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A B S T R A C T   

Three-dimensional stability of roofs in deep flat-ceiling cavities is analyzed. The stability number, factor of 
safety, and required supporting stress are used as measures of roof stability. Despite the simplicity of the flat roof 
geometry, the three-dimensional stability analysis presents some complexities owed to the shape of the failure 
surface geometry in the collapse mechanism. The failure mode assumes a rock block moving downward into the 
cavity, and the study aims to recognize the most critical shape of the failing block. Three specific block shapes are 
described in some detail, but more have been analyzed. Blocks defined by a special case of a 4th order conical 
surface (quartic) on a rectangular base, and a 2nd order elliptic surface (quadric) are found to be the most critical 
in the stability analysis. The kinematic approach of limit analysis was used, with the rock strength governed by 
the Hoek-Brown failure criterion. The parametric form of the Hoek-Brown function was employed. Interestingly, 
an absence of diagonal symmetries in the most critical failure mechanisms was observed in roof collapse of 
square-ceiling cavities. Computational results in terms of dimensionless measures of stability are presented in 
charts and tables.   

1. Introduction 

With an increasing use of underground space for transportation, 
commercial and sport facilities, as well as for storage and waste disposal, 
the subject of cavity roof stability appears to be important, yet not 
systematically explored. An early investigation into roof stability in the 
context of tunnels was carried out by Lippmann (1971), who employed 
both the kinematic and static approaches of limit analysis. In that study, 
a rectangular tunnel in rock with strength governed by the Mohr- 
Coulomb failure criterion was considered. Since then, 2D (Fraldi and 
Guarracino, 2009, 2010; Leca and Dormieux, 1990; Park and Micha
lowski, 2018, 2019; Sloan and Assadi, 1992; Suchowerska et al., 2012) 
and 3D (Huang et al., 2014; Park and Michalowski, 2020; Yang and 
Huang, 2013) stability analyses of cavity or tunnel roofs have been 
carried out. 

Some of the 2D analyses used a variational approach (Fraldi and 
Guarracino, 2009, 2010), but the advancement of this approach to 3D 
analyses is hindered by mathematical complexity (with the exception of 
axial symmetry). They also have focused mostly on finding profiles of 
failing blocks, and not the results in terms of stability measures. Some of 
these limitations have been overcome by applying analytical techniques 
(Park and Michalowski, 2019, 2020), yet 3D stability analyses of flat- 

ceiling cavities have not been addressed beyond special cases, such as 
axial symmetry. A right elliptic cone block mechanism adopted for cy
lindrical cavities such as tunnels (Park and Michalowski, 2020) may be 
applicable to flat-ceiling cavities, but the expectation that the base of the 
failing block should be elliptic (or circular) is rather arbitrary for cavities 
with rectangular ceilings. One should expect that the critical failure 
mechanism of a flat rectangular-ceiling cavity would include the entire 
rectangular surface of the ceiling, but finding a collapse mechanism that 
includes the four corners of the cavity poses additional challenges. 

Three plausible shapes of failing blocks are described in this study 
with some detail. Among them a special case of the 4th order surface 
(quartic) cone block on a rectangular base is considered, which allows 
the construction of an admissible failure mechanism that includes the 
entire ceiling of the cavity. Despite the complexity of the failing block 
shape, the analysis carried out makes it possible to calculate the stability 
measures of the roof. Blocks defined by 2nd order surfaces (quadrics) 
and pyramid-type blocks were also studied. Three additional quartic 
surfaces were analyzed, but these are only briefly mentioned in the 
penultimate section. 

The kinematic approach of limit analysis is used in the study, and the 
parametric form of the Hoek-Brown failure criterion is used to facilitate 
calculations of the rate of dissipated work in the analysis. This approach 
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was developed earlier by the authors and it was applied in both the 
tunnel and slope stability analyses (Park and Michalowski, 2019, 2020, 
2021; Michalowski and Park, 2020). 

A brief review of the Hoek-Brown failure criterion is presented in 
Section 2. Next, the method of analysis and the stability measures are 
summarized, followed by the problem description, all in Section 3. 
Construction of failure mechanisms is illustrated in Section 4. Numerical 
results are presented in Section 5, with attention paid to some pecu
liarities in the outcome. The conclusions are presented in Section 6. 

2. Hoek-Brown failure criterion for rocks 

Nonlinear pressure dependency of the peak strength of rock has 
made it complicated to find a convenient form of strength criteria for 
rocks. Among various failure envelopes suggested for rock mass (Barton, 
1976; Bieniawski, 1974; Hoek and Brown, 1980; Paul, 1961), the Hoek- 
Brown criterion has been widely accepted in rock mechanics and engi
neering. The advantage of the Hoek-Brown criterion over alternatives is 
in its direct link to geological observations assessing the rock type, 
quality, and disturbance, which give rise to the model parameters and 
indices. This criterion considers the strength of intact rock, and its 
strength is reduced based on observations of disturbance and weath
ering, to predict a more realistic rock mass behavior. In recent decades 
this criterion has been modified, with the last updates in 2002 (Hoek 
et al., 2002), summarized in 2007 (Hoek and Marinos, 2007), and Hoek 
and Brown (2019). 

The generalized Hoek-Brown failure criterion (Hoek and Brown, 
2019; Hoek et al., 2002) is written as 

σ′
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3 + σci
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(1)  

where σ1
′ and σ3

′ are the major and minor effective principal stresses at 
failure, respectively; σci is the uniaxial compressive strength of the intact 
rock. The criterion in Eq. (1) is graphically presented in Fig. 1. Dimen
sionless parameters mb, a, and s are defined as follows 
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where mi is the rock type-dependent parameter (varying generally be
tween 5 and 30), D is the disturbance factor (0–1, 0 for minimally 
disturbed and 1 for very disturbed rock masses), and GSI is the 
Geological Strength Index (5–100). The uniaxial compressive strength of 
the rock can be found by substituting σ3

′ = 0 and σ1
′ = σc into Eq. (1) 

σc = σcisa (5) 

Hoek et al. (2002) suggested that uniaxial tensile strength σt be found 
by setting σ1

′ = σ3
′ = − σt in Eq. (1), as the difference between the 

uniaxial and isotropic tensile strength is often negligible for brittle 
materials. The isotropic tensile strength of rock corresponds to point E in 
Fig. 1, and reads 

σt =
sσci

mb
(6) 

Hereafter, the prime corresponding to the effective stress will be 
omitted. The Hoek-Brown failure criterion is an explicit function of the 
major and minor principal stresses, whereas plotting it on the stress 
plane in Fig. 1 requires the shear strength as a function of the normal 
stress. Using an earlier development of Balmer (1952) it is possible to 
represent the criterion in Eq. (1) in the following parametric form 
(Kumar, 1998) 
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where angle δ is the shear or the rupture angle illustrated in Fig. 1. This 
parametric form of the Hoek-Brown failure criterion is instrumental in 
the stability analysis carried out in this study. 

3. Analysis method and problem description 

3.1. Method of analysis 

The kinematic approach of limit analysis is employed to obtain sta
bility measures, which determine the safety of flat-ceiling roofs over 
deep cavities or tunnels. Deep cavities are defined as those for which a 
potential failure mechanism does not propagate to the ground surface. 
Application of the theorems of limit analysis requires that the material 
deforms plastically, while rocks have a tendency to fracture, particularly 
at low confining stresses. However, Chen (1975) argued that small 
irreversible strain observed in rocks prior to brittle stress drop-off may 
allow application of plasticity theorems in rocks. This is why one can 
find earlier applications of limit theorems in rock analyses (Chen and 
Drucker, 1969; Lippmann, 1971; Michalowski, 1985). The kinematic 
theorem of limit analysis can be written as 
∫

L

Ti [v]i dL ≥

∫

V

Xivi dV +

∫

S

pivi dS (9)  

with the left side being the rate of internal (dissipated) work on failure 
surfaces L, and the right side is the sum of the external forces work rate: 
distributed forces Xi in mechanism volume V and boundary stress pi on 
boundary S. The rate of dissipated work in any kinematically admissible 
mechanism is not less than the work rate of true external forces. The use 
of inequality (9) employs the balance of internal and external work rates 

D = Wγ + Wp (10) 

The three terms in the balance Eq. (10) correspond to the three terms 
in inequality (9). Eq. (10) leads to an upper bound for the active load 
causing failure of a structure (Drucker et al., 1952). However, the 
outcome of the work rate balance can be formulated in terms of rigorous 

Fig. 1. The Hoek-Brown failure criterion in τ − σn
′ plane.  

D. Park and R.L. Michalowski                                                                                                                                                                                                               



Engineering Geology 303 (2022) 106651

3

bounds to other stability measures, such as the factor of safety or a 
stability number, which is explored in this paper. 

Applicability of the theorem requires that the strength of the material 
conforms to a convex strength envelope and the incipient failure 
mechanism is characterized by plastic (ductile) deformation governed 
by the normality flow rule. 

The failure mechanisms considered in this paper consist of a rigid 
block separated from the rock at rest by rupture bands interpreted as 
failure surfaces. The velocity discontinuity vector [v]i on those surfaces 
is defined by the normality flow rule, as illustrated in Fig. 1. Angle δ is 
referred to as the rupture angle; for more details, see Michalowski and 
Park (2020) and Park and Michalowski (2017). 

3.2. Measures of safety assessment 

Three measures of roof stability are examined: stability number, 
factor of safety, and supporting pressure required to prevent roof failure. 
Stability number N has been traditionally used in assessment of slope 
safety (Taylor, 1937), where it is defined as a dimensionless group 
including soil properties and slope geometry. To define a similar quan
titative measure to express the limit state of cavities in rock, we chose 
the following expression 

N =

(
σci

γB

)

crit
(11)  

with σci and γ being the uniaxial compressive strength and the unit 
weight of intact rock, respectively, and B is the cavity width. The sta
bility number in Eq. (11) is a critical combination of dimensionless 
group σci/γB, characterizing the instant of failure. Every cavity or tunnel 
can be characterized by group σci/γB, and one can identify the margin of 
safety by the difference of its value and the value of the stability number. 
Combinations σci/γB larger than stability number N define a stable roof, 
and the larger the difference the larger the safety margin. The failure 
state is reached when dimensionless group σci/γB drops to the value of 
stability number N. 

Factor of safety F is defined by the ratio of shear strength τ of the rock 
to the demand on shear strength τd required for limit equilibrium (an 
instant of impending failure) 

F =
τ
τd

(12) 

The factor of safety based on the shear strength shown in Eq. (12) is 
commonly used in geotechnical engineering for characterizing stability 
of earth structures. An application of this definition to geomaterials 
governed by failure criteria with linear dependence on the mean stress is 
fairly straightforward. For rocks, where this dependence is non-linear 
the application is cumbersome, and for the Hoek-Brown criterion, 
which is defined as a function of principal stresses, it is particularly 
intricate. For that reason, the factor of safety for rock structures is often 
taken as a function of the factored uniaxial compressive strength rather 
than shear strength, e.g., Li et al. (2008). In problems such as stability of 
slopes, the factor of safety so formulated appears to grossly overestimate 
the factor based on the shear strength (Michalowski and Park, 2020). 
However, for flat-ceiling roof collapse the two become identical, which 
is something of a peculiarity. 

The third measure of roof stability considered here is supporting 
pressure p, defined as the minimum of a uniformly distributed pressure 
on the cavity ceiling needed to assure a target factor of safety. The 
dimensionless form p/γB is examined in this paper. This pressure is a 
reaction of the tunnel lining or a structural support in underground 
cavities. 

3.3. Problem description 

This study investigates roof stability in flat-ceiling cavities and 

tunnels at a depth preventing the collapse mechanism from propagating 
to the ground surface. The strength of the surrounding rock is governed 
by the Hoek-Brown failure criterion, and the rock is uniform, without 
distinct joints that might skew the collapse pattern. The cavities 
analyzed have rectangular (or square) ceilings, which determine the 
maximum possible extent of the roof collapse mechanism. In the case of 
tunnels, the length of the cavity is defined by the spacing of the periodic 
structural ribs. Calculations indicated that critical collapse mechanisms, 
in all cases considered, reached the maximum size allowable by the 
dimensions of the ceiling. This is likely because during failure the work 
is dissipated along rupture surfaces and it increases with the square of 
the cavity size, whereas the work of the weight, which causes the failure, 
increases with the cube of the size of the mechanism. 

The surfaces in Fig. 2 illustrate the blocks considered in the failure 
mechanisms. Each of the blocks contains a prismatic central part and the 
end sections formed by two symmetric halves of a right cone (Fig. 2(a, 
b)) or a pyramid (Fig. 2(c)). All components within each block move 
with uniform downward velocity, forming a rigid block, with the work 
dissipated during failure only on the rupture surface between the 
moving block and the stationary rock above. The cone sections in Figs. 2 
(a) and 2(b) are constructed of a series of conical frusta derived from a 
special case of quartic cones, and elliptic (quadric) cones, respectively. 
All mechanisms reach the maximum base size determined by the size of 
the cavity ceiling, as discussed in the previous paragraph. The blocks in 
Figs. 2(a) and 2(c) cover the entire ceiling of the cavity, but the one in 
Fig. 2(b) does not reach into the corners, as it is constrained by the 
elliptic base. The results will be presented as dimensionless numbers, 
applicable to any size of the cavity ceiling. 

The mechanism of the roof failure consists of a rock block (one of the 
three in Fig. 2), which moves downward into the cavity, driven by the 
gravity load. Before separating from the rock above, it is assumed that 
plastic deformation takes place in a narrow zone between the moving 
block and the stationary rock above. This last assumption makes the 
plasticity analysis applicable. 

4. Analysis of roof collapse in flat-ceiling cavities 

4.1. Centric prismatic block with piece-wise linear inclination 

All failure blocks considered in Fig. 2 include a central prismatic 
portion, called also an insert. The transverse cross-section of the insert is 
illustrated in Fig. 3(a), and it is identical to the contours of the adjacent 
end sections, together forming one integrated block. During collapse, the 
rock fails along rupture surface B1BjBn+1 (interpreted as a narrow band of 
plastically deforming material). 

Cross-section B1BjBn+1 of the rupture surface forms a polygon. 
Describing the geometry of this piece-wise linear cross-section with n 
segments, one needs to define n angles αj (j = 1, 2…n) and n – 1 angles ηj; 
because point O′ is selected at B/2 beneath the ceiling, the sum of all 
angles ηj is equal to 45◦ (both sets of angles are shown in Fig. 3(a)). The 
block is symmetric and number n defines the number of segments in one 
symmetric half (n = 5 is shown on the left side of Fig. 3(a) and n = 10 on 
the right side). The accuracy of the analysis increases with an increase in 
number n, and n = 10 was used in all calculations. Angles αj and ηj will 
become independent variables in the process of finding the most critical 
failure block. 

During collapse, the blocks shown in Fig. 2 move downward with 
uniform velocity v. This velocity is marked as [v], along the failure 
surface, to indicate that it is the velocity discontinuity between the 
moving block and the rock at rest, but both have the same direction and 
magnitude. Vector [v] is inclined to the rupture surface at angle δ, which 
is different for each segment, and is defined as δj = π/2 – αj (j = 1, 2…n). 
Rupture angle δ is uniquely related to a point on the rock strength en
velope through the normality flow rule, as illustrated in Fig. 1. In gen
eral, with an increase in rupture angle δ, the stress in the rock will 
change from the compressive to the tensile regime, Fig. 1. 
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Fig. 2. A schematic of 3D flat-ceiling cavity roof failure blocks: (a) a special case of 4th order (quartic) cone block on rectangular base with a prismatic insert, (b) real 
quadric (elliptic) cone block with insert, and (c) pyramid-type block with insert. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 3. Geometry of failing blocks in flat-ceiling cavities: (a) transverse cross-section xOz, (b) prismatic insert with end sections on longitudinal plane yOz, (c) top 
view of quartic cone block on rectangular base with insert, (d) real quadric (elliptic) cone block with insert, and (e) rectangle-based pyramid with insert. 
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The rates of the dissipated work and the gravity work in Eq. (10) for 
the prismatic block insert can be easily determined (for example, 
following Park and Michalowski (2019)), and they are summarized in 
Eqs. (A1) through (A3) in Appendix A. The analysis of the central pris
matic insert is the same for all three blocks in Fig. 2. In the following, 
end sections for the three different blocks are analyzed. 

4.2. Quartic cone block with rectangular base 

Consider a surface defined in the following algebraic equation 

x2

a2 +
y2

b2 −
x2

a2
y2

b2 =
(z − h)

2

h2 (13) 

Without the third term on the left, it represents a classic right elliptic 
cone with height h, also called the real quadric cone (surfaces defined by a 
second-order algebraic equation are called quadrics). The coordinate 
system starts at the base of the cone, with z directed toward the cone 
apex, as in Fig. 4. The addition of the third term on the left makes this 
cone have a rectangular base of size 2b × 2a, and it becomes a special 
case of a 4th order cone. This cone has a linear generatrix in planes x =
0 and y = 0, but nowhere else. We will refer to this special case 4th order 
cone as the quartic cone. 

Multiplying Eq. (13) by a2 and substituting the cone height with z- 
coordinate c1 of its apex, this surface can be expressed as 

x2 +
y2

λ2 −
x2y2

(λx1)
2 =

(z − c1)
2

tan2α1
(14)  

where λ is the ratio of half-axes (λ = b/a), and half-axis a was replaced 
with magnitude x1 of coordinate x. The end sections of the block in Fig. 2 
(a) and Fig. 3(c) are constructed by n frusta of cones, with the first one 
defined by Eq. (14), and each consecutive frustum being a part of a cone 
as in Eq. (14), but with different inclination angle αj of the generatrix in 
plane xOz (Fig. 3(a)). In the following, the steps in constructing the 
entire cone are described. 

Rearranging Eq. (14) one can easily represent coordinate z of any 
point on the surface of the first cone as function z = f1(x,y) 

f1(x, y) = c1 − tanα1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2 +
y2

λ2 −
x2y2

(λx1)
2

√

(15) 

The symmetric half of cross-section y = 0 of function f1(x,y) is shown 
in Fig. 4(a). This cone will only contribute the bottom-most frustum to 
the entire failing block, limited by z1 ≤ z < z2 (z1 = 0). Coordinates zj are 
uniquely determined by independent variables αj and ηj for the prismatic 
insert, Fig. 3(a). Next, function f2(x,y) for the cone contributing the 

second frustum is derived. Location of point B2 in Fig. 4(b) is known 
from the construction of the prismatic portion of the block, Fig. 3(a). The 
trace of f1(x,y) on plane y = 0 in Fig. 4(a) is rotated clockwise about 
point B2 until it reaches inclination angle α2. Using the geometrical re
lations in Fig. 4(b), the following expression is derived 

f2(x, y) = z2 + [f1(x, y) − z2 ]
tanα2

tanα1

= z2 + (c1 − z2)
tanα2

tanα1
− tanα2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(λx1)
2

√

= c2 − tanα2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2 +
y2

λ2 −
x2y2

(λx1)
2

√
(16)  

where f2(x, y) describes the shape of the second cone, which contributes 
the second frustum to the entire block, and c2 is the coordinate of the 
apex of the second cone, Fig. 4(b). Eq. (16) guarantees continuity of the 
block surface (but not its derivative) when transitioning from the first 
frustum to the second. The shape of the consecutive cones j (j = 2, 3… n) 
is determined from 

fj(x, y) = zj +
[
fj−1(x, y) − zj

] tanαj

tanαj−1

= cj − tanαj

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2 +
y2

λ2 −
x2y2

(λx1)
2

√

, zj ≤ z ≤ zj+1

(17)  

with 

cj =
(
cj−1 − zj

) tanαj

tanαj−1
+ zj (18) 

The sequence of developing the shape of the failing block with n = 5 
(four frusta and the top cone) is illustrated in Fig. 5, with the bottom row 
showing the top view of the constructed block. The curved lines illus
trate the interfaces between the consecutive frusta. Each consecutive 
cone j contributes a frustum between coordinates zj and zj+1. The base of 
the cone so constructed is a rectangle, but it transitions to an oval cross- 
section as z increases. 

By manipulating Eq. (17), the y-coordinates of the jth elliptic cone can 
be found from 

y = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

cj−z
tanαj

)2
− x2

1
λ2 − x2

(λx1)2

√
√
√
√
√ (19)  

with valid ranges of x and z being xj ≤ x < 0 and zj ≤ z < zj+1, 

Fig. 4. Construction of functions f(x,y) in plane y = 0 (section xOz): (a) the bottom-most frustum defined by function f1(x,y), and (b) construction of function f2(x,y) 
based on f1(x,y). 
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respectively. The plus-minus sign indicates the conical surfaces on two 
sides of the symmetry plane. The equations above fully describe the 
shape of the cone with a rectangular base, consisting of the frusta of 
quartic cones. 

The geometry of the quartic cone block described above is complex 
and one might want to use a purely numerical approach to generate a 
surface with similar properties. Such an attempt was shown by Mollon 
et al. (2011) in an analysis of a tunnel face stability. Once the rotational 
failure was adopted, the inclination of an individual element in the 
constructed failure surface was uniquely determined by the flow rule 
associated with the Mohr-Coulomb criterion used by Mollon et al. 
(2011). Such an approach was not used by the authors because of 
multiplicity of rupture angles involved in the Hoek-Brown failure cri
terion, leading to a multitude of possible element inclinations. Optimi
zation of such a surface would be impractical. However, the numerical 
method will be used to carry out calculations of the work rate terms in 
the analysis. 

The complex geometry of the quartic failure surface hinders the 
analytical formulation of the work rate terms in Eq. (10). The generatrix 
of the quartic cone block is piece-wise linear (Fig. 5(d)) only in cross- 
sections xOz and yOz; therefore, the rupture angle varies on the sur
face of every frustum contributing to the entire block. Consequently, a 
purely numerical technique was utilized to estimate the rate of work 
dissipation and the rate of external work for the end sections of the 
block. The 3D contour of the failure surface was discretized using the 
Delaunay triangulation method (Delaunay, 1934), as shown in Fig. 6. 
The complex shape of the failure surface is discretized into m small 
triangular elements with y-coordinate of corner points determined by 
Eq. (19) for given x and z. For each frustum j coordinates x and z are in 
the range xj ≤ x < 0 and zj ≤ z < zj+1. The area of each triangular element 

is obtained as a half of the magnitude of the vector product 
⃒
⃒
⃒
⃒ p→k × q→k

⃒
⃒
⃒
⃒ (k 

= 1, 2… m), as illustrated in Fig. 6(b) 

Fig. 5. Constructing one quadrant of the quartic cone block on rectangular base. Upper row: constructing the sequence of frusta. Lower row: top view of con
structed block. 

Fig. 6. Delaunay discretization of the block surface: (a) failure block made of 
conical frusta, (b) discretization using Delaunay triangulation method, and (c) 
surface element ΔAk and volume element ΔVk. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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ΔAk =
1
2

⃒
⃒
⃒
⃒ p→k × q→k

⃒
⃒
⃒
⃒ (20) 

Vectors p→k and q→k are found from the coordinates of the nodal 
points in the triangulated surface. A vector normal to a triangular 
element is determined by the cross product 

n→k = p→k × q→k (21)  

and the direction of block velocity vector v is given by unit vector 

m→ = (0, 0, − 1) (22) 

The normality flow rule enforced in limit analysis requires velocity 
discontinuity vector [v] on the failure surface (each triangular element) 
to be inclined at rupture angle δ to that surface, Fig. 6(c). Therefore, 
rupture angle δ can be found as the complementary angle to the angle 
between vectors n→k and m→

δk =
π
2

− cos−1 |nk
→⋅m→|

‖nk
→‖‖m→‖

(23) 

Because of the two planes of symmetry, only one quarter of the 
failure surface is analyzed for all conical end sections considered in this 
paper. The rate of the internal work on one fourth of the failure surface is 
the sum of the rates on individual triangular elements. Using Eqs. (20) 
and (23) the expression for the rate of work dissipation becomes 

D = [v]
∑m

k=1
(τkcosδk − σnksinδk)ΔAk (24)  

with normal and tangential stresses σnk and τk found in Eqs. (7) and (8) 
for given angles δk, and m being the number of triangular elements in 
one quarter of the conical failure surface (in all computations m > 5000; 
for clarity, fewer elements are shown in Fig. 6(b)). Note that stresses σnk 
and τk are components of stress vector T on the kth triangle, and they are 
uniquely related to rupture angle δk, as illustrated in Fig. 1. Similar to the 
failure surface being discretized into triangular elements, the volume of 
the falling block is discretized into tetrahedrons, each with volume ΔVk 

ΔVk =
1
6

⃒
⃒
⃒
⃒

(

p→k × q→k

)

⋅ r→k

⃒
⃒
⃒
⃒ (25)  

where r→k is shown in Fig. 6(c), and the rate of work done by the weight 
of one fourth of the conical sections of the failing block is determined 
from the expression 

Wγ = γ v
∑m

k=1
ΔVk (26)  

with γ being the unit weight of rock and v being the magnitude of ve
locity vector v. 

4.2.1. Stability number for quartic cone block with rectangular base 
Each of the components in balance Eq. (10) has two terms, one for 

the conical part of the surface (end sections) and one for the prismatic 
insert. Substituting the sum of expressions in Eqs. (24) and (A1) for the 
rate of dissipation and the sum of Eqs. (26) and (A2) for the gravity work 
(and Wp = 0) into balance Eq. (10), and using Eqs. (7) and (8), the 
following expression for dimensionless group σci /γB was derived 

σci

γB
=

∑m

k=1
ΔVk + l

2

(
∑n

j=1
Sj − B2

8

)

B

(
∑m

k=1
KkΔAk + l

2

∑n

j=1
KjLj

) (27)  

where Kk and Kj are given in Eq. (B1) in Appendix B. The stability 
number is the maximized value of the dimensionless group in Eq. (27), 
with the geometrical parameters of the failure block being independent 

variables in the optimization process (Section 5.1). 

4.2.2. Factor of safety for quartic cone block with rectangular base 
The second stability measure considered is the factor of safety based 

on the shear strength of the rock, defined in Eq. (12). The Hoek-Brown 
criterion in its parametric form, reduced by the factor of safety (Fig. 7), 
is used 

σnd = σn = σci

{(
1

mb
+

sinδ
mba

)[
mba(1 − sinδ)

2sinδ

]
1

1−a −
s

mb

}

(28)  

τd =
τ
F

=
σci

F

{
cosδ

2

[
mba(1 − sinδ)

2sinδ

]
a

1−a

}

(29) 

The normal stress component is identical to that in Eq. (7), whereas 
the factored shear stress at failure (shear strength) is reduced by factor of 
safety F from its full value in Eq. (8). As illustrated in Fig. 7, the rela
tionship of the true rupture angle δ and the factored rupture angle δd is 

δ = tan−1(Ftanδd) (30) 

Calculations of the factor of safety require that rates of internal 
(dissipated) work be calculated based on the factored (reduced) shear 
strength in Eq. (29) and the rates of the external work in Eq. (10) need to 
be calculated using the geometry of the failure mechanism based on the 
reduced rupture angle δd rather than rupture angle δ associated with the 
true strength of the rock. 

The work rate terms in Eq. (10) have separate components for the 
conical part of the failure surface and for the prismatic insert. 
Substituting expressions in Eqs. (24, 26, A1, A2) and Wp = 0 into balance 
Eq. (10), and using Eqs. (28) and (29), the following implicit equation 
with respect to the factor of safety was derived 

σci

γB

(
∑m

k=1
MkΔAd k +

l
2

∑n

j=1
MjLd j

)

=
1
B

[
∑m

k=1
ΔVd k +

l
2

(
∑n

j=1
Sd j −

B2

8

) ]

(31)  

where subscript d indicates geometrical quantities (Adk, Vdk, Ldj and Sdj) 
in the mechanism constructed based on the reduced rupture angle 
δd (Fig. 7, Eq. (30)) and σci /γB is the dimensionless group describing the 
rock properties and the cavity geometry. Factor of safety F is embedded 
in terms Mk and Mj given in Eq. (B2) in Appendix B. Consequently, Eq. 
(31) is an implicit equation with respect to factor of safety F, and needs 
to be solved numerically (Section 5.1). 

Fig. 7. The Hoek-Brown strength criterion and the strength envelope reduced 
by factor of safety F. 
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4.2.3. Support pressure for quartic cone failure block 
Cavity roofs that have a small margin of safety may need to be 

structurally supported to assure a minimum factor of safety required for 
service. It is considered that the supporting pressure is distributed uni
formly on the cavity ceiling, Fig. 3(a, b). The influence of the supporting 
pressure is included in the last term of the work rate balance in Eq. (10). 
The supporting pressure is a reaction of the support system to the gravity 
load, thus its work is negative during failure, and for one quarter of the 
cone block with a rectangular base (matching the entire ceiling area) it 
assumes the following form 

Wp = −
p vB(L − l)

4
(32) 

For the quadric (elliptic) cone block considered in the next section, 
the block base area B(L-l) in Eq. (32) needs to be replaced with the 
elliptic base area of the block. 

Supporting pressure needs to be large enough so that a minimum 
required value of the factor of safety is maintained. Hoek et al. (2000) 
suggest that a minimum factor of safety of 1.5–2.0 is acceptable for 
permanent underground excavations, whereas a value of 1.3 should be 
required for temporary mine openings. The rates for internal work in 
Eqs. (24, A1) with stresses in Eqs. (28, 29), external work in Eqs. (26, A2) 
and the work of the supporting pressure in Eqs. (32, A3) are now 
substituted into the rate balance in Eq. (10). After some transformation 
of the resulting equation, the following expression for required 
(dimensionless) support pressure p /γB is found 

p
γB

=
4

BL

{
1
B

[
∑m

k=1
ΔVd k +

l
2

(
∑n

j=1
Sd j −

B2

8

) ]

−
σci

γB

(
∑m

k=1
Mk ΔAd k +

l
2

∑n

j=1
Mj Ld j

) } (33)  

where σci /γB is the value of the dimensionless group for the actual 
cavity. The supporting pressure is always necessary if the actual 
dimensionless group σci /γB is less than its critical value, i.e., stability 
number N. Factor of safety F in Eq. (33) is embedded in terms Mj and Mk 
(Eq. (B2)) and it is a given target value of F (e.g., 1.5–2.0). Eq. (33) is an 
explicit equation that returns the value of dimensionless support pres
sure p /γB needed to maintain a required value of factor of safety F. 

4.3. Elliptic cone block (real quadric cone) 

The classical right elliptic cone with height h, or the real quadric cone, 
is expressed in the following algebraic equation 

x2

a2 +
y2

b2 =
(z − h)

2

h2 (34)  

with the origin of the coordinate system at the base of the cone (z 
directed toward the cone apex). This is a special case of the quartic cone 
in Eq. (13). The cone in Eq. (34) was used to construct the end sections of 
the block shown in Fig. 2(b). A single elliptic cone as in Eq. (34) has a 
linear generatrix, and in search for the critical failure block shape, the 
block was constructed of a series of elliptic cone frusta, each with a 
different inclination of the generatrix, analogous to the end sections in 
Fig. 2(a), with the exception that a true elliptic cone does not cover the 
corners of the cavity ceiling. 

Following the steps in Section 4.2, Eq. (34) can be transformed into 
an equation describing cones contributing jth frustum to the entire cone 
block 

x2 +
y2

λ2 =

(
z − cj

)2

tan2αj
(35)  

where λ is a ratio of the half-axes on the cone base. The block volume is 
then constructed by a series of elliptic cone frusta defined in Eq. (35), 

each with different inclination angle of generatrix αj in cross-section y =
0 (plane xOz). 

The algebraic form of the classical right elliptic cone in Eq. (34) is 
simpler than the quartic surface with a rectangular base in Eq. (13), 
Section 4.2. Considerations of stability follow the steps described in 
Section 4.2, and they are not repeated here. The same elliptic cone 
surface was explored earlier in stability analysis of tunnels with circular 
cross-sections (Park and Michalowski, 2020), and the reader may find 
the analytical development therein without the Delaunay discretization 
method useful. 

4.4. Rectangular-base pyramid block 

A rectangular pyramid block is illustrated in Fig. 2(c) and Fig. 8. The 
block is constructed with n frusta of rectangular pyramids with 
decreasing angle of flank inclination, and a matching prismatic insert. 
The origin of the coordinate system in Fig. 8 is now placed at half-width 
(B/2) below the cavity ceiling, hence the sum of angles ηj is always 45◦. 
Trapezoid-shape failure (or rupture) surfaces with areas Axj and Ayj 
along x- and y-axes (shaded areas in Fig. 8) are inclined to the vertical 
velocity vector of the block at angles δx j and δy j, respectively (δx j = δy j 
for a square-base pyramid), defined as 

δy j =
π
2

− αj (36)  

δx j =
π
2

− tan−1
(tanαj

λ

)
(37)  

where λ now determines ratio B/(L−l), with L and l being the length of 
the entire ceiling and the length of the insert, respectively. Areas of 
failure surfaces Axj and Ayj, and the volume of each quarter-frustum Vj 
are easily determined from the block geometry, and the rate of dissi
pated work per one quarter of the pyramid is 

D =

[

v

]
∑n

j=1

[(
τ(x)jcosδxj − σ(x)jsinδxj

)
Axj +

(
τ(y)jcosδyj − σ(y)jsinδyj

)
Ayj

]

(38)  

where σ(x)j, τ(x)j and σ(y)j, τ(y)j are found by substituting δx j, and δy j (Eqs. 
(37) and (36)) into Eqs. (7) and (8), respectively. The gravity work rate 
of one quarter of the pyramidal end sections is 

Fig. 8. Half of the failure surface constructed with frusta of rectangular pyra
mids and a prismatic insert of length l. 
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Wγ = γ v
∑n

j=1
Vj (39)  

with Vj being the volume of one quarter of the jth frustum (shaded vol
ume in Fig. 8). Substituting Eqs. (38), (39), (A1), (A2) and Wp = 0 into 
Eq. (10), and using Eqs. (7) and (8), the dimensionless group σci/γB is 
found as 

σci

γB
=

∑n

j=1
Vj + l

2

(
∑n

j=1
Sj − B2

8

)

B
∑n

j=1

(
Kx jAx j + Ky jAy j + l

2KjLj
) (40)  

where Kj, Kxj, and Kyj are found from Eq. (B1) in Appendix B after 
substituting δj, δx j, and δy j, respectively (compatibility of the pyramid 
with the prismatic insert requires δy j = δj). The value of the expression in 
Eq. (40) maximized with respect to the independent variables (angles ηi, 
αi, and ratio λ) is the stability number for the pyramid failure block. The 
respective expressions for the factor of safety and the supporting pres
sure can be easily derived following the steps in Section 4.2, and these 
equations are not presented here. The pyramid-type block is the least 
complicated shape of those analyzed. 

Some aspects of the computations and the results for all three failure 
mechanisms are discussed in the following section. 

5. Results and discussion 

5.1. Calculations 

The kinematic approach of limit analysis yields the upper bound to 
factor of safety F and the lower bound to stability number N or to the 
required support pressure p/γB. As the shape of the most critical block in 
the failure mechanisms is not known a priori, its geometry is sought such 
that the result is the best bound to the calculated measure of stability. 
The process of optimization is then carried out, with the independent 
variables being the parameters describing the block geometry. 

All three blocks considered in Section 4 are formed by n conical or 
pyramidal frusta (and prismatic insert sections), and each of the failure 
surfaces is described by the same number of independent variables: n 
angles αj, n - 1 angles ηj (Fig. 3(a)), and ratio λ of half-axes of conical or 
pyramidal end sections. Because of the prismatic insert in the block, 
ratio λ is not equal to the ratio of the ceiling dimensions. Independent of 
which shape of the block was chosen in Fig. 2 and what stability measure 
was calculated, the number of independent variables was 2n (n = 10 was 
taken in all computations, as increasing the number beyond 10 produced 
no significant change in the results). The first set of parameters was 
chosen such that the collapse mechanism was kinematically admissible, 
and then all angles αj, ηj and ratio λ were varied to arrive at the best 
bound to the true solution. The process of optimizing the solution was 
carried out sequentially in a cycle (loop), changing one variable at a time 
by one increment. After all variables were adjusted, the cycle was 
repeated, until the relative difference in the calculated safety measure 
from one cycle to the next was less than 10−6. All angles were first varied 
by an increment of 0.1◦; this increment was reduced in subsequent cy
cles to the minimum value of 0.001◦. Ratio λ was varied by increments 
from 0.01 to 0.0001. In the case of the real quadric cone block (Section 
4.3), calculations of the work rates in the balance equation were carried 
out using both the Delaunay discretization method and analytical inte
gration. The difference in results was found to be less than 0.1% when 
about 5000 of the elements were used in the triangulation method per ¼ 
of the conical end sections, and that was the number used in all 
calculations. 

For the mechanism with the pyramid block (Fig. 8), calculations with 
ratio λ varied from frustum to frustum were carried out, but the best 
solution for all cases calculated were always found when λ was about the 

same for every frustum. 
The optimized solutions indicated that the failing block in all 

mechanisms always reaches the maximum length and width of the 
cavity. It should be emphasized that the length of prismatic insert l was 
not an independent parameter. It is uniquely determined as a difference 
between given length L of the cavity and the dimension of the cone/ 
pyramid base measured in the y direction (found from the cavity width B 
and ratio λ). 

Fig. 9. Stability number N for square-ceiling (L/B = 1) cavities: (a) N as a 
function of GSI for the mechanism with quartic cone block and for the varia
tional approach, and (b) comparison of the stability number for four different 
failing blocks (all for minimally disturbed rock, D = 0). 
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5.2. Results 

5.2.1. Stability number 
Stability numbers were calculated from the explicit expression in Eq. 

(27) for the quartic cone block with a rectangular base and a similar 
equation developed for the right elliptic (quadric) cone block mecha
nism; Eq. (40) was used for the pyramid-type failure block. 

Calculated stability numbers for square-ceiling cavities are illus
trated in Fig. 9(a) as a function of GSI (semi-log scale). The lines in the 
graph represent calculations with the quartic block with prismatic 
insert. It is surprising that the best (optimized) solution for a square 
cavity has only two planes of symmetry (no diagonal symmetries). The 
open-circle bullets are the calculations using the kinematic limit anal
ysis, but with the variational approach in place of the numerical opti
mization method. The variational approach to roof stability was first 
suggested by Fraldi and Guarracino (2009) who used it in a series of 
papers with 2D analysis (Fraldi and Guarracino, 2010, 2011), and it was 
later utilized by Yang and Huang (2013) for the axi-symmetric case. 
These papers focused primarily on the shape of the collapsing block. 
Stability numbers based on the variational approach were calculated by 
the authors solely for comparative purposes, and, while these results are 
illustrated in Fig. 9, the details of calculations are not presented here. 
Perhaps not surprisingly, the results in Fig. 9(a) are very close to one 
another. So far, however, the variational approach can be reasonably 
used only for square-ceiling cavities (axi-symmetric solution). 

Stability numbers from collapse mechanisms with different block 
shapes, also for square-ceiling cavities, are shown in Fig. 9(b) as func
tions of coefficient mi. The approach yielding the best outcome appears 
to be the one based on the quartic cone block with insert, followed by the 
elliptic cone block, whereas the variational approach and the pyramid- 
type block appear to offer less accuracy, though all these results are 
within a narrow band of about 5%. While Fig. 9(b) presents comparison 
of stability numbers, the quartic and quadric mechanisms were also 
found most critical in calculations of the factor of safety. An increasing 
stability number with an increase in coefficient mi is somewhat coun
terintuitive, though reasonable. A similar observation was the subject of 
an earlier discussion related to roof stability in tunnels (Park and 
Michalowski, 2019). 

Calculations for square-ceiling cavities lead to an unexpected 
outcome in that the failing rock block is not symmetric with respect to 
the two diagonal planes. The best (optimized) solution to the stability 
number is achieved when the block has a small prismatic insert, as 
illustrated in Fig. 10(a) and (b). This occurs for the type of blocks 

schematically illustrated in Fig. 2(a) and (b), but not for the pyramidal 
block, Fig. 10(c), or the one based on the variational approach, Fig. 10 
(d), where the shape is axi-symmetric by definition. This peculiarity was 
observed in other stability problems, such as the square punch inden
tation into metals (Shield and Drucker, 1953) and bearing capacity of 
square footings (Michalowski, 2001). We bring it here only as a curi
osity, and will not discuss possible reasons for such an outcome. 

More extensive results for the stability number as a function of cavity 
ceiling aspect ratio L/B are presented in Fig. 11. The first chart illustrates 
the influence of coefficient mi in the Hoek-Brown criterion on the sta
bility number. While an increase of N with an increase in L/B is ex
pected, increasing N with increasing mi is counterintuitive. This was 
already mentioned in the context of Fig. 9, and it is justifiable based on 
the discussion of tunnel stability in Park and Michalowski (2019). 

The mechanism with the quartic cone block on a rectangular base 
gives the best solution overall (highest N) when the aspect ratio of the 
ceiling is close to one (usually, not exceeding 1.7). These results are 
marked with bold lines in Fig. 11. For larger aspect ratios, it is the elliptic 
(quadric) cone that yields the best results. The pyramid-shape block 
failure mechanism was found to give results that are not as good (lower 
N). The dependence of the stability number on disturbance factor D and 
on GSI is presented in Fig. 11(b) and Fig. 11(c), respectively; they follow 
an expected trend. For comparative reasons, selected numerical values 
of the stability number are given in Table 1. 

5.2.2. Factor of safety 
Factors of safety were calculated from Eq. (31) for the mechanism 

with a quartic cone block on a rectangular base and from a similar 
equation developed for a right elliptic cone block. These equations are 
implicit with respect to the factor of safety, and they require a numerical 
solution for each set of independent variables during the optimization 
process. The pyramid-type block mechanism was found to overestimate 
the factors of safety when compared with the other two mechanisms, 
and these results are not presented in the paper. 

The definition of the factor of safety is that based on the shear 
strength, given in Eq. (12), with interpretation of the reduced strength 
illustrated in Fig. 7. Calculated factors of safety are presented in Fig. 12 
as a functions of dimensionless group σci/γB, and are based on the 
mechanism that yields the best results. This is predominantly the 4th 
order (quartic) cone block on rectangular base shown in Fig. 2(a), and in 
some cases the elliptic (quadric) cone block in Fig. 2(b). The specific 
mechanisms are also indicated in Table 2. The factor of safety increases 
with an increase in group σci /γB and with an increase in GSI. Presented 

Fig. 10. Top and front views of failure surfaces for square-ceiling cavities, L/B = 1 (mi = 5, D = 0, GSI = 10): (a) quartic cone block on rectangular base with 
prismatic insert, (b) quadric (elliptic) cone block with insert, (c) a pyramid-type block, and (d) block shape resulting from variational approach (axi-symmetric). 
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Fig. 11. Stability number for rectangular cavity roofs as a function of length-to-width ratio L/B and for 2D analysis: (a) the influence of coefficient mi, (b) the 
influence of disturbance factor D, and (c) the influence of GSI. Results from analysis with quadric (elliptic) cone block mechanism (Section 4.3), except for bold 
portions of lines presenting results from quartic cone block on rectangular base (Section 4.2). 
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in semi-log scale, the factors of safety for different aspect ratios of the 
cavity ceiling L/B fit in a relatively narrow band. The computational 
results are shown for L/B equal to 1, 1.5, 2, 4, and for plane-strain 
analysis. For comparative purposes, numerical values of F for selected 
cases are given in Table 2. 

Calculations of the factor of safety based on the rock shear strength 
are intricate, because the Hoek-Brown criterion is a function of principal 
stresses, and it does not have an explicit form presenting the shear 
strength envelope as a function of normal stress. Therefore, the para
metric form of the Hoek-Brown criterion in Eqs. (7) and (8) was used. 

The factor of safety is often defined based on compressive strength of 
intact rock σci. The sole reason for such a definition is the simplicity of 
calculations. In general, however, factors of safety so defined signifi
cantly overestimate those based on the shear strength. This issue was 
discussed earlier in the context of slopes (Michalowski and Park, 2020). 
It is a peculiarity, however, that for cavities with flat ceilings the two 
definitions yield an identical value of the safety factor. However, this is 
not true for curved-ceiling cavities, and the analytical justification in the 

context of 2D analysis was discussed in Park and Michalowski (2019). 

5.2.3. Supporting pressure 
Cavities and tunnels utilized as part of underground infrastructure 

require a minimum factor of safety (typically, around 2.0) to be met 
during their service time. For the quartic cone block on a rectangular 
base, the supporting pressure was calculated from the explicit expres
sion in Eq. (33) and a similar equation was developed for the elliptic 
(quadric) cone mechanism. The best bounds to the required supporting 
pressure are presented in Fig. 13 in three log-log charts, each for a 
different given factor of safety F: 1, 1.5 and 2 (defined as in Eq. (12)). 
The supporting pressure in Figs. 13(b) and 13(c) assure that the given 
factor 1.5 or 2.0, respectively, will be maintained. The plots include the 
more critical results of the two conical block mechanisms in Figs. 2(a) 
and 2(b). A more specific indication of the critical mechanisms for 
specific cases is included in Tables 3 and 4. Dimensionless pressure p/γB 
(see Fig. 3 for p) is shown as a function of dimensionless group σci/γB for 
GSI in the range of 20 to 100. The pressure is given for a ceiling aspect 
ratio of 1 (square), 2 and for a long cavity (plane-strain analysis). 

The trends of the solution are what one would expect: the larger the 
rock strength (σci /γB), the lower the support pressure needed; the larger 
the ceiling aspect ratio, the larger the support pressure needed, and the 

Table 1 
Stability numbers (σci/γB)crit for flat-ceiling tunnel roofs (D = 0).  

L/B mi Geological Strength Index GSI 

20 40 60 80 100 

1 
5 152.40† 34.92† 9.26† 2.55† 0.72†

15 257.00† 58.72† 15.41† 4.17† 1.14†

25 330.15† 75.38† 19.72† 5.32† 1.45†

1.5 
5 178.88† 40.97† 10.87† 3.00† 0.84†

15 302.29 68.90† 18.07† 4.89† 1.34†

25 388.34 88.44† 23.13† 6.24† 1.70†

2 
5 193.16 44.13 11.69 3.22 0.90 
15 326.41 74.37 19.48 5.27 1.44 
25 419.29 95.48 24.96 6.73 1.83 

3 
5 206.79 47.28 12.53 3.45 0.97 
15 349.26 79.63 20.87 5.65 1.54 
25 448.59 102.22 26.73 7.21 1.96 

4 
5 213.23 48.77 12.93 3.56 1.00 
15 360.05 82.12 21.52 5.83 1.59 
25 462.43 105.41 27.57 7.43 2.02 

5 
5 216.96 49.64 13.16 3.63 1.02 
15 366.30 83.56 21.90 5.93 1.62 
25 470.45 107.26 28.05 7.57 2.06 

2D analysis 
5 230.44 52.85 14.02 3.87 1.09 
15 388.85 88.93 23.32 6.31 1.73 
25 499.36 114.14 29.86 8.05 2.19  

† Mechanism with 4th order (quartic) cone block on rectangular base, all other 
results either 2D or based on elliptic (quadric) cone block 

Fig. 12. Factors of safety as functions of dimensionless group σci /γB for square and rectangular-ceiling, and long cavities such as tunnels (plane strain analysis).  

Table 2 
Factors of safety F for flat-ceiling roofs (D = 0).  

σci/γB GSI mi L/B 

1 1.5 2 2D analysis 

500 20 
5 3.33† 2.80† 2.59 2.17 
15 1.97† 1.65 1.53 1.28 
25 1.53† 1.29 1.19 1.00 

100 40 
5 2.92† 2.45† 2.27 1.89 
15 1.73† 1.45† 1.34 1.12 
25 1.35† 1.13† 1.05 0.88 

20 60 
5 2.20† 1.85† 1.71 1.43 
15 1.32† 1.11† 1.03 0.86 
25 1.03† 0.87† 0.80 0.67 

10 80 
5 4.01† 3.37† 3.11 2.59 
15 2.44† 2.05† 1.90 1.58 
25 1.91† 1.61† 1.49 1.24 

2 100 
5 2.86† 2.40† 2.22 1.84 
15 1.79† 1.50† 1.39 1.16 
25 1.41† 1.18† 1.09 0.91  

† Mechanism with 4th order (quartic) cone block on rectangular base, all other 
results either 2D or based on elliptic (quadric) cone block. 
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larger the GSI, the lower the pressure needed. If the curve for a given 
cavity and for required factor of safety F in Fig. 13 intersects the abscissa 
at σci/γB equal to stability number N for this cavity, then only a small 
support pressure of p/γB = 10−3 is needed to maintain the required F. If 
the stability number is substantially larger than dimensionless group σci 
/γB marked on the abscissa, the cavity roof does not need a support 
pressure to maintain the selected factor of safety. Numerical values of 
the supporting pressure for selected cases are given in Tables 3 and 4. 

5.3. Other quartic surfaces considered in the analysis 

In addition to the quartic cone block on a rectangular base and the 
real quadric (elliptic) cones considered in Sections 4.2 and 4.3, three 
other quartic surfaces were considered. All of them are special cases of 
4th order surfaces, constructed through addition of higher-order term 
x2y2/(a2b2) to (or subtraction from) equations of quadric surfaces in 
order to allow for a rectangular base of the rock block. These surfaces 
are: modified hyperboloid of two sheets, modified elliptic paraboloid, 
and modified ellipsoid (dome), all illustrated in Fig. 14 and defined in 
Eqs. (41)–(43) 

Fig. 13. Required supporting pressure p/γB: (a) pressure required for limit 
equilibrium (factor of safety F = 1), (b) pressure required to meet target factor 
of safety F = 1.5, and (c) required pressure to maintain F = 2.0. 

Table 3 
Required supporting pressure p/γB ×103 for flat-ceiling roofs assuring limit 
equilibrium (D = 0).  

σci/γB GSI mi L/B 

1 1.5 2 2D analysis 

100 20 
5 36.08† 56.16† 67.30 98.70 
15 39.11† 52.10 59.35 79.23 
25 35.98† 46.76 52.72 69.03 

50 40 
5* – – – – 
15 8.66† 19.39† 25.32 42.01 
25 15.78† 24.68† 29.67 43.52 

10 60 
5 -* 11.97† 23.60 58.84 
15 25.92† 40.10† 47.86 70.26 
25 29.26† 41.01† 47.48 65.94 

2 80 
5 36.81† 69.08† 86.25† 139.24 
15 51.17† 71.08† 81.74 113.73 
25 49.03† 65.31† 74.14 100.03 

1 100 
5* – – – – 
15 13.32† 33.05† 43.61 75.31 
25 26.18† 42.33† 51.08 76.76  

† Mechanism with 4th order (quartic) cone block on rectangular base, all other 
results either 2D or based on elliptic (quadric) cone block. 

* No supporting pressure required. 

Table 4 
Required supporting pressure p/γB ×103 for flat-ceiling roofs assuring factor of 
safety F = 2 (D = 0).  

σci/γB GSI mi L/B 

1 1.5 2 2D analysis 

100 20 
5 165.41† 217.32† 245.38 327.92 
15 121.21† 153.79 172.05 222.49 
25 100.72† 130.26 145.16 186.15 

50 40 
5 62.52† 104.61† 127.23 194.70 
15 77.30† 104.65† 119.76 162.72 
25 72.42† 93.95† 108.05 143.44 

10 60 
5 134.02† 193.16† 224.43† 321.31 
15 117.76† 154.75† 174.70 233.87 
25 105.02† 135.38† 151.95 200.06 

2 80 
5 254.40† 346.77† 396.33† 551.64 
15 181.87† 235.36† 263.60† 350.94 
25 154.55† 197.96† 220.78 290.21 

1 100 
5 139.25† 230.53† 279.49 432.89 
15 142.84† 195.84† 223.81 310.33 
25 130.74† 173.84† 196.50 265.33  

† Mechanism with 4th order (quartic) cone block on rectangular base, all other 
results either 2D or based on elliptic (quadric) cone block. 
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Modified hyperboloid ​ of two sheets:

−
x2

a2 −
y2

b2 +
z2

c2 +
x2

a2
y2

b2 = 1
(41)  

Modified elliptic paraboloid:

x2

a2 +
y2

b2 −
x2

a2
y2

b2 =
z
c

(42)  

Modified ellipsoid (dome) :

x2

a2 +
y2

b2 +
z2

c2 −
x2

a2
y2

b2 = 1
(43)  

where a, b, c are constants in the equations defining the specific shape, 
but they were made variable in search for the most critical shape. These 
surfaces have a nonlinear generatrix, and each block was defined by a 

single equation, rather than formed of separate frusta. The Delaunay 
triangulation method was used in calculations of work rates of internal 
and external forces. The surface in Eq. (43) was considered earlier by 
Korotkiy et al. (2015) as an example of computer geometric modeling. 

Stability numbers for all three blocks over a square cavity are 
included in Fig. 14. The modified hyperboloid of two sheets was found to 
be the most critical block shape of the three, but still, not as critical as 
the square-base quartic block in Fig. 10(a). However, both the modified 
hyperboloid of two sheets and the elliptic paraboloid are competitive 
with the blocks considered earlier (Fig. 9 and Fig. 10). The modified 
ellipsoid (dome) block seems to be an outlier, which underestimates the 
stability number calculated with the quartic (elliptic) cone on a rect
angular base (Section 4.2) by more than 60%. Indeed the dome block is a 
very stable configuration, and the failure governed by any of the other 
block shapes considered would occur well before the dome block would 
become vulnerable to collapse. 

5.4. Remarks on the use of the parametric form of the Hoek-Brown 
strength criterion 

The Hoek-Brown failure criterion is a function of major and minor 
principal stresses, while some methods, including limit analysis, call for 
an explicit representation of the shear strength as a function of the 
normal stress on kinematic discontinuities (failure surfaces). For that 
reason Hoek and Brown suggested a substitution function in a form 
similar to the following expression (Hoek and Brown, 1980) 

τ = Aσci

(
σ′

n + σt

σci

)B

(44)  

where τ and σn
′ are the components of the stress vector on the strength 

envelope, σci is the compressive strength of the intact rock, σt is the 
tensile strength, and A and B are dimensionless material parameters. If 
the parameters in the Hoek-Brown criterion, Eq. (1), are known, then 
parameters A and B in expression (44) can be estimated for a given range 
of stresses. Consequently, kinematic limit analysis of stability of a roof 
cavity or a slope will yield very similar results when using either of the 
two criteria. This was confirmed with the outcome of calculations of the 
stability number for square-ceiling roofs presented in Fig. 9(a). The lines 
in that chart were found from the analysis based on the parametric form 
of the Hoek-Brown criterion in Eqs. (7) and (8), whereas the open bullets 
are from the approach with the strength criterion in Eq. (44). These 
results are nearly identical (the kinematic approach yields the lower 
bound to the stability number). 

The shape of a failure block in a roof collapse mechanism in tunnels 
was determined by Fraldi and Guarracino (2009) using the variational 
approach and the strength criterion in Eq. (44). This shape was inde
pendently determined using the parametric form of the Hoek-Brown 
criterion, and the two contours were found to be identical (Park and 
Michalowski, 2019). It is reasonable to conclude that the accuracy of 
calculations is comparable, whether the parametric form of the Hoek- 
Brown criterion is used or the substitution function is employed (i.e., 
the quantitative results are very close, if not identical). The authors 
found it convenient to use the parametric form of the Hoek-Brown cri
terion, because of evading the fitting process for finding parameters A 
and B in Eq. (44). On the other hand, Eq. (44) may be easier to handle in 
the analysis, because of its relatively simple form. 

The third method often exercised when using limit analysis with 
nonlinear strength criteria calls for linearizing the strength envelope, the 
method introduced into kinematic limit analysis by Drescher and 
Christopoulos (1988). Both former methods are more accurate than the 
latter. Calculations of stability numbers for square-ceiling cavities in this 
paper were underestimated by the method with linearized strength 
criterion by 6%, while the difference increased to 8% for the plane-strain 
analysis. The difference was found in a similar range in the analyses of 
slope stability (Michalowski and Park, 2020), with a larger difference for 

Fig. 14. Other higher-order surfaces (quartics) considered in the analysis (L/B 
= 1, mi = 5, D = 0, GSI = 10): (a) modified hyperbola of two sheets, (b) 
modified elliptic paraboloid, and (c) modified ellipsoid (dome). (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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the steeper slopes. It is surprising that this difference is not larger, 
considering that the linearization of the strength criterion is a rather 
crude tool. 

6. Conclusions 

This study was devoted to quantitative assessment of safety of un
derground cavities in rock against roof collapse. The following are the 
conclusions derived from the study.  

1. Even though the roof collapse mechanism in the form of one block 
seems fairly uncomplicated, the analysis was found to be quite 
intricate. The block shapes that yield the best estimates of the safety 
measures are the 4th order (quartic) conical surface block and the 
2nd order (quadric) elliptic cone. Enriched with a prismatic insert, 
they were found to fit the cavities with any ceiling aspect ratio well.  

2. Numerical generation of a rock block shape, while a feasible option 
for geomaterials described with a linear shear strength envelope, was 
found less attractive when tried for the Hoek-Brown strength crite
rion. This is the outcome of the normality flow rule used in limit 
analysis and multiplicity of the rupture angles when using nonlinear 
strength envelopes.  

3. Analytical complexity of the 4th order surfaces makes it challenging 
to develop explicit expressions for the rates of work in the collapse 
mechanism. It was found convenient to use a numerical procedure 
based on the Delaunay triangulation method to integrate both the 
rate of internal work along the failure surfaces and the work rate of 
the rock weight.  

4. As for cavities with rectangular ceilings, the best estimates of the 
safety measures for square-ceiling cavities were found for blocks 
with quartic (4th order) cone blocks. It was found peculiar, however, 
that the shape of failure blocks associated with the most critical 
failure mechanisms in square-ceiling cavities was not characterized 
by diagonal symmetry planes. These critical mechanisms included a 
narrow prismatic insert.  

5. When applied in rock engineering, the factor of safety is often 
defined by factoring the uniaxial compressive strength of intact rock, 
rather than the shear strength. The two definitions typically yield 
different values for the same problem; for example, for the circular 
cross-section tunnels the factor of safety based on compressive 
strength grossly overestimates the factor based on the shear strength. 
It was unexpected to find out in this study that the two definitions 
yield the same value of the safety factor when applied to the problem 
of roof collapse in flat-ceiling cavities. This is the consequence of the 
ceiling geometry.  

6. The original Hoek-Brown criterion is a function of the major and 
minor principal stresses, whereas some methods for stability 
assessment, including the kinematic limit analysis, require an 
explicit representation of the rock shear strength as a function of the 
normal stress on the failure surface. The authors found it convenient 
to use a method with the parametric representation of the Hoek- 
Brown criterion in place of a substitution function with the shear 
strength explicitly dependent on the normal stress on the failure 
surface. 
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Appendix A 

A.1. Prismatic insert 

The rate of work dissipation in one quarter of the prismatic insert during the roof collapse is determined by summing up the rates on rupture 
surfaces of every jth element of the block 

D =
l [v]

2
∑n

j=1

(
τjcosδj − σn jsinδj

)
Lj (A1)  

where l is the length of the insert, and Lj is the length of jth rupture surface BjBj+1 as in Fig. 3(a). The rate of gravity work of one quarter of the insert is 

Wγ = γ v
l
2

(
∑n

j=1
Sj −

B2

8

)

(A2)  

with Sj being the area of jth triangle OBjBj+1 in Fig. 3(a). The rate of work of the supporting pressure per one quarter of the insert is 

Wp = −
p vBl

4
(A3)  
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Appendix B 

B.1. Common expressions 

Kj =
cos2δj

2

[
mba

(
1 − sinδj

)

2sinδj

]
a

1−a −

[(
1

mb
+

sinδj

mba

)(
mba

(
1 − sinδj

)

2sinδj

)
1

1−a −
s

mb

]

sinδj (B1) 

Rupture angles δx j and δy j need to be substituted in Eq. (B1) when used in the first and second term in the sum of the denominator in Eq. (40). 

Mj =
cosδj

2F

[
mba

(
1 − sinδj

)

2sinδj

]
a

1−acosδd j −

[(
1

mb
+

sinδj

mba

)(
mba

(
1 − sinδj

)

2sinδj

)
1

1−a −
s

mb

]

sinδd j (B2)  

where δj = tan−1(F tan δd j). When F = 1, Mj in Eq. (B2) becomes identical to Kj in Eq. (B1). 
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