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Abstract—A novel sensing approach for the single radio
frequency (RF) chain millimeter wave systems is proposed.
The sensing strategy is inspired from synthetic aperture radar
systems, and synthesizes a virtual array manifold vector using a
single phased array over temporal measurements. The geometry
of the virtual array can be controlled enabling synthesis of
both a virtual uniform linear array (ULA) and a virtual sparse
linear array starting from a large physical array. Moreover,
the proposed sensing can be realized using conventional phased
array/analog combiner. Several design parameters of the sensing
scheme provide flexibility and are discussed including their
impact on initial alignment. The proposed sensing approach
allows for a rich set of options for inference. Candidate detection
and estimation algorithms are presented and their performance
is evaluated.

I. INTRODUCTION

An ever-increasing number of user devices are getting

connected to cellular networks with the demand for data per

device rising rapidly. Millimeter wave (mmWave) spectrum al-

location is envisioned to support this demand and enable many

new use cases such as industrial-IoT, virtual and augmented

reality, biomedical applications, and non-terrestrial networks

in the beyond 5G (B5G) and 6G cellular networks [1]. The

challenges to successfully establish mmWave communication

link include large propagation losses and sparse multipath en-

vironment. Owing to the large propagation losses in mmWave

channel, massive MIMO technology and beamforming gain

become crucial to achieve reliable and low latency communi-

cation. On the other hand, the specular nature of the mmWave

channel renders it to be sparse and requires accurate Beam

Alignment (BA). This challenge is only further exacerbated by

the narrow beamwidths and consequent large codebook size

due to the large antenna array dimensions.

Reducing the BA duration is a critical and an active area

of research. Hardware cost also impacts the ability of the

transceivers to sense the mmWave channel. The large number

of antenna elements are typically supported by only a few

Radio Frequency (RF) chains [2], and thus necessitates for a

low-dimensional projection of the received signal at the anten-

nas. Beam alignment using such a low-dimensional signal is a

challenging problem. There is a need to build a better sensing

approach to achieve significant reduction in BA duration that

can exploit the array geometry and channel characteristics un-

der the hardware constraints. The need is accurately captured

with the recent surge in research related to Integrated Sensing

and Communication (ISAC) wherein sensing and communica-

tion services co-exist to reduce power consumption, improve

spectral efficiency and allow for hardware-reuse [3].

In this work we address the BA problem when only a

single RF chain is available. A novel sensing approach is

proposed that allows to beamform in a Region of Interest

(RoI) while simultaneously capturing rich information about

the sparse mmWave channel. The contributions of this work

are as follows:

• A novel sensing methodology, inspired from Synthetic Aper-

ture Radar (SAR), is proposed for the single RF chain

mmWave systems. Under the proposed sensing approach,

a virtual Uniform Linear Array (ULA) manifold is synthe-

sized over temporal measurements. Extension to construct a

virtual arbitrary array geometry such as Sparse Linear Array

(SLA) is also discussed.

• We provide candidate estimation and detection algorithms

that infer the dominant beam Direction-of-Arrival (DoA)

based on measurements using proposed sensing. The pre-

sented algorithms demonstrate the many options for in-

ference enabled by the proposed sensing scheme. It is

also highlighted how proposed sensing can be incorporated

within other BA algorithms with the help of hierarchical

Posterior Matching (hiePM) technique proposed in [4].

Numerical results are provided that highlight the benefit from

using proposed sensing over conventional schemes in litera-

ture. Notations: (.)c denotes complex conjugate operation, and

[M ] = {0, 1, . . . ,M − 1},M ∈ Z
+.

II. PROBLEM STATEMENT AND PROPOSED SENSING

We consider a receiver (base station or user equipment)

equipped with a ULA of size N and a single RF chain. We

assume a flat fading channel, with a single dominant path

between the transmitter and receiver. We further assume that

the channel remains coherent within the training duration due

to low receiver mobility.

A. Problem Statement

The received signal at the antennas at instant l, xl ∈ C
N ,

is given by

xl =
√

PsαφN (u) + n̄l, 0 ≤ l < L, (1)

where L denotes the total training duration. Ps (> 0) denotes

the combined contribution of transmitted power and the large-

scale fading (path loss and shadowing), α ∈ C is the unknown

small-scale fading coefficient. Since the transmitted symbol is
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Fig. 1. A (virtual) ULA segment of aperture size Nv = 4 is created using 4
snapshots. The beamformer is adapted once every slot to improve signal-to-
noise ratio (SNR), here slot size is Nf = 2.

known, it can be easily absorbed within the signal term of

xl in (1). Thus, we assume the transmitted symbol value to

be 1 without loss of generality. φN (u) is the array manifold

or response vector for an incoming narrowband signal along

the angle u; u = sin θ, u ∈ [−1, 1), where θ ∈ [−π
2 ,

π
2 )

denotes physical DoA. Noise n̄l ∈ C
N is distributed as

CN (0, σ2
nI) and i.i.d. over time. Since there is a single

RF chain, the received signal is processed using an analog

combiner, wl ∈ C
N . The output, yl ∈ C, available for

inference is given by

yl = wH
l xl=

√

Psαw
H
l φN (u) +wH

l n̄l

=
√

Psαw
H
l φN (u) + nl. (2)

The goal is to design wl and infer u; wl can be adapted

over time to improve the inference. For a ULA with λ/2
inter-element spacing1, where λ denotes the wavelength of the

received signal, we have

φN (u) = [1 exp (jπu) · · · exp (jπ(N − 1)u)]T . (3)

In this paper, we consider the ULA geometry for easier

exposition of ideas. However, these ideas can be extended to

planar geometries as well, such as uniform rectangular arrays

[5]. Next, we describe the proposed sensing scheme which

provides a high-level structure to the beamformer, wl. We

refer to this sensing methodology as Synthesis of Virtual Array

Manifold (SVAM).

B. Synthesis of Virtual Array Manifold (SVAM) Sensing

We propose a novel sensing approach inspired by synthetic

aperture radar used in remote sensing and automotive radar [6].

In typical SAR systems, the sensor motion allows synthesis of

larger aperture than physical antenna, which helps to improve

resolution. In this work, we mimic the sensor motion by

designing wl accordingly. We exploit the coherence interval

to synthesize virtual apertures over time. An important conse-

quence is that, such measurements preserve phase information

from the physical antenna, which captures rich information

about the DoA of the incoming signal. The proposed sensing

can be applied more broadly to multi-path angles. Moreover,

leveraging the complex exponential structure present at the

combiner output yl, l ∈ [L], it is possible to apply an unlimited

number of digital filters on these measurements.

1λ/2 inter-element spacing prevents ambiguity in angular estimation.

1) Constructing a Virtual ULA with λ/2 Inter-element

Spacing: Let Nv (≤ N) denote the aperture size of the

virtual ULA we wish to create. We assume that the total

training duration, L, is divisible by Nv for simplicity. Let

t(l) = floor(l/Nv) denote2 the virtual ULA segment index

(see Fig. 1). We design a beamformer of size M = N−Nv+1
denoted by ft(l) ∈ C

M , such that ‖ft(l)‖2 = 1. Initially the

beamformer is designed to span a Region of Interest (RoI) and

may be adapted over time. Such RoI can be used to incorporate

any prior information available about the DoA. The analog

combiner at instant l is given by

wl =
[

0T
mod(l,Nv)

fTt(l) 0T
Nv−mod(l,Nv)−1

]T

. (4)

Thus, within a segment duration, the beamformer slides along

the antenna aperture and performs convolution in space. In

contrast to the work in [7], here only a single RF chain is

available and thus a virtual ULA segment is synthesized over

time. Let

βt(l)(u) = fHt(l)φM (u), (5)

denote the complex gain of the beamformer along the angle

u. The signal yl post-combining can be expressed as

yl = wH
l xl =

√

Psαβt(l)(u) · exp {jπumod(l, Nv)}+ nl.
(6)

Note that, the complex gain βt(l)(u) does not change within

a segment, but ‘exp {jπumod(l, Nv)}’ varies within the seg-

ment.

Remark 1. The beamforming gain, measured in terms

of |βt(l)(u)|2, in the passband depends primarily on the

beamwidth of the beamformer, ft(l). For an ideal beamformer

design, the gain in the beamformer passband corresponding

to a beamwidth of 2
R , R ≥ 1, in u-space is given by

|βt(l)(u)|2 = R. As the beamformer size, M , increases the

beamformer response approaches the ideal response.

We drop the notation of dependence of t on l for simplicity.

We stack the measurements within a segment to form yt =
[

ytNv
ytNv+1 · · · y(t+1)Nv−1

]T
, t ∈ [L/Nv] (see Fig. 1) as

yt=
√

Psαβt(u) [1 exp jπu · · · exp j(Nv − 1)πu]
T
+ nt

=
√

Psαβt(u)φNv
(u) + nt. (7)

We identify the following design parameters: a) Nv ∈
{1, 2, . . . , N}, the virtual ULA size, and b) beamformer, ft
design, which includes the beam direction and beam width.

Nv = 1 reduces to the conventional beam design. Thus, the

proposed sensing strategy includes the methodology adopted

for sensing in [4], [8] as a special case. The hierarchical

codebook in [8] designed using a least squared error criterion

imposes a constant amplitude and phase in the passband.

The inference is improved by relaxing the constant phase

requirement in the passband. Thus, in this work we design

the beamformers, ft, as linear-phase Finite Impulse Response

(FIR) filter using the Parks-McClellan algorithm [9].

2floor(·) denotes the floor function.
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Remark 2. It is important to highlight the significance of the

proposed sensing methodology. Given just two measurements,

it is possible to construct a virtual ULA under the proposed

sensing with Nv = 2. This is equivalent to a single snapshot

measurement from a physical array of size 2. Owing to the

rich (array) geometrical information preserved in the measure-

ments, it is thus possible to estimate the dominant path DoA

in a gridless manner using existing techniques [10]–[12]. In

contrast, the beam scan operation using Nv = 1 requires as

many measurements as the codebook size to detect the DoA.

2) Constructing a Virtual Sparse Linear Array: The con-

struction presented in the previous subsection can be extended

to form virtual ULAs with more than λ/2 spacing3. More

generally, a Sparse Linear Array (SLA) can also be realized as

the virtual array geometry, for example, minimum redundancy

arrays [13] or nested arrays [14]. These can help to increase the

virtual aperture and improve resolution for the same segment

duration. Let Nv denote the number of antenna elements

in the virtual SLA we wish to construct over time. Let

P = {Pi : 0 ≤ Pi < N,Pi ∈ Z, i ∈ [Nv]} denote the set of

sensor positions in the SLA ordered in an increasing manner;

P0 = 0, without loss of generality. We design a beamformer,

ft, of length M = N − PNv−1. The analog combiner at time

l, in the case of SLA, is given by

wl =
[

0T
Pmod(l,Nv)

fTt 0T
N−M−Pmod(l,Nv)

]T

. (8)

Using identical notation to describe the complex gain, βt(u),
as in (5), the signal yl post-combining can be expressed as

yl = wH
l xl =

√

Psαβt(u) · exp
(

jπuPmod(l,Nv)

)

+ nl. (9)

Note that (9) generalizes (6) for the SLA case. Finally, the

measurements within the t-th SLA segment can be stacked as

yt=
√

Psαβt(u)[1 exp (jπP1u) · · · exp (jπPNv−1u)]
T + nt

=
√

Psαβt(u)SPφN (u) + nt, (10)

where SP ∈ R
Nv×N is a binary sampling matrix given by

[SP]m,n =

{

1 if n = Pm

0 otherwise
,m ∈ [Nv], n ∈ [N ]. (11)

In the remainder of the work, we focus on the virtual ULA

with λ/2 spacing-based sensing for ease of exposition, but the

ideas presented can be easily extended to the virtual SLA case.

The proposed design for wl in (6) and (9) may be realized

using a pair of phase shifters to form arbitrary modulus for

the beamformer coefficients (see Theorem 1 in [15]).

III. VARIOUS INFERENCE PROCEDURES ENABLED BY THE

NOVEL SVAM SENSING

We begin by first noting that in the absence of prior on both

α and u we need at least two snapshots to make meaningful

inference on (α, u), even if the SNR is infinite. Moreover, if

Nv is set to one, then the filter design over the two snapshots

3Any ambiguity in angular estimation can be resolved if the RoI is an
appropriate fraction of the spatial region.

must have different magnitude or phase response (see Chapter

1, Section 4.1 in [16]). We select Nv ≥ 2 in this work.

We highlight that both the synthetic aperture size and virtual

array geometry can be adapted over time, although we do

not explore this further in this work. In this section, we

present three different options for inferring u using SVAM

measurements as described in the previous section.

A. Fixed Interval Beam Adaptation

In order to combat noise we can construct multiple virtual

ULA segments keeping the beamfomer design ft fixed. We

refer to this duration as a slot (see Fig. 1). In other words, ft
is adapted once after each slot. Let Nf denote the slot size,

indicating the number of virtual ULA segments contained in

one slot. We infer u based on the following average statistic

(h ∈ [L/(NvNf )])

ỹh =
1

Nf

(h+1)Nf−1
∑

t=hNf

yt. (12)

The slot duration may be adapted over time depending on

SNR. Such an adaptive strategy is explored in [16]. The

modified hiePM algorithm discussed in the next subsection

is another example wherein the slot duration is adapted dy-

namically, although hiePM [4] assumes that α is known.
1) Detection Strategy: Owing to the complex exponential

signal component in (7), it is possible to apply much less

restrictive digital filter to infer u. We use this feature explicitly

within the detection strategy. By framing a detection question,

we hope to enable the overall framework to operate in low

SNR regime. We divide the RoI into P partitions and design P
beamformers fdeth,p ∈ C

Nv , p = {1, . . . , P}; each beam focuses

in one such partition. The algorithm then compares power in

the P narrow partitions within the RoI

pDET
h = argmax

p

∣

∣

∣

(

fdeth,p

)H
ỹh

∣

∣

∣

2

. (13)

The P partitions may be steered to identify more meaningful

partitions. This is implemented in Section IV. Although a

large P allows to design narrow beamwidths with higher

beamforming gain, it may also increase the misdetection

probability.
2) Estimation Strategy: We model the unknowns (α,u) as

deterministic variables. Note that both can be modeled as

stochastic variables, especially if additional prior is available.

Such a stochastic modeling for estimation is considered in

[16]. For a fixed u′, the maximum likelihood estimation (MLE)

of α gives

αMLE
h (u′) =

1√
Ps

φNv
(u′)H

(

∑h
h′=0 β

c
h′Nf

(u′)ỹh′

)

‖φNv
(u′)‖2∑h

h′=0 |βh′Nf
(u′)|2

. (14)

Let gh(u
′) =

∑h
h′=0 |βh′Nf

(u′)|2 denote the cumulative

beamforming gain upto slot h. The MLE optimization problem

reduces to

uMLE
h = argmax

u′

∣

∣

∣

∣

∣

φNv
(u′)H

‖φNv
(u′)‖

(

h
∑

h′=0

βc
h′Nf

(u′)
√

gh(u′)
ỹh′

)
∣

∣

∣

∣

∣

2

. (15)
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The above optimization uses the well-known matching objec-

tive. The presence of the manifold vector φNv
(u′) highlights

the importance of the virtual geometry we synthesize; it

decides the resolution. Sparse geometries such as nested arrays

[14] can help to synthesize large apertures in fewer snapshots4.

Algorithm 1: Beam Alignment Using SVAM Sensing

Result: ufinal = u∗

L/(NvNf )−1

Input: L,Nv, Nf , (P for detection, G for estim.)
1 Initialize: f0 spans RoI

2 for l := 0 to L− 1 do

3 yl = wH
l xl (New measurement, wl as in (4))

4 if mod(l + 1, Nv) = 0 then

5 t := (l + 1)/Nv − 1 (ULA segment index)

6 Vectorize measurements to form yt as in (7)

7 if mod(l + 1, NvNf ) = 0 (New slot) then

8 h := (l + 1)/(NvNf )− 1 (slot index)

9 Compute ỹh as in (12)

10 u∗

h := (outcome of detection (III-A1) OR

estimation (III-A2))

11 uBW := uBW/2
12 f(h+1)Nf

: Parks-McClellan Filter Design
(

u∗

h, u
BW
)

13 else

14 ft+1 = ft
15 end

16 end

17 end

The beam direction is adapted based on the inference in the

previous slot. The beamwidth is reduced by a deterministic

amount (e.g., 0.5×previous beamwidth in Section IV). The

suggested BA procedure is summarized in Alg. 1. A more

principled approach may be to guide the beamwidth using

bounds on variance of estimation.

B. HiePM-based Dynamic Beam Adaptation: A Plug-and-

Play SVAM Sensing Approach

The hiePM algorithm [4] processes each new snapshot

and updates the beamformer based on the current estimate

of the posterior density on the unknown DoA. Note that it

assumes that α is known. To incorporate the proposed sensing,

one approach is to update the beamformer after every Nv

snapshots, where Nv denotes the size of the virtual ULA.

Within each Nv interval, a SVAM beamformer, ft, is designed;

ft is simply a codeword from the hierarchical codebook that

satisfies the selection criteria within hiePM framework. The

beamfomer (of physical antenna aperture size, N ) for Nv

snapshots within this interval is constructed as in (4). The

remainder steps in Algorithm 1 in [4] are compatible with the

proposed sensing.

The impact of the modification can be understood in the

following manner. The hiePM strategy in [4] may repeat the

4The beamformer, ft, length reduces with aperture length, and thus there
exists a tradeoff between virtual aperture size and beamformer design quality.
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(a) Total snapshots, L = 20 (b) Total snapshots, L = 100

Fig. 2. (a) and (b) plot RMSE as a function of snapshots using non-adaptive
beamformer and root-MUSIC, when source lies in (−0.6, 0.6) in u-space.

same beamformer multiple times until the posterior condition

triggers a new beamformer. While it repeats the beamformer,

it gains only in terms of SNR. In the proposed sensing, the

shifted spatial combining mimics a convolution operation and

aims to achieve both, a SNR boost and additional angular

information in the phase.

IV. NUMERICAL RESULTS

We numerically analyze the benefit of proposed SVAM

sensing over conventional beamforming when multiple snap-

shots are taken. We evaluate the performance under two

scenarios namely, i. non-adaptive beamformer ii. adaptive

beamformer. In the former scenario, the proposed SVAM

sensing allows using classical array processing algorithms

such as MUSIC and ESPRIT, as it constructs a virtual

array manifold from a single phased array measurements.

For the latter scenario, we explore both low snapshot and

low SNR regimes as the beamformer is allowed to adapt

over time. Here, we evaluate the performance of proposed

sensing under different assumptions on knowledge of α. We

implement different inference and beam alignment procedures

that utilize the measurements under SVAM sensing. These

procedures include the schemes discussed in Section III. We

also benchmark the performance with the hiePM algorithm

in [4]. The physical antenna size considered in this section

is N = 64. The main metric employed for comparison is

the root mean squared error (RMSE) computed in u-space as

RMSE =
√

1
Q

∑Q
q=1 (ûq − uq)

2
; Q denotes the total number

of random trials.

A. SVAM study with Non-Adaptive Beamformer

1) RMSE as a function of SNR using root-MUSIC: The path

angle lies in the range (−0.6, 0.6) in u-space. The beamformer

ft is designed to span this RoI. Fig. (2) (a) plots the RMSE as

a function of SNR when L = 20 total snapshots are available.

Since the beamformer is not adapted, clearly constructing a

larger virtual ULA performs better as SNR increases. This

is expected as larger virtual apertures can help to carry more

information about the unknown path angle. Fig. (2) (b) plots a

similar curve when the total number of snapshots is L = 100.

The results are averaged over Q = 200 random trials for

both the plots. The plots clearly highlight the significance of

SVAM sensing. With Nv = 1 and without the knowledge
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Fig. 3. (a) RMSE as a function of snapshots using two variants of hiePM
algorithm. (b) RMSE over SNR in dB using different adaptive algorithms.

of α, the measurements are uninformative of path angle and

α simultaneously. With Nv > 1, we can see both improved

estimation performance and improved lower bound on its

variance, clearly indicating the benefit from constructing larger

virtual apertures. However, note that when beamformer, ft, is

allowed to adapt, higher virtual array size may not necessarily

result in better performance. This is explored in [16].

B. SVAM study with Adaptive Beamformers

We assume that the DoA, u, lies in between [0, 1) i.e., RoI

is 1
2 of the entire space. The path angle lies on a uniform

angular grid of size G = 64 in RoI. The different algorithms

locate the path angle on the same grid as the true path angle.

1) RMSE as a function of number of snapshots: Fig. 3 (a)

plots the RMSE (over Q = 200 realizations) as a function of

number of snapshots. The SNR is set to −10 dB. Both the

curves assume α is known. The red curve uses the proposed

SVAM sensing with Nv = 4 (as described in Section III-B)

as opposed to the sensing methodology in hiePM [4]. The

posterior computations and the beamformer design are sim-

ilar to hiePM. As observed in the plot, using the proposed

SVAM sensing, the algorithm requires fewer snapshots for the

posterior mode to align with the ground truth angle. In this

experiment, 40 snapshots are sufficient for the proposed SVAM

sensing based implementation, compared to the 90 snapshots

required for sensing procedure in hiePM to ensure zero RMSE

(i.e., no misalignment) for the beam alignment problem.

2) RMSE as a function of SNR, α unknown scenario: In

Fig. 3 (b), we plot the RMSE (over Q = 100 realizations)

in u-space as a function of SNR in dB. Both α and u are

unknown unless otherwise specified. The proposed (adaptive)

SVAM-based sensing and estimation recovers u on grid.

The proposed (adaptive) SVAM-based sensing and detection

strategy decides between two partitions (P = 2). The 2
partitions are steered together to identify partitions with the

largest power difference. The hiePM curves are based on the

work in [4], [17]. The blue dashed curve for hierarchical

posterior matching assumes a fixed prior of CN (α, 1) i.e.,

it assumes the mean is set to correct α. As expected, when

the SNR is low, the prior is more important and further

helps to improve the estimation performance. At high SNR,

the prior is less effective. As observed, simply replacing the

sensing in hiePM with SVAM improves the performance (red

curve) indicating the effectiveness of proposed sensing. With

α-unknown, the proposed sensing improves over the hiePM

with fixed prior curve. Also, as observed, the detection strategy

replaces the estimation strategy at low SNR. At high SNR, or

after reliable detection, an estimation strategy may be used

over the detection algorithm.

V. CONCLUSION

A novel sensing approach named as Synthesis of Virtual

Array Manifold (SVAM) is proposed for mmWave single

RF chain systems and the ensuing benefits are discussed.

SVAM offers a flexible framework for sensing and allows

for inference using digital filtering on the synthesized virtual

array. Several algorithms for initial alignment are discussed,

including a modified hierarchical posterior matching-based

algorithm. The significance of the SVAM sensing for ini-

tial alignment is empirically studied. SVAM sensing enables

highly informative measurements and can be easily integrated

into existing algorithms for initial alignment.
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