as lp cost)
while ensuring a certain level of privacy. Below, we borrow
the notion of DP to conceptualize the design of a privacy
protection mechanism as a DRO problem and propose the
potential applicability of our FlowDRO as a data-dependent
distributional perturbation mechanism.

DP can be understood as a hypothesis-testing problem [4],
[16], [30], [52]. Consider an adversary trying to differentiate
between neighboring datasets D and D′ based on the mech-
anism output. In this context, the hypothesis testing problem
of interest is

H0 : X d= M(D) ∼ Q0 vs. H1 : X d= M
(
D′) ∼ Q1 (34)

where X ∈ 1 is a single perturbed observation. The harder
this test is, the more difficult it is to distinguish between
neighboring datasets, which implies that strong privacy is
ensured. Consider testing (34) with a decision function φ:1 →
[0, 1], and denote the type-I and type-II errors as αφ =
EX∼Q0φ(X) and βφ = EX∼Q1(1−φ(X)). Then, a mechanism is
(ε, δ)-DP if and only if αφ+eεβφ ≥ 1−δ and eεαφ+βφ ≥ 1−δ

for any D 4 D′ and decision function φ that is a deterministic
function of X [[52, Th. 2.4]; [30, Th. 2.1]].

Now, we first set up an optimization problem with the
risk function measuring indistinguishability between Q0 and
Q1 in (34), given the restricted level of perturbation and
the neighboring datasets D and D′. Consider a risk function
R((Q0, Q1),φ) representing the ease of (34) with a decision
function φ : 1 → [0, 1]. To ensure strong privacy with a
randomized mechanism, even in the “worst-case scenario”
with a powerful discriminator, one should make it difficult to
distinguish Q0 and Q1 by bringing the two distributions closely
together, thereby reducing the risk function. Hence, finding
such a pair of indistinguishable distributions with perturbation
levels controlled by the Wasserstein-2 distance reduces to

min
Qi∈Bi,ε(Pi),i=0,1

max
φ∈"

R((Q0, Q1),φ) (35)

where Bi,ε(Pi) denotes the W2 ball of radius ε as in (4) around
the corresponding data distribution Pi.

In this context, the risk function can be chosen based on
which measure reflects the indistinguishability of outputs from
neighboring datasets. For instance, under the f -DP criterion,
one must first consider the most powerful test for a given level
α: the decision function that minimizes βφ . The corresponding
problem is formulated as finding minφ βφ subject to αφ ≤
α. Therefore, using the Lagrange multiplier and the change-
of-measure technique, our DRO formulation (35) becomes
maxQi∈Bi,ε(Pi),i=0,1 minφ maxλ≥0 −Ex∼Q0+Q1 [(dQ1/[d(Q0 +
Q1)])[x]φ(x) − λ([dQ0/(d(Q0 + Q1))][x]φ(x) − α)]. In our
experiments, we will use αφ and βφ as performance measures
by replacing them with sample average approximations.

The conventional and straightforward method to privatize a
query function is to apply a calibrated additive noise. In this
case, the i-th uncertainty set in (35) is Bi,ε(Pi) = {Qi:M(D) ∼
Qi, M(D) = q(D) + ξi, q(D) ∼ Pi, D ∈ Dn}, where ξi with
E‖ξi‖2 ≤ ε is a random noise following certain distributions
from a specific family. We call such a mechanism that
adds noise of a certain distribution an additive perturbation
mechanism (APM). Typical noise distributions used in APM
include the Laplace [18] and Gaussian distributions [19].

In contrast, based on the formulation (35), we aim to
introduce distributional perturbation with our FlowDRO to
provide a more flexible mechanism. Consequently, we want
to ensure the mechanism outputs are indistinguishable with
less perturbation than additive mechanisms. We refer to the
corresponding mechanism as the distributional perturbation
mechanism (DPM) and illustrate its comparison with APM
in Figure 4. We remark that the proposed FlowDRO allows
the DPM to apply an arbitrary amount of perturbation to the
original distribution of queries. Thus, we can apply DPM at
arbitrary precision by controlling the perturbation to satisfy
the privacy constraints with reasonable utility.

VI. NUMERICAL EXAMPLES

We conduct experiments to examine the effectiveness of
FlowDRO on high-dimensional data. First, in Section VI-A,
we compare our proposed FlowDRO with existing DRO
methods to solve robust hypothesis testing problems and train
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Fig. 4. Comparison between APM and DPM for differential privacy. APM
adds random noises ξ independently to queries, whereas DPM (through the
use of proposed FlowDRO) considers the data distribution P defined over all
queries to find a worst-case distribution Q∗ within Bε(P).

Fig. 5. Test performance of a pre-trained MNIST classifier φ on LFDs
Q∗ of binary MNIST digits; the higher the risk, and the lower the accuracy,
the better, meaning we have achieved a more effective attack for the same
amount of Wasserstein-2 perturbation from the nominal distribution. WDRO
and FlowDRO find the LFDs within different W2 balls around P, which
consists of n training data from MNIST. The empirical W2 distances upon
solving the earth moving distance between P and Q∗ are shown on the x-axis.

robust classifiers. Then, in Section VI-B, we use FlowDRO to
perform the adversarial attack on pre-trained image classifiers
and compare against existing point-wise attack methods. In
Section VI-C, we use FlowDRO as the DPM in differential
privacy settings and compare it against APM under different
noise distribution specifications. In all examples of finding the
LFD, we assume the decision function φ is pre-trained on
the data distribution P and fixed, so the goal is to find the
worst-case distribution Q∗ ∈ Bε(P) defined in (4) and compare
what FlowDRO found against that by other methods. Code is
available on https://github.com/hamrel-cxu/FlowDRO.

A. Comparison With Existing DRO Methods

We first compare the proposed FlowDRO in Algorithm 1
against WDRO [53] in finding LFD. We then compare
the DRO solver 2 against the Wasserstein Robust Method
(WRM) [46]. Further details of the experiments are in
Appendix B.

1) Finding LFD: We consider binary MNIST digits from
classes 0 and 8 as an example. Given a pre-trained CNN
classifier, the goal is to find the LFD around the original digits.
We measure the effectiveness of the LFD according to how
the pre-trained classifier performs: the found LFD is more
effective if, at the same level of W2 perturbation, the classifier
reaches a lower test prediction accuracy and a higher test risk
on samples from that LFD.

Figure 5 shows the test risk and accuracy of the pre-trained
classifier on the LFDs obtained by WDRO and FlowDRO. We
see that compared to WDRO, our proposed FlowDRO finds
more effective LFDs with the same or even smaller budget,
which is measured as the empirical W2 distance between P

Fig. 6. Test classification error of robust classifiers on test data attacked
by PGD under 52 and 5∞ norm. The lower the error, the better, meaning
we have achieved a more robust algorithm at the same attack budget. The
robust classifiers are trained via solving the DRO problem using WRM [46]
and FRM (ours in Algorithm 2). The binary classification results are for two
randomly selected classes out of ten. The attack budget on the x-axis denotes
the 5p norm between raw and PGD-attacked test data as a fraction of Cp, the
5p norm of raw test data.

and Q∗, the found LFD. The benefit of FlowDRO holds both
small (n = 200) and large (n = 500) sample sizes.

2) Training Robust Classifiers: We consider both MNIST
digits and CIFAR10 images as examples. The goal is to train
a robust classifier φ so that when test images are attacked by
PGD under 5p norms, the classifier can defend against such
attacks by incurring a small classification error. Hence, one
classifier is more robust than another when it reaches a smaller
classification error on the same set of attacked test images.

Figure 6 shows test errors by robust classifiers trained
via WRM [46] and via our proposed flow robust method
(FRM) in Algorithm 2. We can see that for small attacks (for
instance, when the attack budget is below 0.2), our method is
slightly better than WRM (except for one case of CIFAR-10
binary class). However, for “higher” attacks, our FRM shows
significantly better performance. The experiments show the
effectiveness of our methods in obtaining an overall more
robust classifier.

B. Adversarial Distributional Attack

We consider two sets of experiments in this section. The
first example finds the distributional perturbation of CIFAR-
10 images by FlowDRO, where we compare the effectiveness
of our distributional attack against the widely-used projected
gradient descent (PGD) baselines under 52 and 5∞ per-
turbation [36]. The second example finds the distributional
perturbation of MNIST digits by FlowDRO. Further details of
the experiments are in Appendix C.

1) CIFAR10 Against Point-Wise Attacks: The goal is to
show that FlowDRO can yield more effective attacks than
point-wise attack baselines. Table I quantitatively compares
the risk and accuracy of the pre-trained classifier φ on
CIFAR10. We notice that under the same amount of 52 pertur-
bation between raw and perturbed images, φ on the adversarial
distribution found by FlowDRO yields significantly larger
risk and lower accuracy. Hence, we conclude that FlowDRO
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Fig. 7. Raw and adversarial samples found by FlowDRO and by PGD-
52. Captions show prediction by the pre-trained classifier φ on raw input
images Xtest, img before attack and adversarial samples X̃test, img after attack.
FlowDRO results in more meaningful contextual changes in the raw images.

TABLE I
RISK AND ACCURACY OF A PRE-TRAINED VGG-16 CLASSIFIER φ ON

CLEAN TEST DATA DISTRIBUTION PTEST AND ADVERSARIALLY
PERTURBED DATA DISTRIBUTION Q∗

TEST BY FLOWDRO AND BY PGD
UNDER 52 AND 5∞ PERTURBATION. FOR A FAIR COMPARISON, WE
CONTROL THE SAME AMOUNT OF 52 PERTURBATION ON THE TEST

DISTRIBUTION BY DIFFERENT ATTACKERS

Fig. 8. Trajectory of FlowDRO adversarial attacks on different Xtest, img
(shown as columns) to X̃test, img. We visualize the changes as rows over three
FlowDRO blocks, each of which breaks [0, 1) into three evenly spaced sub-
intervals, resulting in nine integration steps along the perturbation trajectory.
Captions on the top and bottom indicate predictions by the pre-trained φ on
raw Xtest, img and final perturbed adversarial X̃test, img.

performs much more effective attacks than the PDG baselines.
Meanwhile, Figure 7 visualizes the qualitative changes to test
images Xtest, img by FlowDRO and PGD, where the proposed
FlowDRO also induces more meaningful contextual changes
to the input image. Lastly, Figure 8 visualizes the gradual

Fig. 9. FlowDRO perturbation of MNIST digits over blocks and integration
steps. Figure (a) visualizes the perturbation trajectories from digits 0 to 8
under 2D T-SNE embedding. Figure (b) shows the trajectory in pixel space,
along with the corresponding W2 distance between original and perturbed
images over integration steps.

changes of Xtest, img over blocks and their integration steps by
FlowDRO, demonstrating the continuous deformation by our
trained flow model on test images Xtest, img.

2) MNIST Trajectory Illustration: We now apply
FlowDRO on finding the worst-case distribution, given a
pre-trained LeNet classifier [34] φ. In this example, we
focus on providing more insights into the behavior of
FlowDRO without comparing it against other baselines.
Figure 9 visualizes the gradual and smooth perturbation of
test images Xtest, img by FlowDRO. We notice the cost-
effectiveness and interpretability of FlowDRO. First, the
T-SNE embedding in Figure 9 shows that FlowDRO tends
to push digits around the boundary of certain digit clouds
to that of other digit clouds, as such changes take the least
amount of transport cost but can likely induce a great increase
of the classification loss by φ. Second, changes in the pixel
space in Figure 9 show that visible perturbation is mostly
applied to the foreground of the image (i.e., actual digits), as
changes in the foreground tend to have a higher impact on the
classification by φ.

C. Data-Driven Differential Privacy

This section demonstrates the benefit of our FlowDRO
DPM in privacy protection. We specifically focus on the
examples of image recognition based on MNIST, where the
decision function φ is specified as pre-trained classifiers. We
mainly compare DPM against two APM baselines: APM
under Gaussian noise (APM-G) and APM under Laplacian
noise (APM-L). Further details of the experiments are in
Appendix D.

1) MNIST Raw Digit Classification: We show that our
DPM is a more effective mechanism than APM-G and APM-
L when the dataset contains raw MNIST digits. Figure 11
shows the comparative results by the proposed FlowDRO
DPM against the APM-G and APM-L baselines. Qualitatively,
we notice in (a)-(c) that under the same amount of 52
perturbation ε, DPM induces meaningful contextual changes
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Fig. 10. Differential privacy example of raw MNIST digit recognition.
We control the 52 perturbation amount by DPM, APM-G, and APM-L to
be identical for a fair comparison. Figures (a)-(c) visualize privacy-protected
queries Mε(D) by DPM, APM-G, and APM-L over different ε. Figure
(d) examines the corresponding type-I and type-II errors defined in (A.30) by
these mechanisms.

to the queries q(D) (i.e., changing a digit 0 to a digit 8).
In contrast, the additive mechanisms only blur the queries
slightly. Quantitatively, as shown in (d), such difference helps
protect privacy against the decision function φ: the type-I and
type-II errors of φ under our proposed DPM are much higher
than those of φ under the additive perturbation mechanisms.
As a result, our DPM is an empirically more effective privacy-
protecting mechanism under the same amount of average
perturbation as measured in ε.

2) MNIST Missing Digit Detection: We consider an alter-
native setting that is a type of membership inference attack
problem [45] and can be viewed as a more natural DP task. In
short, we construct average images from digits of 9 classes,
where the goal of the decision function φ, which is still a 10-
class classifier, is to determine the class of the missing digit
based on a given average image.

Figure 11 shows both qualitative and quantitative compar-
isons of our proposed DPM against APM-G and APM-L in
this more challenging setting. The interpretations of results
are similar to those in Section VI-C1. Specifically, we notice
more contextual changes by DPM in subfigure (a) than
APMs in subfigures (b) and (c), and the higher type-I and
type-II errors in subfigure (d) demonstrate the benefit of
DPM at protecting privacy against a pre-trained decision
function φ.

Fig. 11. Differential privacy example of MNIST missing digit detection.
We present similar sets of figures as in Figure 10, where the main difference
lies in the definition of dataset D and query function q(D), which returns an
average image of images in D.

VII. SUMMARY AND DISCUSSION

In this paper, we have presented a computational frame-
work called FlowDRO for solving the worst-case distribution,
the Least Favorable Distributions (LFD), in Wasserstein
Distributionally Robust Optimization (WDRO). Specifically,
the worst-case distribution is found as the push-forward
distribution induced by our FlowDRO model on the data
distribution, and the entire probability trajectory is continuous
and invertible due to the use of flow models. We demonstrate
the utility of FlowDRO in various applications of DRO,
including adversarial attacks of pre-trained image classifiers
and differential privacy protection through our distribu-
tional perturbation mechanism. FlowDRO demonstrates strong
improvement against baseline methods on high-dimensional
data.

There are a few future directions to extend the work. Here,
we set aside the min-max exchange issue for the following
reasons. It has been shown in the original contribution [38] that
when the reference measure (i.e., the center of the uncertainty
set) is empirical distribution and thus discrete, the problem (2)
has strong duality: one can exchange the min and max in
the formulation and the solutions for the primal and the dual
problems are the same when the loss function is convex-
concave in the vector space. The results are shown leveraging
the fact that the worst-case distributions for the Wasserstein
DRO problem are discrete when the reference measure is
discrete, thus reducing the infinite-dimensional optimization
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problem to a finite-dimensional minimax problem. Thus, one
can invoke the standard minimax theorem (see, e.g., [6]).
Here, since later on we restrict the LFD to be a continuous
function, the strong duality proof in [38] no longer carries
through, and one has to extend the minimax theorem (e.g., [43]
and [6] using Kakutani theorem) for the most general version
involving functionals that are geodesic convex on the manifold
of distribution functions; the proof is rather technical, and
we leave it for future work. Second, theoretically, how to
formalize our distributional perturbation mechanism on high-
dimensional queries to make it satisfy a DP criterion is also
an important question. Lastly, our approach is general and
does not rely on neural networks. In future work, one can
potentially extend to other alternative representations of the
optimal transport maps that work particularly well for low-
dimensional and small sample settings.
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