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1 Introduction

Local effective field theory (EFT) provides a powerful way to parametrize the effects of
ultraviolet physics in a model-independent way. It has been employed with great success
across a wide range of physical settings, from chiral perturbation theory and heavy quark
effective theory to the EFT of inflation and the Standard Model (SM) EFT (see [1] and
references therein for recent reviews). However, the simple recipe for constructing these EFTs
— by assembling the set of local, higher-dimensional operators consistent with the symmetries
and field content of the infrared theory — is often complicated by a vast redundancy of
description associated with the insensitivity of observables to parameterizations of the fields.

Such redundancies are typically accommodated by identifying a ‘basis’ of operators that
is minimal, independent, and non-redundant with respect to the observables of interest.
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Operators outside the chosen basis can be expressed in terms of operators within the basis (or
in some cases be eliminated entirely) in a variety of ways. For example, integration-by-parts
(IBP) can be used to write certain operators in terms of others, dropping the boundary terms
provided that fields vanish at spacetime infinity. Operators that differ by the lowest-order
classical equations of motion (EOM) can be exchanged at linear order when on-shell quantities
are concerned [2–5]. In flat space, the LSZ reduction formula renders S-matrix elements
insensitive to general field redefinitions. Reducing the scope of allowed EFT operators to a
minimal basis with the methods at hand greatly facilitates the calculation of observables.

The simplifications arising from a minimal operator basis are perhaps most apparent
when computing S-matrix elements in flat space, where EOM and IBP relations lead to a
dramatic reduction in the number of operators at a given order in power counting [5]. However,
important differences arise in a cosmological context, particularly for an inflationary, quasi-de
Sitter (dS) spacetime. In this case, we are interested not in the S-matrix, but rather in the
correlation functions of density perturbations at the end of inflation. As a result, arbitrary
field redefinitions are not allowed (or must be undone at some stage of the calculation) since
such redefinitions would change the correlation functions. Consequently, only a limited set of
transformations can be used to remove redundant couplings. Furthermore, the correlation
functions are computed on a late-time spatial boundary. As a result, temporal boundary
terms may be relevant when implementing IBP relations.

These subtleties become particularly relevant in the context of primordial non-Gaussianity
(NG). The approximate scale invariance of primordial density perturbations, inferred through
the cosmic microwave background (CMB), indicate that the interactions of the inflaton
preserve an approximate shift symmetry, φ → φ + constant. This implies both the self-
interactions of the inflaton and interactions of the inflaton with other fields would involve
operators with dimension 5 or higher, necessitating an EFT expansion. The question of how
to construct a minimal operator basis by eliminating redundant operators arises immediately.
Unsurprisingly, there is a long history of identifying non-redundant self-interactions in the
various EFTs of inflation [6, 7], e.g., [8–21].

In this work, we are interested in inflationary EFTs where additional heavy degrees of
freedom are present. Such EFTs are especially relevant for the ‘Cosmological Collider Physics’
program [22, 23] which aims to study oscillatory NG induced by on-shell particle production
during inflation. Particles with masses of order or larger than the inflationary Hubble
scale Hinf can be produced as the Universe inflates. Following their production, the heavy
particles can oscillate in time, eventually decaying into inflaton fluctuations. Those real-time
oscillations of the heavy particles give rise to an oscillatory, scale-dependent NG. Intriguingly,
from the frequency of the oscillations and the angular dependence of the NG, one can extract
the mass and spin of the heavy particle, respectively. Since Hinf ! 5 × 1013GeV [24], the
prospect of doing on-shell mass-spin spectroscopy of such heavy particles through NG provides
a unique opportunity to study fundamental physics at high energies. For various interesting
work on this subject see refs. [25–71].

Among the different types of theories that can give rise to a cosmological collider signal,
gauge theories are particularly interesting. Of course, such theories play a central role in
the SM, and (hidden) gauge theories are also ubiquitous in physics beyond the SM. With
this motivation, in the present work we focus on the EFT of a gauge-Higgs sector coupled to

– 2 –



J
H
E
P
0
7
(
2
0
2
4
)
1
0
8

the inflaton [39], where the presence of a Higgs field allows us to incorporate spontaneous
symmetry breaking (SSB) and study NG mediated by gauge bosons.1 Furthermore, we
focus on a U(1) gauge theory, as our primary goal will be to lay out the procedure of
operator basis construction in dS spacetime where heavy fields are present. This can then
be generalized to include non-Abelian gauge theories, which exhibit various interesting
phenomena during inflation, such as thermalization and dissipation, as well as fermionic
degrees of freedom, e.g., [72–77].

Establishing a minimal basis for the irrelevant interactions between the inflaton and an
additional sector is essential to the determination of observable effects.2 In doing so, one
encounters subtleties analogous to those that arise in the study of inflationary self-interactions.
Such a minimal basis relevant to cosmological collider signals was first developed in ref. [29]
for a heavy real scalar field coupled to the inflaton at lowest non-trivial order. In this work,
we perform a systematic construction of a minimal operator basis for the more general
gauge-Higgs-inflaton EFT by considering operators up to dimension 9. We impose an exact
shift symmetry on the inflaton (discarding slow roll-suppressed corrections) and consider
operators that describe the interactions of the inflaton with the gauge and the Higgs boson.
To remove redundant operators, we primarily employ EOM and IBP relations. The EOM
relations are closely analogous to those used in flat space [7]. On the other hand, IBP
relations at dimension 5 do give rise to non-zero boundary terms that are a priori relevant.
However, we show that such terms do not contribute to cosmological correlation functions
involving heavy particles, and can be removed via appropriate field redefinitions. Beyond
dimension 5, we find that IBP can indeed be used as in flat space for the operators of interest.
One way to think about the irrelevance of these boundary terms is that they arise from
interactions of the inflaton with heavy fields. The mode functions of the heavy fields decay
at late times, corresponding to the physical effect that heavy particles get diluted as the
Universe expands. Consequently, the temporal boundary terms resulting from IBP relations
vanish for the operators and observables of interest.

To highlight some of our findings, we show that the only dimension 5 operator that
is not redundant is an axionic coupling of the inflaton to the gauge field, namely φFF̃ .
In particular, by using EOM we find that an operator coupling the Higgs current to the
inflaton is redundant, and the leading Higgs-inflaton coupling arises only at dimension 6.
The same conclusion can be drawn using a field redefinition argument, as we discuss in an
appendix. We also show that in the broken phase of the theory, a quadratic mixing between
the inflaton and the longitudinal mode of the gauge boson, relevant for tree-level bispectrum
signatures, first arises at dimension 9. Finally, we identify new operators at dimensions 7 and
8 involving the inflaton and gauge boson. These operators are expected to contribute with
similar strengths for NG compared to some other operators that have been considered in the

1We clarify that by ‘Higgs’ we will mean a generic complex scalar field that is not necessarily the SM
Higgs. It can however be the SM Higgs, for example, if the electroweak scale is uplifted to Hinf [39], or if loop
corrections to SM are considered [36].

2Of course, there are also more direct routes to mapping the space of cosmological observables that are
free of EFT operator redundancies, as in the cosmological bootstrap (see, e.g., [78] for a recent review).
Nonetheless, exploring observables from the standpoint of EFT Lagrangians can be useful for interpreting
the microscopic implications of data and estimating the observability of certain signatures, motivating the
approach taken here.
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previous literature. While certain higher dimensional operators of the gauge-Higgs-inflaton
theory have been considered in isolation in the previous literature, our systematic approach
to enumerating an operator basis identifies additional operators that would be present in
a generic EFT and could contribute to NG signals.

The rest of the article is organized as follows: we discuss aspects of the choice of operator
basis on inflationary observables in section 2, with a particular emphasis on the effect of
boundary terms generated by integration-by-parts manipulations. In section 3 we introduce
an EFT of the inflaton coupled to an abelian gauge-Higgs theory, enumerating operators up to
dimension 9 and reducing them to a minimal operator basis. Although boundary terms appear
in certain cases, they do not affect the correlation functions of interest. With the minimal basis
at hand, we enumerate interaction vertices and estimate the leading sizes of non-Gaussianity
in section 4. We conclude in section 5. A number of general considerations and examples
regarding IBP and boundary terms in inflationary spacetimes can be found in the appendices.

Notations and conventions. We follow the ‘mostly plus’ metric signature: (−,+,+,+).
The operator ∇µ denotes an ordinary covariant derivative, while the operator Dµ ≡ ∇µ +
igAAµ denotes a gauge covariant derivative. Unless explicitly stated, we will use units in
which the Hubble scale during inflation, Hinf = 1. Factors of Hinf can be restored using
dimensional analysis.

2 Inflationary observables and operator bases

The precise nature of cosmic inflation is still unknown. Different classes of mechanisms can
explain the homogeneous cosmic expansion and the generation of primordial fluctuations
during inflation. To capture certain model-independent features and signatures, it is therefore
useful to construct an EFT consistent with the symmetries and the particle content of the
theory. In this regard, there are two qualitatively different classes of EFTs relevant during
inflation. The more UV-agnostic of the two treats the inflaton as a Goldstone boson arising
from spontaneous breaking of time translation symmetry [6]. In this EFT, Lorentz invariance
is (spontaneously) broken and as a result, one can allow qualitatively new sets of higher
dimensional operators, in addition to the ones that follow from requiring Lorentz invariance.

Another class of EFT [7] is useful if we are to describe both the inflationary fluctuations
and the homogeneous inflationary expansion, since the latter is not necessarily part of the
Goldstone EFT [6]. The advantage of this second class of EFTs is that it could be valid up to
a much higher energy scale and can more readily describe how reheating can happen at the
end of inflation. While the Lorentz-breaking, Goldstone EFT would allow for the greatest
generality, for concreteness, in this work we will focus on a Lorentz-invariant EFT description
and assume that inflation is driven by a slowly rolling scalar field φ. Taking a bottom-up
approach, we will also impose a strict shift symmetry on φ: φ → φ + constant, motivated
by the approximate scale invariance of primordial perturbations, and neglect subleading
corrections from violation of this symmetry. Therefore, all the operators involving φ that
we consider below will have (sometimes implicitly) derivative coupling ∇µφ.

Our analysis will also encompass scenarios where the density fluctuations originate not
from the inflaton φ, but a curvaton field σ, as in the curvaton paradigm [79–82]. In such
scenarios, while the spacetime expansion is driven by φ, the density fluctuations in the late
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Universe originate from σ. However, to obtain (approximately) scale-invariant, superhorizon
fluctuations, the mass of σ needs to be much smaller than Hinf . Therefore, we can still
impose a shift symmetry on σ. Consequently, our following analysis will exactly carry over
to the curvaton scenario, with the replacement ∇µφ → ∇µσ. With this in mind, in the rest
of the discussion we will focus on the standard inflationary slow-roll EFT where both the
homogeneous expansion and fluctuations are sourced by φ.

2.1 Minimal operator bases

The approximate shift symmetry acting on the inflaton implies that the couplings between
the inflaton and additional fields are necessarily irrelevant operators that may be organized
systematically according to the relevant power-counting scheme. However, the full set of
irrelevant operators consistent with the symmetries of the EFT is generally over-complete,
leading to a redundancy of description whose severity depends on the observables of interest.
In flat space where the observables are typically related to S-matrix elements, the redundancy
of description corresponds to the freedom to perform nearly-arbitrary field redefinitions
without altering the S-matrix elements. This can be used to arrive at minimal, non-redundant
operator bases order-by-order in the power counting, where the number of operators in a
minimal basis is typically much smaller than the total number of operators consistent with
symmetries. In practice, a non-redundant basis of operators can usually be obtained order-by-
order in power counting by using the lowest-order equations of motion to eliminate operators.3
Operators that differ by total derivatives can also be exchanged via integration-by-parts
(IBP), as both spatial and temporal boundary terms are assumed to vanish in flat space.

The situation is somewhat different in cosmological contexts. In inflationary scenarios,
we are interested in computing cosmological correlation functions at a fixed time slice towards
the end of inflation, or when all the modes associated with the correlation function have
exited the horizon. To be specific, we use the Poincare patch representation of dS spacetime

ds2 = −dη2 + dx2

η2 , (2.1)

and denote the conformal time on the time slice of interest by η = η0. We then take η0 → 0
limit of the cosmological correlators to obtain the conserved correlation functions. Compared
to the usual Minkowski spacetime, the presence of this boundary at η0, where we evaluate the
correlation functions, requires a reexamination of the standard operator basis manipulations,
in particular those involving IBP. This is because the boundary terms on the space-like
surface at η0 may not vanish in general. The potential importance of boundary terms is
already apparent for a massless free field in dS [8].

2.2 Massless free field in dS

Consider the Lagrangian of a free massless field and an equivalent expression obtained via IBP,

−1
2

∫
d4x

√
−ggµν∇µφ∇νφ=−1

2

∫
d4x

√
−ggµν∇µ(φ∇νφ)+ 1

2

∫
d4x

√
−gφ"φ, (2.2)

3There are various subtleties involved when using equations of motion to eliminate operators, enumerated
in [83].
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where "φ = gµν∇µ∇νφ. Using the EOM "φ ≈ 0 (neglecting V (φ)) and Stokes’ theorem
we arrive at

−1
2

∫
d4x

√
−ggµν∇µφ∇νφ = −1

2

∫
d3x√

γnµ(φ∇µφ). (2.3)

Here the spatial integration is over a space-like surface at η0 and we have assumed the fields
vanish at spatial infinity as well as at very early times when the fields are in their vacuum
states. The vector nµ = (1/η0, 0, 0, 0) is normal to the space-like surface on which the induced
metric is given by γij , with a determinant γ = 1/η6

0. Thus the (on-shell) action of a massless
free field in dS can be written as a boundary term at η0 which can be simplified as,

1
2η2

0

∫
d3x φ∂ηφ|η0 = 1

2η2
0

∫ d3k
(2π)3 φk∂ηφ−k|η0 . (2.4)

To compute correlation functions, we can first derive the associated wavefunction which can
be schematically written as (see [78] for a recent review),

Ψ[ϕ, η0] =
∫

φ(η0)=ϕ,φ(−∞)=0
DφeiS[φ] ∝ eiScl[ϕ,η0], (2.5)

where φ(η0) = ϕ is the late time boundary condition while φ(−∞) = 0 ensures that the fields
are in their vacuum state at early times. We have also evaluated the path integral using the
saddle point approximation, up to a proportionality constant. With these choices, we can write

φk = ϕk
(1 − ikη)eikη

(1 − ikη0)eikη0
. (2.6)

The classical action is then given by (upon using ϕ−k = ϕ∗
k),

Scl =
1
2η2

0

∫ d3k
(2π)3

k2η0
(1 − ikη0)

|ϕk|2. (2.7)

A correlation function at a late time, η0 is given by

⟨ϕ(k1)ϕ(k2) · · ·ϕ(kn)⟩ =
∫
Dϕϕ(k1)ϕ(k2) · · ·ϕ(kn)|Ψ[ϕ, η0]|2∫

Dϕ|Ψ[ϕ, η0]|2
. (2.8)

Given the appearance of |Ψ[ϕ, η0]|2, only the imaginary terms in Scl contribute to the
determination of the correlation function. From (2.7), the part that diverges as η0 → 0 then
does not contribute and the surviving contribution is given by

Scl ≈
∫ d3k

(2π)3
ik3

2 |ϕk|2. (2.9)

We can now evaluate the two-point function using this wavefunction,

⟨ϕ(k1)ϕ(k2)⟩ =
∫
Dϕϕ(k1)ϕ(k2)|Ψ[ϕ, η0]|2∫

Dϕ|Ψ[ϕ, η0]|2
,

=
∫
Dϕϕ(k1)ϕ(k2) exp

(
−
∫ d3k

(2π)3
k3
2 |ϕk|2

)

∫
Dϕ exp

(
−
∫ d3k

(2π)3
k3
2 |ϕk|2

) ,

= 1
2k31

(2π)3δ(k1 + k2),

(2.10)

– 6 –



J
H
E
P
0
7
(
2
0
2
4
)
1
0
8

as can also be derived using the standard ‘in-in’ computation (see [38] for a pedagogical
review). This example illustrates that the imaginary part of Scl is relevant for computing
the correlation function, while the real part drops out from |Ψ[ϕ, η0]|2.

There is another way to reach the same conclusions as above, highlighting the role of the
boundary. We can treat the fields in (2.4) as quantum operators, instead of classical functions.
The two-point function can then be computed using the standard ‘in-in’ approach. Since the
correlation functions are evaluated on the spatial surface and eq. (2.4) is also evaluated on the
same surface, we need to evaluate only equal-time propagators. We also note that the usual
time evolution operator T (exp(−i

∫
dt H)), with H the Hamiltonian, can be schematically

written as a boundary term ∼ exp(−if(η0)). Thus the time ordering part gives a factor
of (−i), while the anti-time ordering part gives the complex conjugate factor (+i), as in a
standard bulk computation. With these ingredients, the result is given by

⟨φ(k1)φ(k2)⟩′ = 2 × (−i) 1
2η2

0

1
4k61

(1 + ik1η0)2(1 − ik1η0)k21η0 + c.c.

= 1
η0

1
4k41

(−i+ k1η0)(1 + k21η2
0) + c.c.

= 1
2k31

+O(η0).

(2.11)

Here we have used the standard notation ⟨φ(k1)φ(k2)⟩ ≡ (2π)3δ(k1 + k2)⟨φ(k1)φ(k2)⟩′.
Further examples of the relevance of boundary terms for massless and massive scalars, both
free and with derivatively-coupled cubic interactions, are presented in appendix B.

2.3 Operators coupled to the inflaton

In what follows, we will use arguments similar to those presented above to understand whether
certain boundary terms contribute or not in determining cosmological correlators. While
the boundary term was essential in the previous example, in many cases it can be neglected.
In particular, we often encounter operators of the type

∫
d4x

√
|g|∇µφ∇µO, (2.12)

where O is any (composite) operator containing massive fields.4 Using an IBP we can
write the above as

∫
d4x

√
|g| (∇µ [∇µφ · O] − "φ · O) . (2.13)

The second term does not contribute in any vertex for an ‘in-in’ diagram since "f = 0 where
f is a mode function for the inflaton. The first term, on the other hand, can be written as

∫
d4x ∂µ

(√
|g|∇µφ · O

)
. (2.14)

4This form of the operator is motivated by the shift symmetry on the inflaton. Furthermore, we are
interested in computing in-in correlators of the type ⟨φn⟩ which involves commutators [H,φn]. Therefore, we
are primarily interested in boundary terms of H containing the inflaton conjugate ∂ηφ, like the type appearing
in (2.16).
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For the spatial component, i.e., for µ = i, the above does not contribute under the assumption
that fields vanish at spatial infinity. Therefore, the only potentially non-trivial term is the
one involving time derivatives,

−
∫

d4x ∂η

( 1
η2∂ηφ · O

)
. (2.15)

This determines the interacting Hamiltonian of interest,

HI =
∫

d3x ∂η

( 1
η2∂ηφ · O

)
. (2.16)

However, since this is a total time derivative, we can evaluate the time evolution operator as

T exp
(

−i
∫ η0

−∞
dη HI

)
= T exp

(

−i
∫

d3x
[ 1

η2∂ηφ · O
]

η0

)

. (2.17)

The last term is evaluated at η0 and it does not involve any time integrals. Therefore, the
time ordering operator acts trivially. We can then conclude that if the term in the square
brackets vanishes at η0, the entire operator does not contribute to correlation functions
involving the massive particle.5

3 The Abelian gauge-Higgs-inflaton EFT

We’re now equipped to construct minimal operator bases in dS for EFTs where a shift-
symmetric inflaton couples to additional fields. For concreteness, in this article we will take
the additional fields to comprise an abelian gauge-Higgs sector. This theory is of considerable
interest as a benchmark for various cosmological collider signals, and captures most of the
relevant features involved in constructing a minimal operator basis. A similar procedure
can be followed for other effective theories containing different fields, such as fermions or
non-abelian gauge bosons.

The Lagrangian containing the inflaton (φ), a Higgs (H), and a U(1) gauge field Aµ,
up to dimension-4 is given by

L ⊃ −1
2∇µφ∇µφ − V (φ) − (DµH)†DµH − V (|H|2) − 1

4FµνF
µν . (3.1)

Here DµH = ∇µH + igAAµH is the gauge covariant derivative and V (|H|2), V (φ) are
respectively the Higgs and inflaton potentials, whose detailed forms will not be important
for our purposes. We will see in some cases that the surviving contributions from a given
operator are slow roll-suppressed, in the sense of involving dV (φ)/dφ or d2V (φ)/dφ2. We
will not track such operators explicitly, under the assumption that their slow roll-suppressed
contributions to observables are subdominant to other contributions. We assume the Higgs
potential is such that it can acquire a vacuum expectation value ⟨H⟩ = v/

√
2, so that all

5A detailed example of the action of the time ordering operator can be found in appendix A, where we
show that while boundary terms can be present in the intermediate stages of a computation, they do not give
a (non-local) cosmological collider signal with the characteristic non-analytic momentum dependence. Rather,
the boundary terms give a local contribution which can be accounted for by appropriate local field redefinitions.
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states in the abelian gauge-Higgs sector are massive in the broken phase. Alternately, our
results can also be applied to the theory of a shift-symmetric inflaton coupled to a complex
scalar with a global U(1) symmetry by taking the gA → 0 limit and assuming ⟨H⟩ = 0.

In reducing the operator basis, we will primarily use the following EOM and also
implement IBP. The EOM for the inflaton is given by,

"φ = V ′(φ), [Inflaton EOM] (3.2)

where we have denoted " ≡ ∇µ∇µ. To obtain the EOM for the Higgs, we first expand

−(DµH)†DµH=−∇µH†∇µH+igAAµH†∇µH−igAA
µH∇µH†−g2AAµA

µH†H. (3.3)

The EOM is then given by,

−∇µ (∇µH+ igAA
µH) = +igAAµ∇µH − g2AAµA

µH − V ′(|H|2)H, (3.4)

which can be written in terms of the gauge covariant derivative,

−∇µD
µH = igAAµD

µH − V ′(|H|2)H. [Higgs EOM] (3.5)

The EOM for the gauge field is given by

−∇µF
µν = igA

(
H†DνH − (DνH)†H

)
. [Gauge Field EOM] (3.6)

The symmetries of the theory forbid relevant or marginal couplings between the inflaton
and the abelian gauge-Higgs sector, so interactions are necessarily irrelevant. We assume the
gauge-Higgs sector is weakly coupled and the Higgs VEV is parametrically smaller than the
characteristic UV scale Λ suppressing the irrelevant operators, so that the natural power
counting is in terms of the classical dimension of operators constructed out of the fields
in the unbroken phase.

In what follows, we enumerate operators up to dimension 9, beginning with the complete
set of operators at a given dimension allowed by symmetries, modulo some operators trivially
related by EOM. We then reduce the operators to a minimal basis at a given order via
EOM and IBP relations, taking care to verify that boundary terms arising from IBP do
not contribute to the observables of interest. Since we are taking a bottom-up approach
in which the Wilson coefficients of different operators are free parameters, we may use the
lowest-order EOM to arrive at a minimal basis at a given order in power-counting. Although
these EOM manipulations do not correctly account for changes to Wilson coefficients at
higher order in power counting, the values of these coefficients were already arbitrary. In this
way, we can fix the operator basis using the lowest-order EOM by starting at dimension-5
and proceeding to successively higher dimensions. Note that more care would be required
in manipulating operator bases when matching to a specific UV completion in which all
Wilson coefficients take on specific values [83].

Needless to say, the number of possible operators grows rapidly with operator dimension.
Although it is not too cumbersome to enumerate operators up to dimension-9 by hand,
we have also cross-checked our results against the flat-space operator basis codes DEFT [84]
and Sym2Int [85, 86].
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Operator Expression
O5,1 ∇µφ

(
H†DµH+ (DµH)†H

)

O5,2 (−i)∇µφ
(
H†DµH − (DµH)†H

)

O5,3 ∇µφ∇νF νµ

O5,4 φFµνF̃µν

Table 1. Allowed operators at dimension 5. Here and henceforth, F̃µν = (1/2)ϵµνρσFρσ.

3.1 Dimension 5

We start our analysis of irrelevant operators at dimension 5. While there are a number of
operators consistent with the assumed symmetries, we show there is only one operator that
contributes non-trivially to cosmological correlators. We first summarize the operators in
table 1. The Wilson coefficient for each operator is taken to be real; note that operators
such as O5,1 and O5,2 can be interpreted as the real and imaginary parts of a single operator
with a complex Wilson coefficient.

We note that O5,1 can be simplified as

O5,1 = ∇µφ∇µ(H†H). (3.7)

We can use the EOM (3.6) for the gauge field and subsequently an IBP to write

O5,2 =
1
gA

∇ν (F νµ∇µφ) . (3.8)

In the process we have dropped a contribution of the type ∇ν∇µφ · Fµν which vanishes
identically for a torsion-free metric. This manipulation also shows that O5,2 is equivalent
to O5,3. To comprehensively study the fate of O5,1 and O5,2, it is useful to consider both
the unbroken and broken phases of the theory.

3.1.1 Unbroken phase

We start with O5,1 which after an IBP gives,

O5,1 =
∫

d4x
√

−g
[
∇µ(∇µφ · H†H) − "φ · H†H

]
. (3.9)

The second term vanishes in the limit of vanishing inflaton potential and we will not consider
it further. The first term is a boundary term that reduces to a spatial integral at η0,

O5,1 =
∫

d3x√
γnµ(∇µφ · H†H) = − 1

η2
0

∫
d3x∂ηφ · H†H. (3.10)

From (2.6), we note

∂ηφk = ϕk
k2η0

(1 − ikη0)
. (3.11)
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Given the late time scaling of H(η,k) ∼ η3/2±iµ
0 (as can be shown by considering mode

functions of a massive particle, see, e.g., [64]), where µ ≡
√
m2/H2

inf − 9/4 is taken to be
positive, we have

O5,1 ∝ η2
0 → 0. [Unbroken Theory] (3.12)

Therefore, O5,1 does not contribute to late-time correlators.
We now consider O5,2 which is also a boundary term and can be rewritten as,

O5,2 =
1
gA

∫
d3x√

γnν∇µφF νµ = − 1
gA

∫
d3x∂iφFηi. (3.13)

For an unbroken gauge theory, the physical degrees of freedom are the transverse components
A⊥

i which satisfy kiA⊥
i = 0. Therefore, O5,2 does not contribute to late-time correlators.

Note, that this argument does not rely on the vanishing of the mode functions at late times.

3.1.2 Broken phase
We now repeat the above analysis for the case of a broken gauge theory starting with O5,1.
We can still implement an IBP to write it as

O5,1 = − 1
η2
0

∫
d3x∂ηφ · H†H. (3.14)

In the broken gauge theory, we can set one of the Higgs to its VEV to obtain a term quadratic
in fluctuations. However, the result still scales as,

O5,1 ∝ η1/2
0 → 0 [Broken Theory]. (3.15)

Hence O5,1 does not contribute in the broken gauge theory as well.
Next we turn to O5,2, which can be written as

O5,2 = − 1
gA

∫
d3x∂iφFηi = − 1

gA

∫
d3x∂iφ(∂ηA

∥
i − ∂iAη). (3.16)

However, we need to take into account the longitudinal component of the gauge boson
which is a combination of Aη and A∥

i . The temporal component Aη falls as η3/2±iµ
0 , with

µ ≡ (m2/H2
inf − 1/4)1/2 > 0, at late times, as can be seen from the massive gauge boson

mode functions, e.g., [33]. Therefore the term proportional to ∂iAη in (3.16) vanishes in the
late time limit. After a spatial IBP, the surviving term can be written as

O5,2 =
1
gA

∫
d3xφ∂η∂iA

∥
i . (3.17)

We can rewrite the above after using the constraint equation for the massive field,

∇µA
µ = 0 ⇒ −η2∂ηAη + 2ηAη + η2∂iA

∥
i = 0, (3.18)

O5,2 =
1
gA

∫
d3xφ∂η

(
∂ηAη − 2

η
Aη

)
. (3.19)
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This can be further simplified by using the EOM for Aη,

∂2
ηAη − 2

η
∂ηAη − ∂2

i Aη + m2 + 2
η2 Aη = 0, (3.20)

O5,2 = − m2

gAη2
0

∫
d3xφAη. (3.21)

While this term does not vanish as η0 → 0, it does not contribute to a late-time correlation
function. As an example, we can evaluate the contribution to the two-point inflaton correlation
function from O5,2. That has a scaling:

⟨φ(k1)φ(k2)⟩ ∝ 1
η4
0

× η3
0(1 + k21η2

0)(1 + k21η2
0)((−i)2 + (+i)2 + (+i)(−i) + (+i)(−i)) = 0,

(3.22)

where the last factor in the parenthesis comes from summing over the four ‘in-in’ subdiagrams,
while the factor of η3

0 comes from the massive Aη propagator at late times.
More generally, each factor of O5,2 appears in a correlator involving the inflaton field

on the late time surface with a structure

∝ (−i)(1 − ikη0)
|fη(η0, k)|

η2
0

+ (+i)(1 + ikη0)
|fη(η0, k)|

η2
0

= −2k |fη(η0, k)|
η0

, (3.23)

where Aη(η,k) = fη(η, k)b†k + f∗
η (η, k)b−k, with fη(η, k) a mode function and b†k a creation

operator, along with their conjugates. The prefactors are (−i) or (+i) depending on whether
the contribution originally came from a time ordering or anti-time ordering term.6 We
have also kept only the absolute value |fη(η0, k)| since, in an inflaton correlator on the
late time surface, we always have the combination |fη(η0, k)|2 from the longitudinal mode
propagator, so each factor of Aη effectively contributes a factor of |fη(η0, k)|. Noting that
|fη(η0, k)| ∼ η3/2

0 for µ > 0, we see O5,2 does not contribute to a correlation function from
contractions on the late time surface. It can also be checked that bulk contractions with the
operators in table 5 vanish as η0 → 0. Therefore, O5,2 does not contribute to cosmological
correlation functions overall.

3.1.3 Surviving contribution at dimension 5
The above analysis shows that the three operators O5,1, O5,2, and O5,3 are all redundant. The
remaining operator is O5,4 which is also shift symmetric since FµνF̃µν is a total derivative.
This operator is non-trivial and has been discussed extensively in the context of gauge field
production during inflation (see, e.g., [72]), and cosmological collider [87].

3.2 Dimension 6
At dimension 6, we only have one operator coupling the inflaton field to the gauge-Higgs sector,

O6,1 ≡ (∇µφ)2H†H. (3.24)
6Since here we are interested in evaluating just surface terms at η0, the action of time ordering or anti-time

ordering is trivial. However, the factors of (−i) or (+i) are still present depending on whether terms originally
came from time ordering operator T exp(−i

∫
dt H) or anti-time ordering operator (T exp(−i

∫
dt H))†.
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Operator Expression

O7,1 |H|2∇µφ
(
H†DµH+ (DµH)†H

)

O7,2 |H|2∇µφ
(
H†DµH − (DµH)†H

)

O7,3 Fµν∇µφ
(
H†DνH+ (DνH)†H

)

O7,4 (−i)Fµν∇µφ
(
H†DνH − (DνH)†H

)

Table 2. Allowed operators at dimension 7.

This term is not reducible to another operator, and it contributes both in the broken and
unbroken phase, via tree and loop-level diagrams, respectively. The associated signatures
have been discussed in [35, 39].

3.3 Dimension 7

At this dimension, there are four possible operators to start with, as summarized in table 2.
We start the analysis with O7,1 which after IBP can be written as

O7,1 = ∇µφ · H†H∇µ(H†H) = 1
2∇µφ∇µ|H|4 = 1

2∇µ
(
|H|4∇µφ

)
, (3.25)

where in the last line we have dropped a contribution proportional to "φ as that is slow
roll-suppressed. The surviving term is a boundary term, which we can evaluate by following
the procedure detailed in the previous section. On a late time surface at η0, it scales as

O7,1 ∼ √
γnηg

ηη|H|4∂ηφ ∼ 1
η4
0

× η2
0 × |H|4 × η0. (3.26)

Now we need to set at least one of the Higgs to its fluctuation, otherwise we would just
have a dimension 5 operator considered before. Since the H mode function has a scaling
η3/2
0 , up to oscillatory parts, we see that the entire boundary term vanishes. Therefore
O7,1 does not contribute.

Next we consider O7,2. We can use the EOM for the gauge field to write

O7,2 =
i

gA
|H|2∇µφ∇νF

νµ. (3.27)

However, this is equivalent to O7,3. To see this, we write,

O7,3 = Fµν∇µφ∇ν(H†H) = ∇ν

(
Fµν∇µφ(H†H)

)
− ∇νF

µν · ∇µφ · H†H. (3.28)

On the late-time surface, the total derivative term scales as

1
η4
0

× η4
0∂ηA

∥
i |H|2. (3.29)

We cannot set both the H to their VEVs, otherwise we just go back to a dimension 5 operator
considered above. Therefore, since at least one factor of the H fluctuation has to be present,
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Operator Expression

O8,1 FµνFµν(∇ρφ)2

O8,2 FµνF̃µν(∇ρφ)2

O8,3 |H|4(∇µφ)2

O8,4 |DµH|2(∇νφ)2

O8,5 (DµH)†DνH∇µφ∇νφ

O8,6 FµρF νρ∇µφ∇νφ

O8,7 FµρF̃ νρ∇µφ∇νφ

O8,8 F̃µρF̃ νρ∇µφ∇νφ

O8,9 (H†DµH+ (DµH)†H)∇µ∇νφ∇νφ

O8,10 (−i)(H†DµH − (DµH)†H)∇µ∇νφ∇νφ

Table 3. Allowed operators at dimension 8.

going as η3/2
0 , the entire term scales at least as η0. Thus the total derivative does not

contribute. Finally we consider O7,4, which upon using the gauge field EOM becomes

O7,4 =
1
gA

Fµν∇µφ∇ρF
ρν , (3.30)

and can contribute to correlation functions. In total there are two non-redundant operators
at dimension 7, neither of which have yet been considered in the literature.

3.4 Dimension 8
Many more operators are allowed at dimension 8, as enumerated in table 3. The operators
O8,1 − O8,6 form a non-redundant minimal basis. Of the remaining operators, O8,7 simply
vanishes. To see this, we fix µ and ν such that they are not identical. If they are identical,
then the associated contribution is already a part of O8,2. Then we can write,

FµρF̃
νρ = 1

2FµρϵνραβFαβ . (3.31)

The index ρ has to be different from both µ and ν. We denote the two possible values it
can take by γ and δ where γ ̸= δ. Then we can rewrite the above,

FµρF̃
νρ = 1

2FµγϵνγαβFαβ + 1
2FµδϵνδαβFαβ [γ and δ are not summed over]. (3.32)

The indices α and β can then take values between µ, δ, and γ:
FµρF̃

νρ = FµγϵνγµδFµδ + FµδϵνδµγFµγ , [no summation over any index]
= FµγFµδ(ϵνγµδ + ϵνδµγ) = 0.

(3.33)

Therefore, O8,7 does not contribute.
The operator O8,8 is reducible. To see this we can write,

F̃µρF̃
νρ = 1

4ϵµραβϵνργδFαβFγδ = 1
2
(
F γδFγδδν

µ − 2F νδFµδ

)
. (3.34)

This implies O8,8 is reducible to O8,1 and O8,6.
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Next we focus on O8,9 which can be written as

O8,9 = ∇µ(H†H)∇µ∇νφ∇νφ = −1
2"(H†H)∇νφ∇νφ + boundary term. (3.35)

where we have used IBP in the last step. Using methods similar to those used earlier, we
can show the boundary term scales as η1/2

0 → 0, and hence is not relevant for cosmological
correlators. The surviving term, however, is equivalent to O8,4. To see this, we can use
the EOM (3.5) for H and ∇µAµ = 0 to write,

"(H†H) = 2(DµH)†DµH+ 2V ′(|H|2)|H|2. (3.36)

The last term determined by the Higgs potential contributes to O6,1 and O8,3.
Finally, O8,10 can be reduced using similar techniques. First, we can rewrite it using

the EOM (3.6) and an IBP,
1

2gA
∇ρF

ρµ∇µ (∇νφ∇νφ) = − 1
2gA

∇µ∇ρF
ρµ (∇νφ∇νφ) + boundary term. (3.37)

Similar as above, one can check that the boundary term vanishes as η3/2
0 at late times. Noting

that ∇µ∇ρF ρµ ∝ RµρF ρµ = 0, we conclude that O8,10 does not contribute. Thus we find
that there are six non-redundant operators at dimension 8.

3.5 Dimension 9
At dimension 9 we start with a set of operators summarized in table 4. Among these, O9,1
does not contribute, as can be seen by doing an IBP which gives a vanishing boundary term,
along with a term involving "φ which vanishes in the slow-roll limit. Using IBP, we can also
check that O9,2 and O9,3 are equivalent. O9,17 and O9,20 are both reducible in terms of other
operators. There are a priori other permutations with three derivatives acting on φ. Those
terms can, however, be reduced by using the fact that for a maximally symmetric spacetime
such as dS, we can write the Riemann tensor as Rµνρσ ∝ (gµρgνσ − gµσgνρ). The Bianchi
identity for Fµν is also useful in reducing certain terms. All the other terms would contribute
to cosmological correlators, albeit with suppressed contributions compared to operators at
lower dimensions, as we will see in the next section.

However, the operator O9,12 is special since it gives rise to a quadratic mixing between
the inflaton and the longitudinal gauge boson. Such an operator is observationally relevant
since it would mediate tree-level NG, and we have seen that no other operator up to dimension
8 could give rise to such a mixing. To elaborate on this further, we can rewrite O9,12 after
an IBP as, (dropping the gauge coupling)

O9,12 = ∇ν [(∇ρφ∇ρφ)∇µφF νµ] − ∇ν(∇ρφ∇ρφ)∇µφF νµ. (3.38)

Here we have used the fact that F νµ∇µ∇νφ = 0.

The boundary term. We first consider the boundary term, following an analysis similar
to the above. We can write the boundary term as,

i

gA

∫
d3x

√
|γ|nν [(∇ρφ∇ρφ)∇µφF νµ] (3.39)
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Operator Expression
O9,1 ∇µφ(H†DµH+ (DµH)†H)|H|4 = ∇µφ∇µ(H†H)|H|4

O9,2 ∇µφ(−i)(H†DµH − (DµH)†H)|H|4 = 1
g∇µφ∇νF νµ|H|4

O9,3 ∇νφ(H†DµH+ (DµH)†H)|H|2Fµν = ∇νφ∇µ(H†H)|H|2Fµν

O9,4 ∇νφ(−i)(H†DµH − (DµH)†H)|H|2Fµν = 1
g∇νφ∇αFαµ|H|2Fµν

O9,5 ∇νφ(H†DµH+ (DµH)†H)FµαF να = ∇νφ∇µ(H†H)FµαF να

O9,6 ∇µφ(H†DµH+ (DµH)†H)FανFαν = ∇µφ∇µ(H†H)FανFαν

O9,7 ∇µφ(H†DµH+ (DµH)†H)FανF̃αν = ∇µφ∇µ(H†H)FανF̃αν

O9,8 ∇νφ(−i)(H†DµH − (DµH)†H)FµαF να = 1
g∇νφ∇βF βµFµαF να

O9,9 ∇µφ(−i)(H†DµH − (DµH)†H)FανFαν = 1
g∇µφ∇βF βµFανFαν

O9,10 ∇µφ(−i)(H†DµH − (DµH)†H)FανF̃αν = 1
g∇µφ∇βF βµFανF̃αν

O9,11 ∇µφ(H†DµH+ (DµH)†H)(∇νφ)2 = ∇µφ∇µ(H†H)(∇νφ)2

O9,12 ∇µφ(−i)(H†DµH − (DµH)†H)(∇νφ)2 = 1
g∇µφ∇αFαµ(∇νφ)2

O9,13 ∇νφ∇ν(H†H)|DµH|2

O9,14 ∇µφ∇ν(H†H)(DµH)†DνH
O9,15 ∇νφ∇αFαν |DµH|2

O9,16 ∇νφ∇αFαµ(DνH)†DµH
O9,17 ∇ν∇µφ∇µ(H†H)∇ν(H†H)
O9,18 ∇ν∇µφ∇αFαµ∇βF βν

O9,19 ∇ν∇µφ∇αFαµ∇ν(H†H)
O9,20 ∇ν∇µφ∇µF ρν∇ρ(H†H)

Table 4. Allowed operators at dimension 9.

Therefore, at late times this term scales as,

∼ 1
η3
0

× 1
η0

× η2
0∂iφ × η4

0Fηi → 0. (3.40)

Thus this term can be dropped.

The bulk term. To obtain the inflaton-gauge boson mixing, we can focus on the F ηi

component from (3.38). Since our main purpose to illustrate the form of the quadratic mixing,
we will not track the overall numerical and η factors. If we set µ = i and ν = 0, then the
term would have a φ̈0, and hence it would be slow-roll suppressed. However, for µ = 0 and
ν = i, we would have a contribution which is quadratic in fluctuations,

O9,12 ⊃ φ̇2
0∂iφ̇F

iη. (3.41)

To simplify this further we can do a spatial IBP to write,

O9,12 ⊃ φ̇2
0φ̇∂iF

iη. (3.42)
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and use (3.18) and (3.20) to write

O9,12 ⊃ φ̇2
0m

2ξ̇Aη. (3.43)

Here we have written the inhomogeneous part of the inflaton field: φ(t,x) = φ0(t) + ξ(t,x).
This matches with the conclusion in [39], however only this particular dimension 9 operator
was considered in isolation.

3.6 Summary and classification

The non-redundant operators up to dimension-9 are summarized in table 5. In the third
column, we indicate whether the operator contributes to the bispectrum at tree or loop
level. This differs depending on the phase of the gauge theory. For example, O6,1 can clearly
contribute to the bispectrum at tree level in the broken phase, when we can decompose the
Higgs field in unitary gauge as H = (h+ v) /

√
2, with h an interacting degree of freedom

and v the VEV. In the unbroken phase, this is not possible, and the operator may only
contribute via a loop diagram.

On top of the tree/loop classification of each operator’s contribution to observables, in
weakly coupled UV completions it may also be possible to assign a tree/loop classification
to the operator’s Wilson coefficients [88]. At present the tree/loop classification of Wilson
coefficients has only been extended through dimension-8 [89], and we do not explicitly classify
Wilson coefficients here.

4 Observational implications

Having constructed a minimal basis, we now study the predictions for NG, especially in the
context of the cosmological collider. We first briefly review some aspects that will also set up
the notation. As discussed in the Introduction, particles with masses of order Hinf can be
produced as the Universe inflates. After production these particles can propagate on-shell,
oscillating in time, and eventually decay into inflaton fluctuations. Such processes then give
rise to non-trivial correlations among different inflaton fluctuations, in particular, three- and
higher-point correlation functions. In this work, we will focus on the three-point function,
i.e., the bispectrum, characterized by three spatial momenta k1,k2,k3:

⟨R(k1)R(k2)R(k3)⟩ = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3). (4.1)

The δ function above enforces spatial momentum conservation. We have denoted the gauge
invariant comoving curvature perturbation by R; for a detailed definition and review see,
e.g., [90]. Conventionally, the function B is normalized with respect to the power spectrum
so that there is no overall scale dependence,

F (k1, k2, k3) =
5
6

B(k1, k2, k3)
PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k1)PR(k3)

. (4.2)

It is also a convention to characterize the ‘strength’ of NG, at the equilateral configuration
where k1 = k2 = k3, in terms of a single number fNL ≡ F (k, k, k). In the case of the
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Dimension Operator Observables
5 O5,4 = φFµνF̃µν Loop [87]
6 O6,1 = (∇µφ)2H†H Tree [39] and Loop [36]
7 O7,2 = |H|2∇µφ∇νF νµ Loop

O7,4 = Fµν∇µφ∇ρF ρν Loop
8 O8,1 = FµνFµν(∇ρφ)2 Loop [36]

O8,2 = FµνF̃µν(∇ρφ)2 Loop
O8,3 = |H|4(∇µφ)2 Tree and Loop

O8,4 = |DµH|2(∇νφ)2 Loop [36]
O8,5 = (DµH)†DνH∇µφ∇νφ Loop

O8,6 = FµρF νρ∇µφ∇νφ Loop
9 O9,2 = |H|2O7,2 Loop

O9,4 = |H|2O7,4 Loop
O9,5 = ∇νφ∇µ(H†H)FµαF να Loop

O9,6 = O5,1FανFαν Loop
O9,7 = O5,1FανF̃αν Loop

O9,8 = ∇νφ∇βF βµFµαF να Loop
O9,9 = O5,3FανFαν Loop
O9,10 = O5,3FανF̃αν Loop
O9,11 = O5,1(∇µφ)2 Tree and Loop
O9,12 = O5,3(∇µφ)2 Tree [39] and Loop
O9,13 = O5,1|DµH|2 Loop

O9,14 = ∇µφ∇ν(H†H)(DµH)†DνH Loop
O9,15 = O5,3|DµH|2 Loop

O9,16 = ∇νφ∇αFαµ(DνH)†DµH Loop
O9,18 = ∇ν∇µφ∇αFαµ∇βF βν Loop

O9,19 = ∇ν∇µφ∇αFαµ∇ν(H†H) Loop

Table 5. A minimal operator basis up to dimension-9. We have dropped some overall prefactors to
write the operators more compactly in terms of dimension-5 and -7 operators. Operators with leading
effects (as described in section 4) are highlighted in red. The third column indicates whether these
operators contribute to the bispectrum at tree or loop level. Observables highlighted in blue only arise
in the broken phase. As a comparison, a priori there are 15, 42, 78, 213, 438 operators at dimension 5,
6, 7, 8, 9, respectively, (cf. Sym2Int [86]) prior to using EOM, IBP, and shift symmetry requirement
on the inflaton. After using IBP and EOM, but before using shift symmetry, one gets 5, 10, 13, 32, 51
operators at the respective dimensions.
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cosmological collider, the function F exhibits oscillations as a function of k3/k1, especially
in the squeezed limit k3 ≪ k1 ≈ k2. We will denote the associated strength of NG by a
parameter fosc, defined via:

Fsq ≈ 5
12

B(k1, k2, k3)
PR(k1)PR(k3)

≡ |fosc|
[(

k3
k1

) 3
2+iµ

+ c.c.
]

. (4.3)

In the following, we will estimate the parametric dependence of fosc on various Wilson
coefficients and identify which operators are expected to give a leading signal in a generic
EFT. To that end, we briefly revisit the power counting scheme.

4.1 Power counting

As discussed in section 3, the power counting scheme for the gauge-Higgs-inflaton EFT can be
organized in terms of operator dimension. For simplicity we take operators to be suppressed
by appropriate powers of a common UV scale Λ with Wilson coefficients cn,a,

L ⊃
∑

n=5,···

cn,a
Λn−4On,a. (4.4)

Here n determines the dimension of the operator while the index a runs over all the operators
having the same dimension. The EFT scale has to satisfy certain restrictions. To control
the inflaton derivative expansion in (∂φ)2/Λ4, we require Λ >

√
φ̇0 [91]. We also require

Λ > v to control the expansion in v2/Λ2, i.e., for the EFT to be suitably organized in terms
of the linearly-realized gauge symmetry.

4.2 ‘Monochromatic’ operators

The operators summarized in table 5 contribute to several types of cosmological correlators.
A given diagram could involve either the Higgs or the gauge boson or both. Diagrams in
which both the Higgs and the gauge boson are present can give rise to interesting signatures.
For a recent study outlining the techniques for computing such diagrams involving more
than one massive field, see [92]. However, the ‘monochromatic’ signatures that could let us
extract the mass and spin of the boson in the most immediate manner would involve either
the Higgs or the gauge boson, but not both.7 With this in mind, we now highlight which
operators would give rise to such monochromatic signatures.

Note that a given monochromatic signature typically accumulates contributions from
multiple operators at successive orders in power counting, where higher-order contributions
are suppressed by appropriate powers of v/Λ or Hinf/Λ. In what follows, the leading
monochromatic signatures are those that arise at the lowest order in power counting. Leading
operators are indicated in red in table 5.

7If there is a hierarchy between the Higgs and the gauge boson mass, we can integrate out the heavier
particle to effectively obtain a monochromatic contribution for the other particle. Here we instead focus on
the case where both the Higgs mass and the gauge boson mass are comparable.
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4.2.1 Higgs signature

The leading monochromatic operator involving the Higgs arises at dimension 6, namely
O6,1. In the broken phase, this operator gives rise to tree-level NG, as was studied in detail
in [39]. On the other hand, in the unbroken phase, the operator contributes to NG at the
loop level, as studied in [36].

At dimension 7 there are no monochromatic Higgs operators, since all the non-redundant
operators involve gauge bosons as well. At dimension 8, monochromatic Higgs signatures
arise from O8,3,O8,4,O8,5. However, we typically expect these contributions to be suppressed
by additional powers of (Hinf/Λ) or (v/Λ) compared to the dimension-6 contribution. At
dimension 9, O9,11, O9,13, O9,14 would contribute, with additional suppression by powers of
(Hinf/Λ) and/or (v/Λ). In particular, O9,13 and O9,14 would contribute to vertices having
at least three Higgs fluctuations.

4.2.2 Gauge boson signature

At loop-level, the leading monochromatic gauge boson signature arises from O5,4. This
operator has been studied extensively in the context of axion inflation [72], and in the context
of the cosmological collider [87]. The operator O7,4 can also contribute, but potentially
without the chemical potential-like structure which arises from O5,4. There are multiple
possible contributions at dimension 8. For example, the effects of O8,1 were computed in [36],
while O8,2 and O8,6 would also contribute at the same order in EFT power counting.

At dimension 9, O9,12 is special since it can give rise to a quadratic mixing between
the inflaton and the longitudinal gauge boson, as discussed above. The operator O9,18 also
contributes, albeit suppressed by powers of (Hinf/Λ). There are other operators at dimension
9 that involve one inflaton with three gauge bosons, and therefore do not contribute to a
three-point function at the one-loop level.

4.3 Estimates

The vertices relevant for NG mediated at tree level or at one loop are summarized in figures 1
and 2. There are four types of vertices, many of which accumulate contributions from more
than one operator in table 5, as indicated by the corresponding Wilson coefficients cn,a. For
operators involving derivatives, we have estimated the size of the derivatives to be of order
Hinf , as appropriate for scenarios where all the mass scales are of the order Hinf .

Using these vertices we can construct various tree and loop-level diagrams that can
mediate non-gaussianities. For illustration, we only consider the leading Higgs and gauge-
boson mediated NG.

Higgs. The signature in the broken phase was discussed in [39]; here we summarize the
main conclusions. The dimension 6 operator O6,1 would mediate the leading tree-level NG
through the vertices shown on the first row of figure 1. The parametric dependence of NG
from the so-called ‘single exchange’ diagram can be estimated as,

fHiggs
osc,tree ∼ µ4v2

φ̇2
0H

2
inf

, (4.5)
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Figure 1. Higgs-inflaton vertices from various operators present in table 5. The inflaton (Higgs) is
denoted by a thin (solid) line. We have not included vertices with more than two Higgs fluctuations.

where µ2 ∼ c6,1φ̇2
0/Λ2 denotes a ‘classical’ correction to the Higgs mass from O6,1 when the

inflaton is set to its VEV [39]. The total Higgs mass is then given by m2
h,full ∼ µ2 +m2

h,bare
where m2

h,bare is the Higgs mass in the absence of any inflaton correction. Since cosmological
collider signatures would be exponentially suppressed for mh,full ≫ Hinf , we require m2

h,full ∼
H2

inf . Barring any fine-tuning, this would mean µ2 ∼ H2
inf and m2

h,bare ∼ H2
inf . This implies

the going rate for NG is fHiggs
osc,tree ∼ (H2

infv
2)/φ̇2

0. For a more detailed numerical computation
of the non-gaussianity, see ref. [39] where the exponential fall off of the NG as a function
of increasing Higgs mass is also computed.

In the unbroken phase, the NG signature arises at one loop, mediated by the right two
vertices in the first row of figure 1. The corresponding estimate is

fHiggs
osc,loop ∼ 1

16π2
µ4

φ̇2
0
. (4.6)

For a detailed evaluation see ref. [36].

Gauge boson. We first discuss the tree-level signature in the broken phase, which was also
discussed in [39]. For a tree-level signature, an essential ingredient is a quadratic mixing
between an inflaton and the longitudinal mode of the gauge boson. Such a mixing arises
at dimension 9, namely via O9,12, which also gives a cubic interaction between the gauge
boson and the inflaton. These two vertices can contribute to NG via the so-called single
exchange diagram:

fgauge
osc,tree ∼ c29,12

φ̇4
0H

2

Λ10 . (4.7)
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Figure 2. Gauge boson-inflaton vertices from various operators present in table 5. The inflaton
(gauge boson) is denoted by a straight (wavy) line. We have not included vertices with more than two
gauge bosons.

For Λ #
√

φ̇0, the above becomes fgauge
osc,tree ! c29,12(H2/φ̇0). For a detailed evaluation see

ref. [39]. There is another diagram that can contribute to NG, involving the vertices with
c7,4 and c9,12. The strength can be estimated as,

fgauge
osc,tree ∼ c7,4c

2
9,12

φ̇5
0

Λ13 .
(4.8)

Taking Λ #
√

φ̇0, the above estimate becomes fgauge
osc,tree ! c7,4c29,12(H/φ̇3/2

0 ), and therefore
this contribution is expected to be subdominant compared to the previous process mediated
purely via c9,12. The dimension-5 operator determined by c5,4 can give larger signals, both
because it is a leading operator from an EFT perspective, and also because it can give a
‘chemical potential’ for gauge boson, potentially leading to exponential particle production.
The cosmological collider signatures were computed in [87].

5 Conclusion

A systematic approach to constructing local EFTs entails not only fixing the power-counting
and enumerating operators consistent with the infrared symmetries and fields, but also
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accommodating the resulting redundancy of description. This systematic approach is well-
established in flat-space EFTs, where the irrelevance of boundary terms and invariance of
S-matrix elements under field redefinitions make operator redundancies transparent. The
situation is more complicated in cosmological EFTs, where boundary terms are not always
negligible and the observables of interest are sensitive to field redefinitions. While minimal
operator bases for inflaton self-interactions have been enumerated in various inflationary
EFTs, much less progress has been made for EFTs of heavy particles coupled to the inflaton
beyond the simplest cases at lowest order.

In this paper, we have developed a minimal operator basis for an abelian gauge-Higgs-
inflaton EFT up to dimension 9, an archetypal example of a sector of heavy fields coupled to
the inflaton relevant for cosmological collider physics. We have identified low-dimensional
operators that are entirely redundant, as well as new non-redundant operators with potentially
interesting observational signatures. Along the way, we have identified a number of useful
methods for checking boundary terms arising from IBP relations, which can readily be applied
to other EFTs of heavy particles coupled to the inflaton. The systematic enumeration of
minimal operator bases in these EFTs is invaluable in light of the considerable interest in
their cosmological signatures.

There are, of course, a number of interesting future directions. The methods presented
in this paper may readily be generalized to other sectors coupled to the inflaton, including
fermions and non-abelian gauge bosons. While we have focused on a Lorentz-preserving
EFT of inflation with a shift-symmetric inflaton, similar methods may be applied in the
more general Goldstone EFT of inflation [6]. In particular, in the context of the Goldstone
EFT one expects the appearance of multiple scales, instead of a single scale Λ in (4.4); see,
e.g., [93] for a recent discussion. These operators can give rise to several observationally
relevant phenomena, such as a reduced speed of propagation for fluctuations. Consequently,
the techniques developed here deserves further study for the Goldstone EFT. Further, we
have enumerated a number of operators with observational effects at loop-order. The precise
computation of these effects remains important and will be the subject of future work. Finally,
it would be very interesting to extend the general methods developed for operator bases in
flat space [5] to cosmological contexts by accounting for the possible role of boundary terms.
More broadly, we hope that the extensive attention devoted to operator bases in flat space
EFTs may be equally applied to the plethora of EFTs arising in cosmological settings.
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Figure 3. Left. Four point function mediated by O1 and O2. Right. Contact interaction mediated
by O2,TD.

A IBP, EOM, and field redefinitions in dS: an explicit example

We are interested in computing cosmological correlation functions on a late time slice at η0.
Therefore, the boundary terms that arise while employing IBP can potentially contribute
to such correlation functions. Here we investigate the nature of these boundary terms
by focusing on a concrete example involving a massive field σ having a mass m, defined
in terms of the variable µ = (m2/H2 − 9/4)1/2. In particular, we focus on the standard
quasi-single field operator [22]:

O1 =
1
Λ

∫
d4x

√
|g|(∇µφ)(∇µφ)σ. (A.1)

By IBP we can write this as,

O1 =
1
Λ

∫
d4x

√
|g| [∇µ(φ∇µφ · σ) − φ"φ · σ − φ∇µφ∇µσ] . (A.2)

The term involving "φ does not contribute to in-in correlators by virtue of the inflaton
EOM "φ ≈ 0, where we ignore the contribution from the inflaton potential. We rewrite
the remaining terms as,

O2 =
1
2Λ

∫
d4x

√
|g|
[
∇µ(∇µ(φ2) · σ) − ∇µ(φ2)∇µσ

]

= O2,TD +O2,Bulk.
(A.3)

Here we have separated the total derivative (TD) and the bulk term. As noted in [29], the
boundary term can be neglected for equal-time correlation functions in the in-in formalism
because such terms are associated with equal-time commutators and can be removed by a
redefinition of the local operators. In what follows, we explore this in great detail.

We first check that O1 and O2 give exactly the same contribution to in-in correlation
functions, as they should. Our goal would then be to understand the contribution from O2,TD.
To that end, we focus on a four point function as shown in the left panel of figure 3. There
are four terms contributing to this four point function. We call the associated contributions
as, I++, I+−, I−+, and I−−, of which the third and the fourth are the complex conjugates
of the second and the first, respectively (the +(−) sign denotes that the vertex come from a
time (anti-time) ordering operator). Therefore, we only consider I++ and I+− to show the
equivalence of O1 and O2. For convenience, we write the TD term as,

O2,TD = 1
2Λ

∫
d4x∂µ

(√
|g|∂µ(φ2) · σ

)
= − 1

2Λ

∫
dη∂η

( 1
η2∂η(φ2) · σ

)
. (A.4)
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Figure 4. Comparison between the contributions from O1 and O2. Left. The I+− contribution
evaluated for the configuration |k1| = |k2| = |k3| = |k4| with a varying |k1 + k2|. The contribution
from O1 and O2,Bulk match precisely while O2,TD does not contribute. Right. The real and imaginary
parts of the I++ contribution. For the imaginary part, O2,TD does not contribute, and O1 and
O2,Bulk match, as expected. For the real part, O1 matches with the sum of O2,Bulk and O2,TD. The
contribution from O2,TD does not depend upon either the momentum ratio (as seen here) or the mass
parameter µ (as can be checked), indicating that it can be thought of as originating from a ‘local’
contact interaction, such as the one shown schematically in the right panel of figure 3. For both the
panels, we do not track the overall factors or momentum dependence.

In the last equality, we have dropped the spatial boundary terms, assuming fields decay at
spatial infinity. A similar operation can not be naively done for the temporal boundary, since
we are interested in computing the correlation functions on the same boundary.

Contribution via I+−. For I+−, the leading contribution involves two separate integrals,
one for the time ordering, and the other for anti-time ordering. Schematically they can
be written as,

⟨O1 · φ(k1)φ(k2)φ(k3)φ(k4) · O1⟩ and ⟨O2 · φ(k1)φ(k2)φ(k3)φ(k4) · O2⟩. (A.5)

We evaluate these numerically and the comparison between O1 and O2 are shown in the left
panel of figure 4. The four point function exhibits oscillations as function of the ratio of the
momentum of the massive σ particle, |k1 + k2| and the momentum of the inflaton |k1| = k1.
(For this evaluation we set k1 = k2.) This confirms a cosmological collider signature from
this operator. We can also check explicitly that O2,TD does not contribute to I+−. To see
this, note (A.4) implies I+− has a contribution from,

∝ 1
η2
0

[
∂η(φ2)σ

]

η0
. (A.6)

However, this term decays as η1/2
0 as η0 → 0, and does not contribute to I+−.

Contribution via I++. Next we discuss I++ which involves nested time integrals, originat-
ing from the time-ordering operation. Schematically, this has the form

⟨I · φ(k1)φ(k2)φ(k3)φ(k4) ·
∫ η0

−∞
dη O2(η)

∫ η

−∞
dη′ O2(η′)⟩, (A.7)
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where we have suppressed the spatial indices. The operator O1 also contributes via a similar
form. From the above form, we note that O2,TD could contribute to correlation functions,
since the inner integration contributes a non-vanishing integrand for the outer integral. We
evaluate this contribution from O2,TD numerically and indeed find it to be non-zero, as
shown in the right panel of figure 4. There we also find the combined contributions from
O2,TD and O2,Bulk match with O1.

Importantly, the contribution from O2,TD does not vary as a function of |k1 + k2|/k1,
unlike the contribution from O2,Bulk. We also have checked that the contribution from O2,TD
is independent of the mass of σ for m >

√
2H. These facts indicate that the contribution

from O2,TD could be thought of as coming from a contact operator that does not involve
a σ exchange. This can be understood in two different ways.

First, instead of using the exact mode functions of σ, we can use their sub-horizon,
high-energy limits. In detail, we can express σ as,

σ(η,k) = gk(η)a†k + ḡk(η)a−k, (A.8)

with

gk(η) = +i exp(−iπ/4)
√

π

2 exp(πµ/2)(−η)3/2H(2)
iµ (−kη),

ḡk(η) = −i exp(+iπ/4)
√

π

2 exp(−πµ/2)(−η)3/2H(1)
iµ (−kη).

(A.9)

Using the high-energy limits of the Hankel functions (see, e.g., [64] for explicit expressions),
we can evaluate the contribution of O2,TD. We find,

⟨φ(k1)φ(k2)φ(k3)φ(k4)⟩ ∝
(

− 13
256 + k1

16|k1 + k2|

)
. (A.10)

The sub-horizon limit |k1 + k2|(−η) ≫ 1, or equivalently |k1 + k2| ≫ k1 ∼ 1/(−η), then
implies the leading contribution is given by the first term in the parenthesis above. This then
exactly reproduces the O2,TD contribution in the right panel of figure 4.

Alternatively, we can construct a contact term that gives the same contribution as O2,TD.
To that end, we first do a field redefinition:

σ → σ + c

Λφ2. (A.11)

Under this redefinition, the σ kinetic term gives rise to,

1
2(∇µσ)(∇µσ) → 1

2(∇µσ)(∇µσ) + c

Λ∇µσ · ∇µ(φ2) + c2

2Λ2∇µ(φ2) · ∇µ(φ2). (A.12)

For c = 1/2, we reproduce the form of the bulk term O2,Bulk. This indicates that the action
of O2,TD could be the same as the contact operator,

Ocontact =
1

8Λ2∇µ(φ2) · ∇µ(φ2). (A.13)

The temporal component of the above operator gives the same contribution as O2,TD in figure 4.
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B IBP in inflationary spacetime: examples

In this appendix, we perform some explicit checks of IBP in inflationary spacetimes, taking
into account the necessary boundary terms. We first discuss massless fields (both free and
interacting) and then massive fields.

B.1 Massless scalars
B.1.1 Free theory
A massless scalar in dS can be expanded in terms of the mode functions as,

φ(η,k) = fk(η)a†k + f̄k(η)a−k, (B.1)

with

fk(η) =
(1 − ikη)eikη

√
2k3

, f̄k(η) =
(1 + ikη)e−ikη

√
2k3

. (B.2)

The free theory action, upon using the EOM "φ = 0, reduces to:
∫

d4x
√
|g|(∇µφ)2 !=

∫
d4x

√
|g|∇µ(φ∇µφ). (B.3)

The != indicates that we are interested in knowing whether both sides of the above equation
would give the same correlation function or not. To that end, we evaluate both sides on-shell,
using the above mode functions of massless fields in dS. The l.h.s. gives

∫ dηd3x
η2

[
−(∂ηφ)2 + (∂iφ)2

]
=
∫ η0

−∞

dη

η2

[
−(k2η)2e2ikη + k2(1 − ikη)2e2ikη

]
(B.4)

After performing the integrals we arrive at
∫ η0

−∞

dη

η2

[
−(∂ηφ)2 + (∂iφ)2

]
= −k2

η0
− ik3. (B.5)

The r.h.s. of (B.3) is a boundary term. We can use Stokes’ theorem to write it as,
∫

d4x
√
|g|∇µ(φ∇µφ) =

∫
d3x

√
|γ|nµ(φ∇µφ). (B.6)

The induced metric on the boundary time slice is denoted by γ, with
√
|γ| = 1/η3

0, and nµ is
a unit normal vector nµ = (1/η0, 0, 0, 0). This can then be evaluated as η0 → 0,

− 1
η2
0

φ∂ηφ

∣∣∣∣
η0

= −k2

η0
− ik3. (B.7)

This matches exactly with the l.h.s. contribution. Note the first term is naively divergent
as η0 → 0. However it does not contribute to correlation functions, which in this context
are the power spectrum. This is because, to evaluate the power spectrum, we need to
multiply the above by (−i) (stemming from the (−i) in exp(−i

∫
dtH)) and sum with its

conjugate. The 1/η0 piece then would cancel. The remaining term would contribute to
the power spectrum as expected.
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B.1.2 Interactions
As an example, we consider a massless scalar field φ in dS with an interaction term

∫
d4x

√
|g|∇µ(φ2)∇µφ. (B.8)

By IBP we can reduce this as,
∫

d4x
√
|g|∇µ(φ2)∇µφ

!=
∫

d4x
√
|g|∇µ(φ2∇µφ) =

∫
d3x

√
|γ|nµφ2∇µφ. (B.9)

In the last relation, we have used Stokes’ theorem. We have assumed φ vanishes at spatial
infinity and dropped contribution from boundary terms at spatial infinity, keeping only
the contribution from a late time slice at η = η0 → 0, as above. We can rewrite the
boundary term as,

∫
d3x

√
|γ|nµφ2∇µφ =

∫
d3x

(
− 1

η2
0

)
φ2∂ηφ

∣∣∣∣
η0

. (B.10)

We now compute the contact three-point interaction mediated by this operator and check
the relation (B.9).

L.h.s. Here we will not write
∫
d3x explicitly to keep the notation simple, and only track

time integrals. Then we can write the l.h.s. of (B.9) as,
∫ η0

−∞

dη

η2 (−2φ∂ηφ∂ηφ + 2φ∂iφ∂iφ) (B.11)

Upon using the mode functions this becomes,
∫ η0

−∞

dη

η2

([
(−2)(1 − ik1η)k22ηk23η + perms.

]
(B.12)

+ [(2)(1 − ik1η)(1 − ik2η)(1 − ik3η)(−k2 · k3) + perms.]) eiktη (B.13)

Here we have schematically included other momentum permutations and denoted kt =
k1 + k2 + k3. Using momentum conservation k1 + k2 + k3 = 0, the piece involving spatial
derivatives can be simplified as,

∫ η0

−∞

dη

η2

[
(1 − ik1η)(1 − ik2η)(1 − ik3η)(k21 + k22 + k23)

]
eiktη. (B.14)

This can be evaluated as,

(+i)(k21 + k22 + k23)
[
i

η0
− kt +

k1k2 + k1k3 + k2k3
kt

+ k1k2k3
k2t

]
. (B.15)

The part involving time derivatives can be evaluated as,

(+i)(2k22k23)
[ 1
kt

+ k1
k2t

]
+ perms.. (B.16)

Summing the spatial and temporal contributions we have,
∫

dη

η2 (−2φ∂ηφ∂ηφ + 2φ∂iφ∂iφ) = −(k21 + k22 + k23)
η0

+ (−i)(k31 + k32 + k33). (B.17)
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R.h.s. The r.h.s. of (B.9) can be evaluated as (we do not write
∫
d3x for brevity),

(
− 1

η2
0

)
(1 − ik1η0)(1 − ik2η0)k23η0e

iktη0 + perms.. (B.18)

Taking η0 → 0 limit,
(

− 1
η0

)
k23(1 + ik3η0) + perms. = −(k21 + k22 + k23)

η0
+ (−i)(k31 + k32 + k33). (B.19)

This matches exactly with (B.17). Note the 1/η0 piece does not contribute to correlation
functions for reasons identical to the free theory case discussed above.

B.2 Massive scalars

B.2.1 Free theory

We will start with a simple case, the kinetic term
∫

d4x
√
|g|(∇µσ)2 (B.20)

for a massive scalar field σ. The mode functions for a massive scalar in dS are given in (A.9).
We then check whether

∫
d4x

√
|g|(∇µσ)2 !=

∫
d3x

√
|γ|nµσ∇µσ

∣∣∣∣
η0

−
∫

d4x
√
|g|σ"σ, (B.21)

where "σ ≡ ∇µ∇µσ. To that end, instead of using the explicit forms of the Hankel functions,
we will include them schematically and that will be sufficient for our purpose. We will also
check the equality (B.21) by analyzing the spatial and the temporal components separately.
The spatial part, again omitting

∫
d3x and tracking time integrals, is given by

∫ dη

η2 (∂ifk1∂ifk2)
!= −

∫ dη

η2 fk1∂2
i fk2 . (B.22)

Inserting the momentum factors, this becomes
∫ dη

η2 (k1 · k2)fk1fk2
!= −

∫ dη

η2 k
2
1fk1fk2 . (B.23)

The two contributions are equal since momentum conservation forces k1 + k2 = 0. The
temporal part is given by,

−
∫ dη

η2 (∂ηfk1∂ηfk2)
!=
(

− 1
η2
0

)
fk1∂ηfk2

∣∣∣∣
η0

+
∫ dη

η2 fk1∇2
ηfk2 , (B.24)

where ∇2
η = ∂2

η − 2
η ∂η. Momentum conservation forces k1 = k2, and by doing an explicit

temporal integration-by-parts, we can see the above equality indeed holds.
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B.2.2 Interacting theory

Next, we consider the interaction term
∫

d4x
√
|g|∇µ(φ2)∇µσ (B.25)

We then follow the same procedure as used in the previous example. To check the validity
of IBP for the case of massive scalars in dS, we consider whether

∫
d4x

√
|g|∇µ(φ2)∇µσ

!=
∫

d4x
√
|g|∇µ(φ2∇µσ) −

∫
d4x

√
|g|φ2"σ

=
∫

d3x
√
|γ|nµφ2∇µσ

∣∣∣∣
η0

−
∫

d4x
√
|g|φ2"σ. (B.26)

Upon rewriting the boundary term, this condition becomes
∫

d4x
√
|g|∂µ(φ2)∂µσ

?=
∫

d3x
(

− 1
η2
0

)
φ2∂ησ

∣∣∣∣
η0

−
∫

d4x
√
|g|φ2"σ. (B.27)

We first compute the spatial part, again neglecting to write
∫
d3x for brevity. On the

l.h.s., this is
∫ dη

η2 ∂i(φ2)∂iσ =−
∫ dη

η2 (k1 ·k3+k2 ·k3)fk1fk2gk3 =
∫ dη

η2 k
2
3fk1fk2gk3 , (B.28)

where we have used momentum conservation k1 + k3 + k3 = 0. We have also considered
a particular permutation of momenta, as this will be sufficient for our purpose. On the
r.h.s., we have

−
∫ dη

η2 φ2∂2
i σ =

∫ dη

η2 k
2
3fk1fk2gk3 , (B.29)

which matches with the l.h.s., as expected.
Now, we consider the temporal component. Starting again with the l.h.s. and following

a similar procedure as shown with the free theory, we have

−
∫ dη

η2 ∂η(fk1fk2)∂ηgk3

=
∫

dη∂η

(
− 1

η2 fk1fk2∂ηgk3

)
+
∫

dηfk1fk2∂η

( 1
η2∂ηgk3

)

= − 1
η2
0
fk1fk2∂ηgk3

∣∣∣∣
η0

+
∫

dηfk1fk2

(
− 2

η3∂ηgk3 +
1
η2∂2

ηgk3

)
(B.30)

We identify the first term as the boundary term and the second as the temporal compo-
nent of "σ.

In the above two examples — a free theory and an interacting theory — we have seen
that IBP indeed holds for massive scalars in dS for contact diagrams.
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C Dimension 5 field redefinition

The fact that O5,2 does not contribute to cosmological correlation functions can also be seen
by performing a field redefinition. In particular, we can redefine:

Aµ → Aµ − ∇µφ

gAΛ . (C.1)

Since we are not interested in late-time correlation functions of Aµ, i.e., Aµ does not appear
in the external lines, the above field redefinition does not modify inflaton correlators via
contact diagrams. It does have an effect on the other vertices. While the kinetic terms for
the inflaton and the gauge boson are unmodified by (C.1),

|DµH|2 → |DµH|2 + i

Λ∇µφH†∇µH − i

Λ∇µφH∇µH† − 2g
Λ Aµ∇µφH†H+ 1

Λ2 (∇µφ)2H†H

= |DµH|2 − O5,2 +
1

Λ2 (∇µφ)2H†H.

(C.2)

Therefore, the field redefinition (C.1) eliminates O5,2 and gives a correction to O6,1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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