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ABSTRACT

Three-dimensional stability of roofs in deep flat-ceiling cavities is analyzed. The stability number, factor of
safety, and required supporting stress are used as measures of roof stability. Despite the simplicity of the flat roof
geometry, the three-dimensional stability analysis presents some complexities owed to the shape of the failure
surface geometry in the collapse mechanism. The failure mode assumes a rock block moving downward into the
cavity, and the study aims to recognize the most critical shape of the failing block. Three specific block shapes are
described in some detail, but more have been analyzed. Blocks defined by a special case of a 4th order conical
surface (quartic) on a rectangular base, and a 2nd order elliptic surface (quadric) are found to be the most critical
in the stability analysis. The kinematic approach of limit analysis was used, with the rock strength governed by
the Hoek-Brown failure criterion. The parametric form of the Hoek-Brown function was employed. Interestingly,
an absence of diagonal symmetries in the most critical failure mechanisms was observed in roof collapse of
square-ceiling cavities. Computational results in terms of dimensionless measures of stability are presented in

charts and tables.

1. Introduction

With an increasing use of underground space for transportation,
commercial and sport facilities, as well as for storage and waste disposal,
the subject of cavity roof stability appears to be important, yet not
systematically explored. An early investigation into roof stability in the
context of tunnels was carried out by Lippmann (1971), who employed
both the kinematic and static approaches of limit analysis. In that study,
a rectangular tunnel in rock with strength governed by the Mohr-
Coulomb failure criterion was considered. Since then, 2D (Fraldi and
Guarracino, 2009, 2010; Leca and Dormieux, 1990; Park and Micha-
lowski, 2018, 2019; Sloan and Assadi, 1992; Suchowerska et al., 2012)
and 3D (Huang et al., 2014; Park and Michalowski, 2020; Yang and
Huang, 2013) stability analyses of cavity or tunnel roofs have been
carried out.

Some of the 2D analyses used a variational approach (Fraldi and
Guarracino, 2009, 2010), but the advancement of this approach to 3D
analyses is hindered by mathematical complexity (with the exception of
axial symmetry). They also have focused mostly on finding profiles of
failing blocks, and not the results in terms of stability measures. Some of
these limitations have been overcome by applying analytical techniques
(Park and Michalowski, 2019, 2020), yet 3D stability analyses of flat-
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ceiling cavities have not been addressed beyond special cases, such as
axial symmetry. A right elliptic cone block mechanism adopted for cy-
lindrical cavities such as tunnels (Park and Michalowski, 2020) may be
applicable to flat-ceiling cavities, but the expectation that the base of the
failing block should be elliptic (or circular) is rather arbitrary for cavities
with rectangular ceilings. One should expect that the critical failure
mechanism of a flat rectangular-ceiling cavity would include the entire
rectangular surface of the ceiling, but finding a collapse mechanism that
includes the four corners of the cavity poses additional challenges.

Three plausible shapes of failing blocks are described in this study
with some detail. Among them a special case of the 4th order surface
(quartic) cone block on a rectangular base is considered, which allows
the construction of an admissible failure mechanism that includes the
entire ceiling of the cavity. Despite the complexity of the failing block
shape, the analysis carried out makes it possible to calculate the stability
measures of the roof. Blocks defined by 2nd order surfaces (quadrics)
and pyramid-type blocks were also studied. Three additional quartic
surfaces were analyzed, but these are only briefly mentioned in the
penultimate section.

The kinematic approach of limit analysis is used in the study, and the
parametric form of the Hoek-Brown failure criterion is used to facilitate
calculations of the rate of dissipated work in the analysis. This approach
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was developed earlier by the authors and it was applied in both the
tunnel and slope stability analyses (Park and Michalowski, 2019, 2020,
2021; Michalowski and Park, 2020).

A brief review of the Hoek-Brown failure criterion is presented in
Section 2. Next, the method of analysis and the stability measures are
summarized, followed by the problem description, all in Section 3.
Construction of failure mechanisms is illustrated in Section 4. Numerical
results are presented in Section 5, with attention paid to some pecu-
liarities in the outcome. The conclusions are presented in Section 6.

2. Hoek-Brown failure criterion for rocks

Nonlinear pressure dependency of the peak strength of rock has
made it complicated to find a convenient form of strength criteria for
rocks. Among various failure envelopes suggested for rock mass (Barton,
1976; Bieniawski, 1974; Hoek and Brown, 1980; Paul, 1961), the Hoek-
Brown criterion has been widely accepted in rock mechanics and engi-
neering. The advantage of the Hoek-Brown criterion over alternatives is
in its direct link to geological observations assessing the rock type,
quality, and disturbance, which give rise to the model parameters and
indices. This criterion considers the strength of intact rock, and its
strength is reduced based on observations of disturbance and weath-
ering, to predict a more realistic rock mass behavior. In recent decades
this criterion has been modified, with the last updates in 2002 (Hoek
et al., 2002), summarized in 2007 (Hoek and Marinos, 2007), and Hoek
and Brown (2019).

The generalized Hoek-Brown failure criterion (Hoek and Brown,
2019; Hoek et al., 2002) is written as

! a
6, =0, + 0. (mbﬁ + s) (€D)]
Oci
where o1’ and o3’ are the major and minor effective principal stresses at
failure, respectively; o; is the uniaxial compressive strength of the intact
rock. The criterion in Eq. (1) is graphically presented in Fig. 1. Dimen-
sionless parameters my, a, and s are defined as follows
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Fig. 1. The Hoek-Brown failure criterion in 7 — o, plane.
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where m; is the rock type-dependent parameter (varying generally be-
tween 5 and 30), D is the disturbance factor (0-1, O for minimally
disturbed and 1 for very disturbed rock masses), and GSI is the
Geological Strength Index (5-100). The uniaxial compressive strength of
the rock can be found by substituting 63’ = 0 and 61" = 6, into Eq. (1)

0, = 045" %)

Hoek et al. (2002) suggested that uniaxial tensile strength o, be found
by setting 61’ = 63 = — o, in Eq. (1), as the difference between the
uniaxial and isotropic tensile strength is often negligible for brittle
materials. The isotropic tensile strength of rock corresponds to point E in
Fig. 1, and reads
50

©
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Hereafter, the prime corresponding to the effective stress will be
omitted. The Hoek-Brown failure criterion is an explicit function of the
major and minor principal stresses, whereas plotting it on the stress
plane in Fig. 1 requires the shear strength as a function of the normal
stress. Using an earlier development of Balmer (1952) it is possible to
represent the criterion in Eq. (1) in the following parametric form
(Kumar, 1998)
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where angle § is the shear or the rupture angle illustrated in Fig. 1. This
parametric form of the Hoek-Brown failure criterion is instrumental in
the stability analysis carried out in this study.

3. Analysis method and problem description
3.1. Method of analysis

The kinematic approach of limit analysis is employed to obtain sta-
bility measures, which determine the safety of flat-ceiling roofs over
deep cavities or tunnels. Deep cavities are defined as those for which a
potential failure mechanism does not propagate to the ground surface.
Application of the theorems of limit analysis requires that the material
deforms plastically, while rocks have a tendency to fracture, particularly
at low confining stresses. However, Chen (1975) argued that small
irreversible strain observed in rocks prior to brittle stress drop-off may
allow application of plasticity theorems in rocks. This is why one can
find earlier applications of limit theorems in rock analyses (Chen and
Drucker, 1969; Lippmann, 1971; Michalowski, 1985). The kinematic
theorem of limit analysis can be written as

/Ti[vhdL > /x,-v,-dV+ /piv,-ds ©)
L \4 N

with the left side being the rate of internal (dissipated) work on failure
surfaces L, and the right side is the sum of the external forces work rate:
distributed forces X; in mechanism volume V and boundary stress p; on
boundary S. The rate of dissipated work in any kinematically admissible
mechanism is not less than the work rate of true external forces. The use
of inequality (9) employs the balance of internal and external work rates

D=W,+W, (10)

The three terms in the balance Eq. (10) correspond to the three terms
in inequality (9). Eq. (10) leads to an upper bound for the active load
causing failure of a structure (Drucker et al., 1952). However, the
outcome of the work rate balance can be formulated in terms of rigorous
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bounds to other stability measures, such as the factor of safety or a
stability number, which is explored in this paper.

Applicability of the theorem requires that the strength of the material
conforms to a convex strength envelope and the incipient failure
mechanism is characterized by plastic (ductile) deformation governed
by the normality flow rule.

The failure mechanisms considered in this paper consist of a rigid
block separated from the rock at rest by rupture bands interpreted as
failure surfaces. The velocity discontinuity vector [v]; on those surfaces
is defined by the normality flow rule, as illustrated in Fig. 1. Angle § is
referred to as the rupture angle; for more details, see Michalowski and
Park (2020) and Park and Michalowski (2017).

3.2. Measures of safety assessment

Three measures of roof stability are examined: stability number,
factor of safety, and supporting pressure required to prevent roof failure.
Stability number N has been traditionally used in assessment of slope
safety (Taylor, 1937), where it is defined as a dimensionless group
including soil properties and slope geometry. To define a similar quan-
titative measure to express the limit state of cavities in rock, we chose
the following expression

()

with o6, and y being the uniaxial compressive strength and the unit
weight of intact rock, respectively, and B is the cavity width. The sta-
bility number in Eq. (11) is a critical combination of dimensionless
group o.;/yB, characterizing the instant of failure. Every cavity or tunnel
can be characterized by group o.;/yB, and one can identify the margin of
safety by the difference of its value and the value of the stability number.
Combinations o.;/yB larger than stability number N define a stable roof,
and the larger the difference the larger the safety margin. The failure
state is reached when dimensionless group o.;/yB drops to the value of
stability number N.

Factor of safety F is defined by the ratio of shear strength 7 of the rock
to the demand on shear strength 74 required for limit equilibrium (an
instant of impending failure)

F=" 12)
Ta

The factor of safety based on the shear strength shown in Eq. (12) is
commonly used in geotechnical engineering for characterizing stability
of earth structures. An application of this definition to geomaterials
governed by failure criteria with linear dependence on the mean stress is
fairly straightforward. For rocks, where this dependence is non-linear
the application is cumbersome, and for the Hoek-Brown criterion,
which is defined as a function of principal stresses, it is particularly
intricate. For that reason, the factor of safety for rock structures is often
taken as a function of the factored uniaxial compressive strength rather
than shear strength, e.g., Li et al. (2008). In problems such as stability of
slopes, the factor of safety so formulated appears to grossly overestimate
the factor based on the shear strength (Michalowski and Park, 2020).
However, for flat-ceiling roof collapse the two become identical, which
is something of a peculiarity.

The third measure of roof stability considered here is supporting
pressure p, defined as the minimum of a uniformly distributed pressure
on the cavity ceiling needed to assure a target factor of safety. The
dimensionless form p/yB is examined in this paper. This pressure is a
reaction of the tunnel lining or a structural support in underground
cavities.

3.3. Problem description

This study investigates roof stability in flat-ceiling cavities and
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tunnels at a depth preventing the collapse mechanism from propagating
to the ground surface. The strength of the surrounding rock is governed
by the Hoek-Brown failure criterion, and the rock is uniform, without
distinct joints that might skew the collapse pattern. The cavities
analyzed have rectangular (or square) ceilings, which determine the
maximum possible extent of the roof collapse mechanism. In the case of
tunnels, the length of the cavity is defined by the spacing of the periodic
structural ribs. Calculations indicated that critical collapse mechanisms,
in all cases considered, reached the maximum size allowable by the
dimensions of the ceiling. This is likely because during failure the work
is dissipated along rupture surfaces and it increases with the square of
the cavity size, whereas the work of the weight, which causes the failure,
increases with the cube of the size of the mechanism.

The surfaces in Fig. 2 illustrate the blocks considered in the failure
mechanisms. Each of the blocks contains a prismatic central part and the
end sections formed by two symmetric halves of a right cone (Fig. 2(a,
b)) or a pyramid (Fig. 2(c)). All components within each block move
with uniform downward velocity, forming a rigid block, with the work
dissipated during failure only on the rupture surface between the
moving block and the stationary rock above. The cone sections in Figs. 2
(a) and 2(b) are constructed of a series of conical frusta derived from a
special case of quartic cones, and elliptic (quadric) cones, respectively.
All mechanisms reach the maximum base size determined by the size of
the cavity ceiling, as discussed in the previous paragraph. The blocks in
Figs. 2(a) and 2(c) cover the entire ceiling of the cavity, but the one in
Fig. 2(b) does not reach into the corners, as it is constrained by the
elliptic base. The results will be presented as dimensionless numbers,
applicable to any size of the cavity ceiling.

The mechanism of the roof failure consists of a rock block (one of the
three in Fig. 2), which moves downward into the cavity, driven by the
gravity load. Before separating from the rock above, it is assumed that
plastic deformation takes place in a narrow zone between the moving
block and the stationary rock above. This last assumption makes the
plasticity analysis applicable.

4. Analysis of roof collapse in flat-ceiling cavities
4.1. Centric prismatic block with piece-wise linear inclination

All failure blocks considered in Fig. 2 include a central prismatic
portion, called also an insert. The transverse cross-section of the insert is
illustrated in Fig. 3(a), and it is identical to the contours of the adjacent
end sections, together forming one integrated block. During collapse, the
rock fails along rupture surface B1B;B, 11 (interpreted as a narrow band of
plastically deforming material).

Cross-section B1BjB,1 of the rupture surface forms a polygon.
Describing the geometry of this piece-wise linear cross-section with n
segments, one needs to define n angles ; (j = 1, 2...n) and n— 1 angles 7;;
because point O is selected at B/2 beneath the ceiling, the sum of all
angles 7j; is equal to 45° (both sets of angles are shown in Fig. 3(a)). The
block is symmetric and number n defines the number of segments in one
symmetric half (n = 5 is shown on the left side of Fig. 3(a) and n =10 on
the right side). The accuracy of the analysis increases with an increase in
number n, and n = 10 was used in all calculations. Angles a; and #; will
become independent variables in the process of finding the most critical
failure block.

During collapse, the blocks shown in Fig. 2 move downward with
uniform velocity v. This velocity is marked as [v], along the failure
surface, to indicate that it is the velocity discontinuity between the
moving block and the rock at rest, but both have the same direction and
magnitude. Vector [v] is inclined to the rupture surface at angle 5, which
is different for each segment, and is defined as 6; = 7/2 - aj (j = 1, 2...n).
Rupture angle § is uniquely related to a point on the rock strength en-
velope through the normality flow rule, as illustrated in Fig. 1. In gen-
eral, with an increase in rupture angle &, the stress in the rock will
change from the compressive to the tensile regime, Fig. 1.
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Top view insert Top view Flat-ceiling Top view
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Fig. 2. A schematic of 3D flat-ceiling cavity roof failure blocks: (a) a special case of 4th order (quartic) cone block on rectangular base with a prismatic insert, (b) real
quadric (elliptic) cone block with insert, and (c) pyramid-type block with insert. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3. Geometry of failing blocks in flat-ceiling cavities: (a) transverse cross-section xOz, (b) prismatic insert with end sections on longitudinal plane yOz, (c) top
view of quartic cone block on rectangular base with insert, (d) real quadric (elliptic) cone block with insert, and (e) rectangle-based pyramid with insert.
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The rates of the dissipated work and the gravity work in Eq. (10) for
the prismatic block insert can be easily determined (for example,
following Park and Michalowski (2019)), and they are summarized in
Egs. (A1) through (A3) in Appendix A. The analysis of the central pris-
matic insert is the same for all three blocks in Fig. 2. In the following,
end sections for the three different blocks are analyzed.

4.2. Quartic cone block with rectangular base

Consider a surface defined in the following algebraic equation

2
é ¥ o2y (z=h)’ (13)
a b @ b? h?

Without the third term on the left, it represents a classic right elliptic
cone with height h, also called the real quadric cone (surfaces defined by a
second-order algebraic equation are called quadrics). The coordinate
system starts at the base of the cone, with z directed toward the cone
apex, as in Fig. 4. The addition of the third term on the left makes this
cone have a rectangular base of size 2b x 2a, and it becomes a special
case of a 4th order cone. This cone has a linear generatrix in planes x =
0 and y = 0, but nowhere else. We will refer to this special case 4th order
cone as the quartic cone.

Multiplying Eq. (13) by a? and substituting the cone height with z-
coordinate c; of its apex, this surface can be expressed as

2 V2 _k-a) 14
2o(ax)r wne

where 1 is the ratio of half-axes (4 = b/a), and half-axis a was replaced
with magnitude x; of coordinate x. The end sections of the block in Fig. 2
(a) and Fig. 3(c) are constructed by n frusta of cones, with the first one
defined by Eq. (14), and each consecutive frustum being a part of a cone
as in Eq. (14), but with different inclination angle o; of the generatrix in
plane xOz (Fig. 3(a)). In the following, the steps in constructing the
entire cone are described.

Rearranging Eq. (14) one can easily represent coordinate z of any
point on the surface of the first cone as function z = f1(x,y)

R ﬁ B x2y?

YT )

filx,y) = ¢ — tana, (15)

The symmetric half of cross-section y = 0 of function fi(x, y) is shown
in Fig. 4(a). This cone will only contribute the bottom-most frustum to
the entire failing block, limited by z1 < z < 23 (21 = 0). Coordinates z; are
uniquely determined by independent variables a; and ; for the prismatic
insert, Fig. 3(a). Next, function fa(x,y) for the cone contributing the

(@) ¢
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second frustum is derived. Location of point B in Fig. 4(b) is known
from the construction of the prismatic portion of the block, Fig. 3(a). The
trace of fi(x,y) on plane y = 0 in Fig. 4(a) is rotated clockwise about
point By until it reaches inclination angle ay. Using the geometrical re-
lations in Fig. 4(b), the following expression is derived

o tanay
fz()C,y)7Z2+[f1(X,y) ZZ]I‘(H’l(l]
tana, , VX
= - — tana = -
(e =) g ¥ T P 16)
yZ nyZ

=y — tanQy [X* + = —
2 2 Z )

where f>(x, y) describes the shape of the second cone, which contributes
the second frustum to the entire block, and c; is the coordinate of the
apex of the second cone, Fig. 4(b). Eq. (16) guarantees continuity of the
block surface (but not its derivative) when transitioning from the first
frustum to the second. The shape of the consecutive conesj (j = 2, 3... n)
is determined from

rana.
[(y) =7+ [fo(xy) — 5] mir:j] a”n
n

2 2.2

Yy X7y
=c¢ —tanay (XX + 5 ———, 7 <z<z4
j i/ 2 my® j+

with

1A% 4 as)

¢ =(-1-3) pr—

The sequence of developing the shape of the failing block withn =75
(four frusta and the top cone) is illustrated in Fig. 5, with the bottom row
showing the top view of the constructed block. The curved lines illus-

trate the interfaces between the consecutive frusta. Each consecutive

cone j contributes a frustum between coordinates z; and ;1. The base of
the cone so constructed is a rectangle, but it transitions to an oval cross-
section as z increases.

By manipulating Eq. (17), the y-coordinates of the j elliptic cone can
be found from

19

Fig. 4. Construction of functions f(x,y) in plane y = 0 (section xOz): (a) the bottom-most frustum defined by function f;(x,y), and (b) construction of function f>(x,y)

based on f;(x,y).
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Fig. 5. Constructing one quadrant of the quartic cone block on rectangular base. Upper row: constructing the sequence of frusta. Lower row: top view of con-

structed block.

respectively. The plus-minus sign indicates the conical surfaces on two
sides of the symmetry plane. The equations above fully describe the
shape of the cone with a rectangular base, consisting of the frusta of
quartic cones.

The geometry of the quartic cone block described above is complex
and one might want to use a purely numerical approach to generate a
surface with similar properties. Such an attempt was shown by Mollon
et al. (2011) in an analysis of a tunnel face stability. Once the rotational
failure was adopted, the inclination of an individual element in the
constructed failure surface was uniquely determined by the flow rule
associated with the Mohr-Coulomb criterion used by Mollon et al.
(2011). Such an approach was not used by the authors because of
multiplicity of rupture angles involved in the Hoek-Brown failure cri-
terion, leading to a multitude of possible element inclinations. Optimi-
zation of such a surface would be impractical. However, the numerical
method will be used to carry out calculations of the work rate terms in
the analysis.

The complex geometry of the quartic failure surface hinders the
analytical formulation of the work rate terms in Eq. (10). The generatrix
of the quartic cone block is piece-wise linear (Fig. 5(d)) only in cross-
sections xOz and yOgz; therefore, the rupture angle varies on the sur-
face of every frustum contributing to the entire block. Consequently, a
purely numerical technique was utilized to estimate the rate of work
dissipation and the rate of external work for the end sections of the
block. The 3D contour of the failure surface was discretized using the
Delaunay triangulation method (Delaunay, 1934), as shown in Fig. 6.
The complex shape of the failure surface is discretized into m small
triangular elements with y-coordinate of corner points determined by
Eq. (19) for given x and z. For each frustum j coordinates x and z are in
the range x; < x < 0 and ; < z < zj, 1. The area of each triangular element

is obtained as a half of the magnitude of the vector product | p’, x | (k

=1, 2... m), as illustrated in Fig. 6(b)

(a) (b)

Delaunay
triangularation
Falling
block

Flat ceiling Flat ceiling

Cavity

()

k" element

Fig. 6. Delaunay discretization of the block surface: (a) failure block made of
conical frusta, (b) discretization using Delaunay triangulation method, and (c)
surface element AAy and volume element AVy. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version
of this article.)
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A, ]m < (20)

1
2
Vectors p, and ¢, are found from the coordinates of the nodal

points in the triangulated surface. A vector normal to a triangular
element is determined by the cross product

=D X Gy (21

and the direction of block velocity vector v is given by unit vector
m = (0,0, —1) (22)

The normality flow rule enforced in limit analysis requires velocity
discontinuity vector [v] on the failure surface (each triangular element)
to be inclined at rupture angle & to that surface, Fig. 6(c). Therefore,
rupture angle § can be found as the complementary angle to the angle
between vectors 1 and m

— —
5. =T ot el
2 (|72 72|

(23)

Because of the two planes of symmetry, only one quarter of the
failure surface is analyzed for all conical end sections considered in this
paper. The rate of the internal work on one fourth of the failure surface is
the sum of the rates on individual triangular elements. Using Egs. (20)
and (23) the expression for the rate of work dissipation becomes

m

D =[] Z(chosék — 0,45ind) AA, 24

k=1

with normal and tangential stresses ok and 7 found in Egs. (7) and (8)
for given angles 5k, and m being the number of triangular elements in
one quarter of the conical failure surface (in all computations m > 5000;
for clarity, fewer elements are shown in Fig. 6(b)). Note that stresses o,k
and r; are components of stress vector T on the k™ triangle, and they are
uniquely related to rupture angle &, as illustrated in Fig. 1. Similar to the
failure surface being discretized into triangular elements, the volume of
the falling block is discretized into tetrahedrons, each with volume AVj

1
av=! ’ <?k « a) 2, 25)

where T’ is shown in Fig. 6(c), and the rate of work done by the weight
of one fourth of the conical sections of the failing block is determined
from the expression

W,=yv > AV (26)
k=1

with y being the unit weight of rock and v being the magnitude of ve-
locity vector v.

4.2.1. Stability number for quartic cone block with rectangular base

Each of the components in balance Eq. (10) has two terms, one for
the conical part of the surface (end sections) and one for the prismatic
insert. Substituting the sum of expressions in Egs. (24) and (A1) for the
rate of dissipation and the sum of Egs. (26) and (A2) for the gravity work
(and W, = 0) into balance Eq. (10), and using Egs. (7) and (8), the
following expression for dimensionless group o; /yB was derived

S AV +1 (_Zsj —1;—2>
Oci _ k=1 =1 @7
B m

B(ZKkAAw% Zl%)
k=1 Jj=1

where K and Kj are given in Eq. (B1) in Appendix B. The stability
number is the maximized value of the dimensionless group in Eq. (27),
with the geometrical parameters of the failure block being independent
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variables in the optimization process (Section 5.1).

4.2.2. Factor of safety for quartic cone block with rectangular base

The second stability measure considered is the factor of safety based
on the shear strength of the rock, defined in Eq. (12). The Hoek-Brown
criterion in its parametric form, reduced by the factor of safety (Fig. 7),
is used

o =0, =0 (L 510\ [mea(l —sind) T s 28)
m, mya 2sind my
T 64 | coss [mya(l —sind) | o
S St o S 2
“TF F{ 2 { %usins | (29)

The normal stress component is identical to that in Eq. (7), whereas
the factored shear stress at failure (shear strength) is reduced by factor of
safety F from its full value in Eq. (8). As illustrated in Fig. 7, the rela-
tionship of the true rupture angle § and the factored rupture angle 8 is

5 = tan" ! (Ftané,) (30)

Calculations of the factor of safety require that rates of internal
(dissipated) work be calculated based on the factored (reduced) shear
strength in Eq. (29) and the rates of the external work in Eq. (10) need to
be calculated using the geometry of the failure mechanism based on the
reduced rupture angle 54 rather than rupture angle § associated with the
true strength of the rock.

The work rate terms in Eq. (10) have separate components for the
conical part of the failure surface and for the prismatic insert.
Substituting expressions in Egs. (24, 26, A1, A2) and W), = 0 into balance
Eq. (10), and using Egs. (28) and (29), the following implicit equation
with respect to the factor of safety was derived

Cui m I 1 m i n B2
— M AA+5 Y MLy | =~ AV +5 Sij——4
o (Sman e Smas ) < [ Soaves (5505

(31)

where subscript d indicates geometrical quantities (Agk, Vak, Lgj and Sg)
in the mechanism constructed based on the reduced rupture angle
84 (Fig. 7, Eq. (30)) and o; /yB is the dimensionless group describing the
rock properties and the cavity geometry. Factor of safety F is embedded
in terms M and M; given in Eq. (B2) in Appendix B. Consequently, Eq.
(31) is an implicit equation with respect to factor of safety F, and needs
to be solved numerically (Section 5.1).

T A
Vv t(o,)
Wk vl
5
[v] 7(0))
5, f/ F
’ 7
F=1,
5 5d l ;0_7
-0, o) o’ "
" vl,

Fig. 7. The Hoek-Brown strength criterion and the strength envelope reduced
by factor of safety F.
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4.2.3. Support pressure for quartic cone failure block

Cavity roofs that have a small margin of safety may need to be
structurally supported to assure a minimum factor of safety required for
service. It is considered that the supporting pressure is distributed uni-
formly on the cavity ceiling, Fig. 3(a, b). The influence of the supporting
pressure is included in the last term of the work rate balance in Eq. (10).
The supporting pressure is a reaction of the support system to the gravity
load, thus its work is negative during failure, and for one quarter of the
cone block with a rectangular base (matching the entire ceiling area) it
assumes the following form

_pvB(L—1)

w, = -2

(32)

For the quadric (elliptic) cone block considered in the next section,
the block base area B(L-l) in Eq. (32) needs to be replaced with the
elliptic base area of the block.

Supporting pressure needs to be large enough so that a minimum
required value of the factor of safety is maintained. Hoek et al. (2000)
suggest that a minimum factor of safety of 1.5-2.0 is acceptable for
permanent underground excavations, whereas a value of 1.3 should be
required for temporary mine openings. The rates for internal work in
Egs. (24, A1) with stresses in Egs. (28, 29), external work in Egs. (26, A2)
and the work of the supporting pressure in Egs. (32, A3) are now
substituted into the rate balance in Eq. (10). After some transformation
of the resulting equation, the following expression for required
(dimensionless) support pressure p /yB is found

p 4 (1] 1 B
L AV, + - 2
}’B BL{B |:; dk+2</ZlS1/,/ 8
o m 1 <&
- (ZMk Mg+ ZMde]) }
14 =1 =

where o, /yB is the value of the dimensionless group for the actual
cavity. The supporting pressure is always necessary if the actual
dimensionless group o; /yB is less than its critical value, i.e., stability
number N. Factor of safety F in Eq. (33) is embedded in terms M; and My
(Eq. (B2)) and it is a given target value of F (e.g., 1.5-2.0). Eq. (33) is an
explicit equation that returns the value of dimensionless support pres-
sure p /yB needed to maintain a required value of factor of safety F.

(33)

4.3. Elliptic cone block (real quadric cone)

The classical right elliptic cone with height h, or the real quadric cone,
is expressed in the following algebraic equation
2y (z=hy

2TET R 34)

with the origin of the coordinate system at the base of the cone (z
directed toward the cone apex). This is a special case of the quartic cone
in Eq. (13). The cone in Eq. (34) was used to construct the end sections of
the block shown in Fig. 2(b). A single elliptic cone as in Eq. (34) has a
linear generatrix, and in search for the critical failure block shape, the
block was constructed of a series of elliptic cone frusta, each with a
different inclination of the generatrix, analogous to the end sections in
Fig. 2(a), with the exception that a true elliptic cone does not cover the
corners of the cavity ceiling.

Following the steps in Section 4.2, Eq. (34) can be transformed into
an equation describing cones contributing j™ frustum to the entire cone
block

2 Y (z- ‘)’)2
! +ﬂ_2 C tan’g (55)

where 1 is a ratio of the half-axes on the cone base. The block volume is
then constructed by a series of elliptic cone frusta defined in Eq. (35),
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each with different inclination angle of generatrix ¢; in cross-section y =
0 (plane xOz).

The algebraic form of the classical right elliptic cone in Eq. (34) is
simpler than the quartic surface with a rectangular base in Eq. (13),
Section 4.2. Considerations of stability follow the steps described in
Section 4.2, and they are not repeated here. The same elliptic cone
surface was explored earlier in stability analysis of tunnels with circular
cross-sections (Park and Michalowski, 2020), and the reader may find
the analytical development therein without the Delaunay discretization
method useful.

4.4. Rectangular-base pyramid block

A rectangular pyramid block is illustrated in Fig. 2(c) and Fig. 8. The
block is constructed with n frusta of rectangular pyramids with
decreasing angle of flank inclination, and a matching prismatic insert.
The origin of the coordinate system in Fig. 8 is now placed at half-width
(B/2) below the cavity ceiling, hence the sum of angles 7 is always 45°.
Trapezoid-shape failure (or rupture) surfaces with areas Ayj and Ay;
along x- and y-axes (shaded areas in Fig. 8) are inclined to the vertical
velocity vector of the block at angles dy;j and 8y, respectively (6xj = y;
for a square-base pyramid), defined as

by =5—a (36)

2
T A
Oyj = g— tan™! <_a;;aj> 37)

where 4 now determines ratio B/(L—1), with L and [ being the length of
the entire ceiling and the length of the insert, respectively. Areas of
failure surfaces Ayj and Ay;j, and the volume of each quarter-frustum V;
are easily determined from the block geometry, and the rate of dissi-
pated work per one quarter of the pyramid is

D= H D [(zjcosdy — o1ysindy )Ag + (7(yc088, — 6(y)5in,; )Ay; ]

J=1

(38)
where 6(x)j, T(x)j and 6(yy;, 7(y); are found by substituting &y, and 6y (Eqs.

(37) and (36)) into Egs. (7) and (8), respectively. The gravity work rate
of one quarter of the pyramidal end sections is

Contour of
the rock block

Jt frustum
of pyramid

l End section

—

Cavity

Fig. 8. Half of the failure surface constructed with frusta of rectangular pyra-
mids and a prismatic insert of length L
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n
W, =rv Z V; (39)
=1

with V; being the volume of one quarter of the jth frustum (shaded vol-
ume in Fig. 8). Substituting Egs. (38), (39), (Al), (A2) and W, = 0 into
Eq. (10), and using Egs. (7) and (8), the dimensionless group o.;/yB is
found as

2%%(23}—%)
O j=1 j=1
24 _ 40
"B BN (KAl + KA, + KL 0
Z}( A+ KAy + 3K L)
fa

where Kj, Kyj, and Ky; are found from Eq. (B1) in Appendix B after
substituting &, dxj, and Jyj, respectively (compatibility of the pyramid
with the prismatic insert requires dy; = ;). The value of the expression in
Eq. (40) maximized with respect to the independent variables (angles #;,
aj, and ratio 1) is the stability number for the pyramid failure block. The
respective expressions for the factor of safety and the supporting pres-
sure can be easily derived following the steps in Section 4.2, and these
equations are not presented here. The pyramid-type block is the least
complicated shape of those analyzed.

Some aspects of the computations and the results for all three failure
mechanisms are discussed in the following section.

5. Results and discussion
5.1. Calculations

The kinematic approach of limit analysis yields the upper bound to
factor of safety F and the lower bound to stability number N or to the
required support pressure p/yB. As the shape of the most critical block in
the failure mechanisms is not known a priori, its geometry is sought such
that the result is the best bound to the calculated measure of stability.
The process of optimization is then carried out, with the independent
variables being the parameters describing the block geometry.

All three blocks considered in Section 4 are formed by n conical or
pyramidal frusta (and prismatic insert sections), and each of the failure
surfaces is described by the same number of independent variables: n
angles aj, n - 1 angles #; (Fig. 3(a)), and ratio A of half-axes of conical or
pyramidal end sections. Because of the prismatic insert in the block,
ratio 4 is not equal to the ratio of the ceiling dimensions. Independent of
which shape of the block was chosen in Fig. 2 and what stability measure
was calculated, the number of independent variables was 2n (n = 10 was
taken in all computations, as increasing the number beyond 10 produced
no significant change in the results). The first set of parameters was
chosen such that the collapse mechanism was kinematically admissible,
and then all angles «j, 5 and ratio A were varied to arrive at the best
bound to the true solution. The process of optimizing the solution was
carried out sequentially in a cycle (loop), changing one variable at a time
by one increment. After all variables were adjusted, the cycle was
repeated, until the relative difference in the calculated safety measure
from one cycle to the next was less than 10~°. All angles were first varied
by an increment of 0.1°; this increment was reduced in subsequent cy-
cles to the minimum value of 0.001°. Ratio A was varied by increments
from 0.01 to 0.0001. In the case of the real quadric cone block (Section
4.3), calculations of the work rates in the balance equation were carried
out using both the Delaunay discretization method and analytical inte-
gration. The difference in results was found to be less than 0.1% when
about 5000 of the elements were used in the triangulation method per Y
of the conical end sections, and that was the number used in all
calculations.

For the mechanism with the pyramid block (Fig. 8), calculations with
ratio A varied from frustum to frustum were carried out, but the best
solution for all cases calculated were always found when A was about the
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same for every frustum.

The optimized solutions indicated that the failing block in all
mechanisms always reaches the maximum length and width of the
cavity. It should be emphasized that the length of prismatic insert [ was
not an independent parameter. It is uniquely determined as a difference
between given length L of the cavity and the dimension of the cone/
pyramid base measured in the y direction (found from the cavity width B
and ratio \).
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Fig. 9. Stability number N for square-ceiling (L/B = 1) cavities: (a) N as a
function of GSI for the mechanism with quartic cone block and for the varia-
tional approach, and (b) comparison of the stability number for four different
failing blocks (all for minimally disturbed rock, D = 0).
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5.2. Results

5.2.1. Stability number

Stability numbers were calculated from the explicit expression in Eq.
(27) for the quartic cone block with a rectangular base and a similar
equation developed for the right elliptic (quadric) cone block mecha-
nism; Eq. (40) was used for the pyramid-type failure block.

Calculated stability numbers for square-ceiling cavities are illus-
trated in Fig. 9(a) as a function of GSI (semi-log scale). The lines in the
graph represent calculations with the quartic block with prismatic
insert. It is surprising that the best (optimized) solution for a square
cavity has only two planes of symmetry (no diagonal symmetries). The
open-circle bullets are the calculations using the kinematic limit anal-
ysis, but with the variational approach in place of the numerical opti-
mization method. The variational approach to roof stability was first
suggested by Fraldi and Guarracino (2009) who used it in a series of
papers with 2D analysis (Fraldi and Guarracino, 2010, 2011), and it was
later utilized by Yang and Huang (2013) for the axi-symmetric case.
These papers focused primarily on the shape of the collapsing block.
Stability numbers based on the variational approach were calculated by
the authors solely for comparative purposes, and, while these results are
illustrated in Fig. 9, the details of calculations are not presented here.
Perhaps not surprisingly, the results in Fig. 9(a) are very close to one
another. So far, however, the variational approach can be reasonably
used only for square-ceiling cavities (axi-symmetric solution).

Stability numbers from collapse mechanisms with different block
shapes, also for square-ceiling cavities, are shown in Fig. 9(b) as func-
tions of coefficient m;. The approach yielding the best outcome appears
to be the one based on the quartic cone block with insert, followed by the
elliptic cone block, whereas the variational approach and the pyramid-
type block appear to offer less accuracy, though all these results are
within a narrow band of about 5%. While Fig. 9(b) presents comparison
of stability numbers, the quartic and quadric mechanisms were also
found most critical in calculations of the factor of safety. An increasing
stability number with an increase in coefficient m; is somewhat coun-
terintuitive, though reasonable. A similar observation was the subject of
an earlier discussion related to roof stability in tunnels (Park and
Michalowski, 2019).

Calculations for square-ceiling cavities lead to an unexpected
outcome in that the failing rock block is not symmetric with respect to
the two diagonal planes. The best (optimized) solution to the stability
number is achieved when the block has a small prismatic insert, as
illustrated in Fig. 10(a) and (b). This occurs for the type of blocks
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schematically illustrated in Fig. 2(a) and (b), but not for the pyramidal
block, Fig. 10(c), or the one based on the variational approach, Fig. 10
(d), where the shape is axi-symmetric by definition. This peculiarity was
observed in other stability problems, such as the square punch inden-
tation into metals (Shield and Drucker, 1953) and bearing capacity of
square footings (Michalowski, 2001). We bring it here only as a curi-
osity, and will not discuss possible reasons for such an outcome.

More extensive results for the stability number as a function of cavity
ceiling aspect ratio L/B are presented in Fig. 11. The first chart illustrates
the influence of coefficient m; in the Hoek-Brown criterion on the sta-
bility number. While an increase of N with an increase in L/B is ex-
pected, increasing N with increasing m; is counterintuitive. This was
already mentioned in the context of Fig. 9, and it is justifiable based on
the discussion of tunnel stability in Park and Michalowski (2019).

The mechanism with the quartic cone block on a rectangular base
gives the best solution overall (highest N) when the aspect ratio of the
ceiling is close to one (usually, not exceeding 1.7). These results are
marked with bold lines in Fig. 11. For larger aspect ratios, it is the elliptic
(quadric) cone that yields the best results. The pyramid-shape block
failure mechanism was found to give results that are not as good (lower
N). The dependence of the stability number on disturbance factor D and
on GSI is presented in Fig. 11(b) and Fig. 11(c), respectively; they follow
an expected trend. For comparative reasons, selected numerical values
of the stability number are given in Table 1.

5.2.2. Factor of safety

Factors of safety were calculated from Eq. (31) for the mechanism
with a quartic cone block on a rectangular base and from a similar
equation developed for a right elliptic cone block. These equations are
implicit with respect to the factor of safety, and they require a numerical
solution for each set of independent variables during the optimization
process. The pyramid-type block mechanism was found to overestimate
the factors of safety when compared with the other two mechanisms,
and these results are not presented in the paper.

The definition of the factor of safety is that based on the shear
strength, given in Eq. (12), with interpretation of the reduced strength
illustrated in Fig. 7. Calculated factors of safety are presented in Fig. 12
as a functions of dimensionless group o./yB, and are based on the
mechanism that yields the best results. This is predominantly the 4th
order (quartic) cone block on rectangular base shown in Fig. 2(a), and in
some cases the elliptic (quadric) cone block in Fig. 2(b). The specific
mechanisms are also indicated in Table 2. The factor of safety increases
with an increase in group o.; /yB and with an increase in GSI. Presented

(a) Plane of (b) (c) (d)
Top view symmetry Top view Top view - Top view y
Front view N=379.2 Front view N=3751 Front view N=3717 Front view N=372.0

Fig. 10. Top and front views of failure surfaces for square-ceiling cavities, L/B = 1 (m;

5, D = 0, GSI = 10): (a) quartic cone block on rectangular base with

prismatic insert, (b) quadric (elliptic) cone block with insert, (c) a pyramid-type block, and (d) block shape resulting from variational approach (axi-symmetric).
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Fig. 11. Stability number for rectangular cavity roofs as a function of length-to-width ratio L/B and for 2D analysis: (a) the influence of coefficient m;, (b) the
influence of disturbance factor D, and (c) the influence of GSI. Results from analysis with quadric (elliptic) cone block mechanism (Section 4.3), except for bold
portions of lines presenting results from quartic cone block on rectangular base (Section 4.2).
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Table 1
Stability numbers (o.;/yB)it for flat-ceiling tunnel roofs (D = 0).

L/B m; Geological Strength Index GSI
20 40 60 80 100
5 152.40' 34.92 9.26 2.55' 0.72
1 15 257.00' 58.72 15.41 4.17' 1.14/
25 330.15' 75.38 19.72 5.32' 1.45'
5 178.88' 40.97 10.87 3.00' 0.84!
1.5 15 302.29 68.90 18.07 4.89' 1.34/
25 388.34 88.44 23.13 6.24' 1.70'
5 193.16 44.13 11.69 3.22 0.90
2 15 326.41 74.37 19.48 5.27 1.44
25 419.29 95.48 24.96 6.73 1.83
5 206.79 47.28 12.53 3.45 0.97
3 15 349.26 79.63 20.87 5.65 1.54
25 448.59 102.22 26.73 7.21 1.96
5 213.23 48.77 12.93 3.56 1.00
4 15 360.05 82.12 21.52 5.83 1.59
25 462.43 105.41 27.57 7.43 2.02
5 216.96 49.64 13.16 3.63 1.02
5 15 366.30 83.56 21.90 5.93 1.62
25 470.45 107.26 28.05 7.57 2.06
5 230.44 52.85 14.02 3.87 1.09
2D analysis 15 388.85 88.93 23.32 6.31 1.73
25 499.36 114.14 29.86 8.05 2.19

T Mechanism with 4th order (quartic) cone block on rectangular base, all other
results either 2D or based on elliptic (quadric) cone block

in semi-log scale, the factors of safety for different aspect ratios of the
cavity ceiling L/B fit in a relatively narrow band. The computational
results are shown for L/B equal to 1, 1.5, 2, 4, and for plane-strain
analysis. For comparative purposes, numerical values of F for selected
cases are given in Table 2.

Calculations of the factor of safety based on the rock shear strength
are intricate, because the Hoek-Brown criterion is a function of principal
stresses, and it does not have an explicit form presenting the shear
strength envelope as a function of normal stress. Therefore, the para-
metric form of the Hoek-Brown criterion in Egs. (7) and (8) was used.

The factor of safety is often defined based on compressive strength of
intact rock o.;. The sole reason for such a definition is the simplicity of
calculations. In general, however, factors of safety so defined signifi-
cantly overestimate those based on the shear strength. This issue was
discussed earlier in the context of slopes (Michalowski and Park, 2020).
It is a peculiarity, however, that for cavities with flat ceilings the two
definitions yield an identical value of the safety factor. However, this is
not true for curved-ceiling cavities, and the analytical justification in the
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context of 2D analysis was discussed in Park and Michalowski (2019).

5.2.3. Supporting pressure

Cavities and tunnels utilized as part of underground infrastructure
require a minimum factor of safety (typically, around 2.0) to be met
during their service time. For the quartic cone block on a rectangular
base, the supporting pressure was calculated from the explicit expres-
sion in Eq. (33) and a similar equation was developed for the elliptic
(quadric) cone mechanism. The best bounds to the required supporting
pressure are presented in Fig. 13 in three log-log charts, each for a
different given factor of safety F: 1, 1.5 and 2 (defined as in Eq. (12)).
The supporting pressure in Figs. 13(b) and 13(c) assure that the given
factor 1.5 or 2.0, respectively, will be maintained. The plots include the
more critical results of the two conical block mechanisms in Figs. 2(a)
and 2(b). A more specific indication of the critical mechanisms for
specific cases is included in Tables 3 and 4. Dimensionless pressure p/yB
(see Fig. 3 for p) is shown as a function of dimensionless group o;/yB for
GSI in the range of 20 to 100. The pressure is given for a ceiling aspect
ratio of 1 (square), 2 and for a long cavity (plane-strain analysis).

The trends of the solution are what one would expect: the larger the
rock strength (o; /yB), the lower the support pressure needed; the larger
the ceiling aspect ratio, the larger the support pressure needed, and the

Table 2
Factors of safety F for flat-ceiling roofs (D = 0).
o.i/YB GSI m; L/B
1 1.5 2 2D analysis
5 3.33 2.80 2.59 217
500 20 15 1.97' 1.65 1.53 1.28
25 1.53 1.29 1.19 1.00
5 2.92 2.45 2.27 1.89
100 40 15 1.73 1.45 1.34 1.12
25 1.35' 1.13 1.05 0.88
5 2.20' 1.85 1.71 1.43
20 60 15 1.32 1.11 1.03 0.86
25 1.03' 0.87 0.80 0.67
5 4,01 3.37 3.11 2.59
10 80 15 2.44 2.05 1.90 1.58
25 1.91' 1.61 1.49 1.24
5 2.86 2.40 2.22 1.84
2 100 15 1.79' 1.50 1.39 1.16
25 1.41' 1.18 1.09 0.91

f Mechanism with 4th order (quartic) cone block on rectangular base, all other
results either 2D or based on elliptic (quadric) cone block.
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Fig. 12. Factors of safety as functions of dimensionless group o,; /yB for square and rectangular-ceiling, and long cavities such as tunnels (plane strain analysis).
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Fig. 13. Required supporting pressure p/yB: (a) pressure required for limit
equilibrium (factor of safety F = 1), (b) pressure required to meet target factor
of safety F = 1.5, and (c) required pressure to maintain F = 2.0.
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Table 3
Required supporting pressure p/yB x10° for flat-ceiling roofs assuring limit
equilibrium (D = 0).

o.i/YB GSI m; L/B
1 1.5 2 2D analysis

5 36.08' 56.16 67.30 98.70

100 20 15 39.11' 52.10 59.35 79.23
25 35.98' 46.76 52.72 69.03
5 _ _ _ _

50 40 15 8.66' 19.39 25.32 42.01
25 15.78' 24.68 29.67 43.52
5 ¥ 11.97 23.60 58.84

10 60 15 25.92! 40.10 47.86 70.26
25 29.26' 41.01 47.48 65.94
5 36.81' 69.08 86.25 139.24

2 80 15 51.17' 71.08 81.74 113.73
25 49.03' 65.31 74.14 100.03
5% - - - -

1 100 15 13.32! 33.05 43.61 75.31
25 26.18' 42.33 51.08 76.76

t Mechanism with 4th order (quartic) cone block on rectangular base, all other
results either 2D or based on elliptic (quadric) cone block.
" No supporting pressure required.

Table 4
Required supporting pressure p/yB x10° for flat-ceiling roofs assuring factor of
safety F= 2 (D = 0).

o.i/YB GSI m; L/B
1 1.5 2 2D analysis
5 165.41 217.32 245.38 327.92
100 20 15 121.21 153.79 172.05 222.49
25 100.72 130.26 145.16 186.15
5 62.52 104.61 127.23 194.70
50 40 15 77.30 104.65 119.76 162.72
25 72.42 93.95' 108.05 143.44
5 134.02 193.16 224.43! 321.31
10 60 15 117.76 154.75 174.70 233.87
25 105.02 135.38 151.95 200.06
5 254.40 346.77 396.33' 551.64
2 80 15 181.87 235.36 263.60' 350.94
25 154.55 197.96 220.78 290.21
5 139.25 230.53 279.49 432.89
1 100 15 142.84 195.84 223.81 310.33
25 130.74 173.84 196.50 265.33

f Mechanism with 4th order (quartic) cone block on rectangular base, all other
results either 2D or based on elliptic (quadric) cone block.

larger the GSI, the lower the pressure needed. If the curve for a given
cavity and for required factor of safety F in Fig. 13 intersects the abscissa
at o./yB equal to stability number N for this cavity, then only a small
support pressure of p/yB = 1072 is needed to maintain the required F. If
the stability number is substantially larger than dimensionless group o;
/yB marked on the abscissa, the cavity roof does not need a support
pressure to maintain the selected factor of safety. Numerical values of
the supporting pressure for selected cases are given in Tables 3 and 4.

5.3. Other quartic surfaces considered in the analysis

In addition to the quartic cone block on a rectangular base and the
real quadric (elliptic) cones considered in Sections 4.2 and 4.3, three
other quartic surfaces were considered. All of them are special cases of
4th order surfaces, constructed through addition of higher-order term
x*y?/(a?h?) to (or subtraction from) equations of quadric surfaces in
order to allow for a rectangular base of the rock block. These surfaces
are: modified hyperboloid of two sheets, modified elliptic paraboloid,
and modified ellipsoid (dome), all illustrated in Fig. 14 and defined in
Egs. (41)-(43)
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Fig. 14. Other higher-order surfaces (quartics) considered in the analysis (L/B
=1, m =5, D = 0, GSI = 10): (a) modified hyperbola of two sheets, (b)
modified elliptic paraboloid, and (c) modified ellipsoid (dome). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Modified hyperboloid of two sheets:

2 2

X y (41)
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Modified elliptic paraboloid:
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(42)

Modified ellipsoid (dome) :
P S
2 2

a b oa

(43)

Y,
R
where a, b, ¢ are constants in the equations defining the specific shape,

but they were made variable in search for the most critical shape. These
surfaces have a nonlinear generatrix, and each block was defined by a
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single equation, rather than formed of separate frusta. The Delaunay
triangulation method was used in calculations of work rates of internal
and external forces. The surface in Eq. (43) was considered earlier by
Korotkiy et al. (2015) as an example of computer geometric modeling.

Stability numbers for all three blocks over a square cavity are
included in Fig. 14. The modified hyperboloid of two sheets was found to
be the most critical block shape of the three, but still, not as critical as
the square-base quartic block in Fig. 10(a). However, both the modified
hyperboloid of two sheets and the elliptic paraboloid are competitive
with the blocks considered earlier (Fig. 9 and Fig. 10). The modified
ellipsoid (dome) block seems to be an outlier, which underestimates the
stability number calculated with the quartic (elliptic) cone on a rect-
angular base (Section 4.2) by more than 60%. Indeed the dome block is a
very stable configuration, and the failure governed by any of the other
block shapes considered would occur well before the dome block would
become vulnerable to collapse.

5.4. Remarks on the use of the parametric form of the Hoek-Brown
strength criterion

The Hoek-Brown failure criterion is a function of major and minor
principal stresses, while some methods, including limit analysis, call for
an explicit representation of the shear strength as a function of the
normal stress on kinematic discontinuities (failure surfaces). For that
reason Hoek and Brown suggested a substitution function in a form
similar to the following expression (Hoek and Brown, 1980)

(44)

where 7 and 6, are the components of the stress vector on the strength
envelope, o.; is the compressive strength of the intact rock, o; is the
tensile strength, and A and B are dimensionless material parameters. If
the parameters in the Hoek-Brown criterion, Eq. (1), are known, then
parameters A and B in expression (44) can be estimated for a given range
of stresses. Consequently, kinematic limit analysis of stability of a roof
cavity or a slope will yield very similar results when using either of the
two criteria. This was confirmed with the outcome of calculations of the
stability number for square-ceiling roofs presented in Fig. 9(a). The lines
in that chart were found from the analysis based on the parametric form
of the Hoek-Brown criterion in Egs. (7) and (8), whereas the open bullets
are from the approach with the strength criterion in Eq. (44). These
results are nearly identical (the kinematic approach yields the lower
bound to the stability number).

The shape of a failure block in a roof collapse mechanism in tunnels
was determined by Fraldi and Guarracino (2009) using the variational
approach and the strength criterion in Eq. (44). This shape was inde-
pendently determined using the parametric form of the Hoek-Brown
criterion, and the two contours were found to be identical (Park and
Michalowski, 2019). It is reasonable to conclude that the accuracy of
calculations is comparable, whether the parametric form of the Hoek-
Brown criterion is used or the substitution function is employed (i.e.,
the quantitative results are very close, if not identical). The authors
found it convenient to use the parametric form of the Hoek-Brown cri-
terion, because of evading the fitting process for finding parameters A
and B in Eq. (44). On the other hand, Eq. (44) may be easier to handle in
the analysis, because of its relatively simple form.

The third method often exercised when using limit analysis with
nonlinear strength criteria calls for linearizing the strength envelope, the
method introduced into kinematic limit analysis by Drescher and
Christopoulos (1988). Both former methods are more accurate than the
latter. Calculations of stability numbers for square-ceiling cavities in this
paper were underestimated by the method with linearized strength
criterion by 6%, while the difference increased to 8% for the plane-strain
analysis. The difference was found in a similar range in the analyses of
slope stability (Michalowski and Park, 2020), with a larger difference for
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the steeper slopes. It is surprising that this difference is not larger, 5. When applied in rock engineering, the factor of safety is often

considering that the linearization of the strength criterion is a rather defined by factoring the uniaxial compressive strength of intact rock,

crude tool. rather than the shear strength. The two definitions typically yield
different values for the same problem; for example, for the circular

6. Conclusions cross-section tunnels the factor of safety based on compressive

strength grossly overestimates the factor based on the shear strength.

This study was devoted to quantitative assessment of safety of un- It was unexpected to find out in this study that the two definitions

derground cavities in rock against roof collapse. The following are the yield the same value of the safety factor when applied to the problem

conclusions derived from the study. of roof collapse in flat-ceiling cavities. This is the consequence of the
ceiling geometry.

1. Even though the roof collapse mechanism in the form of one block 6. The original Hoek-Brown criterion is a function of the major and
seems fairly uncomplicated, the analysis was found to be quite minor principal stresses, whereas some methods for stability
intricate. The block shapes that yield the best estimates of the safety assessment, including the kinematic limit analysis, require an
measures are the 4th order (quartic) conical surface block and the explicit representation of the rock shear strength as a function of the
2nd order (quadric) elliptic cone. Enriched with a prismatic insert, normal stress on the failure surface. The authors found it convenient
they were found to fit the cavities with any ceiling aspect ratio well. to use a method with the parametric representation of the Hoek-

2. Numerical generation of a rock block shape, while a feasible option Brown criterion in place of a substitution function with the shear
for geomaterials described with a linear shear strength envelope, was strength explicitly dependent on the normal stress on the failure
found less attractive when tried for the Hoek-Brown strength crite- surface.
rion. This is the outcome of the normality flow rule used in limit
analysis and multiplicity of the rupture angles when using nonlinear Declaration of Competing Interest
strength envelopes.

3. Analytical complexity of the 4th order surfaces makes it challenging The authors declare that they have no known competing financial
to develop explicit expressions for the rates of work in the collapse interests or personal relationships that could have appeared to influence
mechanism. It was found convenient to use a numerical procedure the work reported in this paper.
based on the Delaunay triangulation method to integrate both the
rate of internal work along the failure surfaces and the work rate of Acknowledgements
the rock weight.

4. As for cavities with rectangular ceilings, the best estimates of the The work presented in this paper was carried out while the authors
safety measures for square-ceiling cavities were found for blocks were supported by the National Science Foundation, Grant No. CMMI-
with quartic (4th order) cone blocks. It was found peculiar, however, 1901582 and the Horace Rackham School of Graduate Studies at the
that the shape of failure blocks associated with the most critical University of Michigan. The work was also supported by the National
failure mechanisms in square-ceiling cavities was not characterized Research Foundation of Korea (NRF) grant funded by the Korea gov-
by diagonal symmetry planes. These critical mechanisms included a ernment (MSIT), No. 2021R1G1A1003943. This support is greatly
narrow prismatic insert. appreciated.

Appendix A

A.1. Prismatic insert

The rate of work dissipation in one quarter of the prismatic insert during the roof collapse is determined by summing up the rates on rupture
surfaces of every jth element of the block

1] & )
D= - ;(r_,coséj — 0,5ind;) L; (A1)

where [ is the length of the insert, and L; is the length of i rupture surface BjB;j,1 as in Fig. 3(a). The rate of gravity work of one quarter of the insert is

W, = vl is-—B: (A2)
T\ &Y

with S; being the area of jth triangle OB;B;, 1 in Fig. 3(a). The rate of work of the supporting pressure per one quarter of the insert is

pvBI

‘/VI’:_ 4

(A3)
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Appendix B

B.1. Common expressions

cos?; [mya(1 — sind;) ] 1 sing\ (mpa(l —sind;)\ + s
K = ] EZAN S = I (P il I (e St VAR [ S (P58 B1
/ 2 { 2sind; } I (mb + mba) ( 2sind; I my |° (BL)

Rupture angles yj and 6, need to be substituted in Eq. (B1) when used in the first and second term in the sum of the denominator in Eq. (40).

cosd; [mpa(1 — sin&;) | o« 1 sing\ (mpa(1—sing)\ s | .
M = S22 T tSeosSy — || — ) (2 T ) 2 Sy B2
/ 2F |: 2sind; 10004 m, + mya 2sind; l m, St0dj (B2)

where §; = tan 1(F tan 84j)- When F = 1, M; in Eq. (B2) becomes identical to K; in Eq. (B1).

References Leca, E., Dormieux, L., 1990. Upper and lower bound solutions for the face stability of
shallow circular tunnels in frictional material. Géotechnique. 40, 581-606. https://
doi.org/10.1680/geot.1990.40.4.581.

Li, A., Merifield, R., Lyamin, A., 2008. Stability charts for rock slopes based on the

. . . Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci. 45, 689-700. https://doi.

Barton, N., 1976. The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci. org/10.1016/.ijrmms.2007.08.010.

. Qeomlech. Abstr. 13, 2.55 2.79' hltps.//dm.og/lO.lOl6(0148 9062(76)90003-6. . Lippmann, H., 1971. Plasticity in rock mechanics. Int. J. Mech. Sci. 13, 291-297. https://
Bieniawski, Z.T., 1974. Estimating the strength of rock materials. J. South. Afr. Inst. Min. .
doi.org/10.1016/0020-7403(71)90054-3.
Metall. 74, 312-320. . . - . . . . . .
o . . L. . Michalowski, R.L., 1985. Limit analysis of quasi-static pyramidal indentation of rock. Int.
Chen, W.F., 1975. Limit Analysis and Soil Plasticity. Elsevier, New York. ) . R
5 . J. Rock Mech. Min. Sci. Geomech. Abstr. 22, 31-38. https://doi.org/10.1016,/0148-
Chen, W.F., Drucker, D.C., 1969. Bearing capacity of concrete blocks or rock. J. Eng. 9062(85)92591-4
Mech. Div. 95, 955-978. https://doi.org/10.1061/JMCEA3.0001149. . . : .
. . , L . , Michalowski, R.L., 2001. Upper-bound load estimates on square and rectangular
Delaunay, B., 1934. Sur La Sphere Vide. Bulletin de I'Académie des Sciences de 1'URSS, . . . R .
cl des Sciences Mathémati ¢ Naturelles. 6. 793-800 footings. Géotechnique. 51, 787-798. https://doi.org/10.1680/geot.2001.51.9.787.
asse des sciences Mathematiques et Natureties. o, ) Michalowski, R.L., Park, D., 2020. Stability assessment of slopes in rock governed by the

DreSsgsg’i?(;hc?gis?pgﬁﬁs’ :A;ll(iS;eing:;;gsﬁs 511;) PEZ)St;]ﬂHg 4v;1th nonlinear yield Hoek-Brown strength criterion. Int. J. Rock Mech. Min. Sci. 127, 104217 https://doi.
(b : vt : : s onTen org/10.1016/j.ijrmms.2020.104217.

DruckerE.D., Pragelzl.W., Gj\eenlbei\l;[g,ﬂl;l ,9123? g;;enhdsd h/r?cllt .deSIg/I; 8h1eg;zrjls for/ Mollon, G., Dias, D., Soubra, A.H., 2011. Rotational failure mechanisms for the face
Zt;ré;guous media. Q. Appl. Math. 9, —3¢7. htips://7dot.org/ 10, qam stability analysis of tunnels driven by a pressurized shield. Int. J. Numer. Anal.
. ! . - . . . . Methods Geomech. 35, 1363-1388. https://doi.org/10.1016/j.jrmge.2021.10.006.
Fraldi, M., Guarracino, F., 2009. Limit analysis of collapse mechanisms in cavities and Park, D., Michalowski, R.L., 2017. Three-dimensional stability analysis of slopes in hard

Z';mggs;g;grd}iig Ejﬁe4Hoe5; grlo (\)A{ré/ftcu'l'ure crlégré(;noglrgtl i Rock Mech. Min. Sci. soil/soft rock with tensile strength cut-off. Eng. Geol. 229, 73-84. https://doi.org/
g - NUps://Co1.0rg/ 15, J-4rmms. 906, 02,919, 10.1016/j.engge0.2017.09.018.

Fraldi, tl\}f" (;‘.‘ta"ac‘m’ E. 2?.10' AI“TYJ“Csall?gl“;:‘r’“stf";7c°éllagsg;;ei]:fnlf/r';z n t““/“e“ Park, D., Michalowski, R.L., 2018. Tunnel Roof Stability in Soft Rock with Tension
With arbitrary cross sections. ‘nt. /. SOUds struct. 47, —as. Aips:/7dol.org, Cutoff. In: GeoShanghai International Conference, 361-368. Springer. https://doi.

Fr 1510'13/1012/}1350115;122092'8‘19‘102}2%1 tion of impending collapse in circular tunnels b; org/10.1007/978-981-13-0017-2.36.
aldi, M., Luarracino, ., - Bvaluation ol impe g collapse in clrcuiar tunne:s by Park, D., Michalowski, R.L., 2019. Roof stability in deep rock tunnels. Int. J. Rock Mech.

Balmer, G., 1952. A general analysis solution for Mohr's envelope. Proc. ASTM. 52,
1260-1271.

analytical gnd numerical fapproaches. Tunn. Undergr. Space Technol. 26, 507-516. Min. Sci. 124, 104139 hiips://doi.org/10.1016/}.ijrmms.2019.104130.
https://doi.org/10.1016/j.tust.2011.03.003. n . . . S
Hoek. E.. B E.T. 1980. Empirical st th criterion f " J. Geot. E Park, D., Michalowski, R.L., 2020. Three-dimensional roof collapse analysis in circular
O€%, L., browm, .7, - Bmplrical strength criterion for rock masses. .J. Geot. Eng. tunnels in rock. Int. J. Rock Mech. Min. Sci. 128, 104275 https://doi.org/10.1016/j.

Div. 106, 1013-1035. https://doi.org/10.1061/AJGEB6.0001029.
Hoek, E., Brown, E.T., 2019. The Hoek-Brown failure crlt.erlon and GSI .2018 edition. Park, D., Michalowski, R.L., 2021. Three-dimensional stability assessment of slopes in
J. Rock Mech. Geotech. Eng. 11, 445-463. https://doi.org/10.1016/j. X s - .
jrmge.2018.08.001 intact rock governed by the Hoek-Brown failure criterion. Int. J. Rock Mech. Min.
R s . Sci. 137, 104522 https://doi.org/10.1016/j.ijrmms.2020.104522.
Hoei’rigrli\girlrslgisl’spgozcig7'2A2briegf history of the development of the Hoek-Erown failure Paul, B, 1961. A Modification of the Coulomb-Mohr Theory of Fracture, 28,
Hoek, E., Kaiser, P.K., Bawden, W.F., 2000. Support of Underground Excavations in Hard PP 259-268. https4//d014org/104111'5/1:364166.75.' . . .
Rock. CRC Press Shield, R., Drucker, D.C., 1953. The application of limit analysis to punch-indentation
. ; . I roblems. J. Appl. Mech. 20, 453-460. https://doi.org/10.1115/1.4010747.
Hoek, E., Carranza-Torres, C., Corkum, B., 2002. Hoek-Brown failure criterion - 2002 P X PP o ps:// . 8/ ) / L .
L . Sloan, S., Assadi, A., 1992. Stability of shallow tunnels in soft ground. In: Predictive soil
edition. Proceedings of NARMS-Tac. 1, 267-273. . . - . . B
. - . . . mechanics: Proceedings of the Wroth Memorial Symposium held at St Catherine’s
Huang, F., Yang, X., Ling, T., 2014. Prediction of collapsing region above deep spherical .
. ? . .. College, Oxford, 27-29 July 1992. Thomas Telford Publishing, pp. 644-663.
cavity roof under axis-symmetrical conditions. Rock Mech. Rock. Eng. 47, . o
. Suchowerska, A.M., Merifield, R.S., Carter, J.P., Clausen, J., 2012. Prediction of
1511-1516. https://doi.org/10.1007/s00603-013-0455-y. . . . -
X . underground cavity roof collapse using the Hoek-Brown failure criterion. Comput.
Korotkiy, V., Usmanova, E., Khmarova, L., 2015. Surface as an object of computer X A
metric modelling. Procedia Eng. 129, 775-780. https://doi.ore/10.1016,/i Geotech. 44, 93-103. https://doi.org/10.1016/j.compge0.2012.03.014.
geometric moceling. Frocedia Eng. ’ - Ntps: 018/ 20 J: Taylor, D.W., 1937. Stability of earth slopes. J. Boston Soc. Civil Engineers. 24, 197-247.
proeng.2015.12.103. . . . . .
. . Yang, X., Huang, F., 2013. Three-dimensional failure mechanism of a rectangular cavity
Kumar, P., 1998. Shear failure envelope of Hoek-Brown criterion for rockmass. Tunn. > . . . i
X in a Hoek-Brown rock medium. Int. J. Rock Mech. Min. Sci. 61, 189-195. https://
Undergr. Space Technol. 13, 453-458. https://doi.org/10.1016/50886-7798(98) . S
00088-1 doi.org/10.1016/j.ijrmms.2013.02.014.

ijrmms.2020.104275.

16


http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0005
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0005
https://doi.org/10.1016/0148-9062(76)90003-6
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0015
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0015
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0020
https://doi.org/10.1061/JMCEA3.0001149
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0030
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0030
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0035
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0035
https://doi.org/10.1090/qam/45573
https://doi.org/10.1090/qam/45573
https://doi.org/10.1016/j.ijrmms.2008.09.014
https://doi.org/10.1016/j.ijsolstr.2009.09.028
https://doi.org/10.1016/j.ijsolstr.2009.09.028
https://doi.org/10.1016/j.tust.2011.03.003
https://doi.org/10.1061/AJGEB6.0001029
https://doi.org/10.1016/j.jrmge.2018.08.001
https://doi.org/10.1016/j.jrmge.2018.08.001
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0070
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0070
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0075
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0075
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0080
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0080
https://doi.org/10.1007/s00603-013-0455-y
https://doi.org/10.1016/j.proeng.2015.12.103
https://doi.org/10.1016/j.proeng.2015.12.103
https://doi.org/10.1016/S0886-7798(98)00088-1
https://doi.org/10.1016/S0886-7798(98)00088-1
https://doi.org/10.1680/geot.1990.40.4.581
https://doi.org/10.1680/geot.1990.40.4.581
https://doi.org/10.1016/j.ijrmms.2007.08.010
https://doi.org/10.1016/j.ijrmms.2007.08.010
https://doi.org/10.1016/0020-7403(71)90054-3
https://doi.org/10.1016/0020-7403(71)90054-3
https://doi.org/10.1016/0148-9062(85)92591-4
https://doi.org/10.1016/0148-9062(85)92591-4
https://doi.org/10.1680/geot.2001.51.9.787
https://doi.org/10.1016/j.ijrmms.2020.104217
https://doi.org/10.1016/j.ijrmms.2020.104217
https://doi.org/10.1016/j.jrmge.2021.10.006
https://doi.org/10.1016/j.enggeo.2017.09.018
https://doi.org/10.1016/j.enggeo.2017.09.018
https://doi.org/10.1007/978-981-13-0017-2_36
https://doi.org/10.1007/978-981-13-0017-2_36
https://doi.org/10.1016/j.ijrmms.2019.104139
https://doi.org/10.1016/j.ijrmms.2020.104275
https://doi.org/10.1016/j.ijrmms.2020.104275
https://doi.org/10.1016/j.ijrmms.2020.104522
https://doi.org/10.1115/1.3641665
https://doi.org/10.1115/1.4010747
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0170
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0170
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0170
https://doi.org/10.1016/j.compgeo.2012.03.014
http://refhub.elsevier.com/S0013-7952(22)00136-3/rf0180
https://doi.org/10.1016/j.ijrmms.2013.02.014
https://doi.org/10.1016/j.ijrmms.2013.02.014

	Roof stability in flat-ceiling deep rock cavities and tunnels
	1 Introduction
	2 Hoek-Brown failure criterion for rocks
	3 Analysis method and problem description
	3.1 Method of analysis
	3.2 Measures of safety assessment
	3.3 Problem description

	4 Analysis of roof collapse in flat-ceiling cavities
	4.1 Centric prismatic block with piece-wise linear inclination
	4.2 Quartic cone block with rectangular base
	4.2.1 Stability number for quartic cone block with rectangular base
	4.2.2 Factor of safety for quartic cone block with rectangular base
	4.2.3 Support pressure for quartic cone failure block

	4.3 Elliptic cone block (real quadric cone)
	4.4 Rectangular-base pyramid block

	5 Results and discussion
	5.1 Calculations
	5.2 Results
	5.2.1 Stability number
	5.2.2 Factor of safety
	5.2.3 Supporting pressure

	5.3 Other quartic surfaces considered in the analysis
	5.4 Remarks on the use of the parametric form of the Hoek-Brown strength criterion

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	Appendix A
	A.1 Prismatic insert

	Appendix B
	B.1 Common expressions

	References


