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Abstract—A novel sensing approach for the single radio
frequency (RF) chain millimeter wave systems is proposed.
The sensing strategy is inspired from synthetic aperture radar
systems, and synthesizes a virtual array manifold vector using a
single phased array over temporal measurements. The geometry
of the virtual array can be controlled enabling synthesis of
both a virtual uniform linear array (ULA) and a virtual sparse
linear array starting from a large physical array. Moreover,
the proposed sensing can be realized using conventional phased
array/analog combiner. Several design parameters of the sensing
scheme provide flexibility and are discussed including their
impact on initial alignment. The proposed sensing approach
allows for a rich set of options for inference. Candidate detection
and estimation algorithms are presented and their performance
is evaluated.

I. INTRODUCTION

An ever-increasing number of user devices are getting
connected to cellular networks with the demand for data per
device rising rapidly. Millimeter wave (mmWave) spectrum al-
location is envisioned to support this demand and enable many
new use cases such as industrial-IoT, virtual and augmented
reality, biomedical applications, and non-terrestrial networks
in the beyond 5G (B5G) and 6G cellular networks [1]. The
challenges to successfully establish mmWave communication
link include large propagation losses and sparse multipath en-
vironment. Owing to the large propagation losses in mmWave
channel, massive MIMO technology and beamforming gain
become crucial to achieve reliable and low latency communi-
cation. On the other hand, the specular nature of the mmWave
channel renders it to be sparse and requires accurate Beam
Alignment (BA). This challenge is only further exacerbated by
the narrow beamwidths and consequent large codebook size
due to the large antenna array dimensions.

Reducing the BA duration is a critical and an active area
of research. Hardware cost also impacts the ability of the
transceivers to sense the mmWave channel. The large number
of antenna elements are typically supported by only a few
Radio Frequency (RF) chains [2], and thus necessitates for a
low-dimensional projection of the received signal at the anten-
nas. Beam alignment using such a low-dimensional signal is a
challenging problem. There is a need to build a better sensing
approach to achieve significant reduction in BA duration that
can exploit the array geometry and channel characteristics un-
der the hardware constraints. The need is accurately captured
with the recent surge in research related to Integrated Sensing
and Communication (ISAC) wherein sensing and communica-
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tion services co-exist to reduce power consumption, improve

spectral efficiency and allow for hardware-reuse [3].

In this work we address the BA problem when only a
single RF chain is available. A novel sensing approach is
proposed that allows to beamform in a Region of Interest
(Rol) while simultaneously capturing rich information about
the sparse mmWave channel. The contributions of this work
are as follows:

« A novel sensing methodology, inspired from Synthetic Aper-
ture Radar (SAR), is proposed for the single RF chain
mmWave systems. Under the proposed sensing approach,
a virtual Uniform Linear Array (ULA) manifold is synthe-
sized over temporal measurements. Extension to construct a
virtual arbitrary array geometry such as Sparse Linear Array
(SLA) is also discussed.

« We provide candidate estimation and detection algorithms
that infer the dominant beam Direction-of-Arrival (DoA)
based on measurements using proposed sensing. The pre-
sented algorithms demonstrate the many options for in-
ference enabled by the proposed sensing scheme. It is
also highlighted how proposed sensing can be incorporated
within other BA algorithms with the help of hierarchical
Posterior Matching (hiePM) technique proposed in [4].

Numerical results are provided that highlight the benefit from

using proposed sensing over conventional schemes in litera-

ture. Notations: (.)¢ denotes complex conjugate operation, and

[M]={0,1,...,.M -1}, M € Z*.

II. PROBLEM STATEMENT AND PROPOSED SENSING

We consider a receiver (base station or user equipment)
equipped with a ULA of size N and a single RF chain. We
assume a flat fading channel, with a single dominant path
between the transmitter and receiver. We further assume that
the channel remains coherent within the training duration due
to low receiver mobility.

A. Problem Statement
The received signal at the antennas at instant I, x; € CV,

is given by

x; = \/Psapy (u) + 1y,

where L denotes the total training duration. P, (> 0) denotes
the combined contribution of transmitted power and the large-
scale fading (path loss and shadowing), o € C is the unknown
small-scale fading coefficient. Since the transmitted symbol is

0<i<L, (1)

Asilomar 2023

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 17,2024 at 15:16:47 UTC from IEEE Xplore. Restrictions apply.



Snapshot index | |
L 0 1 2 3 4 5 6 7 8 9

(virtual) ULA

segment index,—+—F+—+——F+—+—+—F+—+—+—+—+—+—+—
N, =4, t(I): o0 0o o 1 1 1 1 2 2 2 2 3 3
Slot index, o
Ny=2,h: o o o o0 o O O o0 1 1 1 1 1 1

Fig. 1. A (virtual) ULA segment of aperture size N, = 4 is created using 4
snapshots. The beamformer is adapted once every slot to improve signal-to-
noise ratio (SNR), here slot size is Ny = 2.

known, it can be easily absorbed within the signal term of
x; in (1). Thus, we assume the transmitted symbol value to
be 1 without loss of generality. ¢ (u) is the array manifold
or response vector for an incoming narrowband signal along
the angle u; v = sinf,u € [~1,1), where 6 € [-%,7)
denotes physical DoA. Noise i; € CV is distributed as
CN(0,021) and i.i.d. over time. Since there is a single
RF chain, the received signal is processed using an analog
combiner, w; € CY~. The output, y; € C, available for
inference is given by

Yy = lexl: \/Psozled)N(u) + Wlell
=V Peaw( n(u) + . 2)

The goal is to design w; and infer u; w; can be adapted
over time to improve the inference. For a ULA with \/2
inter-element spacing', where )\ denotes the wavelength of the
received signal, we have

odn(u) =[1 exp (jmu) -+ exp (jw(N — l)u)]T. 3)

In this paper, we consider the ULA geometry for easier
exposition of ideas. However, these ideas can be extended to
planar geometries as well, such as uniform rectangular arrays
[5]. Next, we describe the proposed sensing scheme which
provides a high-level structure to the beamformer, w;. We
refer to this sensing methodology as Synthesis of Virtual Array
Manifold (SVAM).

B. Synthesis of Virtual Array Manifold (SVAM) Sensing

We propose a novel sensing approach inspired by synthetic
aperture radar used in remote sensing and automotive radar [6].
In typical SAR systems, the sensor motion allows synthesis of
larger aperture than physical antenna, which helps to improve
resolution. In this work, we mimic the sensor motion by
designing w; accordingly. We exploit the coherence interval
to synthesize virtual apertures over time. An important conse-
quence is that, such measurements preserve phase information
from the physical antenna, which captures rich information
about the DoA of the incoming signal. The proposed sensing
can be applied more broadly to multi-path angles. Moreover,
leveraging the complex exponential structure present at the
combiner output y;, [ € [L], it is possible to apply an unlimited
number of digital filters on these measurements.

')/2 inter-element spacing prevents ambiguity in angular estimation.

1) Constructing a Virtual ULA with \/2 Inter-element
Spacing: Let N, (< N) denote the aperture size of the
virtual ULA we wish to create. We assume that the total
training duration, L, is divisible by N, for simplicity. Let
t(1) = floor(I/N,) denote? the virtual ULA segment index
(see Fig. 1). We design a beamformer of size M = N —N,+1
denoted by f;;) € CM, such that ||f;;)||> = 1. Initially the
beamformer is designed to span a Region of Interest (Rol) and
may be adapted over time. Such Rol can be used to incorporate
any prior information available about the DoA. The analog
combiner at instant [ is given by

T
Wy = Oﬁod(l,Nv) ftT(l) Oﬁvfmod(l,Nv)fl (O

Thus, within a segment duration, the beamformer slides along
the antenna aperture and performs convolution in space. In
contrast to the work in [7], here only a single RF chain is
available and thus a virtual ULA segment is synthesized over
time. Let

Beay (u) = £y dar(w), (5)

denote the complex gain of the beamformer along the angle
u. The signal y; post-combining can be expressed as

Y = Wlel =V PsaByqy(u) - exp {jrumod(l, Ny)} + ny.
(6)
Note that, the complex gain j3;(;)(u) does not change within
a segment, but ‘exp {jmumod(l, N,)} varies within the seg-
ment.

Remark 1. The beamforming gain, measured in terms
of [By)(u)?, in the passband depends primarily on the
beamwidth of the beamformer, f;(;). For an ideal beamformer
design, the gain in the beamformer passband corresponding
to a beamwidth of %,R > 1, in wu-space is given by
|Biy(w)|> = R. As the beamformer size, M, increases the
beamformer response approaches the ideal response.

We drop the notation of dependence of ¢ on [ for simplicity.
We stack the measurements within a segment to form y; =

T .
[Yen, YeNo+1 o0 Yas1)N,—1) st € [L/Ny] (see Fig. 1) as

yi= /PsaBi(u) [1 exp jmu --- expj(N, — Dru]” +ny
= /P, (u)¢n, (u) + 1. (7)

We identify the following design parameters: a) N, €
{1,2,..., N}, the virtual ULA size, and b) beamformer, f;
design, which includes the beam direction and beam width.
N, = 1 reduces to the conventional beam design. Thus, the
proposed sensing strategy includes the methodology adopted
for sensing in [4], [8] as a special case. The hierarchical
codebook in [8] designed using a least squared error criterion
imposes a constant amplitude and phase in the passband.
The inference is improved by relaxing the constant phase
requirement in the passband. Thus, in this work we design
the beamformers, f;, as linear-phase Finite Impulse Response
(FIR) filter using the Parks-McClellan algorithm [9].

2floor(-) denotes the floor function.
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Remark 2. 1t is important to highlight the significance of the
proposed sensing methodology. Given just two measurements,
it is possible to construct a virtual ULA under the proposed
sensing with N,, = 2. This is equivalent to a single snapshot
measurement from a physical array of size 2. Owing to the
rich (array) geometrical information preserved in the measure-
ments, it is thus possible to estimate the dominant path DoA
in a gridless manner using existing techniques [10]-[12]. In
contrast, the beam scan operation using N, = 1 requires as
many measurements as the codebook size to detect the DoA.

2) Constructing a Virtual Sparse Linear Array: The con-
struction presented in the previous subsection can be extended
to form virtual ULAs with more than \/2 spacing®. More
generally, a Sparse Linear Array (SLA) can also be realized as
the virtual array geometry, for example, minimum redundancy
arrays [13] or nested arrays [14]. These can help to increase the
virtual aperture and improve resolution for the same segment
duration. Let N, denote the number of antenna elements
in the virtual SLA we wish to construct over time. Let
P={P,:0< P, < N,P, € Z,i € [Ny]} denote the set of
sensor positions in the SLA ordered in an increasing manner;
Py = 0, without loss of generality. We design a beamformer,
f;, of length M = N — Py, _;. The analog combiner at time
l, in the case of SLA, is given by

W = |: OT

T
T T
Prod(1,Ny) f ON M —Prod(i,Ny) :| . ®)

Using identical notation to describe the complex gain, 5;(u),
as in (5), the signal y; post-combining can be expressed as

\/704515

Note that (9) generalizes (6) for the SLA case. Finally, the
measurements within the ¢-th SLA segment can be stacked as

yi= \/>Oéﬁt [1 exp (jmPiu)---
= \Faﬁt )SpoN (u) + ny,

where Sp € RV**¥ is a binary sampling matrix given by

1 ifn=~P,
[SIP’]HL,n :{ 0 nn

otherwise
In the remainder of the work, we focus on the virtual ULA
with \/2 spacing-based sensing for ease of exposition, but the
ideas presented can be easily extended to the virtual SLA case.
The proposed design for w; in (6) and (9) may be realized
using a pair of phase shifters to form arbitrary modulus for
the beamformer coefficients (see Theorem 1 in [15]).

y=wilx = - exp (jruPmoaq,n,)) + - (9)

+ n;
(10)

exp (jﬂ'PNv,lu)]T

,m € [N,],n€[N]. (1)

III. VARIOUS INFERENCE PROCEDURES ENABLED BY THE
NOVEL SVAM SENSING

We begin by first noting that in the absence of prior on both
a and u we need at least two snapshots to make meaningful
inference on (o, u), even if the SNR is infinite. Moreover, if

must have different magnitude or phase response (see Chapter
1, Section 4.1 in [16]). We select N, > 2 in this work.
We highlight that both the synthetic aperture size and virtual
array geometry can be adapted over time, although we do
not explore this further in this work. In this section, we
present three different options for inferring u using SVAM
measurements as described in the previous section.

A. Fixed Interval Beam Adaptation

In order to combat noise we can construct multiple virtual
ULA segments keeping the beamfomer design f; fixed. We
refer to this duration as a slot (see Fig. 1). In other words, f;
is adapted once after each slot. Let Ny denote the slot size,
indicating the number of virtual ULA segments contained in
one slot. We infer u based on the following average statistic
(h € [L/(N,N))))

1 (h+1)Ns—1
V= > oy (12)
t:th

The slot duration may be adapted over time depending on
SNR. Such an adaptive strategy is explored in [16]. The
modified hiePM algorithm discussed in the next subsection
is another example wherein the slot duration is adapted dy-
namically, although hiePM [4] assumes that « is known.

1) Detection Strategy: Owing to the complex exponential
signal component in (7), it is possible to apply much less
restrictive digital filter to infer u. We use this feature explicitly
within the detection strategy. By framing a detection question,
we hope to enable the overall framework to operate in low
SNR regime. We divide the Rol into P partitions and design P
beamformers f,ff’pt € CNv,p={1,..., P}; each beam focuses
in one such partition. The algorithm then compares power in
the P narrow partitions within the Rol

2
DET det
D = arg mgx ‘ (fh p) Yh

13)

The P partitions may be steered to identify more meaningful
partitions. This is implemented in Section IV. Although a
large P allows to design narrow beamwidths with higher
beamforming gain, it may also increase the misdetection
probability.

2) Estimation Strategy: We model the unknowns (o,u) as
deterministic variables. Note that both can be modeled as
stochastic variables, especially if additional prior is available.
Such a stochastic modeling for estimation is considered in
[16]. For a fixed «/, the maximum likelihood estimation (MLE)
of o gives

A (22_0 B, (W')3m )

QMLE
ap (u) = - (14
VPs g, (W) X5 o 18w, (W)
Let gp(u') S, |Bh/Nf(u’)\2 denote the cumulative

beamforming gain upto slot h. The MLE optimization problem

N, is set to one, then the filter design over the two snapshots ~reduces to
2
3Any ambiguity in angular estimation can be resolved if the Rol is an uhMLE = arg max ¢N" Z 5h/Nf S’h’ .(15)
appropriate fraction of the spatial region. |¢) N,
477

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 17,2024 at 15:16:47 UTC from IEEE Xplore. Restrictions apply.



The above optimization uses the well-known matching objec-
tive. The presence of the manifold vector ¢y, (u') highlights
the importance of the virtual geometry we synthesize; it
decides the resolution. Sparse geometries such as nested arrays
[14] can help to synthesize large apertures in fewer snapshots®.

Algorithm 1: Beam Alignment Using SVAM Sensing

Result: ug,, = u*L/(NU Nj)—1

Input: L, N,, Ny, (P for detection, G for estim.)
1 Initialize: f; spans Rol
2 for/:=0toL —1do

3 Yy, = lexl (New measurement, w; as in (4))

4 if mod(l + 1, N,) = 0 then

5 t:=(+1)/N, —1 (ULA segment index)

6 Vectorize measurements to form y; as in (7)

7 if mod(l +1,N,N¢) =0 (New slot) then

8 h:=(+1)/(NyN¢) —1 (slot index)

9 Compute yy, as in (12)

10 uy, := (outcome of detection (III-A1) OR
estimation (II1-A2))

1 uBW = BV /2

12 fh+1)n, : Parks-McClellan Filter Design

uy, U W)

13 else

14 ‘ ft+1 = ft

15 end

16 end

17 end

The beam direction is adapted based on the inference in the
previous slot. The beamwidth is reduced by a deterministic
amount (e.g., 0.5xprevious beamwidth in Section IV). The
suggested BA procedure is summarized in Alg. 1. A more
principled approach may be to guide the beamwidth using
bounds on variance of estimation.

B. HiePM-based Dynamic Beam Adaptation: A Plug-and-
Play SVAM Sensing Approach

The hiePM algorithm [4] processes each new snapshot
and updates the beamformer based on the current estimate
of the posterior density on the unknown DoA. Note that it
assumes that « is known. To incorporate the proposed sensing,
one approach is to update the beamformer after every N,
snapshots, where N, denotes the size of the virtual ULA.
Within each NN, interval, a SVAM beamformer, f;, is designed;
f; is simply a codeword from the hierarchical codebook that
satisfies the selection criteria within hiePM framework. The
beamfomer (of physical antenna aperture size, N) for N,
snapshots within this interval is constructed as in (4). The
remainder steps in Algorithm 1 in [4] are compatible with the
proposed sensing.

The impact of the modification can be understood in the
following manner. The hiePM strategy in [4] may repeat the

4The beamformer, f;, length reduces with aperture length, and thus there
exists a tradeoff between virtual aperture size and beamformer design quality.

10°
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(a) Total snapshots, L = 20

Fig. 2. (a) and (b) plot RMSE as a function of snapshots using non-adaptive
beamformer and root-MUSIC, when source lies in (—0.6,0.6) in u-space.

same beamformer multiple times until the posterior condition
triggers a new beamformer. While it repeats the beamformer,
it gains only in terms of SNR. In the proposed sensing, the
shifted spatial combining mimics a convolution operation and
aims to achieve both, a SNR boost and additional angular
information in the phase.

IV. NUMERICAL RESULTS

We numerically analyze the benefit of proposed SVAM
sensing over conventional beamforming when multiple snap-
shots are taken. We evaluate the performance under two
scenarios namely, i. non-adaptive beamformer ii. adaptive
beamformer. In the former scenario, the proposed SVAM
sensing allows using classical array processing algorithms
such as MUSIC and ESPRIT, as it constructs a virtual
array manifold from a single phased array measurements.
For the latter scenario, we explore both low snapshot and
low SNR regimes as the beamformer is allowed to adapt
over time. Here, we evaluate the performance of proposed
sensing under different assumptions on knowledge of a. We
implement different inference and beam alignment procedures
that utilize the measurements under SVAM sensing. These
procedures include the schemes discussed in Section III. We
also benchmark the performance with the hiePM algorithm
in [4]. The physical antenna size considered in this section
is N = 64. The main metric employed for comparison is
the root mean squared error (RMSE) computed in u-space as

RMSE = \/ 5 Z?Zl (g — uq)*: Q denotes the total number
of random trials.

A. SVAM study with Non-Adaptive Beamformer

1) RMSE as a function of SNR using root-MUSIC: The path
angle lies in the range (—0.6, 0.6) in u-space. The beamformer
f; is designed to span this Rol. Fig. (2) (a) plots the RMSE as
a function of SNR when L = 20 total snapshots are available.
Since the beamformer is not adapted, clearly constructing a
larger virtual ULA performs better as SNR increases. This
is expected as larger virtual apertures can help to carry more
information about the unknown path angle. Fig. (2) (b) plots a
similar curve when the total number of snapshots is L = 100.
The results are averaged over () = 200 random trials for
both the plots. The plots clearly highlight the significance of
SVAM sensing. With N, = 1 and without the knowledge
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Fig. 3. (a) RMSE as a function of snapshots using two variants of hiePM

algorithm. (b) RMSE over SNR in dB using different adaptive algorithms.

of a, the measurements are uninformative of path angle and
« simultaneously. With N, > 1, we can see both improved
estimation performance and improved lower bound on its
variance, clearly indicating the benefit from constructing larger
virtual apertures. However, note that when beamformer, f;, is
allowed to adapt, higher virtual array size may not necessarily
result in better performance. This is explored in [16].

B. SVAM study with Adaptive Beamformers

We assume that the DoA, wu, lies in between [0, 1) i.e., Rol
is % of the entire space. The path angle lies on a uniform
angular grid of size G = 64 in Rol. The different algorithms
locate the path angle on the same grid as the true path angle.

1) RMSE as a function of number of snapshots: Fig. 3 (a)
plots the RMSE (over () = 200 realizations) as a function of
number of snapshots. The SNR is set to —10 dB. Both the
curves assume « is known. The red curve uses the proposed
SVAM sensing with N,, = 4 (as described in Section III-B)
as opposed to the sensing methodology in hiePM [4]. The
posterior computations and the beamformer design are sim-
ilar to hiePM. As observed in the plot, using the proposed
SVAM sensing, the algorithm requires fewer snapshots for the
posterior mode to align with the ground truth angle. In this
experiment, 40 snapshots are sufficient for the proposed SVAM
sensing based implementation, compared to the 90 snapshots
required for sensing procedure in hiePM to ensure zero RMSE
(i.e., no misalignment) for the beam alignment problem.

2) RMSE as a function of SNR, o unknown scenario: In
Fig. 3 (b), we plot the RMSE (over Q = 100 realizations)
in u-space as a function of SNR in dB. Both « and u are
unknown unless otherwise specified. The proposed (adaptive)
SVAM-based sensing and estimation recovers w on grid.
The proposed (adaptive) SVAM-based sensing and detection
strategy decides between two partitions (P = 2). The 2
partitions are steered together to identify partitions with the
largest power difference. The hiePM curves are based on the
work in [4], [17]. The blue dashed curve for hierarchical
posterior matching assumes a fixed prior of CA(a,1) ie.,
it assumes the mean is set to correct o. As expected, when
the SNR is low, the prior is more important and further
helps to improve the estimation performance. At high SNR,
the prior is less effective. As observed, simply replacing the
sensing in hiePM with SVAM improves the performance (red

curve) indicating the effectiveness of proposed sensing. With
a-unknown, the proposed sensing improves over the hiePM
with fixed prior curve. Also, as observed, the detection strategy
replaces the estimation strategy at low SNR. At high SNR, or
after reliable detection, an estimation strategy may be used
over the detection algorithm.

V. CONCLUSION

A novel sensing approach named as Synthesis of Virtual
Array Manifold (SVAM) is proposed for mmWave single
RF chain systems and the ensuing benefits are discussed.
SVAM offers a flexible framework for sensing and allows
for inference using digital filtering on the synthesized virtual
array. Several algorithms for initial alignment are discussed,
including a modified hierarchical posterior matching-based
algorithm. The significance of the SVAM sensing for ini-
tial alignment is empirically studied. SVAM sensing enables
highly informative measurements and can be easily integrated
into existing algorithms for initial alignment.
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