
Dezhong Tong
Department of Mechanical and Aerospace

Engineering,
University of California,
Los Angeles, CA 90095

e-mail: tltl960308@g.ucla.edu

Md Ibrahim Khalil
Department of Mechanical Engineering,

University of Maine,
Orono, ME 04473

e-mail: md.khalil@maine.edu

Matthew Justin Silva
Department of Mechanical and Aerospace

Engineering,
University of California,
Los Angeles, CA 90095

e-mail: mattsilva2@g.ucla.edu

Guanjin Wang
Department of Mechanical and Aerospace

Engineering,
University of California,
Los Angeles, CA 90095

e-mail: gjwang@g.ucla.edu

Bashir Khoda1

Associate Professor
Department of Mechanical Engineering,

University of Maine,
Orono, ME 04473

e-mail: bashir.khoda@maine.edu

Mohammad Khalid Jawed1

Associate Professor
Department of Mechanical and Aerospace

Engineering,
University of California,
Los Angeles, CA 90095

e-mail: khalidjm@seas.ucla.edu

Mechanical Response of
Fisherman’s Knots During
Tightening
The fisherman’s knot, renowned for its strength and reliability, finds applications in engi-
neering and medicine. However, a comprehensive understanding of its mechanics
remains limited in scientific literature. In this paper, we present a systematic study of the
tightening behavior of the fisherman’s knot through a combined approach of tabletop exper-
iments and discrete elastic rods simulations. Our experimental setup involves gradually
applying tension to the two ends of the fisherman’s knot until it fractures. We observed a
correlation between the knot’s material properties and its behavior during tightening,
leading up to fracture. The tightening process of the fisherman’s knot exhibits distinct
“sliding” or “stretching” motions, influenced by factors such as friction and elastic stiff-
ness. Furthermore, the failure modes of the knot (material fracture and topological
failure) are determined by an interplay between elastic stiffness, friction, and initial condi-
tions. This study sheds light on the underlying mechanics of the fisherman’s knot and pro-
vides insight into its behavior during the tightening process, contributing to the broader
understanding of the mechanics of knots in practical applications.
[DOI: 10.1115/1.4063895]

Keywords: computational mechanics, elasticity, mechanical properties of materials, knots

1 Introduction
Mathematically, a knot is represented by a closed curve in three-

dimensional space that forms a tangled loop or knotted string, which
cannot be untangled without cutting it [1]. However, the study of
knots has expanded beyond mathematics and found applications
in diverse scientific disciplines. The combination of topology and
material properties gives rise to a wide range of mechanical

characteristics exhibited by different knots in various contexts. In
the domain of navigation, it is common knowledge among fisher-
men and sailors that tying a knot in a rope severely reduces its
tensile strength [2]. Material scientists observed that knots are
almost always present in sufficiently long polymers [3]. In
biology, knots can be found in DNA molecules and protein struc-
tures [4]. They serve various purposes, such as blocking DNA rep-
lication and gene transcription [5], increasing antibiotic sensitivity
[6], and catalyzing enzymatic reactions [7,8]. In the field of engi-
neering, the buckling of knots [9] and their tangled configurations
[10] have increasingly attracted researchers’ interest. Investigating
the tangling and untangling of knots sheds light on the energy
storage and release mechanisms governed by topological con-
straints [11,12]. However, given the large number of physical
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parameters (material, topological, friction) and geometric nonline-
arity involved, the mechanical response of several common types
of knots (e.g., fisherman’s knot) remains unexplored.
One main direction of knot research is to explore the influence of

material, frictional, and geometric properties on the mechanical per-
formance of knots. In prior works, researchers have typically
employed theoretical analysis, simulations, and experiments either
separately or in combination to study knots. One exciting research
direction is optimization problems related to the topology of knots.
Moulton et al. [13] studied a stable knot configuration of an elastic
rod or strip clamped in a specific geometry without self-contact. A
theoretical analysis was developed to demonstrate that such geom-
etry exists only within a certain range of material properties.
Another interesting problem is exploring the nonlinear geometric
behavior of knots. Clauvelin et al. [14] derived an analytical expres-
sion for the equilibrium of a thin knotted elastic rod subject to
pulling force and twisting moment applied at two ends. They
showed instability in overhand knots when the twisting moments
on the two ends reached specific thresholds. In Ref. [9], it was dem-
onstrated that instability of an overhand knot could occur without
any twisting moment when the rod radius is relatively thick.
When the unknotting number of an overhand knot exceeds one,
instability can always occur simply by pulling the two tails of the
knot. Ibrahim Khalil et al. [15] investigated the mechanical behavior
of overhand knots by manipulating the friction force on an elastic
rod. The objective was to understand the mechanics of overhand
knots at various unknotting numbers through a systematic variation
of friction. The findings revealed that multiple forces and moments
come into play during rod-rod contact, which is significant in any
experimental setup that unravels the fundamental aspects of over-
hand knot mechanics.
In addition to the studies mentioned above, the strength and frac-

ture of knots are always critical in engineering and medicine.
Several recent studies have focused on the mechanical performance
of various knots. Sano et al. [16] investigated the mechanical perfor-
mance of a clove hitch’s knot when tied around a rigid cylinder. By
implementing finite element simulations [17] and experimental
studies, their study pointed out that the tension of the knot in the
contact region with the rigid body will decay to zero when
the region is away from the loading end. Reference [18] studied
the influence of material flexibility on knot tying. When tying a
knot with a rod, the flexibility of the rod affects the untangling of
the knot, which can be considered a form of failure. The study con-
cluded that the increased flexibility of a rod is advantageous for
tying various knots. A number of studies focused on the unique
mechanical responses of knots with specific geometries. In
Ref. [19], the influence of knot configurations on the tensile charac-
teristics was studied for various surgeon knot configurations in oral
and maxillofacial surgery operations. Calvaresi et al. [20] combined
force spectroscopy with quantum chemical calculations to report the
force response of small-molecule trefoil knots during tigthening. In
Ref. [21], theoretical expressions are derived for the tightening and
untightening forces of a trefoil and cinquefoil overhand knots. The
effects of geometrical and material parameters on such knots are

captured by the theoretical framework. Further, Jawed et al. [22]
expanded the framework of Ref. [21] to consider the case of over-
hand knots dominated by friction.
In this paper, we focus on the mechanical properties of a fisher-

man’s knot. Fisherman’s knot is a type of fundamental knot that is
prevalent in fishing. Recently, researchers in medicine found that
tying a fisherman’s knot is a simple, efficacious, and safe suturing
technique for immediate hemostasis and damage repair after opera-
tions [23]. Although the fisherman knot is known for its strength
and reliability in many fields, few prior works studied its mechani-
cal properties systematically. In this paper, we report experiments to
show that the tightening of a fisherman’s knot can be divided into
three modes: stretching, sliding, and untangling. This is further sub-
stantiated by numerical simulations based on the discrete elastic
rods (DER) algorithm. We quantitatively demonstrate the influence
of material parameters on the tightening and failure of the fisher-
man’s knot. As shown in Fig. 1, we observed two tightening
modes, including “sliding” and “stretching” in experiments and
simulations. Correspondingly, there are three failure modes: (1)
“sliding” then fracture, (2) “stretching” then fracture, and (3)
“untangling,” which are discussed in detail in this study. A
scaling analysis is employed to extract the primary influential phys-
ical factors from the geometrical and material properties of this
system, which govern the mechanics of the fisherman’s knots.
The paper is organized as follows. The topology of fisherman’s

knots and the statement of the problem are presented in Sec. 2.
Then, we formulate the numerical framework, which couples the
DER-based rod model and frictional contact, to study the tightening
process of a fisherman’s knot in Sec. 3.1. Next, we discuss our
experimental protocol in Sec. 4, including the material preparation
and experimental setup. All experimental and simulation results are
discussed in Sec. 5. Finally, we provide concluding remarks and
discuss possible future research avenues in Sec. 6.

2 Problem Statement
A fisherman knot is a symmetrical assembly of two trefoil over-

hand knots, as shown in Fig. 1(a). Further details on tying the knot
will be provided later in the manuscript (Fig. 4). Generally, a fish-
erman’s knot can be treated as a slip knot. In other words, if apply-
ing forces on the two ends, the two knotted regions can slide along
the closed loop. As the tightening force F on the two ends increases,
the knotted distance e will decrease since two knotted regions are
supposed to slide. However, we observed that the fisherman’s
knot can be a “dead” knot when the material properties or the
boundary condition changes, as shown in Fig. 1(b). In this
problem, the potential contributing properties are the rod’s axial
stretching stiffness ks, bending stiffness kb, twisting stiffness kt, fric-
tion coefficient μ, rod radius h, knotted distance e, and end-to-end
distance L, which will be discussed in Sec. 4. The motivation for
this work lies in exploring the application domain by studying the
correlation between the geometric evolution of the fisherman’s
knot while being tightened and the mentioned parameters. This

Fig. 1 Simulation snapshots illustrating the knot-tightening process. Axial load F on two nodes (marked by circles)
at a distance L tightens the knots: (a) slidingmotion where the knotted distance e gradually decreases to zero during
tightening and (b) stretching motion where e slowly increases during tightening.
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investigation aims to yield valuable insight into this knot’s beha-
vior, e.g., the load bearing capability, for practical use.

3 Numerical Framework
In this section, we present the approach to accurately simulate the

tightening process of a fisherman’s knot. We utilize the DER method
[24,25] to capture the elastic energies associated with the nonlinear
deformations in the knot. The physical accuracy of DER has been
extensively validated in prior studies, including the coiling of rods
on the ground [26], instability of the overhand knots [9], and the
buckling of rods [27]. To account for rod-rod contact during the
knot formation, we employ a penalty-energy-based contact frame-
work [28,29]. This framework ensures the proper consideration of
the interaction between rods in the simulation, thereby enhancing
the accuracy and realism of the results. By combining the DER
approach for capturing elastic deformations with the penalty-energy-
based contact framework for handling rod-rod frictional contact, we
achieve a comprehensive and robust simulation of the tightening
process of a fisherman’s knot.

3.1 Discrete Elastic Rods. The DER algorithm, developed by
Bergou et al. [24], captures the dynamics of a Kirchhoff elastic rod,
including geometric nonlinearity. In this section, we discuss the
construction of the equations of motion (EOM) for a rod under fric-
tional contact.
As illustrated in Fig. 2(a), the centerline of the elastic rod is dis-

cretized into N+ 1 nodes, denoted as [x0, …, xN], resulting in N
edges [e0, …, eN−1] such that e i= xi+1− xi and 0≤ i<N. Hereafter
in this section, all node-based quantities are denoted with subscripts
(e.g., xi) and all edge-based quantities are denoted with superscripts
(e.g., e i). In this discrete model, each edge e i possesses an orthog-
onal reference frame [di1, d

i
2, t

i] and an orthogonal material frame
[mi

1, m
i
2, t

i]. The shared director, ti = ei/ ei
∥∥ ∥∥ in these two frames,

corresponds to the edge tangent between successive nodes. The
reference frame [di1, d

i
2, t

i] is arbitrarily initialized at the initial
time (t= 0), and parallel transported in time from the tangent t i

(t) at time t to the tangent t i (t+Δt) at time t+Δt, where Δt repre-
sents the time-step size. In Fig. 2(b), the material frame at the ith
edge is derived from the reference frame at the same edge by apply-
ing a rotation θi about t i and material frames are used to evaluate the
twist along the rod. Consequently, the rod’s centerline can be rep-
resented by a total of 4N+ 3 degrees-of-freedom (DOF), consisting
of 3(N+ 1) degrees-of-freedom for nodal positions and N

degrees-of-freedom for twist angles of each edge. The
degrees-of-freedom vector can be expressed as

q = [x0, θ0, x1, θ1, x2, θ2, . . . , xN−1, θN−1, xN]T (1)

where T is the transpose operator.
The EOM can be constructed based on the elastic energies of the

rod, including stretching, bending, and twisting energies, as well as
external forces such as contact and friction. First, the stretching
energy is defined as

Es =
∑N
i=0

1
2
ks 1 −

ei
∥∥ ∥∥
�ei

∥∥ ∥∥
( )2

�ei
∥∥ ∥∥ (2)

where ks is the stretching stiffness and �ei represents the undeformed
(stress-free) edge. Hereafter, the bar notation denotes quantities in
undeformed state. For a rod made of linear elastic material, ks=
EA, where E is Young’s modulus and A is the cross-sectional
area. �ei, represents the undeformed edge.
Next, the bending energy is given by

Eb =
∑N
i=1

kb
�ei
∥∥ ∥∥ + �ei−1

∥∥ ∥∥ (κ − �κ)T (κ − �κ) (3)

where kb is the bending stiffness. When the material is under the

linear elastic assumption, kb=EI, where I =
πh4

4
is the moment of

inertia, and h is the rod radius. In Eq. (3), κ and �κ are deformed
and natural curvature vectors, respectively. Here,
κ‖ ‖ = 2 tan (ϕi/2), where ϕi is the turning angle, as illustrated in
Fig. 2(b).
Additionally, the twisting energy is defined as

Et =
∑N
i=1

1
2

kt
�ei
∥∥ ∥∥ (τi − �τi)

2 (4)

where kt is the twisting stiffness. For a linear elastic material, kt=

GJ, where G =
E

2(1 + ν)
is the shear modulus, ν is the Poisson’s

ratio, and J =
πr40
2

is the polar second moment of inertia. In

Eq. (4), τi= θi+1− θi+Δτref represents the discrete twist at node
xi, and Δτref is the discrete reference twist.
Now, the internal force at the ith DOF, Fint

i , can be defined in
terms of energy as

Fint
i =

∂(Es + Eb + Et)
∂qi

(5)

where qi represents the ith element in the DOF vector. Then, the
EOM for the system can then be written as

Mq̈ − Fint − Fext = 0 (6)

where M is the mass matrix, q̈ is the acceleration vector, Fext rep-
resents the external forces, and F int is the internal force vector.
In the DER algorithm, the implicit Euler method is employed for

time integration of the EOM, updating the status of q from time told
to tnew= told+Δt. The EOM is formulated as

f (qnew) ≡
M

Δt
qnew − qold

Δt
− q̇old

( )
− Fint

new − Fext
new = 0 (7)

where the elastic force vector Fint
new is

Fint
new = −

∂(Es + Eb + Et)new
∂qnew

(8)

qnew=q(tnew) is unknown, qold=q(told) is known, q̇old is the velocity
vector at told, Fext

new is the external force vector tnew, and M represents
the diagonal mass matrix with a size of (4N+3) × (4N+3). The

Fig. 2 Illustration of discrete schematics and relevant nota-
tions: (a) discrete schematic of an elastic rod, (b) discrete nota-
tions for the reference frame [di

1, d
i
2, t

i], the material frame
[mi

1, m
i
2, t

i], the twist angle θi, and the turning angle ϕi, and
(c) schematic diagram of a contact pair showing the edges e i

and e j
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notation (̇) indicates the derivative with respect to time. In our studied
case, Fext includes the contact forces Fc and the friction forces Fr. The
Newton–Raphsonmethod is employed to find the root of f(qnew)=0 in
Eq. (7), where the Jacobian of Eq. (7) is defined as follows:

Jij =
mi

Δt2
δij +

∂2(Es + Eb + Et)
∂qi∂qj

− Jcij − Jrij (9)

where mi is the ith diagonal element in mass matrixM, δij denotes the
Kronecker delta, and Jcij and Jrij represent the Jacobians of the contact
forces and the friction forces, respectively. The subscript ij indicates
the ith row and jth column of the Jacobian.

3.2 Penalty-Energy-Based Contact. In our numerical frame-
work, friction is implemented using Coulomb’s friction model. Ref-
erences [28,29] presented a penalty-based energy approach for
introducing frictional contact responses as constraints, accurately
capturing Coulomb’s friction. In this section, we formulate the
penalty energies and discuss the computation of frictional responses
based on these energies.
In our framework, a contact pair is formed by combining

two edges, e i and e j, as depicted in Fig. 2(c). This contact pair
consists of nodes xi, xi+1, xj, and xj+1. Thus, we can represent a
contact pair as the vector concatenation xij := (xi, xi+1, xj, xj+1)
(size 12×1). Based on off Lumelsky algorithm [30], the
minimal distance between two edges can be computed as
Δij = (1 − t)xi + txi+1 − (1 − u)xj − ux j+1)

∥∥ ∥∥, where t and u are dif-
ferentiable quantities expressing the position of the contact point in
the contact pair. The contact energy formulation Ec, based on Refs.
[28,29], is given by

Ec(Δ, δ)

=

(2h − Δ)2 Δ ∈ (0, 2h − δ]

1
K1
log (1 + exp (K1(2h − Δ)))

( )2
Δ ∈ (2h − δ, 2h + δ)

0 Δ ≥ 2h + δ

⎧⎪⎨
⎪⎩

(10)

where δ is a hyperparameter called distance tolerance, which
controls the magnitude of the penetration, h is the rod radius, and
K1= 15/δ indicates the stiffness of the energy curve. The piecewise
contact energy, as shown in Eq. (10), is continuous and differential
in the force region so that we can compute the required normal
contact force with chain rule based on that with

Fc =
∂Ec

∂Δ
∂Δ
∂q

(11)

Then, we calculate the friction forces based on Coulomb’s friction
law, which states that the magnitude of frictional force Ff

∥∥ ∥∥ satisfies
the following conditions: (1) it is equal to μ Fc‖ ‖ during sliding, (2) it
lies in the range [0, μ Fc‖ ‖) when sticking, and (3) it is independent of
the magnitude of velocity.
Here μ represents the friction coefficient, and Fc‖ ‖ denotes the

magnitude of the normal force acting on the body. To smoothly
transition from sticking friction to sliding friction, we propose a for-
mulation for frictional responses

Ff = −γμ Fc‖ ‖v̂Trel

γ vTrel
∥∥ ∥∥, vs( )

=
2

1 + exp −K2 vTrel
∥∥ ∥∥( ) − 1

(12)

In Eq. (12), vs (m/s) represents the desired slipping tolerance, and
the stiffness parameter K2(vs)= 15/vs controls the system’s beha-
vior. vTrel represents the relative tangential velocity between the
two contacting bodies. We introduce an artificial quantity, γ, to
control the transition from sticking to sliding. The value of γ
depends on the magnitude of vTrel. When the relative tangential
velocity is smaller than vs, γ scales the sliding friction forces to
keep them within the range of sticking friction forces. When the rel-
ative tangential velocity is significant (larger than vs), γ approaches
1, ensuring a constant ratio (the ratio is μ) between the sliding fric-
tion force and the normal contact forces.

Table 1 Material properties of rods in the experiments

Material properties Nylon Polypropylene Pink VPS Green VPS

Stretching stiffness (Pa · m2) 7.34 × 104 3.90 × 104 1.70 22.15
Bending stiffness (Pa ·m4) 4.31 × 10−5 1.18 × 10−4 4.34 × 10−6 5.67 × 10−5

Friction coefficient (measured) 0.46± 0.02 0.63± 0.01 0.54± 0.01 0.37± 0.01

Fig. 4 Steps of knot preparation: (a) tying an overhand knot
around one tail to form a knotted region, (b) visualization of the
topology of the loosely knotted region in a fisherman’s knot,
(c) tightening the knotted region with pre-loading, (d) visualiza-
tion of the topology of the tightened knotted region in a fisher-
man’s knot, and (e) the prepared fisherman’s knot. Scale bar is
2 cm.

Fig. 3 Manufacturing steps of VPS rods: (a) preparation of VPS
mixture, (b) schematic of the manufacturing process, and
(c) samples of fabricated rods
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It is worth mentioning that both F c and F f are differentiable to the
DOF vector, allowing us to compute the Jacobian of the frictional
contact forces. By incorporating the computed frictional contact
forces and Jacobians into Eqs. (7) and (9), we can solve for the non-
linear behavior of the fisherman knot and obtain measurements of
the relative quantities in the simulation.

4 Experimental Study
This section includes the process of material preparation, knot

preparation, and the experimental protocol. First, we discuss the
preparation of materials required for the experiments. Next, we
detail knot preparation and experimental protocol in the subsequent
subsections.

4.1 Material and Knot Preparation. We used four different
rod materials (polypropylene, nylon, vinyl polysiloxane (VPS)

rod with higher stiffness (green color), and lower stiffness (pink
color)) to prepare the fisherman knot during the tensile experiments.
The material properties of the different rods are stated in Table 1.
The diameter of all rods used in the investigation is 1/4 in. Poly-

propylene and Nylon rods are purchased from Gardzen, Rowland
Heights, CA and West Coast Paracord, Fargo, ND, respectively,
while the VPS rods are prepared in our laboratory. In this part,
we discuss the manufacturing technique of VPS rods.
We used a mold-forming method to manufacture the VPS rods.

First, we fixed a one-meter-long plastic tube onto a clean flat table
as straight as possible. The tube will serve as the mold for manufac-
turing the VPS rods which are naturally straight. To manufacture
“green” VPS rods, we mixed the catalyst and the base (Elite
Double 32, Zhermack, Badia Polesine, Italy) at 1 : 1 mass ratio, as
seen in Fig. 3(a). The mixture is placed in a compression chamber
with 25 psi for a few minutes to expel any air bubbles. As shown
in Fig. 3(b), it is then injected into a hollow PVC tube with inner
radius of 1/4 in. The softer “pink” VPS rods are made following
the same protocol but using a different catalyst and base (Elite
Double 8, Zhermack).
The fisherman’s knots used in our experiment involve the joining

of two fishing lines or rods. To create a fisherman’s knot, we initiate

Fig. 5 Experimental setup for tightening a fisherman’s knot
using Instron: (a) front view and (b) side view. The knotted dis-
tance is denoted by e, and the end-to-end distance of the knot
is denoted by L. Scale bar is 3 cm.

Fig. 6 Motion patterns during knot tightening and fracture: (a)
sliding-stretching-fracture (experimental snapshots at (a1) t=
0 s—initial configuration, (a2) t=10 s—two knotted regions
keep sliding, and (a3) t=20 s—stretching occurs after two
knotted regions meet and lock, continuing until fracture) and
(b) stretching-fracture (experimental snapshots at (b1) t=0 s—
initial configuration; (b2) t=10 s—the overall structure keeps
stretching, (b3) t=20 s—stretching continues until fracture
occurs). Scale bar is 5 cm for both (a) and (b).

Fig. 7 Comparison of tightening force, F, (as a function of dis-
placement, s) between numerical and experimental results for:
(a) commercially available rods and (b) VPS rods. Note that the
range of the y-axis is significantly different between the two
plots. The vertical dashed line in (a) represents the transition
from the sliding to the stretching region. For clarity, the inset in
(a) shows F versus s relation only for the sliding region. The
force, F, increases dramatically as the knot transitions from
sliding to stretching.
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the process by crafting a basic overhand knot at one end of a
rod. Subsequently, we thread the other rod through this overhand
knot and proceed to tighten it. This exact procedure is replicated
on the opposing end of the second rod. A visual representation of
the step-by-step process is given in Fig. 4 using a polypropylene
rod.

4.2 Experimental Protocol. To investigate the connection
between material properties and knot performance, we devised a
systematic tensile study using a universal testing machine (UTM).
To minimize stress concentration at the gripper of the UTM, we
opt for a single rod for knot preparation, which leads to the creation
of a continuous loop as shown in Fig. 4. To conform with the same
initial condition, a predefined loading is applied to uniformly
tighten the fisherman’s knots.
The process begins with crafting an overhand knot at one end of

the rod, as illustrated in Fig. 4(a). The loose overhand knot’s
appearance is shown in Fig. 4(b). To tighten the overhand knot,
we secure the knot with one hand while applying the pre-load
denoted as Fp, to the free end of the knot. This tightening procedure
is detailed in Fig. 4(c). We systematically vary the pre-load to
achieve the desired tightness of the knot and subsequently assess

how this variation impacts the sliding force during the tensile
tests. The appearance of the tightened overhand knot is captured
in Fig. 4(d ). This process is then replicated on the opposite end
of the loop. The combination of the two properly tightened over-
hand knots results in the formation of the fisherman’s knot, as illus-
trated in Fig. 4(e). The continuous loop setup is subsequently placed
within the UTM machine supported by two rollers, serving as
boundary conditions for tensile loading. The supporting roller has
a diameter of 1.5 in., which is six times larger than the rod diameter
and help alleviate the stress concentration during pulling. The
tensile setup is depicted in Fig. 5. The spacing in the overhand
knots, denoted as e, was consistently set at 15 cm and the end-to-end
distance, L, was maintained at 25 cm in all trials. The experiment
employed a 50 kN load cell and collected data at a frequency of
3 Hz. For the softer material (pink VPS), a 20N load cell is utilized
to collect the force-displacement data.

5 Results and Discussion
This section describes the mechanical behavior of the fisher-

man’s knots during the tightening process. Due to the intricate
interplay between material properties and topology, the knot
undergoes one of three qualitatively distinct evolutions of topol-
ogy: (1) the two overhand knotted region slides along the closed
knot loop (Figs. 6(a1)–6(a3)), (2) the overall structure of the fish-
erman’s knot stretches (Figs. 6(b1)–6(b3)), and (3) the knot untan-
gles itself (Fig. 8). These three “motion patterns” are captured by
both experiments and simulations. We first discuss the different
motion patterns, and, then, describe the contributing physical
factors.

5.1 Motion Patterns. The fisherman’s knot is usually defined
as a type of knot in which two overhand knotted regions can easily
move along the closed knot loop. Referring to Fig. 6(a), this
“sliding” motion pattern is observed in knots tied in polypropylene
and nylon rods. Figures 6(a1)–6(a3) show snapshots from experi-
ments and illustrate how the two knotted regions move towards
each other during the sliding process. When the two knotted
regions meet, the knot becomes “locked,” and the entire structure
is subjected to stretching until it eventually fractures. Figure 7(a)
shows the relationship between the tightening force F and the dis-
placement s from experiments and simulations. The parameter s
represents the elongation of the end-to-end distance L. During the

Fig. 8 Untangling of the fisherman’s knot: (a) the VPS rod is tightened using hands and then
released to move freely (t=0 s), (b) position of the knot at t=5 s, (c) loop shrinking continues
to untangle the knot (t=10 s), and (d) untangled knot (t=15 s). Scale bar is 6 cm for all figures.

Fig. 9 Variation of self-untangling of the knot with pre-loading
(tangled=1, untangled= 0)
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sliding stage, the tightening force F remains stable and relatively
low. However, when the knot is locked, the tightening force F
increases significantly, following a slope that is directly propor-
tional to the axial stretching stiffness ks. This motion pattern of
“sliding” allows for easy topology changes with minimal loading,
while “stretching” makes the fisherman’s knot more stable and
resistant to changes in structure. In experiments, extreme stretching
leads to material failure at s≈ 0.1 m for Nylon and s≈ 0.13 m for

Polypropylene. Note that material failure is not modeled in our
simulations.
Notably, not all fisherman’s knots follow the aforementioned

sliding-stretching-fracture pattern. Experiments with Pink VPS
and Green VPS rods, as shown in Fig. 6(b), revealed a second
type of mechanical behavior where the two knotted regions seem-
ingly “stick” to the closed knot loop and do not slide. In this
case, the structure only stretches until it fractures during tightening.

Fig. 10 Comparative analysis of tightening force variation with displacement at different pre-loadings: (a1) nylon rod and (a2)
polypropylene. Zoomed-in view of the tightening force versus displacement relationship in the sliding region: (b1) nylon and
(b2) polypropylene. Horizontal dashed lines represent the average tightening force. This average force monotonically
increases with pre-load. Influence of pre-load Fp on average tightening force F in the sliding region: (c1) nylon and (c2)
polypropylene.
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Figure 7(b) shows the dependence of tightening force F on displa-
cement s from experiments and simulations.
Additionally, the third—and, arguably, the simplest—pattern is

“untangling” and is depicted in Fig. 8. It is well known that a
knotted structure may or may not maintain its topology in the
absence of external loads or boundary conditions [10]. In this sce-
nario, the fisherman’s knot untangles itself as soon as the boundary
conditions imposed by human hands are removed. The frictional
force acting on the rod may not be adequate to withstand the
elastic forces arising from the knotted configuration. Our experi-
mental observations on when a knot untangles itself are presented
in the next section.

5.2 Physical Ingredients. To identify the main contributing
factors influencing the motion patterns of the fisherman’s knot,
we first list the physical ingredients of the system. The behavior
of the fisherman’s knots is governed by the coupling of geometry,
loading process, and material properties. Geometric quantities
include the rod radius h, knotted distance e, and end-to-end distance
L. The material properties relevant to the process are bending stiff-
ness kb, stretching stiffness ks, twisting stiffness kt, rod density ρ,
and friction coefficient μ. For a homogeneous rod with a circular
cross section that is made of linear elastic material, the expressions
for ks, kb, and kt are available in Sec. 3.1. Commercially available
ropes are often made of fibers or strands that are braided together.
The elastic stiffness parameters (ks, kb, and kt) should be directly
measured in that case. To ignore any effects of inertia, we kept
the loading speed at 3.3 mm/s in our experiment, which is slow
enough for the process to be quasi-static.
The last parameter, which eventually turned out to be a critical

one, is the pre-loading force Fp (also see Fig. 4(c)). We hypothe-
sized from our intuition, as well as experience of tying shoelace
knots, that the amount of force used to tighten the two constituent
overhand knots prior to completing the fisherman’s knot influences
the mechanical behavior. To test this hypothesis and assess the
knot’s stability as a function of pre-load, we tied a series of knots
in four different materials and observed whether the knot untangles
by itself. Figure 9 shows our experimental data on whether the knot
untangles in the absence of boundary conditions (P= 0 in the plot)
or maintains its knotted configuration (P= 1). Depending on the
material of the rod, there is a critical pre-load Fp that is needed
for the knot to remain knotted without any external forces or bound-
ary conditions. Our empirical observation is that pre-load can cause
deformation of the cross section (i.e., circular cross section no
longer remains circular) and affect the contact mechanics of the
knotted region. However, our simulation employs a one-
dimensional rod model and does not model the structure as a 3D
solid. Furthermore, the simulation uses the Coulomb friction
model, which is a simplification of the contact mechanics involved
here. Physically accurate simulation of the fisherman’s knot that
also captures the dependence on pre-load is left as a challenge to
the computational mechanics community.
In the numerical simulations, we used the parameters from

Table 1 to study the tightening process of the fisherman’s knot.
Note that we used a fitted friction coefficient, which is 1.0 for
two VPS rods, for capturing the stretching motion pattern.
Through numerical simulations and simple scaling analysis of ener-
gies, we find that gravity is negligible and changes in twisting stiff-
ness have minimal influence on the motion patterns. Consequently,
we disregard the impact of twisting stiffness kt and rod density ρ.
Furthermore, we find that the end-to-end distance L does not play
a significant role in any motion pattern. Thus, we also exclude the
end-to-end distance L from our analysis. The critical parameters
of the system are now reduced to the knotted distance e, rod
radius h, bending stiffness kb, stretching stiffness ks, friction coeffi-
cient μ, and pre-load Fp. Dimensional analysis can be employed to
extract dimensionless contributing parameters to facilitate a com-
prehensive understanding. Four dimensionless groups are obtained
for this system: the friction coefficient μ, the normalized stretching

stiffness �ks = ksh2/kb, the normalized knot distance �e = e/h, and the
normalized pre-loading force �Fp = Fph2/kb.

5.3 Experiments to Explore the Role of Physical
Ingredients. In both numerical and experimental studies, the
knotted distance e (see Fig. 5) was used to evaluate the type of
motion patterns exhibited by the fisherman’s knot: when knotted
distance e increases during the tightening process, we characterize
the behavior of the knot as “stretching”; when e decreases or keeps
constant during tightening, we characterize it as “sliding.” Among
the rods used in this study, only Nylon and Polypropylene showed
both sliding and stretching behaviors. We used these two rods to
perform a series of control experiments and systematically inves-
tigate the influence of pre-load Fp. Figures 10(a1) and 10(a2)
show the tightening force as a function of imposed displacement
s for the two rods at different values of pre-load. Keep in mind
that knotted distance e monotonically increases (during stretch-
ing) or remains largely constant (during sliding) with displace-
ment s. Force versus displacement data just for the sliding
region is shown in Figs. 10(b1) and 10(b2). The force remains
almost constant as a function of displacement during sliding.
This is expected since the tightening force is directly related to
the dynamic frictional force in the knotted region. The average
tightening force is represented by the horizontal dashed lines in
Figs. 10(b1) and 10(b2). As shown in Figs. 10(c1) and 10(c2),
this average force monotonically increases with pre-load.
Overall, these experiments reveal that pre-load can alter the rela-
tionship between the tightening force F and the displacement s,
particularly in the sliding region. Increasing pre-load Fp led to
higher tightening forces, indicating that pre-load can significantly
impact the frictional contact responses in the knotted region. In the
absence of a high-fidelity friction model that goes beyond
Coulomb friction and a simulator that accounts for the deforma-
tion of the rod cross section, our numerical simulation cannot
reproduce the dependence on pre-load. A direction for further
work could be to accurately model this influence using a refined
friction model that is, perhaps, developed using experimental data.
Due to limitations with the materials of the rods we used, it was

not feasible to vary the friction coefficient μ and the normalized
stretching stiffness �ks. In the future, a systematic investigation of
the mechanical behavior of fisherman’s knots as a function of all
the physical ingredients is worth exploring.

6 Concluding Remarks
This paper presents a comprehensive experimental study investi-

gating the mechanical properties of fisherman’s knots. Our findings
reveal three distinct motion patterns arising from the combined
effects of the rod’s geometrical and material properties. Addition-
ally, we emphasize the significance of the knot-tying technique
(pre-load in particular) in determining the resulting motion
pattern. Through a qualitative analysis incorporating numeric simu-
lations and experiments, this study fills a gap in our understanding
of fisherman’s knots. We also outlined room for development in
numerical simulations. A simple friction model based on
Coulomb friction was not able to faithfully reproduce some of the
experimental observations. Moving forward, a more accurate fric-
tion model could be developed to computationally study fisher-
man’s knots and various other commonly used knots where
pre-loading affects the mechanical response.
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