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Abstract—We examine the problem of uplink cell-free access
point (AP) placement in the context of optimal throughput. In
this regard, we formulate two main placement problems, namely
the sum rate and minimum rate maximization problems, and
discuss the challenges associated with solving the underlying
optimization problems with the help of some simple scenarios.
As a practical solution to the AP placement problem, we suggest
a vector quantization (VQ) approach. The suitability of the VQ
approach to cell-free AP placement is investigated by examining
three VQ-based solutions. First, the standard VQ approach,
that is the Lloyd algorithm (using the squared error distortion
function) is described. Second, the tree-structured VQ (TSVQ),
which performs successive partitioning of the distribution space
is applied. Third, a probability density function optimized VQ
(PDFVQ) procedure is outlined, enabling efficient, low com-
plexity, and scalable placement, and is aimed at a massive
distributed multiple-input-multiple-output scenario. While the
VQ-based solutions do not explicitly solve the cell-free AP
placement problems, numerical experiments show that their sum
and minimum rate performances are good enough, and offer
a good starting point for gradient-based optimization methods.
Among the VQ solutions, PDFVQ, with its distinct advantages,
offers a good trade-off between sum and minimum rates.

Index Terms—Base station placement, Beyond 5G, Lloyd
algorithm, scalability, throughput optimization.

I. INTRODUCTION

THE concept of massive multiple-input-multiple-output
(MIMO) [1] has emerged in recent decades as a strong

solution for 5G and Beyond wireless communication systems
[2]–[4]. By having a large number of antennas, such systems
enable higher spectral and energy efficiencies, and reduced
interference due to increased diversity [5], [6]. Distributed
MIMO, comprising distributed antenna systems (DASs), offer
higher average rates over their colocated counterparts [7]–[10].
Distributed massive MIMO can be predominantly split into
non-cooperative and cooperative systems. Small-cell systems
comprise non-cooperative systems while cell-free systems
constitute the latter.

Cell-free massive MIMO, where a very large number of
antennas or access points (APs) serve users that are not
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divided into cells, have become popular of late as they help in
mitigating interference among users and in enhanced spectral
efficiency over small-cell systems [11]–[14]. The concept of
“cell-free” itself arises from network MIMO [15]. However,
it is to be noted that these benefits come at the cost of large
backhaul requirements necessary for the information exchange
between APs [16], [17] and the network controller (NC) or
the central processing unit, where all or most processing is
performed. The computational and processing requirements
of a cell-free system are thus high, and are expected to
grow with the anticipated network densification in Beyond
5G/6G wireless systems [18]. Hence, the conventional small-
cell architecture is still very much in use in current and near
future 5G deployments [19], [20]. Nevertheless, a multitude of
problems has been explored based on the cell-free network.
Prior works investigate topics such as power optimization
and energy efficiency [21]–[24], rate maximization [25], [26],
clustering (user- and cell-centric) [27]–[31], limited fronthaul
[32], pilot assignment [33], reconfigurable intelligent surfaces
[34], and federated learning [35].

In this work, our focus is on AP placement, with the prevail-
ing question: How do we place APs optimally for a given user
distribution? Here, the optimality is in terms of throughput in
cell-free systems. AP placement finds application in scenarios
such as stadiums, where the distribution of crowds changes
according to the ongoing game, or in offices where the density
of employees changes by the hour. Further, deployment of APs
using unmanned aerial vehicles (UAVs) can be advantageous
in areas affected by natural (or man-made) calamities where
existing infrastructure has been destroyed [36]. Past literature
has expressed interest in AP placement, however, most of
the focus has been on single-cell or small-cell systems (e.g.,
[37]–[40]). For instance, [37] maximizes cell averaged ergodic
capacity of a DAS by using vector quantization (VQ) based
codebook design (the Lloyd algorithm) to place antennas. In
[38], antennas are placed circularly to optimize the average
per-user rate of uniformly distributed users. In [39], a 10-
fold improvement in capacity is shown in a distributed system
over a colocated in a simulated indoor environment. Further,
aligning AP positions with the user density generated around a
40% increase in capacity over uniformly distributed APs. The
authors of [40] and their related works study the deployment
of heterogeneous wireless sensor networks (placement of both
APs and fusion centers) as a source coding problem for
optimal power control and with limited communication range.
Most optimization problems have mainly considered maximiz-
ing the signal-to-noise ratio (SNR) alone, but certain works
have incorporated various forms of interference (e.g., two-cell
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leakage interference in [41] and signal-to-interference-plus-
noise ratio (SINR) in [42]). Placement of UAVs as APs (UAV-
APs) has also been studied (e.g., [43]–[48]). [43] calculates
the positions and altitudes of UAV-APs to maximize ground
user coverage as well as minimize interference to users. The
work of [44] on the other hand places UAV-APs heuristically
in a spiral fashion to guarantee user coverage. The authors
of [45] find the optimal placement and coverage radius of
UAV-APs that serve users with time-varying positions in Wi-
Fi (IEEE 802.11) networks. In [46], the 3-D placement of
UAV-APs with directional antennas to minimize average user
transmit powers is investigated. A hybrid UAV-terrestrial AP
network is considered in [47] where position-flexible UAV-APs
are deployed in an area occupied by fixed terrestrial APs to
maximize throughput while minimizing inter-cell interference
(ICI) by using a Lloyd-type algorithm. Finally, [48] provides
an extensive tutorial on UAVs as APs and as users (cellular
connected UAVs).

The problem of AP placement in cell-free systems is fairly
novel and much prior research has not been conducted. As an
example, [49] investigates the deployment of UAVs in a cell-
free network to maximize minimum SINR using a gradient
approach while considering pilot contamination and that not
every AP communicates with all users. The authors of [50]
consider the placement of APs in a distributed massive MIMO
system as a combinatorial problem to minimize transmit pow-
ers while considering antenna radiation patterns and different
channel models. While a cell-free system is not explicitly
defined, the system model considered mimics such a system.
A graph-based approach is found to yield significant power
savings while ensuring placement with good coverage. In
[51], 3-D placement of UAV-APs is considered to maximize
the downlink sum rate and uses an alternating optimization
method. A prior work by our group [52] examines both sum
rate and minimum rate maximization problems. This work
solves the two problems using compressed sensing techniques
by dividing the geographical area into regular grids. However,
the approximations used do not solve the two placement
problems optimally.

With the expected densification in future networks, it is
necessary to design AP placement schemes that are not only
practical, but can scale easily with the number of APs which
is characteristic in a massive MIMO scenario. Moreover, as
alluded to above in the examples of AP placement scenarios,
such methods should be able to easily adapt to changing user
environments. While the VQ approach (the Lloyd algorithm)
have been utilized in prior works (e.g., [37]), none of the
abovementioned works have investigated the application of the
Lloyd algorithm and other VQ approaches to solve the cell-
free AP placement problem. In the VQ framework as applied
to AP placement, the user positions are clustered and the
cluster centers are the AP locations. In our prior work [53],
we preliminarily investigated the utilization of the standard
VQ approach, namely the Lloyd algorithm with the squared
Euclidean distance as the distortion function, to place APs
in a cell-free network. The VQ technique considers a single
user that communicates to its nearest AP with the objective
function that utilizes a distortion function averaged over the

random position of this user. It does not match the cell-free
model where all users communicate to all APs. In spite of
these limitations, VQ-based solutions have some features that
make them worthy of consideration. By design, VQ offers
not only a distributed solution (where APs are placed at
different locations as opposed to a colocated solution) but can
encourage cooperation (as is expected in the cell-free model)
by placing APs closer to one another in areas of higher user
density. Additionally, VQ solutions provide good initial points
for gradient and learning-based methods to solve specific
throughput problems. Hence, in this work, we explore and
compare multiple VQ techniques, each with its own benefits,
that can solve for AP locations in a cell-free network, with
throughput as the performance measure.

Contributions
To the best of our knowledge, analysis of the cell-free AP

placement problem in the context of throughput optimality
along with the suitability of the VQ framework and the
application of VQ-based methods to solve the same have
not been addressed in literature. Hence, in this work, our
contributions are as follows.

• We formulate the two main throughput optimal cell-free
AP placement problems, namely the sum rate and mini-
mum rate maximization problems. While these problems
have been previously studied in small-cell works, a de-
tailed discussion in the context of cell-free networks has
not been presented. Starting from the simpler sum SNR
problem, analysis of the sum rate problem is conducted
and simple examples are shown to describe the possible
solutions and to highlight the challenges associated with
the general AP placement problem. The minimum rate
problem is then discussed, also with some examples.

• Three VQ-based techniques to place APs are proposed
and explored, namely standard VQ, which is the Lloyd
algorithm, tree-structured VQ (TSVQ), and probability
density function optimized VQ (PDFVQ). While the
Lloyd algorithm provides a well-established method to
place APs, there are the disadvantages of complexity
and scalability. TSVQ, through successive partitioning of
the user area, places APs in such a way so as to foster
cooperation. PDFVQ on the other hand, allows an effi-
cient, less computationally intensive, and easily adaptable
AP placement solution by using bit allocation, transform
coding, and scalar quantization, and is especially suitable
for a scaled network with a large number of APs.

The remainder of this manuscript is organized as follows.
Section II outlines the cell-free system model used, followed
by Section III which explores the two principal throughput
optimization problems for AP placement, namely the sum rate
and minimum rate maximizations. VQ-based techniques are
described in Section IV. In Section V, we state the simulation
methodology and results. Finally, concluding remarks are pro-
vided in Section VI. Throughout this paper, we will use bold
symbols to denote vectors, E{·} is the expectation operator,
|| · || represents the `2-norm of a vector, and all logarithms are
to the base 2.
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II. SYSTEM MODEL

The system model outlined in [52], [53], and [54] is used. K
single-antenna users are distributed over a geographical area
with a probability density function fP(p), with p 2 R2 as the
random vector denoting the user position. M single-antenna
APs serve these users, where q 2 R2 is the AP location. With
m = 1, 2, . . . ,M and k = 1, 2, . . . ,K, a narrowband fading
channel is considered with

gmk =
p
�mkhmk, (1)

where �mk and hmk ⇠ CN (0, 1) are the large- and small-scale
fading coefficients, respectively, independent of each other and
over coherent intervals. A general expression for �mk is

�mk =
czmk

||p� qm||
� , (2)

where c is a constant, zmk is the shadow fading coefficient, and
� is the pathloss exponent. All APs cooperate with each other
and are connected via error-free backhaul links to the NC. We
consider the traditional cell-free uplink regime where all APs
serve a smaller number of users in the same time-frequency
resource. The uplink received signal at AP m is

ym =
KX

k=1

p
⇢rgmksk + wm, (3)

where for user k, ⇢r is the transmit power, sk is the data
symbol with E{|sk|2} = 1, and wm ⇠ CN (0, 1) is the additive
noise. The received signal vector at the NC from all M APs
using (3) can be written as

y =
KX

k=1

p
⇢rgksk +w, (4)

where y = [y1, y2, . . . , yM ]T , gk = [g1k, g2k, . . . , gMk]T ,
and w = [w1, w2, . . . , wM ]T . When a combiner vk is used
to estimate data symbols of user k as ŝk = vH

k
y, the per-

user achievable rate is Rk = E{log(1 + �vk
k
)}, where the

expectation is over all the small-scale and shadow fading
coefficients, and the SINR [55] is

�vk
k

=
⇢rvH

k
gkgH

k
vk

vH

k
vk +

KP

k
0=1

k
0 6=k

⇢rvH

k
gk0gH

k0vk

. (5)

One such combiner is the zero forcing (ZF) detector,
and results in the processed signal at the NC as r =�
GHG

��1
GHy, where G = [gmk] is a M ⇥ K matrix

consisting of the channel coefficients [52]. The achievable per-
user SNR in this case is

 ZF
k

=
⇢r

[(GHG)�1]
kk

. (6)

Using an asymptotic approximation for the SNR as outlined
in [38], [52], the per-user SNR can also be written as

1

M
 ZF
k

a.s.
����!
M!1

⇢r�k
, (7)

where
�
k
, lim

M!1

1

M

X

m

�mk. (8)

III. THROUGHPUT FORMULATIONS FOR THE CELL-FREE
AP PLACEMENT PROBLEM

There are two main formulations for cell-free AP placement
in terms of throughput optimality:

• Sum rate maximization, which involves the sum of the
rates of all users, as follows

arg max
q1,q2,...,qM

KX

k=1

log(1 + �vk
k
). (9)

Note that this problem is identical to the average rate
maximization problem by assuming a sample mean and
taking the average over the user distribution fP(p).

• Minimum rate maximization, where the minimum of the
rates among all of the users is maximized

arg max
q1,q2,...,qM

min
k

log(1 + �vk
k
). (10)

The notion of fairness, which is important in a cell-free
system since all users are served by all APs, is enforced
by the minimum rate problem in (10) as opposed to the
sum rate problem in (9). In practice, the 95%-likely rate,
which represents the best rate among the worst 5% of
the users, is used as a measure to evaluate the network
minimum rate performance. Hence, the max-min rate is
adjusted to the 95%-likely rate, which is more robust.
This is subsequently addressed in Section IV-D.

It should be noted that finding solutions that address both
of the above metrics, although challenging, is ideal. It is
desirable to achieve an optimal trade-off between sum rate
and minimum rate. In the ensuing sections, we discuss the
above formulations. Our analysis of the sum rate maximization
problem is preceded by the simpler sum SNR maximization
problem (preliminarily discussed in [53]).

A. Sum SNR Maximization
When throughput is measured by utilizing SNR alone, we

can obtain a simpler sum throughput problem to (9) by using
the ZF SNR  ZF

k
from (6) and by replacing the summation

with an expectation (the factor of 1/K has been neglected).
The average is taken over the user position and the set
A = {zmk, 8m} consisting of all shadow fading coefficients
between each user and AP. The optimization problem is
written as

arg max
q1,q2,...,qM

EA,p

�
 ZF
k

 
. (11)

We can simplify the above objective function using the ap-
proximation in (7) and �mk from (2) in the following manner

EA,p

�
 ZF
k

 
= EA,p

(
⇢r

MX

m=1

�mk

)
,

= Ep

(
⇢r

MX

m=1

EA {�mk}

)
,

(a)
= Ep

(
MX

m=1

c0

||qm � p||�

)
,

(b)
= c0

MX

m=1

Ep

⇢
1

||qm � p||�

�
,

(12)
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where c0 = c⇢rEA{zmk}, p is the position of user k in
(a), and (b) uses the fact that the expectation is a linear
operator. Note that c0 can be ignored as it does not effect
the optimization problem.

The following observations can be made regarding the
solution of the above objective function in (12).

• A colocated solution is evident since there is no de-
pendence between the terms in the summation associ-
ated with each AP m and hence, the optimization for
each AP can be performed separately. The suggested
colocated solution may not be a unique solution and
multiple global and/or local maxima may exist for the
optimization problem. The complete characterization of
the solution, however, depends on two factors, namely the
pathloss exponent � used as well as the shape of the user
distribution fP(p) over which the expectation is taken,
e.g., uni-modal versus multi-modal density functions.

• In (12), although the norm ||qm � p||, i.e., the Euclidean
distance is strictly convex [56] in qm, its inverse is neither
concave nor convex and is also undefined at qm = p
(this can, however, be avoided by adding a small positive
quantity to the denominator, which could also account
for the height of the AP). The sum of the expectation
of the inverse over the APs thus also is neither convex
or concave. Additionally, when a uni-modal distribution
is assumed, we can expect a colocated solution alone
with a unique maximum. However, when a multi-modal
distribution is considered, it is expected that multiple
global maxima exist and distributed solutions may be
obtained. This is explored in Section III-C.

It is worth noting that the sum SNR problem has been
previously addressed in part in [52]. In this work, while
dividing the user area into regular grid points, the sum rate
maximization problem is upperbounded to a sum SNR prob-
lem and using a compressed sensing framework, approximated
to a linear program (called the max-sum algorithm). However,
as is expected from a sum SNR problem (as discussed above),
most APs are concentrated around high user density regions
(a near-colocated solution). Although a high sum rate can be
achieved with this solution, users far away from the APs are
severely affected in terms of throughput, resulting in poor
minimum rate performance. Thus, this solution is not suitable
for cell-free AP placement when fairness is considered.

B. Sum Rate Maximization
Returning to the sum rate maximization problem, we rewrite

(9) by using the simplifications assumed before, as follows

arg max
q1,q2,...,qM

EA,p

�
log
�
1 +  ZF

k

� 
, (13)

and the objective function, utilizing the approximation in (7),
can be rewritten as

EA,p

�
log
�
1 +  ZF

k

� 
= EA,p

(
log

 
1 + ⇢r

MX

m=1

�mk

!)
.

(14)
Similar to the SNR problem outlined before, this objective
function is neither concave nor convex. However, unlike the

former, the term associated with each AP m in (14) cannot be
decoupled from the terms associated with the rest of the APs.
Hence, for both uni-modal and multi-modal distributions, we
can expect only distributed solutions that maximize the sum
rate.

In summary, for both the sum SNR and sum rate problems
there may be multiple local optima suggesting that the opti-
mization problem is complex and challenging.

C. Examples for Sum SNR and Sum Rate Maximizations
Given the abovementioned complexity in solving the sum

SNR and sum rate problems, we now attempt to understand
the problems and their solutions better. For this purpose,
we explore simple examples where the aforementioned two
problems are solved, and where the multiple local optima are
studied to develop intuition and insight.

1) User distribution considered: For tractability, we con-
sider a simple 1-D scenario where users are distributed along
a line, and the placement of four APs for both the sum SNR
and sum rate maximization problems. For this purpose, we
assume a bi-modal distribution since it is the simplest among
multi-modal distributions that can exhibit the multiple maxima
as discussed in Section III-A. With the user position denoted
by p, the PDF of the bi-modal Gaussian considered here is

fP (p) = ⇡1N (p|µ1,�
2
1) + ⇡2N (p|µ2,�

2
2), (15)

where for each Gaussian i, i = 1, 2, ⇡i is the probability such
that ⇡1 + ⇡2 = 1, µi is the mean, and �i is the standard
deviation. To generate different solution structures for the two
optimization problems, we consider two distinct configurations
of the user distribution:
Conf. 1: ⇡1 = ⇡2 = 0.5, µ1 = �3, µ2 = 3, and �1 = �2 = 1.
Conf. 2: ⇡1 = 0.35, ⇡2 = 0.65, µ1 = �3, µ2 = 4, and

�1 = �2 = 1.
Configuration 1 is symmetric about the origin while configu-
ration 2 is asymmetric.

2) Definitions of SNR and rate: The four APs have loca-
tions q1, q2, q3, and q4, and the ZF SNR1 for user k can be
calculated as

 ZF
k

= �1k + �2k + �3k + �4k,

=
1

(pk � q1)2
+

1

(pk � q2)2
+

1

(pk � q3)2
+

1

(pk � q4)2
,

(16)
where, for simplicity, the transmit power is set to unity and the
definition of the large-scale fading coefficient �mk (from (2))
assumes that shadow fading is absent, the pathloss exponent
is two, and the constant is set to one. These assumptions do
not change the conclusions that are obtained in this section.
The sum SNR and sum rate quantities are then defined asP

K

k=1  
ZF
k

and
P

K

k=1 log(1 +  ZF
k
), respectively. Note that

for implementation purposes, a small quantity ✏ is added to
the denominator of �ik, i = 1, 2, 3, 4, to prevent  ZF

k
from

approaching infinity.

1While the asymptotic approximation for the SNR expression used does
strictly not hold here, it is good enough to illustrate the complexities of the
maximization problems considered.
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Fig. 1: Sum SNR for different AP location scenarios under user
configuration 1.

3) AP location solutions considered: To evaluate and un-
derstand the sum SNR and sum rate performances of the
system, we study various AP placement scenarios. First, a
colocated solution is considered where all four APs are situ-
ated at the same location. This location is found by sweeping
the AP position denoted by q across the span of the user loca-
tions. Second, multiple semi-distributed solutions are selected.
Instead of all APs at one location, they can be allocated to each
of the Gaussians and placed at their respective means. In this
scenario, we consider three situations, namely when two APs
each are placed at µ1 and µ2, three APs are at µ1 and one AP is
at µ2, and one AP is at µ1 and three APs are at µ2. These three
situations are termed ‘Distributed (2+2)’, ‘Distributed (3+1)’,
and ‘Distributed (1+3)’, respectively. Third, a fully distributed
scenario involves starting from a distributed (2+2) solution
and moving the two APs within each Gaussian away from
each other until the maximum is achieved. Note that this fully
distributed solution represents only a local maximum. Finally,
we have the solution obtained by applying the standard Lloyd
algorithm to the user distribution. In this iterative solution, the
users are clustered using the squared Euclidean distance and
the cluster centers (centroids) are determined to be the AP
locations. More explicit details are provided in Section IV-A.

4) Results for sum SNR: The results of sum SNR under
user configurations 1 and 2 are shown in Fig. 1 and Fig.
2, respectively. Note that for the colocated solution, the sum
SNR obtained as a function of location q is plotted. For the
other solutions, a line is drawn corresponding to the sum SNRs
obtained.

For configuration 1, it is observed that the peak for the
colocated system occurs at the two means µ1 and µ2. The three
distributed scenarios as well as the fully distributed scenario
offer the same peak sum SNR value as the colocated case. It
is noted that the AP locations in the fully distributed case are
the same as in distributed (2+2). Further, the Lloyd solution
(which is also a fully distributed scenario) offers a lower sum
SNR value. The sum SNR maximization for configuration 1
thus has multiple local maxima, including both colocated and
semi-distributed solutions.

For configuration 2, the Gaussian with mean µ2 has a
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Fig. 2: Sum SNR for different AP location scenarios under user
configuration 2.
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Fig. 3: Sum rate for different AP location scenarios under user
configuration 1.

higher probability, with the result that a colocated solution
with all four APs at mean µ2 yields the highest sum SNR.
Among the distributed solutions, it is observed that a higher
allocation of APs at µ2 favors a higher sum SNR, however,
with the colocated solution offering the highest. Again, both
the fully distributed and distributed (2+2) solutions have the
same AP locations and sum SNR values, with the Lloyd
solution performing the worst. In summary, the above results
for sum SNR show that the AP locations that maximize the
same may be colocated or distributed depending on the user
distribution, as discussed in Section III-A.

5) Results for sum rate: The results of the sum rate metric
for user configurations 1 and 2 are shown in Fig. 3 and Fig.
4, respectively, and differ from the sum SNR plots above. In
configuration 1, it is clear that a colocated solution performs
poorly and that distributed and fully distributed solutions offer
a higher sum rate. Since the distribution is symmetric, both
distributed (1+3) and distributed (3+1) solutions have the same
sum rate, which is lower than that of distributed (2+2). The
Lloyd solution performs better than the distributed solutions
as no APs are colocated, and the fully distributed solution
performs the best. Note that the fully distributed solution does
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Fig. 4: Sum rate for different AP location scenarios under user
configuration 2.
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Fig. 5: 95%-likely rate for different AP location scenarios under user
configuration 1.

not represent the optimum solution due to the method with
which the locations are generated. In configuration 2, the
colocated solution still performs the worst. However, since the
Gaussian at mean µ2 carries a higher proportion of users, the
distributed (1+3) solution performs better than both distributed
(2+2) and distributed (3+1). Finally, as in configuration 1, both
the Lloyd and the fully distributed solution perform better than
the distributed solutions.

6) Results for minimum rate: We now plot the 95%-
likely rates corresponding to the different AP locations for
configurations 1 and 2, in Fig. 5 and Fig. 6, respectively. Note
that the fully distributed solution in these plots maximizes
the 95%-likely rates as opposed to the sum SNR or sum
rate. Even though all distributed solutions generate the same
peak sum SNR for configuration 1 as shown in Fig. 1, the
users will not achieve the same minimum rate performance
in all cases. For this user configuration, distributed (1+3) and
distributed (3+1) have lower 95%-likely rates than distributed
(2+2). Additionally, the Lloyd solution has a higher minimum
rate and the fully distributed solution generates the highest
95%-likely rate. Clearly, the colocated solution exhibits the
worst performance. The same observations are noted for
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Fig. 6: 95%-likely rate for different AP location scenarios under user
configuration 2.
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configuration 2, with the difference being that distributed (1+3)
generates a higher 95%-likely rate than distributed (3+1) due
to the higher user proportion around mean µ2.

7) Results for a uni-modal user distribution: As a final
note and to complete the discussion on the influence of the
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distribution shape on the solutions, we also plot the sum
SNR and sum rate performances for a uni-modal Gaussian
distribution (with zero mean and unit variance), in Fig. 7 and
Fig. 8, respectively. Like the bi-modal examples shown prior,
the colocated solution is preferred in the sum SNR case over
the distributed Lloyd solution. The opposite is true for the
sum rate case. It is also to be noted that unlike the bi-modal
scenario, there is only one colocated solution that provides the
peak sum SNR.

In conclusion, all observations made in the context of
the simple examples support the complex nature of the AP
placement for sum SNR and sum rate maximization problems
(Section III-A and Section III-B).

D. Minimum Rate Maximization
For the sum SNR maximization case, we showed both

colocated and semi-distributed cases were favored. It was
also postulated that the minimum rate performance of these
solutions would be inferior to that provided by a fully dis-
tributed solution (like the Lloyd solution). Even in the sum
rate maximization case, we have not addressed the minimum
rates of the users explicitly and we can expect that there are
users that lie far away from the AP locations, resulting in
significantly low throughput to these users, which is not ideal
from a fairness point of view. The minimum rate maximization
problem is thus of interest and has been defined above in (10).
In this paper, we do not discuss this problem as it has been
addressed and solved using a grid-based approach in [52], [54]
and is called the max-min algorithm. Such a solution is useful
since the problem can be converted into a convex problem,
which can be solved easily. It is to be noted that the grid
structure assumed leads to approximate solutions and a finer
grid is necessary to obtain the optimal locations. In [53], we
have further analyzed and compared the performance of the
max-min algorithm with the Lloyd algorithm.

IV. VECTOR QUANTIZATION APPROACHES

In this section, as practical solutions to cell-free AP place-
ment, we investigate how VQ techniques can be applied to sum
rate and minimum rate maximizations. While acknowledging
that all users are served by all APs in the cell-free system
under consideration, we assume that for the purposes of AP
placement, VQ is implemented by assuming that each user is
associated with its geographically nearest AP by adopting the
squared Euclidean distance (error) as the distortion measure of
interest. We start by presenting the standard VQ approach and
motivate why the VQ framework is useful for the placement
problem, followed by the other VQ techniques.

A. Standard VQ
The standard and simplest VQ technique is the Lloyd

algorithm [57] that utilizes the squared Euclidean distance
between APs and users as the distortion measure. This squared
error (SE) distortion between a user at p and an AP at qm is
denoted as follows

dSE(p,qm) = ||p� qm||
2 . (17)

Details of how the Lloyd algorithm can be applied to AP
placement have been elucidated in [42]. We provide the
algorithm (Algorithm 1) below, where the K user positions
denoted by pk are generated as realizations from the user
distribution fP(p).

Algorithm 1 Lloyd Algorithm

1: Initialize random AP locations q(0)
1 ,q(0)

2 , . . . ,q(0)
M

.
2: Use the nearest neighbor condition (NNC) to determine

the cells C
(i+1)
1 , C(i+1)

2 , . . . , C(i+1)
M

such that

C
(i+1)
m

=
n
pk :dSE

⇣
pk,q

(i)
m

⌘
dSE

⇣
pk,q

(i)
l

⌘
, 8l 6= m

o
.

3: Use the centroid condition (CC) to determine the AP
locations q(i+1)

1 ,q(i+1)
2 , . . . ,q(i+1)

M
such that

q(i+1)
m

=
1���C(i+1)

m

���

X

pk2C(i+1)
m

pk.

4: Repeat from step 2 until convergence (MSE falls below a
threshold).

Why Use the VQ Approach? Although we focus on the
standard VQ technique as the illustration here, the advan-
tages listed below follow for the subsequent VQ techniques
described.

• Distributedness: The VQ approaches, through their for-
mulations, are designed to provide a distributed solution.
The standard Lloyd algorithm using squared error distor-
tion minimizes the distance of a user to its closest AP,
averaged over the entire distribution, obtains a distributed
solution by ensuring that at least one AP is close to each
user. It is important to note that as a consequence, the
Lloyd algorithm solution also addresses the minimum
rate of the system in an effective manner, while the
minimum rate metric itself is not explicitly contained in
its objective function. Additionally, the Lloyd algorithm
alone exhibits a space-filling advantage [58] which refers
to the generation of the Voronoi cells (C1, C2, . . . , CM )
and therefore the AP locations that span the space of the
user distribution efficiently.

• Cooperation: While allowing distributedness, the VQ
formulations which do not explicitly account for cooper-
ation, also place APs close to one another. This clustering
occurs especially in areas of high user density, thus
encouraging cooperation that is expected in a cell-free
system and addresses the system sum rate. In the specific
the case of the Lloyd algorithm, the objective function
indirectly fosters cooperation since the AP density is
proportional to a power of the user density under a high
resolution approximation [57], as follows

gP(p) =
f

1
2
P (p)

R
f

1
2
P (p0)dp0

. (18)

• Initialization: Although it is possible to determine solu-
tions for both problems through gradient methods, such
methods usually generate local optima resulting in lower-
than-expected performances. The VQ approaches, due
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to the distributed nature of their solutions, are able to
provide suitable starting points for such gradient-based
methods.

B. Tree-Structured VQ
Tree-structured VQ (TSVQ) [57] is an alternate VQ ap-

proach where the codebook search time is reduced compared
to standard VQ. In this technique, the input training set
is partitioned into a hierarchy of Voronoi regions, which
allows a tree to be generated for encoding. Thus, TSVQ
differs from the standard VQ discussed above in that the final
required codebook is generated by the successive splitting of
intermediate codebooks, starting with a single centroid. The
Lloyd algorithm (Algorithm 1) is applied to each stage of
the hierarchy and its application is confined to the partitioned
training set of the previous stage.

Why use TSVQ? Designed primarily for relatively fast
codebook search properties, TSVQ has the following benefits.

• Initialization: An advantage of TSVQ is that initialization
of the AP locations is not required, since it starts with a
single centroid. Compared to the standard VQ, this avoids
the random initializations (considered sub-par) and the
calculations needed for advanced initialization methods
such as k-means++ [59].

• Cooperation: Due to the successive splitting of the in-
termediate codepoints, we can expect pairs of APs to
be closer to each other compared to standard VQ. This
enables cooperation among APs, increasing the system
sum rate.

• Flexibility: When the number of APs is changed for the
same user distribution, codepoints can either be merged
(when the number of APs is reduced) or split (when
increased). The choice of codepoints for merging or
splitting will be on the basis of the rate performance
associated with the codepoints.

It should be noted that in general, TSVQ does not find the
closest AP to each user and there is a small decrease expected
in the performance of TSVQ (in terms of mean squared error)
when compared to standard VQ.

TSVQ Algorithm. In our implementation of TSVQ for cell-free
AP placement, we limit ourselves to balanced binary trees,
i.e., at each stage, every intermediate codepoint is split into
two codepoints, to favor the lowest complexity. The TSVQ
algorithm is outlined in Algorithm 2. The stages are indexed by
j (root node is stage 0) and the set of codepoints is represented
by Pj for stage j. The codepoints are indexed by i, and the
number of codepoints increases at each stage. The codepoints
generated after the algorithm converges are the required AP
positions. R indicates the set of all users while Ri denotes
the set of users associated with codepoint i. The splitting of
codepoints is performed by generating two perturbations of
the original codepoint.

C. PDF Optimized VQ
So far, we have considered a full-scale version of VQ

(the Lloyd algorithm) and TSVQ, which involves hierarchical

Algorithm 2 Tree-Structured Vector Quantization Algorithm
1: Initialize P0 with the codepoint of all users in R.
2: Split the codepoint(s) in Pj into two.
3: Apply Lloyd algorithm (Algorithm 1) to each split pair

for the set of users Ri at stage j.
4: Partition Ri at stage j into two sets corresponding to new

codepoints.
5: Update Pj with new codepoints.
6: Repeat from step 2 for next stage j+1 until M codepoints

are generated.

codebook generation. Both flavors of VQ, however, come with
disadvantages such as complexity, scalability, and learnability
which will be elaborated shortly. In this section, we outline the
probability density function optimized VQ (PDFVQ) proce-
dure, first developed in [60], for use in cell-free AP placement
that can address these shortcomings. In PDFVQ, an efficient
quantizer is generated by first estimating the distribution PDF
(of the users) using the expectation-maximization (EM) algo-
rithm [61] and assuming a Gaussian mixture model (GMM).
The GMM considered is of the form

fP(p) =
LX

l=1

plN (p|µ
l
,⌃l) , (19)

where L is the number of mixture components (clusters),
and pl, µl

, and ⌃l are the probability, mean, and covariance
matrix, respectively, of mixture component l. Then, given the
total bit budget (which corresponds to the total number of
APs), by leveraging both bit allocation and transform coding,
closed-form expressions are defined to allocate bits to each
cluster and along every dimension (x- and y-coordinates of
the 2-D user density) so that scalar quantizers can be used to
generate the required codebook (the AP locations).

Why use PDFVQ? Although designed for high-dimensional
source inputs, this procedure addresses the shortcomings of
the two prior VQ approaches in the following manner.

• Complexity: In the two prior VQ approaches, the com-
putational complexity and memory required are high.
In TSVQ, the Lloyd algorithm is applied a number of
times depending on the codebook splits performed to
obtain the required number of APs. The overall com-
plexity of the Lloyd algorithm is O(2KMI), where the
factor ‘2’ is due to the 2-D user density and I denotes
the number of iterations required for convergence. It is
also observed that the number of executed iterations I
increases with the number of APs M . In addition to the
simple expressions for AP allocations for each cluster
and dimension of the 2-D user density, through the use
of scalar quantizers for each dimension, PDFVQ enjoys
lower complexity as the quantizers work on both a lower
number of users and APs, consequently performing a
lower number of iterations. Further, the scalar quantizers
can also be implemented by means of look-up tables [62]
that determine the codebook. Thus, there exists a simple
closed-form mapping from user density to the codepoints
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(AP locations). The memory requirements in PDFVQ are
also small as a result of transform coding.

• Learnability: It is expected that the user density varies
over time, in which case the AP positions must be adapted
to account for this change. Both prior VQ schemes are
not amenable to a learning environment as they cannot
adapt quickly to changes in the user distribution as well
as number of APs, and their computationally complex
procedures must be repeated to optimize to the new
environment. In PDFVQ, when the source distribution
changes, both the density estimation and codebook gen-
eration steps must be implemented, however, only the
parameters of the density have to be learned (the EM
algorithm is easily updated using existing values). If
the number of APs only is changed, then the closed-
form expressions and scalar quantizers alone are needed,
resulting in computational savings and faster adaptability.

• Scalability: The above discussions on complexity and
learnability also point to the scalability aspects of the
Lloyd, TSVQ, and PDFVQ algorithms. For the Lloyd al-
gorithm alone, as the number of APs increases, the whole
procedure must be repeated with increased complexity. In
the case of TSVQ, additional successive splitting steps
must be performed, with the number of times that the
Lloyd algorithm is implemented doubling at every step.
In PDFVQ, the closed-form expressions that perform
allocations do not change with the increase in APs.
These allocations and scalar quantizers can be easily and
quickly implemented, enabling an ‘on-the-fly’ placement.
Thus, PDFVQ facilitates scalability, both with respect
to dimensions (of the user distribution) as well as the
number of APs.

Due to the abovementioned advantages, PDFVQ is thus suit-
able for AP placement both in an environment where the
user distribution changes over time as well as the large-scale
massive MIMO scenario with a very high number of APs. It
is also worth noting that the PDFVQ procedure is independent
of the chosen distortion measure for the scalar quantizers, but
for simplicity, we will consider that the Lloyd algorithm is
used.

PDFVQ Algorithm. The PDFVQ procedure from [60] intro-
duced in the beginning of this section applied to AP placement
(involving only two dimensions) is outlined in Algorithm 3
below. Note that in this paper, we model the user distributions
as GMMs (Section V), which avoids the need for parameter
estimation. The total number of bits available btot is log2 M .
It is important to note that in both step 1 and step 2,
the resulting bit allocations bl and bl,j , respectively, are not
expected to be integers. The number of levels computed in step
2 corresponding to the bit allocation bl,j , that is, Vl,j = 2bl,j , is
ultimately rounded off to the nearest integer, and represents the
number of APs. As ‘bit’ generally refers to an integer quantity,
to avoid subsequent confusion, we omit the word ’bit’ when
discussing allocations. The codebooks generated in step 3 for
each cluster are the required AP locations.

Algorithm 3 PDF Optimized Vector Quantization Algorithm
1: Determine the allocation bl to cluster l given the total

budget btot using

2bl = 2btot

p
plcl

LP
j=1

p
pjcj

, (20)

where cl =
p
�l,1�l,2, �l = diag(�l,1,�l,2), and ⌃l =

Ql�lQT

l
is the eigen value decomposition.

2: With each cluster l, compute the allocation along each
dimension bl,j , j = 1, 2, using

bl,j =
bl
2
+

1

2
log


�l,j
cl

�
. (21)

Compute and round off the corresponding level Vl,j =
2bl,j .

3: Generate the codebook Rl for each cluster using

Rl = {q|q = Qly + µ
l
,y 2 Tl} , (22)

where Tl is the set of vectors given by the Cartesian
product Tl = Sl,1 ⇥ Sl,2, with Sl,j , j = 1, 2 being the
optimal Vl,j-level scalar quantizer of a univariate Gaussian
with variance �l,j .

D. Gradient Approaches

As alluded to above, the VQ approaches do not explicitly
solve the sum rate and minimum rate maximization problems,
but provide a practical solution. However, if gradient ascent
were to be applied to solve the problems so that either the
sum rate or minimum rate can be improved further, the proper
initialization of the AP locations is critical to avoid sub-par
local optima. Hence, the VQ-based methods could provide
reasonably good starting points to apply gradient ascent for
both problems. Accordingly, we present both of the gradient
calculations below, and are called the max-sum and max-min
gradient, respectively.

1) Max-sum gradient: To maximize sum rate, the gradient
update expression with j as the iteration index is

q(j+1)
m

= q(j)
m

+ �
@

@q(j)
m

(
KX

k=1

log

 
1 + ⇢r

MX

m=1

�mk

!)
, 8m,

(23)
where in the objective function from (14), we have neglected
the shadow fading zmk and replaced the expectation with the
sum over the users. The gradient in (23) is calculated as

@

@q(j)
m

(
KX

k=1

log

 
1 + ⇢r

MX

m=1

�mk

!)

=
�⇢r
2

KX

k=1

1

1 +  ZF
k

(pk � q(j)
m )

||pk � q(j)
m ||�+2

. (24)

2) Max-min gradient: For minimum rate, taking the gra-
dient of the rate of the worst user is fragile since the
absolute value of the minimum rate can vary significantly
across the iterations of gradient ascent causing convergence
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issues. Additionally, we are also interested in evaluating the
performance of the cell-free system in terms of the 95%-likely
rate, which quantifies the best rate of the worst 5% of the users.
Accordingly, we consider the sum of rates corresponding to
the worst 5% of the users, represented by K5%, as

q(j+1)
m

= q(j)
m

+�
@

@q(j)
m

8
<

:
X

k2K5%

log

 
1 + ⇢r

MX

m=1

�mk

!9=

; , 8m,

(25)
which uses the same simplifications as in (23), and the gradient
is

@

@q(j)
m

(
log

 
1 + ⇢r

MX

m=1

�mk

!)

=
�⇢r
2

X

k2K5%

1

1 +  ZF
k

(pk � q(j)
m )

||pk � q(j)
m ||�+2

. (26)

V. SIMULATION METHODOLOGY AND RESULTS

A. Simulation Parameters
In a geographical area of dimensions 2 km ⇥ 2 km, we

consider M = 32 APs and K = 4 users, since M � K for
a cell-free system. For the purposes of placement, however,
we use 2000 users that are distributed according to a GMM
of the form in (19), with covariance ⌃l = �2

l
I, where �l is

the standard deviation of mixture component l and I is the
identity matrix. We choose the GMM as it can approximate a
broad class of distributions [63], [64] and the PDF estimation
step of PDFVQ can be avoided for simplicity. The GMM used
in our simulations has parameters L = 3, µ1 = [0.5,�0.5]T ,
µ2 = [0, 0.5]T , µ3 = [�0.5, 0]T , �1 = �2 = �3 = 100,
p1 = 0.6, and p2 = p3 = 0.2. The pathloss model from [54,
(4.34)] is used with shadow fading ignored for simplicity and
the transmit power ⇢r of the users is increased from 5 to 30
dB. The max-sum and max-min gradient methods utilize step
sizes of � = 103 and � = 3⇥ 104, respectively.

B. Performance Measures
The per-user achievable rate is used, and is defined for user

k as
Rk = E

�
log2

�
1 +  ZF

k

� 
, (27)

with  ZF
k

from (6) and the rate values are generated using
Monte Carlo iterations. Further, algorithms are run multiple
times and the solution that yields the best result is chosen.
The maximum number of iterations for the Lloyd algorithm
is set to 50. For comparison among the algorithms, both the
sum rate and the 95%-likely rate measures are used. The
relative performance between algorithms (say, algorithm 2
over algorithm 1) can be calculated by using the following
measure expressed as percentage

Improvement Ratio =
P

Algorithm 2
� P

Algorithm 1

PAlgorithm 1 ⇥ 100, (28)

where P is either the sum rate or 95%-likely rate.
We note here that while the sum rate and minimum rate

maximization problems are solved by the max-sum and max-
min algorithms, respectively, in [52], we do not include the
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Fig. 9: Final AP locations of the Lloyd algorithm, TSVQ, and PDFVQ
at ⇢r = 30 dB.
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.

TABLE I: Rate Improvement of TSVQ and PDFVQ Relative to the
Lloyd Algorithm at ⇢r = 30 dB

Algorithm Sum Rate 95%-Likely Rate
TSVQ 3.82% �7.98%

PDFVQ 2.78% �0.82%

results here. As described in Section III-A, the max-sum
algorithm does not solve the sum rate problem accurately
and generates a colocated-like solution with a remarkably
poor 95%-likely rate performance (reflected in the numerical
simulations of [52]). Further, in [53], we compare the grid-
based max-min performance with the Lloyd algorithm and
show that their rate performances are comparable. Even though
a higher 95%-likely rate is achievable with the max-min
algorithm, the simplicity of the Lloyd algorithm outweighs
the complexity associated with the increased grid resolution
needed.

C. Numerical Results

Experiment 1. We compare the performances of TSVQ
and PDFVQ to the standard Lloyd algorithm. Their final AP
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Fig. 11: 95%-likely rate as a function of ⇢r for the Lloyd algorithm,
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.

locations and the distribution of the 2000 users (as gray circles)
are shown in Fig. 9, where the Lloyd algorithm results in APs
that are more distributed than TSVQ. This is expected since
the TSVQ algorithm successively splits Voronoi regions and
after completion does not necessarily associate each user to
its closest AP. For PDFVQ, the allocation procedure within
each cluster results in 3.85, 2.93, and 2.93 APs along each
dimension, respectively, since the GMM clusters are sym-
metric along both x- and y-coordinates. Although rounding
off these values would result in 4, 3, and 3 APs along each
coordinate, the total number of APs would then be 34. Thus,
to limit to M = 32 APs, we select 4, 2, and 2 APs along
the x-coordinate and 4, 4, and 4 APs along the y-coordinate.
This combination is selected as it provides the best result
through repeated trials. The AP locations are observed to
be more regular and grid-like due to the scalar quantizers
used in the transform coding design, when compared to the
standard Lloyd algorithm or TSVQ. The sum and 95%-likely
rates of the three VQ-based algorithms are plotted in Fig. 10
and Fig. 11, respectively. Additionally, for comparison, the
performances when the APs are randomly placed are plotted
(the AP locations themselves are omitted in Fig. 9 to avoid
cluttering the figure), showing an expected low performance.
The improvements in sum and 95%-likely rates, expressed as
percentages, of TSVQ and PDFVQ over the Lloyd algorithm
at transmit power ⇢r = 30 dB are noted in Table I. It is seen
that while the sum rate of TSVQ is greater than that of the
Lloyd algorithm (by nearly 4%), the 95%-likely rate is worse
(by nearly 8%). For PDFVQ, the sum rate offered is close to
that of TSVQ while the 95%-likely rate approaches but does
not equal that of the Lloyd algorithm (with the difference being
less than 1%), due to the fact that the AP positions are far away
from a small group of users in two mixture components. While
for the user distribution considered PDFVQ offers a solution
providing higher sum rate and similar 95%-likely rate to the
Lloyd algorithm, it can be expected that this performance will
reduce as the variance of the mixture components is increased.

Experiment 2. In Experiment 1, we compared the VQ
approaches for a GMM consisting of Gaussian mixture com-

TABLE II: Rate Improvement of TSVQ and PDFVQ Relative to the
Lloyd Algorithm With a Full Covariance Matrix at ⇢r = 30 dB

Algorithm Sum Rate 95%-Likely Rate
TSVQ 5.59% �13.67%

PDFVQ 4.98% �12.85%

ponents with spherical (proportionate to the identity matrix)
covariance matrices. In order to show an example of PDFVQ
applied to a full (non-diagonal) covariance matrix, we now
consider a user distribution where the second component of the
GMM considered is modified to have a covariance matrix of
⌃2 =

h
�
2 2�2

/3

2�2
/3 2�2

i
with � = 100 and the mean of the third

component µ3 = [�0.5,�0.5]T . When PDFVQ is applied to
this distribution, 4, 2, 3 APs along the x-coordinate and 4,
5, and 3 APs along the y-coordinate are allocated, totaling
35 APs. The best allocation for the desired 32 APs is found
to be 4, 2, and 4, and 4, 4, and 2 APs along the x- and y-
coordinates, respectively. The positions of such APs along with
those of the Lloyd algorithm and TSVQ are shown in Fig.
12. The sum rate and 95%-likely rates corresponding to these
locations are provided in Fig. 13 and Fig. 14, respectively,
and the rate improvements are tabulated in Table II. Again,
the performances of the random AP locations are significantly
worse than the VQ-based methods. Similar to the GMM with
spherical Gaussians in Experiment 1, we observe that PDFVQ
is able to match the sum rate performance of TSVQ. However,
unlike above, the 95%-likely rate, like TSVQ, is lower than
the Lloyd algorithm by nearly 13% since the space-filling
advantage of the Lloyd algorithm is lost. Based on the above
two experiments, it could be concluded that PDFVQ is a rea-
sonable alternative to TSVQ that provides a similar or superior
performance. We also note that the conclusions regarding the
relative performance shown above between PDFVQ and the
Lloyd algorithm remain the same when the number of APs is
increased as in a massive MIMO system (the results are not
shown here due to space constraints).

Although it is not the case here, we also note that the
clusters of the GMM may be placed quite close to one another
or may even overlap marginally. When PDFVQ is applied, the
APs associated with the overlapping clusters may be closely
placed and is inefficient. In such a scenario, starting from the
cluster pair with most overlap (the degree of which can be
computed by a measure such as overlap rate [65]), the AP
allocation of the cluster with the higher 95%-likely rate could
be decreased and re-allocated to another cluster with a poor
performance. This process can be repeated for all overlapping
clusters to improve the 95%-likely rate of the network.

Experiment 3. In this experiment, we use the gradient
approaches outlined in Section IV-D to improve the sum rate
and 95%-likely rate performances shown in Experiment 2 for
the GMM with a full covariance matrix. First, we show that
using the max-sum gradient ascent, we can increase the sum
rates of each of the Lloyd, TSVQ, and PDFVQ performances,
as shown in Fig. 15. Note that in order to view all the curves
better, we have included an additional figure that focuses on
the power levels ⇢r = 20, 25, and 30 dB. For comparison
with an existing method, we also plot the performance when
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Fig. 12: Final AP locations of the Lloyd algorithm, TSVQ, and
PDFVQ with a full covariance matrix at ⇢r = 30 dB.
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Fig. 13: Sum rate as a function of ⇢r for the Lloyd algorithm, TSVQ,
PDFVQ, and random AP locations with a full covariance matrix.
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Fig. 14: 95%-likely rate as a function of ⇢r for the Lloyd algorithm,
TSVQ, PDFVQ, and random AP locations with a full covariance
matrix.

the max-sum gradient ascent algorithm is applied to randomly
initialized AP positions. This initialization considers that the
APs are allocated to each GMM cluster according to PDFVQ
and then positioned using the i.i.d. Gaussian distribution of

the cluster. Table III lists the percentage rate improvements of
the max-sum gradient applied to each VQ approach, over the
Lloyd algorithm alone. The gradient ascent applied to both the
TSVQ and PDFVQ AP locations yields the highest sum rate
(nearly 10% over the Lloyd algorithm) while the rate obtained
when the ascent operation is applied with the Lloyd algorithm
as the starting point is nearly the same as the sum rates of
PDFVQ and TSVQ. This occurrence is due to the fact that the
gradient ascent iterations with the Lloyd AP solutions as the
initial points converge to a local optimum which is different
from that obtained when the ascent is applied to PDFVQ
or TSVQ. The 95%-likely rate performances shown in Fig.
16, when the max-sum gradient is applied to PDFVQ and
TSVQ, do not change significantly (an increase is observed
at ⇢r = 30 dB) and decrease when the gradient is applied to
the Lloyd AP positions. Thus, in terms of sum rate, PDFVQ
provides the best solution out of all VQ approaches and a
further increase in sum rate (about 4% over PDFVQ) without
negatively affecting the minimum rate performance (about 5%
increase) is achieved by using the max-sum gradient ascent.
For the randomly initialized case, it is observed that for a
similar sum rate performance as the other techniques, the 95%-
likely rate is remarkably inferior, thus showing the superiority
of the VQ-initialized gradient approaches. Next, the max-min
gradient ascent is applied and the 95%-likely rate is observed
to increase as shown in Fig. 17. The best rate is obtained
when the ascent algorithm is applied to the Lloyd solution as
opposed to when it is applied to either TSVQ or PDFVQ where
it is able to match the performance of the Lloyd algorithm.
Table IV informs us that while a 14% improvement in the
95%-likely rate is achieved by applying the gradient to the
Lloyd solution, the difference of the gradient applied to TSVQ
or PDFVQ from the Lloyd algorithm is only up to 4%. The
sum rates corresponding to the 95%-likely rates are plotted in
Fig. 18 (which also includes an additional zoomed in figure),
where as a result of the 95%-likely rate improvement, the
sum rate when the ascent is applied to the Lloyd algorithm is
the least value. In contrast, despite the increase in 95%-likely
rate, the sum rate performances when ascent is applied to
TSVQ and PDFVQ are nearly the same as TSVQ and PDFVQ
itself. Hence, with its simpler design, PDFVQ along with max-
min gradient offers a good tradeoff between a 95%-likely rate
similar to and a sum rate higher (by over 5%) than the Lloyd
algorithm. It should, however, be mentioned that if 95%-likely
rate (or minimum rate) is the sole performance measure of
interest, the Lloyd algorithm alone is a straightforward choice.
The gradient approach requires the choice of an appropriate
step size for convergence while the Lloyd algorithm is known
to converge [66]. Finally, as we observed for the max-sum
case, while a similar sum rate is observed when the max-min
gradient is applied to randomly initialized AP locations, the
95%-likely rate is significantly inferior to the other situations.

Experiment 4. In this experiment, we quantify the effect of
a time-varying user density on the network performance and
show the need for an easily adaptable AP placement algorithm.
We consider a simple situation where the users are initially
distributed as a single-cluster GMM (L = 1 in (19)) with mean
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Fig. 15: Sum rate as a function of ⇢r for the Lloyd algorithm, TSVQ,
PDFVQ, and random locations with a full covariance matrix along
with max-sum gradient. The figure on the bottom zooms in on the
sum rates for ⇢r = 20, 25, and 30 dB.
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Fig. 16: 95%-likely rate as a function of ⇢r for the Lloyd algorithm,
TSVQ, PDFVQ, and random locations with a full covariance matrix
along with max-sum gradient.

TABLE III: Rate Improvement of the VQ Approaches with the Max-
Sum Gradient Relative to the Lloyd Algorithm at ⇢r = 30 dB

Algorithm Sum Rate 95%-Likely Rate
Lloyd + Max-Sum Gradient 3.88% �5.60%
TSVQ + Max-Sum Gradient 9.80% �7.52%

PDFVQ + Max-Sum Gradient 9.34% �8.66%

µ = [0, 0]T and covariance ⌃ =
h

�
2

�
2
/3

�
2
/3 �

2
/2

i
where � = 200,
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Fig. 17: 95%-likely rate as a function of ⇢r for the Lloyd algorithm,
TSVQ, PDFVQ, and random locations with a full covariance matrix
along with max-min gradient.
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TABLE IV: Rate Improvement of the VQ Approaches with the Max-
Min Gradient Relative to the Lloyd Algorithm at ⇢r = 30 dB

Algorithm 95%-Likely Rate Sum Rate
Lloyd + Max-Min Gradient 13.93% �3.73%
TSVQ + Max-Min Gradient �3.60% 5.73%

PDFVQ + Max-Min Gradient �2.48% 5.30%

and call it density A. Assuming a total of M = 18 APs, we
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Fig. 19: The two user densities A and B considered for Experiment
4 along the PDFVQ AP locations matched to density A.
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Fig. 20: Sum rate as a function of ⇢r for Experiment 4.

calculate the PDFVQ AP locations for this user density. Over
time, we consider that the user distribution changes to density
B, where the users are more spread out along another direction
to that of density A, with covariance matrix ⌃ =

h
�
2
/2 �

2
/2

�
2
/2 �

2

i

and � = 300. These two user densities and the PDFVQ AP
locations determined for density A are shown in Fig. 19. We
evaluate the sum rate and 95%-likely rate performances when
the AP locations are matched to density A and consider both
user densities A and B, so that the loss due to mismatch
of the AP locations to the user density B is also shown.
For completeness, we also compute the rate values when
PDFVQ AP locations are determined and matched to density
B. As expected, in both the sum rate plotted in Fig. 20 and
the 95%-likely rate plotted in Fig. 21, there is a significant
loss in performance for the PDFVQ AP locations which are
matched to density A, when the users re-position to density
B. The relative losses in the sum rate and 95%-likely rate at
⇢r = 30 dB are 32.67% and 89.54%, respectively. To prevent
this performance decrease, there is a need to re-calculate the
AP locations for the new user density. Clearly, when the AP
locations are matched via PDFVQ to the user density B, the
rate performances in Fig. 20 and Fig. 21 are improved over
the diminished performance of the mismatched case. With easy
adaptability and the other aforementioned advantages, PDFVQ
offers the best method for cell-free AP placement among the
VQ techniques discussed in this paper. In future work, we will
address how the changing user densities can be learned for use
in PDFVQ.
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Fig. 21: 95%-likely rate as a function of ⇢r for Experiment 4.

VI. CONCLUSION

In this paper, we have addressed access point (AP)
placement in cell-free massive multiple-input-multiple-output
(MIMO) systems under a throughput criteria. We investigated
the two main optimization problems in this regard, namely
the sum rate and minimum rate maximization problems. To
understand their solution frameworks, simple examples were
constructed and analyzed exposing the difficulty in solving
the problems. Therefore, as a practical approach, the use of
vector quantization (VQ) based methods, namely the popular
Lloyd algorithm, tree-structured VQ (TSVQ), and probability
density function optimized VQ (PDFVQ), to cell-free AP
placement, was investigated. Among the three algorithms
presented, although the tree-structured VQ (TSVQ) provides
better sum rate (as it fosters cooperation among APs by placing
them closer) compared to the Lloyd algorithm, it suffers
from high complexity, poor scalability, and the inability to
easily adapt to new environments. PDFVQ, which overcomes
the aforementioned shortcomings, allowed a more efficient
generation of the codebook and generated a sum rate similar
to and 95%-likely rate higher than TSVQ and close to the
Lloyd algorithm. Additionally, for gradient-based maximiza-
tion methods, PDFVQ is found to provide good initial points.
It was observed numerically that, over the Lloyd algorithm,
an increase of 9% in sum rate and a difference of just 2.5%
in the 95%-likely rate was achieved by applying max-sum
and max-min gradient ascent algorithms, respectively, with the
PDFVQ AP locations as starting points. Thus, PDFVQ offers a
convenient, less computationally intensive, and easily scalable
AP placement technique for cell-free networks.
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