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A note on rationally slice knots

Adam Simon Levine

ABSTRACT. Kawauchi proved that every strongly negative amphichiral knot
K c S* bounds a smoothly embedded disk in some rational homology ball
Vk, whose construction a priori depends on K. We show that Vy is inde-
pendent of K up to diffeomorphism. Thus, a single 4-manifold, along with
connected sums thereof, accounts for all known examples of knots that are
rationally slice but not slice.
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1. Introduction

Let K be a knot in S3. If X is a smooth, compact, oriented 4-manifold with
boundary S3, we say that K is slice in X if there exists a smoothly embedded disk
D in X with boundary equal to K. Note that if K is slice in X, then so is any knot
that is smoothly concordant to K.

For a commutative ring R with unit, we say that K is R-slice if it is slice in
some 4-manifold X that is an R-homology 4-ball. We will focus on the cases
of R = Z, Q, and Z,, (for p prime). Note that a Z,-homology 4-ball X is the
same as a Q-homology 4-ball with the additional property that |H,(X; Z)| is not
divisible by p. We use rationally slice as a synonym for Q-slice.!

By a slight abuse of notation, if Z is a closed 4-manifold and K is slice in
Z — B*, we also say that K is slice in Z. If X = Z — B*, then X is an R-homology
4-ball if and only if Z is an R-homology 4-sphere.
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Let C denote the smooth concordance group, and let K denote the subgroup
of € consisting of concordance classes of knots that are R-slice. In other words,
Ky is the kernel of the forgetful map € — Cp, where Cj, is the group of knots
in S3 up to concordance in R-homology cobordisms.

It remains an open question whether there exist knots that are Z-slice but
not slice, i.e. whether X, # 0. In contrast, it is well-known that there ex-
ist knots that are Q-slice but not slice (or even Z-slice), such as the figure-
eight knot. Specifically, a knot K C S is called strongly negative amphichiral
if there exists an orientation-reversing involution ¢ : S* — S* preserving K
setwise and having exactly two fixed points, both lying on K. Following ter-
minology of Keegan Boyle, we refer to a strongly negative amphichiral knot
as a SNACK. Note that every SNACK represents a class of order at most 2 in
€. Kawauchi [Kaw80, Kaw09] showed that every SNACK is Q-slice; more pre-
cisely, he proved that every SNACK X is slice in a certain rational homology
4-ball Vi, whose construction a priori depends on K.

The main theorem of this note is that V is in fact independent of K up to
diffeomorphism; that is, all SNACKs are slice in the same rational homology
4-ball. We may describe the manifold explicitly as follows. Let7: S? x §? —
S? x S? be the map 7(x,y) = (r(x),—y), where r: S?> — 52 is a reflection.
This map is an orientation-preserving involution with no fixed points, so the
quotient Z, = S? x S?/7 is a closed, orientable manifold. Some elementary
algebraic topology (see Lemma 2.3 below) shows that Z,, is a rational homology
4-sphere with 7,(Z,) = H,(Z,) = H,(Z,) = Z,. Thus, for every odd prime p,
Z, is a Z,-homology sphere. Note that the map (x,y) — (x,—y) induces an
orientation-reversing involution on Z,.

In Section 2, we will prove:

Theorem 1.1. For every strongly negative amphichiral knot K C S3, Kawauchi’s
manifold Vi is diffeomorphic to Z, — B*. Thus, every SNACK is slice in Z, — B*.

Remark 1.2. For another characterization of Z, consider the map q: S? X
S? — RP? taking (x, ) to the class of y. Then gqot = g, so q descends to a
map §: Z, — RP?, which gives Z, the structure of an S2-bundle over RP?. If
x € S? is any fixed point of the reflection r, we obtain a section o, : RP? — Z,
by defining o, ([y]) = [(x,y)] for each y € S2. Since the fixed-point set of r is
a circle, we in fact find a 1-dimensional family of nearby disjoint sections. The
manifold Z, is thus characterized by being the unique S? bundle over RP? with
orientable total space and a section of self-intersection 0. (See [Hil02, p. 237]
for further discussion of S?-bundles over RP?2.)

We claim that Z; is represented by the handle diagram in Figure 1 (using dot-
ted 1-handle notation). As seen in [GS99, Figure 6.2], the 0-handle, 1-handle,
and 2-framed 2-handle from the figure produce the D?-bundle over RP? with
orientable total space and Euler number 0. The double of that D?-bundle is the
S2-bundle described above, which is Z,. We obtain the double by adding a 0-
framed 2-handle along the meridian of the first 2-handle, and then a 3-handle
and 4-handle, which yields Figure 1.
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FIGURE 1. Kirby diagram for Z,.

Before we turn to the proof of Theorem 1.1, we discuss its implications for the
study of rationally slice knots, albeit with more questions than answers. Sur-
prisingly, Kawauchi’s construction actually accounts for all known examples
of knots that are QQ-slice but not slice, that is, all known nontrivial elements of
Kg. We make this explicit as follows.

First, note that if K and K’ are knots, and if X is slice in a 4-manifold X and
K’ is slice in X/, then K # K is slice in X § X/, and —K is slice in X (i.e. X with
reversed orientation). Let 8§ denote the set of concordance classes of knots that
are slice in Bn(Z, — B*) for some n € N (or equivalently in #nZ,). Because
Z, = Z, as oriented manifolds, we thus see that § is a subgroup of C and is
contained in K. Indeed, for every odd prime p, we have § C JCZP.

For any knots P C S! x D? and K C S3, let P(K) denote the satellite knot
with pattern P and companion K (i.e. the image of P under the embedding
S! x D? — S3 determined by the 0-framing of K). The operation K — P(K)
descends to a function on €. If P(O) is slice (where O denotes the unknot?), we
call P a slice pattern, and the operation K — P(K) a slice satellite operation. If a
knot K is slice in a particular 4-manifold X, then so is P(K) for any slice pattern
P; thus, the subgroups Xy (for any ring R) and 8 are closed under slice satellite
operations.

To the author’s knowledge, the only known concordance classes of knots
that are rationally slice but not slice (that is, nontrivial elements of Kg) arise
from Kawauchi’s construction, together with taking iterated slice satellite op-
erations and/or connected sums, and thus they lie in S. We note several such
constructions in the literature:

+ Cha[Cha07, Theorem 4.16] exhibited an family of SNACKSs that gener-
ate a Z%° subgroup of K. These knots can be distinguished up to con-
cordance by their classes in the algebraic concordance group [Lev69].
Subsequently, Hedden, Kim, and Livingston [HKL16] found another
such family of SNACKs with the additional property of being topolog-
ically slice (and hence algebraically slice). The proof that these knots
fail to be slice relies on the Heegaard Floer d invariants [OS03a] of the
knots’ branched double covers.

2Many authors use U to denote the unknot, but we prefer O because of the obvious graphical
similarity.
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« For a knot K and relatively prime integers m, n, let K, ,, denote the

(m, n) cable of K (where m denotes the winding number in the lon-
gitudinal direction and »n in the meridional direction). Then for any
m € Z, the operation K — K, ; is a slice satellite operation. Let F de-
note the figure-eight knot, which is strongly negative amphichiral and
hence slice in Z,. Hom, Kang, Park, and Stoffregen [HKPS22] proved
that the set of knots

{Fon_11 1 n>2}

is linearly independent in C, and thus generates a Z* subgroup of C
contained in K (and indeed in 8).> This result provided the first known
non-torsion elements of K. For linear combinations consisting of more
than one summand, the resulting knot is slice in some connected sum
of copies of Z,, but a priori not necessarily slice in Z; itself. The proof
makes use of concordance invariants coming from involutive knot Floer
homology [HM17].

More recently, Dai, Kang, Mallick, Park, and Stoffregen [DKM+22],
answering a long-standing question of Kawauchi [Kaw80], proved that
F, is not slice (and indeed generates a Z subgroup of 8). This proof
relies on using the involutive structure of the Heegaard Floer homology
of the branched double cover and the action of the deck transformation.
Kawauchi’s result applies only to strongly negative amphichiral knots,
but not necessarily to knots that are merely negative amphichiral (iso-
topic to their mirror reverses). However, Kim and Wu [KW18] proved
that if K is a fibered, negative amphichiral knot whose Alexander poly-
nomial is irreducible, then K is necessarily obtained from a SNACK
by iterated slice satellite operations, and hence is rationally slice by
Kawauchi’s result. Again, any such knot must lie in 8.

In some sense, Theorem 1.1 illustrates how little is known about rational
concordance: asingle 4-manifold (along with connected sums of copies thereof)
accounts for all known examples of knots that are rationally slice but not slice.
That is, the following question is open:

Question 1.3. Is Ko = 8? That is, is every rationally slice knot slice in a
connected sum of copies of Z,?

To try to answer Question 1.3 in the negative, it is instructive to consider
not only Q-concordance but also Z,-concordance. By the above discussion, all
known elements of K¢, are contained in K z, for every odd prime p. In contrast,
the following question remains open:

Question 1.4. Is X, # 07 That is, does there exist a knot K C S3 that is slice
in a Z,-homology ball but not slice?

3The result is stated in [HKPS22] for F,,_, _,, but note that F,,_, _, is the mirror of F,,_, .
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FIGURE 2. Kirby diagram for X,, ,. The box indicates rn full pos-
itive twists.

In some sense, this question is nearly as difficult as that of the better-known
problem of finding nontrivial elements of K. A large number of knot invari-
ants, including Heegaard Floer invariants such as 7 [0OS03b] and Y [OSS17],
necessarily vanish for all rationally slice knots. Most crucially, even the invari-
ants used in the above-mentioned results, which can detect some nontrivial el-
ements of K, are unable to obstruct a knot from being slice in a Z,-homology
4-ball. Namely, if a knot K is Z,-slice, then:

« it is algebraically slice [CLR08, Theorem 3];

« the slice obstructions from involutive knot Floer homology vanish
[HKPS22, Remark 1.8]; and

« the branched double cover of K bounds an equivariant Z,-homology
ball, and hence the obstructions from d invariants and involutive Floer
homology vanish [DKM+22, Remark 5.4].

It remains unknown whether Rasmussen’s s invariant [Ras10] (or any of its
generalizations) vanishes for all rationally slice knots.

Nevertheless, here is one potential approach to Questions 1.3 and 1.4. First,
recall that if a knot K is slice in a Z,-homology ball X, then for any power pk,
the p¥-fold cyclic branched cover of X branched over the slice disk is again a Z p-
homology ball whose boundary is Z,(K). (On the other hand, if H,(X; Z,) # 0,
then this covering may not be a rational homology ball.) Thus, suppose one can
find a knot K that is slice in a Z,-homology 4-ball X that is not an integer ho-
mology ball, and choose any odd prime p dividing |H;(X; Z)|. If one can show
that Z,«(K) does not bound any rational homology ball (using, say, d invari-
ants), it then follows that K cannot be Z p-slice, and in particular it cannot be
in 8. This would thus resolve both Question 1.3 (in the negative) and Question
1.4 (in the affirmative).

Klug and Ruppik [KR21, Corollary 2.5] proved that if X is a closed 4-manifold
whose universal cover X is R* or S*, then any knot that is slice in X is slice.
However, this is not an issue if X is a rational homology 4-sphere with finite
(nontrivial) fundamental group; a simple Euler characteristic argument shows
that the universal cover must have nontrivial H,. For instance, for any n €
N and a € Z, let X, , denote the closed 4-manifold indicated by the handle
diagram in Figure 2, generalizing Z, = X,,. It is easy to verify that X,, ; is a
rational homology 4-sphere with 71(X,, ;) & H,(X,,) & Z/n, essentially the
simplest construction of a manifold with those properties. The diffeomorphism
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type of X, , depends only on n and the parity of a. Thus, it is natural to ask a
more concrete version of Question 1.4:

Question1.5. Forn > 2and a € {0, 1}, does there exist a non-slice knot K c S>
that is slice in X,, , — B*?

We invite the reader to find a knot with the needed properties.

2. Proof of Theorem 1.1

Throughout this section, let K C S3 be a SNACK. Up to equivariant isotopy,
we may assume that K is fixed setwise by the map ¢ : S* — S that is the re-
striction to 3 of the linear involution ® : R* — R* given by ®(x;, x,, X3, X4) =
(X1, —X3, —X3, —X4).

Letr: R? — R? denote the reflection r(x,, x,) = (x;, —X,); we also denote
its restrictions to D? and S* by the same symbol. Let ¢, : S' — S3 denote the
inclusion of K, chosen to be equivariant with respect to the involutions r on S!
and ¢ on S3. (In particular, ¥ takes (+1, 0) to the two fixed points of ¢.) By the
equivariant tubular neighborhood theorem (see, e.g., [Kan07, Theorem 4.4]),
we may extend g to an embedding ¥x : S! x D? < S* that parametrizes an
equivariant closed tubular neighborhood of K, with the following properties:

« Wy restricts to g on St x {0}.

« For any (x,y) € S' x D2, we have poWy(x,y) = Wi (r(x), —y).

+ Wy determines the 0-framing of K; that is, for any nonzero y € D2,
P (St x {y}) has linking number 0 with K.

Let X denote the O-trace of K, obtained by attaching a 0-framed 2-handle
D? x D? to D* using the attaching map W. This manifold acquires an orienta-
tion from that of D*. The boundary of X is the 0-surgery SS (K). The involution
®|p4 extends to an orientation-reversing involution @ : Xy — Xk, defined on
the 2-handle D?x D? by ®(x, y) = (r(x), —y). The fixed point set of ®y is a cir-
cle, consisting of the arcs [—1, 1] x{a} c D*and ([-1,1] X{O})x{a} C D?>xD?. In
particular, observe that @ restricts to a fixed-point-free, orientation-reversing
involution of SS(K), which we denote by ¢.

We now describe Kawauchi’s construction (in slightly different terms). Let
Zx denote the quotient X /~, where for all x € SS(K), we set x ~ ¢r(x). Let
. Xg — Zg denote the quotient map. That is, we obtain Zg by a self-gluing
of the boundary of Xg. Because ¢ has no fixed points, Zy is a smooth, closed
4-manifold, and because ¢y is orientation-reversing, Zx naturally acquires an
orientation from that of X.

Lemma 2.1. The knot K is slice in Zx.
Proof. LetX ;< be the union of X with an exterior collar SS (K)x[0,1], attached
along SS(K ) % {1}, and let Z be the quotient of X}, by self-gluing by ¢y along

S3(K) x {0}. Then clearly X}, = Xy and Zj, = Zg. Let B C Z} denote the
0-handle of Xy, which is still an embedded closed 4-ball even after the gluing
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thanks to the collar. Let Vi = Z;< — int(B); there is a natural identification

0V = S3. Then K bounds an embedded disk in Vi, namely the core of the
2-handle of Xx. Thus, K is slice in Zg. (]

Remark 2.2. In the paper [Kaw09], Kawauchi considers the more general case
of a strongly negative amphichiral knot K in an arbitrary rational homology
sphere Y, not just in S3. He first considers Y,(K) x [0,1]/~, where (x,0) ~
(¢x(x),0), and proves that this is a rational homology S'xD? bounded by Y ,(K).
Adding a 2-handle along the meridian of K then produces a rational homology
ball bounded by Y, in which K is slice. In the case where Y = S 3 this agrees
with the description of Vi in the previous paragraph.

Let DX denote the double of Xx: DXy = Xy LIX /~, where the two copies
are identified by the identity map of SS(K ). This manifold acquires an orienta-
tion from that of Xg. Since DX is the union of two simply-connected spaces
along a connected intersection, it is simply-connected. Indeed, because Xy is
built with only a 0- and 2-handle (with even framing), it is well-known that
DXy = S? x S?, irrespective of K. (See, e.g., [GS99, Corollary 5.1.6].)

LetIlx : DXy — Zg be defined by 77 on Xy and by mogy on X. It is easy to
see that ITx isa 2 : 1 covering map, and hence it is the universal cover of Zx.
There is a nontrivial deck transformation 7y : DXy — DX that interchanges
the two copies Xx and Xy using ®x. Using this covering map, we can deduce
the algebraic topology of Zg, as follows.

Lemma 2.3. The manifold Zy is a rational homology 4-sphere and has w,(Zy ) =
H(Zx) = Hy(Zg) = Z,.

Proof. Since the universal cover of Zx is two-sheeted, we deduce that 7,(Zx ) =
H,(Zg) = Z, and hence b,(Zg) = 0. The nontrivial element of 77;(Zx) can be
given by any arc connecting two points in SS(K) that are exchanged by ¢r.

To see that Zg is a rational homology sphere, we first note that y(DXx) =
2x(Xg) — )((SS(K)) = 4, and then y(Zgx) = y(DXg)/2 = 2. Since y(Zg) =
2 —2b,(Zg) + by(Zxg), we have b,(Zg) = 0. Universal coefficients and Poincaré
duality then imply that H,(Zx) =~ H3(Zy) = H,(Zx) = Z,, as required. O

Example 2.4. Let O denote the unknot; then X, = S?xD?. To be explicit, let us
identify D* with D? x D2, where the involution @ is still given in coordinates by
D(x1, X5, X3, X4) = (X1, —X5, —X3, —X,4), and take O to be S'x{0}. The framing ¥,
is then just the inclusion of S'xD?2. Then X, = (D*xD?)u(D*xD?), glued by the
identity map of S'xD?. This is naturally identified as (D?Ug1 D?)xD? = S?2xD?,
and SS(O) is identified as S? x S'. By construction, ®, acts on each copy of
D? x D? by a reflection in the first factor and negation in the second. Thus, it
acts on S? x D? in the same fashion: a reflection r : S? — S? in the first factor
and negation in the second factor.

Taking the double, we have DX, = S? x (D? Ug1 D?) = S? x S2. The deck
transformation 7 acts by the reflection r in the first factor, while interchanging
the two copies of D? and negating in the second factor. That is, for (x,y) €
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52 x S2, we have 75(x,y) = (r(x),—y). We thus see that Z, agrees with the
construction of Z; in the introduction.

To prove Theorem 1.1, we will use a 5-dimensional argument (inspired by
one of Mazur [Maz61]) to show that the diffeomorphism DX = S?xS? = DX,
can be constructed equivariantly with respect to the deck transformations 7y
and 7. Let Qg = Xg X [—1,1]. This is a 5-manifold whose boundary is

(Xg X {1P) U (S(K) X [-1,1]) U (Xg X {—1}).

Then 0Q(K) is naturally identified, after smoothing corners, with DX (or, more
precisely, with DX % because of the collar). Define T : Qg — Qg by Tx(x,t) =
(®g(x), —t). This is an involution of Qg, and it restricts to 7 on dQg. Continu-
ing with the above example, we may identify Q, with S? x D3, where £ (x,y) =

(V(X), —}’)

Proposition 2.5. For any SNACK K, the pairs (Qg, Tx) and (Qq, To) are equiv-
ariantly diffeomorphic.

Proof. Note that Qg has a 5-dimensional handle structure consisting of one
0-handle and one 2-handle, each of which is the product of the correspond-
ing handle of Xy with an interval, and the involution Ty preserves this handle
structure. After smoothing corners, we may identify the 0-handle of Qg with
D3, and the 2-handle with D? x D3, so that the involution x is given on D° by

Txlps(X1, X5, X3, X4, X5) = (X1, =X, —X3, —X4, —Xs).

Since this is independent of K, we will omit the K subscript denote this map by
. The attaching circle for the 2-handle is K x {0}, where we identify S* with
dD>n{xs = 0}. The gluing map is an inclusion of S'xD3 into D>, parametrizing
a T-invariant neighborhood of K x{0}. We may likewise view the attaching circle
for the 2-handle of Qp, O X {0}, as living in this same manifold.

By a theorem of Boyle and Chen [BC23, Proposition 3.12], there is a homo-
topy from K to O, equivariant with respect to our original involution ¢ : S3 —
S3, which is an isotopy except for finitely many pairs of simultaneous crossing
changes. By slightly perturbing this in the x5 direction, we may promote this
to a F-equivariant isotopy taking K x {0} to O x {0} in S*.

By the equivariant isotopy extension theorem (see, e.g., [Kan07, Theorem
8.6]), we may then find an equivariant ambient isotopy of S* taking K x {0} to
O x {0}. Under this isotopy, the framing of K x {0} used to define Qg induces
a framing of O X {0}, which a priori may or may not agree with the framing
of O x {0} used to define Q,. However, note that a circle in S* only has two
framings, which are distinguished by their surgeries: one framing yields S?>xS2,
while the other framing yields S?XS? = CP? # CP2. Since we have already
established that both Qg and Q, have boundary diffeomorphic to S? x S?, we
deduce that the isotopy does indeed take the preferred framing of K x {0} to that
of O x{0}. Thus, the isotopy extends to an equivariant diffeomorphism from Q
to Qp, as required. O
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Proof of Theorem 1.1. Restricting the diffeomorphism from Proposition 2.5
to the boundary gives an equivariant diffeomorphism (DX, 7x) = (DX, 7o),
and hence a diffeomorphism between the quotients, Zy = Z,. Thus, K is slice
in Z,. ]
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