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A note on rationally slice knots

Adam Simon Levine

Abstract. Kawauchi proved that every strongly negative amphichiral knot
𝐾 ⊂ 𝑆3 bounds a smoothly embedded disk in some rational homology ball
𝑉𝐾 , whose construction a priori depends on 𝐾. We show that 𝑉𝐾 is inde-
pendent of 𝐾 up to diffeomorphism. Thus, a single 4-manifold, along with
connected sums thereof, accounts for all known examples of knots that are
rationally slice but not slice.
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1. Introduction
Let 𝐾 be a knot in 𝑆3. If 𝑋 is a smooth, compact, oriented 4-manifold with

boundary 𝑆3, we say that𝐾 is slice in𝑋 if there exists a smoothly embedded disk
𝐷 in𝑋 with boundary equal to𝐾. Note that if𝐾 is slice in𝑋, then so is any knot
that is smoothly concordant to 𝐾.
For a commutative ring 𝑅 with unit, we say that 𝐾 is 𝑅-slice if it is slice in

some 4-manifold 𝑋 that is an 𝑅-homology 4-ball. We will focus on the cases
of 𝑅 = ℤ, ℚ, and ℤ𝑝 (for 𝑝 prime). Note that a ℤ𝑝-homology 4-ball 𝑋 is the
same as aℚ-homology 4-ball with the additional property that |||𝐻1(𝑋;ℤ)||| is not
divisible by 𝑝. We use rationally slice as a synonym for ℚ-slice.1
By a slight abuse of notation, if 𝑍 is a closed 4-manifold and 𝐾 is slice in

𝑍 −𝐵4, we also say that 𝐾 is slice in 𝑍. If 𝑋 = 𝑍 −𝐵4, then 𝑋 is an 𝑅-homology
4-ball if and only if 𝑍 is an 𝑅-homology 4-sphere.
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Let𝒞 denote the smooth concordance group, and let𝒦𝑅 denote the subgroup
of 𝒞 consisting of concordance classes of knots that are 𝑅-slice. In other words,
𝒦𝑅 is the kernel of the forgetful map 𝒞 → 𝒞𝑅, where 𝒞𝑅 is the group of knots
in 𝑆3 up to concordance in 𝑅-homology cobordisms.
It remains an open question whether there exist knots that are ℤ-slice but

not slice, i.e. whether 𝒦ℤ ≠ 0. In contrast, it is well-known that there ex-
ist knots that are ℚ-slice but not slice (or even ℤ-slice), such as the figure-
eight knot. Specifically, a knot 𝐾 ⊂ 𝑆3 is called strongly negative amphichiral
if there exists an orientation-reversing involution 𝜙∶ 𝑆3 → 𝑆3 preserving 𝐾
setwise and having exactly two fixed points, both lying on 𝐾. Following ter-
minology of Keegan Boyle, we refer to a strongly negative amphichiral knot
as a SNACK. Note that every SNACK represents a class of order at most 2 in
𝒞. Kawauchi [Kaw80, Kaw09] showed that every SNACK is ℚ-slice; more pre-
cisely, he proved that every SNACK 𝐾 is slice in a certain rational homology
4-ball 𝑉𝐾 , whose construction a priori depends on 𝐾.
The main theorem of this note is that 𝑉𝐾 is in fact independent of 𝐾 up to

diffeomorphism; that is, all SNACKs are slice in the same rational homology
4-ball. We may describe the manifold explicitly as follows. Let 𝜏∶ 𝑆2 × 𝑆2 →
𝑆2 × 𝑆2 be the map 𝜏(𝑥, 𝑦) = (𝑟(𝑥),−𝑦), where 𝑟∶ 𝑆2 → 𝑆2 is a reflection.
This map is an orientation-preserving involution with no fixed points, so the
quotient 𝑍0 = 𝑆2 × 𝑆2∕𝜏 is a closed, orientable manifold. Some elementary
algebraic topology (see Lemma 2.3 below) shows that 𝑍0 is a rational homology
4-sphere with 𝜋1(𝑍0) ≅ 𝐻1(𝑍0) ≅ 𝐻2(𝑍0) ≅ ℤ2. Thus, for every odd prime 𝑝,
𝑍0 is a ℤ𝑝-homology sphere. Note that the map (𝑥, 𝑦) ↦ (𝑥,−𝑦) induces an
orientation-reversing involution on 𝑍0.
In Section 2, we will prove:

Theorem 1.1. For every strongly negative amphichiral knot𝐾 ⊂ 𝑆3, Kawauchi’s
manifold 𝑉𝐾 is diffeomorphic to 𝑍0 − 𝐵4. Thus, every SNACK is slice in 𝑍0 − 𝐵4.
Remark 1.2. For another characterization of 𝑍0, consider the map 𝑞∶ 𝑆2 ×
𝑆2 → ℝP2 taking (𝑥, 𝑦) to the class of 𝑦. Then 𝑞◦𝜏 = 𝑞, so 𝑞 descends to a
map 𝑞̄∶ 𝑍0 → ℝP2, which gives 𝑍0 the structure of an 𝑆2-bundle over ℝP2. If
𝑥 ∈ 𝑆2 is any fixed point of the reflection 𝑟, we obtain a section 𝜎𝑥 ∶ ℝP2 → 𝑍0
by defining 𝜎𝑥([𝑦]) = [(𝑥, 𝑦)] for each 𝑦 ∈ 𝑆2. Since the fixed-point set of 𝑟 is
a circle, we in fact find a 1-dimensional family of nearby disjoint sections. The
manifold 𝑍0 is thus characterized by being the unique 𝑆2 bundle overℝP2 with
orientable total space and a section of self-intersection 0. (See [Hil02, p. 237]
for further discussion of 𝑆2-bundles over ℝP2.)
We claim that𝑍0 is represented by the handle diagram in Figure 1 (using dot-

ted 1-handle notation). As seen in [GS99, Figure 6.2], the 0-handle, 1-handle,
and 2-framed 2-handle from the figure produce the 𝐷2-bundle over ℝP2 with
orientable total space and Euler number 0. The double of that 𝐷2-bundle is the
𝑆2-bundle described above, which is 𝑍0. We obtain the double by adding a 0-
framed 2-handle along the meridian of the first 2-handle, and then a 3-handle
and 4-handle, which yields Figure 1.
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Figure 1. Kirby diagram for 𝑍0.

Beforewe turn to the proof of Theorem1.1, we discuss its implications for the
study of rationally slice knots, albeit with more questions than answers. Sur-
prisingly, Kawauchi’s construction actually accounts for all known examples
of knots that are ℚ-slice but not slice, that is, all known nontrivial elements of
𝒦ℚ. We make this explicit as follows.
First, note that if 𝐾 and 𝐾′ are knots, and if 𝐾 is slice in a 4-manifold 𝑋 and

𝐾′ is slice in 𝑋′, then 𝐾 # 𝐾′ is slice in 𝑋 ♮ 𝑋′, and −𝐾 is slice in 𝑋 (i.e. 𝑋 with
reversed orientation). Let 𝒮 denote the set of concordance classes of knots that
are slice in ♮𝑛(𝑍0 − 𝐵4) for some 𝑛 ∈ ℕ (or equivalently in #𝑛𝑍0). Because
𝑍0 ≅ 𝑍0 as oriented manifolds, we thus see that 𝒮 is a subgroup of 𝒞 and is
contained in𝒦ℚ. Indeed, for every odd prime 𝑝, we have 𝒮 ⊂ 𝒦ℤ𝑝 .
For any knots 𝑃 ⊂ 𝑆1 × 𝐷2 and 𝐾 ⊂ 𝑆3, let 𝑃(𝐾) denote the satellite knot

with pattern 𝑃 and companion 𝐾 (i.e. the image of 𝑃 under the embedding
𝑆1 × 𝐷2 → 𝑆3 determined by the 0-framing of 𝐾). The operation 𝐾 ↦ 𝑃(𝐾)
descends to a function on 𝒞. If 𝑃(𝑂) is slice (where 𝑂 denotes the unknot2), we
call 𝑃 a slice pattern, and the operation 𝐾 ↦ 𝑃(𝐾) a slice satellite operation. If a
knot𝐾 is slice in a particular 4-manifold𝑋, then so is 𝑃(𝐾) for any slice pattern
𝑃; thus, the subgroups𝒦𝑅 (for any ring 𝑅) and 𝒮 are closed under slice satellite
operations.
To the author’s knowledge, the only known concordance classes of knots

that are rationally slice but not slice (that is, nontrivial elements of 𝒦ℚ) arise
from Kawauchi’s construction, together with taking iterated slice satellite op-
erations and/or connected sums, and thus they lie in 𝒮. We note several such
constructions in the literature:

∙ Cha [Cha07, Theorem 4.16] exhibited an family of SNACKs that gener-
ate a ℤ∞

2 subgroup of𝒦ℚ. These knots can be distinguished up to con-
cordance by their classes in the algebraic concordance group [Lev69].
Subsequently, Hedden, Kim, and Livingston [HKL16] found another
such family of SNACKs with the additional property of being topolog-
ically slice (and hence algebraically slice). The proof that these knots
fail to be slice relies on the Heegaard Floer 𝑑 invariants [OS03a] of the
knots’ branched double covers.

2Many authors use𝑈 to denote the unknot, but we prefer 𝑂 because of the obvious graphical
similarity.
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∙ For a knot 𝐾 and relatively prime integers 𝑚, 𝑛, let 𝐾𝑚,𝑛 denote the
(𝑚, 𝑛) cable of 𝐾 (where 𝑚 denotes the winding number in the lon-
gitudinal direction and 𝑛 in the meridional direction). Then for any
𝑚 ∈ ℤ, the operation 𝐾 ↦ 𝐾𝑚,1 is a slice satellite operation. Let 𝐹 de-
note the figure-eight knot, which is strongly negative amphichiral and
hence slice in 𝑍0. Hom, Kang, Park, and Stoffregen [HKPS22] proved
that the set of knots

{𝐹2𝑛−1,1 ∣ 𝑛 ≥ 2}

is linearly independent in 𝒞, and thus generates a ℤ∞ subgroup of 𝒞
contained in𝒦ℚ (and indeed in𝒮).3 This result provided thefirst known
non-torsion elements of𝒦ℚ. For linear combinations consisting ofmore
than one summand, the resulting knot is slice in some connected sum
of copies of 𝑍0, but a priori not necessarily slice in 𝑍0 itself. The proof
makes use of concordance invariants coming from involutive knot Floer
homology [HM17].
More recently, Dai, Kang, Mallick, Park, and Stoffregen [DKM+22],

answering a long-standing question of Kawauchi [Kaw80], proved that
𝐹2,1 is not slice (and indeed generates a ℤ subgroup of 𝒮). This proof
relies on using the involutive structure of the Heegaard Floer homology
of the branched double cover and the action of the deck transformation.

∙ Kawauchi’s result applies only to strongly negative amphichiral knots,
but not necessarily to knots that are merely negative amphichiral (iso-
topic to their mirror reverses). However, Kim and Wu [KW18] proved
that if 𝐾 is a fibered, negative amphichiral knot whose Alexander poly-
nomial is irreducible, then 𝐾 is necessarily obtained from a SNACK
by iterated slice satellite operations, and hence is rationally slice by
Kawauchi’s result. Again, any such knot must lie in 𝒮.

In some sense, Theorem 1.1 illustrates how little is known about rational
concordance: a single 4-manifold (alongwith connected sumsof copies thereof)
accounts for all known examples of knots that are rationally slice but not slice.
That is, the following question is open:

Question 1.3. Is 𝒦ℚ = 𝒮? That is, is every rationally slice knot slice in a
connected sum of copies of 𝑍0?

To try to answer Question 1.3 in the negative, it is instructive to consider
not onlyℚ-concordance but alsoℤ𝑝-concordance. By the above discussion, all
known elements of𝒦ℚ are contained in𝒦ℤ𝑝 for every odd prime𝑝. In contrast,
the following question remains open:

Question 1.4. Is𝒦ℤ2 ≠ 0? That is, does there exist a knot 𝐾 ⊂ 𝑆3 that is slice
in a ℤ2-homology ball but not slice?

3The result is stated in [HKPS22] for 𝐹2𝑛−1,−1, but note that 𝐹2𝑛−1,−1 is the mirror of 𝐹2𝑛−1,1.
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Figure 2. Kirby diagram for𝑋𝑛,𝑎. The box indicates 𝑛 full pos-
itive twists.

In some sense, this question is nearly as difficult as that of the better-known
problem of finding nontrivial elements of 𝒦ℤ. A large number of knot invari-
ants, including Heegaard Floer invariants such as 𝜏 [OS03b] and Υ [OSS17],
necessarily vanish for all rationally slice knots. Most crucially, even the invari-
ants used in the above-mentioned results, which can detect some nontrivial el-
ements of𝒦ℚ, are unable to obstruct a knot from being slice in aℤ2-homology
4-ball. Namely, if a knot 𝐾 is ℤ2-slice, then:

∙ it is algebraically slice [CLR08, Theorem 3];
∙ the slice obstructions from involutive knot Floer homology vanish
[HKPS22, Remark 1.8]; and

∙ the branched double cover of 𝐾 bounds an equivariant ℤ2-homology
ball, and hence the obstructions from 𝑑 invariants and involutive Floer
homology vanish [DKM+22, Remark 5.4].

It remains unknown whether Rasmussen’s 𝑠 invariant [Ras10] (or any of its
generalizations) vanishes for all rationally slice knots.
Nevertheless, here is one potential approach to Questions 1.3 and 1.4. First,

recall that if a knot 𝐾 is slice in a ℤ𝑝-homology ball 𝑋, then for any power 𝑝𝑘,
the𝑝𝑘-fold cyclic branched cover of𝑋 branched over the slice disk is again aℤ𝑝-
homology ball whose boundary is Σ𝑝(𝐾). (On the other hand, if𝐻1(𝑋;ℤ𝑝) ≠ 0,
then this coveringmay not be a rational homology ball.) Thus, suppose one can
find a knot 𝐾 that is slice in a ℤ2-homology 4-ball 𝑋 that is not an integer ho-
mology ball, and choose any odd prime 𝑝 dividing |||𝐻1(𝑋;ℤ)|||. If one can show
that Σ𝑝𝑘 (𝐾) does not bound any rational homology ball (using, say, 𝑑 invari-
ants), it then follows that 𝐾 cannot be ℤ𝑝-slice, and in particular it cannot be
in 𝒮. This would thus resolve both Question 1.3 (in the negative) and Question
1.4 (in the affirmative).
Klug andRuppik [KR21, Corollary 2.5] proved that if𝑋 is a closed 4-manifold

whose universal cover 𝑋̃ is ℝ4 or 𝑆4, then any knot that is slice in 𝑋 is slice.
However, this is not an issue if 𝑋 is a rational homology 4-sphere with finite
(nontrivial) fundamental group; a simple Euler characteristic argument shows
that the universal cover must have nontrivial 𝐻2. For instance, for any 𝑛 ∈
ℕ and 𝑎 ∈ ℤ, let 𝑋𝑛,𝑎 denote the closed 4-manifold indicated by the handle
diagram in Figure 2, generalizing 𝑍0 = 𝑋2,0. It is easy to verify that 𝑋𝑛,𝑎 is a
rational homology 4-sphere with 𝜋1(𝑋𝑛,𝑎) ≅ 𝐻1(𝑋𝑛,𝑎) ≅ ℤ∕𝑛, essentially the
simplest construction of amanifold with those properties. The diffeomorphism
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type of 𝑋𝑛,𝑎 depends only on 𝑛 and the parity of 𝑎. Thus, it is natural to ask a
more concrete version of Question 1.4:

Question 1.5. For 𝑛 > 2 and 𝑎 ∈ {0, 1}, does there exist a non-slice knot𝐾 ⊂ 𝑆3
that is slice in 𝑋𝑛,𝑎 − 𝐵4?

We invite the reader to find a knot with the needed properties.

2. Proof of Theorem 1.1
Throughout this section, let 𝐾 ⊂ 𝑆3 be a SNACK. Up to equivariant isotopy,

we may assume that 𝐾 is fixed setwise by the map 𝜙∶ 𝑆3 → 𝑆3 that is the re-
striction to 𝑆3 of the linear involutionΦ∶ ℝ4 → ℝ4 given byΦ(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
(𝑥1,−𝑥2,−𝑥3,−𝑥4).
Let 𝑟∶ ℝ2 → ℝ2 denote the reflection 𝑟(𝑥1, 𝑥2) = (𝑥1,−𝑥2); we also denote

its restrictions to 𝐷2 and 𝑆1 by the same symbol. Let 𝜓𝐾 ∶ 𝑆1 → 𝑆3 denote the
inclusion of 𝐾, chosen to be equivariant with respect to the involutions 𝑟 on 𝑆1
and 𝜙 on 𝑆3. (In particular, 𝜓𝐾 takes (±1, 0) to the two fixed points of 𝜙.) By the
equivariant tubular neighborhood theorem (see, e.g., [Kan07, Theorem 4.4]),
we may extend 𝜓𝐾 to an embedding Ψ𝐾 ∶ 𝑆1 × 𝐷2 ↪ 𝑆3 that parametrizes an
equivariant closed tubular neighborhood of 𝐾, with the following properties:

∙ Ψ𝐾 restricts to 𝜓𝐾 on 𝑆1 × {0⃗}.
∙ For any (𝑥, 𝑦) ∈ 𝑆1 × 𝐷2, we have 𝜙◦Ψ𝐾(𝑥, 𝑦) = Ψ𝐾(𝑟(𝑥),−𝑦).
∙ Ψ𝐾 determines the 0-framing of 𝐾; that is, for any nonzero 𝑦 ∈ 𝐷2,
𝜓𝐾(𝑆1 × {𝑦}) has linking number 0 with 𝐾.

Let 𝑋𝐾 denote the 0-trace of 𝐾, obtained by attaching a 0-framed 2-handle
𝐷2 × 𝐷2 to 𝐷4 using the attaching map Ψ𝐾 . This manifold acquires an orienta-
tion from that of𝐷4. The boundary of𝑋𝐾 is the 0-surgery 𝑆30(𝐾). The involution
Φ|𝐷4 extends to an orientation-reversing involutionΦ𝐾 ∶ 𝑋𝐾 → 𝑋𝐾 , defined on
the 2-handle𝐷2×𝐷2 byΦ𝐾(𝑥, 𝑦) = (𝑟(𝑥),−𝑦). The fixed point set ofΦ𝐾 is a cir-
cle, consisting of the arcs [−1, 1]×{0⃗} ⊂ 𝐷4 and ([−1, 1]×{0})×{0⃗} ⊂ 𝐷2×𝐷2. In
particular, observe that Φ𝐾 restricts to a fixed-point-free, orientation-reversing
involution of 𝑆30(𝐾), which we denote by 𝜙𝐾 .
We now describe Kawauchi’s construction (in slightly different terms). Let

𝑍𝐾 denote the quotient 𝑋𝐾∕∼, where for all 𝑥 ∈ 𝑆30(𝐾), we set 𝑥 ∼ 𝜙𝐾(𝑥). Let
𝜋∶ 𝑋𝐾 → 𝑍𝐾 denote the quotient map. That is, we obtain 𝑍𝐾 by a self-gluing
of the boundary of 𝑋𝐾 . Because 𝜙𝐾 has no fixed points, 𝑍𝐾 is a smooth, closed
4-manifold, and because 𝜙𝐾 is orientation-reversing, 𝑍𝐾 naturally acquires an
orientation from that of 𝑋𝐾 .

Lemma 2.1. The knot 𝐾 is slice in 𝑍𝐾 .

Proof. Let𝑋′
𝐾 be the union of𝑋𝐾 with an exterior collar 𝑆

3
0(𝐾)×[0, 1], attached

along 𝑆30(𝐾) × {1}, and let 𝑍
′
𝐾 be the quotient of 𝑋

′
𝐾 by self-gluing by 𝜙𝐾 along

𝑆30(𝐾) × {0}. Then clearly 𝑋′
𝐾 ≅ 𝑋𝐾 and 𝑍′𝐾 ≅ 𝑍𝐾 . Let 𝐵 ⊂ 𝑍′𝐾 denote the

0-handle of 𝑋𝐾 , which is still an embedded closed 4-ball even after the gluing
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thanks to the collar. Let 𝑉𝐾 = 𝑍′𝐾 − int(𝐵); there is a natural identification
𝜕𝑉𝐾 = 𝑆3. Then 𝐾 bounds an embedded disk in 𝑉𝐾 , namely the core of the
2-handle of 𝑋𝐾 . Thus, 𝐾 is slice in 𝑍𝐾 . □

Remark 2.2. In the paper [Kaw09], Kawauchi considers themore general case
of a strongly negative amphichiral knot 𝐾 in an arbitrary rational homology
sphere 𝑌, not just in 𝑆3. He first considers 𝑌0(𝐾) × [0, 1]∕∼, where (𝑥, 0) ∼
(𝜙𝐾(𝑥), 0), and proves that this is a rational homology 𝑆1×𝐷3 bounded by𝑌0(𝐾).
Adding a 2-handle along the meridian of 𝐾 then produces a rational homology
ball bounded by 𝑌, in which 𝐾 is slice. In the case where 𝑌 = 𝑆3, this agrees
with the description of 𝑉𝐾 in the previous paragraph.

Let 𝐷𝑋𝐾 denote the double of 𝑋𝐾 : 𝐷𝑋𝐾 = 𝑋𝐾 ⊔𝑋𝐾∕∼, where the two copies
are identified by the identity map of 𝑆30(𝐾). This manifold acquires an orienta-
tion from that of 𝑋𝐾 . Since 𝐷𝑋𝐾 is the union of two simply-connected spaces
along a connected intersection, it is simply-connected. Indeed, because 𝑋𝐾 is
built with only a 0- and 2-handle (with even framing), it is well-known that
𝐷𝑋𝐾 ≅ 𝑆2 × 𝑆2, irrespective of 𝐾. (See, e.g., [GS99, Corollary 5.1.6].)
LetΠ𝐾 ∶ 𝐷𝑋𝐾 → 𝑍𝐾 be defined by 𝜋 on𝑋𝐾 and by 𝜋◦𝜙𝐾 on𝑋𝐾 . It is easy to

see that Π𝐾 is a 2 ∶ 1 covering map, and hence it is the universal cover of 𝑍𝐾 .
There is a nontrivial deck transformation 𝜏𝐾 ∶ 𝐷𝑋𝐾 → 𝐷𝑋𝐾 that interchanges
the two copies 𝑋𝐾 and 𝑋𝐾 using Φ𝐾 . Using this covering map, we can deduce
the algebraic topology of 𝑍𝐾 , as follows.
Lemma 2.3. Themanifold𝑍𝐾 is a rational homology 4-sphere and has𝜋1(𝑍𝐾) ≅
𝐻1(𝑍𝐾) ≅ 𝐻2(𝑍𝐾) ≅ ℤ2.

Proof. Since the universal cover of𝑍𝐾 is two-sheeted, we deduce that𝜋1(𝑍𝐾) ≅
𝐻1(𝑍𝐾) ≅ ℤ2 and hence 𝑏1(𝑍𝐾) = 0. The nontrivial element of 𝜋1(𝑍𝐾) can be
given by any arc connecting two points in 𝑆30(𝐾) that are exchanged by 𝜙𝐾 .
To see that 𝑍𝐾 is a rational homology sphere, we first note that 𝜒(𝐷𝑋𝐾) =

2𝜒(𝑋𝐾) − 𝜒(𝑆30(𝐾)) = 4, and then 𝜒(𝑍𝐾) = 𝜒(𝐷𝑋𝐾)∕2 = 2. Since 𝜒(𝑍𝐾) =
2− 2𝑏1(𝑍𝐾) + 𝑏2(𝑍𝐾), we have 𝑏2(𝑍𝐾) = 0. Universal coefficients and Poincaré
duality then imply that𝐻2(𝑍𝐾) ≅ 𝐻3(𝑍𝐾) ≅ 𝐻1(𝑍𝐾) ≅ ℤ2, as required. □

Example 2.4. Let𝑂 denote the unknot; then𝑋𝑂 ≅ 𝑆2×𝐷2. To be explicit, let us
identify𝐷4 with𝐷2×𝐷2, where the involutionΦ is still given in coordinates by
Φ(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1,−𝑥2,−𝑥3,−𝑥4), and take𝑂 to be 𝑆1×{0}. The framingΨ𝑂
is then just the inclusion of𝑆1×𝐷2. Then𝑋𝑂 = (𝐷2×𝐷2)∪(𝐷2×𝐷2), glued by the
identitymap of 𝑆1×𝐷2. This is naturally identified as (𝐷2∪𝑆1𝐷2)×𝐷2 = 𝑆2×𝐷2,
and 𝑆30(𝑂) is identified as 𝑆

2 × 𝑆1. By construction, Φ𝑂 acts on each copy of
𝐷2 × 𝐷2 by a reflection in the first factor and negation in the second. Thus, it
acts on 𝑆2 × 𝐷2 in the same fashion: a reflection 𝑟∶ 𝑆2 → 𝑆2 in the first factor
and negation in the second factor.
Taking the double, we have 𝐷𝑋𝑂 = 𝑆2 × (𝐷2 ∪𝑆1 𝐷2) = 𝑆2 × 𝑆2. The deck

transformation 𝜏𝑂 acts by the reflection 𝑟 in the first factor, while interchanging
the two copies of 𝐷2 and negating in the second factor. That is, for (𝑥, 𝑦) ∈
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𝑆2 × 𝑆2, we have 𝜏𝑂(𝑥, 𝑦) = (𝑟(𝑥),−𝑦). We thus see that 𝑍𝑂 agrees with the
construction of 𝑍0 in the introduction.

To prove Theorem 1.1, we will use a 5-dimensional argument (inspired by
one ofMazur [Maz61]) to show that the diffeomorphism𝐷𝑋𝐾 ≅ 𝑆2×𝑆2 = 𝐷𝑋𝑂
can be constructed equivariantly with respect to the deck transformations 𝜏𝐾
and 𝜏𝑂. Let 𝑄𝐾 = 𝑋𝐾 × [−1, 1]. This is a 5-manifold whose boundary is

(𝑋𝐾 × {1}) ∪ (𝑆30(𝐾) × [−1, 1]) ∪ (𝑋𝐾 × {−1}).
Then 𝜕𝑄(𝐾) is naturally identified, after smoothing corners, with𝐷𝑋𝐾 (or,more
precisely, with 𝐷𝑋′

𝐾 because of the collar). Define 𝜏̃𝐾 ∶ 𝑄𝐾 → 𝑄𝐾 by 𝜏̃𝐾(𝑥, 𝑡) =
(Φ𝐾(𝑥),−𝑡). This is an involution of𝑄𝐾 , and it restricts to 𝜏𝐾 on 𝜕𝑄𝐾 . Continu-
ing with the above example, wemay identify𝑄𝑂 with 𝑆2×𝐷3, where 𝜏̃𝑂(𝑥, 𝑦) =
(𝑟(𝑥),−𝑦).

Proposition 2.5. For any SNACK 𝐾, the pairs (𝑄𝐾 , 𝜏̃𝐾) and (𝑄𝑂, 𝜏̃𝑂) are equiv-
ariantly diffeomorphic.

Proof. Note that 𝑄𝐾 has a 5-dimensional handle structure consisting of one
0-handle and one 2-handle, each of which is the product of the correspond-
ing handle of 𝑋𝐾 with an interval, and the involution 𝜏̃𝐾 preserves this handle
structure. After smoothing corners, we may identify the 0-handle of 𝑄𝐾 with
𝐷5, and the 2-handle with 𝐷2 × 𝐷3, so that the involution 𝜏̃𝐾 is given on 𝐷5 by

𝜏̃𝐾|𝐷5(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥1,−𝑥2,−𝑥3,−𝑥4,−𝑥5).
Since this is independent of 𝐾, we will omit the 𝐾 subscript denote this map by
𝜏̃. The attaching circle for the 2-handle is 𝐾 × {0}, where we identify 𝑆3 with
𝜕𝐷5∩{𝑥5 = 0}. The gluingmap is an inclusion of𝑆1×𝐷3 into 𝜕𝐷5, parametrizing
a 𝜏̃-invariant neighborhood of𝐾×{0}. Wemay likewise view the attaching circle
for the 2-handle of 𝑄𝑂, 𝑂 × {0}, as living in this same manifold.
By a theorem of Boyle and Chen [BC23, Proposition 3.12], there is a homo-

topy from 𝐾 to 𝑂, equivariant with respect to our original involution 𝜙∶ 𝑆3 →
𝑆3, which is an isotopy except for finitely many pairs of simultaneous crossing
changes. By slightly perturbing this in the 𝑥5 direction, we may promote this
to a 𝜏̃-equivariant isotopy taking 𝐾 × {0} to 𝑂 × {0} in 𝑆4.
By the equivariant isotopy extension theorem (see, e.g., [Kan07, Theorem

8.6]), we may then find an equivariant ambient isotopy of 𝑆4 taking 𝐾 × {0} to
𝑂 × {0}. Under this isotopy, the framing of 𝐾 × {0} used to define 𝑄𝐾 induces
a framing of 𝑂 × {0}, which a priori may or may not agree with the framing
of 𝑂 × {0} used to define 𝑄𝑂. However, note that a circle in 𝑆4 only has two
framings, which are distinguished by their surgeries: one framing yields 𝑆2×𝑆2,
while the other framing yields 𝑆2×̃𝑆2 = ℂP2 # ℂP2. Since we have already
established that both 𝑄𝐾 and 𝑄𝑂 have boundary diffeomorphic to 𝑆2 × 𝑆2, we
deduce that the isotopy does indeed take the preferred framing of𝐾×{0} to that
of𝑂×{0}. Thus, the isotopy extends to an equivariant diffeomorphism from𝑄𝐾
to 𝑄𝑂, as required. □
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Proof of Theorem 1.1. Restricting the diffeomorphism from Proposition 2.5
to the boundary gives an equivariant diffeomorphism (𝐷𝑋𝐾 , 𝜏𝐾) ≅ (𝐷𝑋𝑂, 𝜏𝑂),
and hence a diffeomorphism between the quotients, 𝑍𝐾 ≅ 𝑍𝑂. Thus, 𝐾 is slice
in 𝑍𝑂. □
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