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A B S T R A C T   

The subject of the influence of the seismic excitation on limit loads of footings is revisited, with emphasis on the 
moment load. The kinematic approach of limit analysis is employed using two collapse mechanisms allowing 
footing rotation and one with pure translational kinematics. Two of the mechanisms have novel elements, not 
presented in earlier literature. The paper is focused on the resistance of the soil weight to activating a mechanism 
of failure, which can be best cast in terms of the seismic bearing capacity factor Ns

γ . Seismic loads from the 
superstructure are interpreted as those caused by a three-mass model, each mass with its own seismic coefficient. 
The notion of generalized loads is used to present the yield locus for the footing in terms of the gravity force, 
horizontal force, and moment. The non-symmetric components of the load are interpreted as seismically acti
vated. The approach yields a strict upper bound to the magnitude of the load vector causing failure. Of the three 
failure mechanisms considered none yields the best (least) solutions for all combinations of loads. In general, the 
two mechanisms with footing rotation perform better for large moments, whereas the translational mechanism 
yields better results when moments are small. However, even in the absence of a moment load, the rotational 
mechanism can yield better estimates of the limit load when the seismic coefficient is relatively large.   

1. Introduction 

Structures affected by ground motion in seismic regions are sub
jected to inertial loads which must be transferred to the foundation soil, 
in addition to gravity loads. Similarly, the distributed gravity load in the 
soil will be amended by distributed inertial forces, leading to an overall 
complex loading of the foundation soil. As the ground motion is time- 
dependent, the inertial loads are dependent on time. Collapse of a 
foundation footing is predicated on the formation of a failure mecha
nism in the foundation soil, and the design of footings requires selecting 
a size large enough to prevent the formation of the plastic mechanism. 
The design requires selecting an appropriate load combination that in
cludes both the gravity and inertial loads. The latter are time-dependent, 
but a customary approach is to consider both to be steady, with the 
inertial load components in some proportion to the peak acceleration of 
the ground motion. 

The findings in this study are useful in both the safety assessment of 
footings subjected to combined, non-symmetric static loads, and to loads 
induced by ground shaking during seismic excitation. In the presenta
tion of the results emphasis is placed on the latter, as the impact of the 
moment load induced by the superstructure subjected to shaking is often 
overlooked when considering seismic load combinations. A part of the 

novelty in this paper is in the interpretation of the multiplicity of seismic 
load combinations, even though a detailed dynamic analysis of the su
perstructure is not attempted. 

The early attempts solving for seismic bearing capacity of strip 
footings considered both the superstructure and the foundation soil to be 
subjected to the same seismic acceleration (e.g., Sarma & Iossifelis, 
1990, Richards et al., 1993). This approach ignores phenomena such as 
ground motion amplification and a variety of possible motion-induced 
load combinations from the superstructure. The differences in motion 
phase on different components of a structure were ignored in the early 
studies, and even more importantly, the impact of the seismically 
induced moment load on a footing was not accounted for in these early 
efforts. Attempts to take moment load into account have been made 
mainly in offshore foundations, but not necessarily in the context of 
ground motion. When interpreting the failure state of a footing, a limit 
state envelope involving interaction of vertical, horizontal and moment 
loads can be adopted as in the concept of generalized loads and veloc
ities introduced by Prager (1959) to analyze structures such as beams, 
frames and plates. This path will be explored in this paper. 

The tools used in the early approaches to seismic bearing capacity 
were the limit equilibrium method and kinematic limit analysis, the latter 
rendering a rigorous upper estimate to the bearing capacity of strip 
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footings subjected to seismic loads. There is substantial literature 
available regarding the capacity of soils to carry non-symmetric loads, 
though many of the papers relate to loads that are not necessarily caused 
by seismic events. For example Nova & Montrasio (1991) and Gottardi & 
Butterfield (1993) developed yield loci in terms of generalized load on a 
footing that included independent force components and moment. 
Salençon & Pecker (1995) provided upper and lower estimates of limit 
loads including inclined and eccentric forces on footings resting on 
undrained soils. Analyzing the impact of seismic loads on resistance of 
non-cohesive soils, Dormieux & Pecker (1995) indicated that while the 
major influence comes from the structural loads, the soil inertial load 
should not be neglected. Using earlier developed mechanisms, Paolucci 
& Pecker (1997) presented seismic limit loads for footings with inclined 
and eccentric loads. They also indicated that the impact of the inertial 
loads from the superstructure is more significant than that from the soil 
inertia. Non-symmetric loads on foundation soils were the subject of 
research related to offshore structures. Bransby & Randolph (1998) 
constructed the yield locus for offshore skirted foundations in the gen
eral load space. Soubra (1999) provided seismic bearing capacity factors 
using a simple multi-block mechanism in kinematic limit analysis, 
though omitting the impact of moments. Hjiaj et al (2004) used finite 
element limit analysis to obtain solutions to bearing capacity of footings 
on Mohr-Coulomb soils under inclined loading. 

More recent investigations of the subject recognize that during 
earthquake shaking the accelerations affecting the superstructure and 
the foundation soil are not the same (Cascone & Casablanca, 2016; Pane 
et al., 2016). These newer studies also employ numerical methods to 
search for the bearing capacity of footings subjected to seismic loads, 
such as finite element analysis and the finite difference approach. To 
avoid a large number of charts with bearing capacity for a variety of 
different load combinations, both Pane et al. (2016) and Cascone & 
Casablanca (2016) used the concept of an influence factor or a seismic 
reduction factor. This made it possible to isolate the effect of seismic 
lateral loads of the superstructure from the effect of soil shaking. 
However, such a procedure needs to be exercised with caution as it uses 
a superposition of different effects, which is not universally permissible 
when the behavior of the system is non-linear. 

In his note on the seismic effects on footings resting on undrained 
soils, Pender (2018) brought up an interesting observation indicating 
the negligible impact of soil shaking on the bearing capacity of un
drained soils. This aspect, however, does not fall under the purview of 

this paper, as it focuses on pressure dependent soils without any cohe
siveness. This introduction is to provide some background to the study 
presented, but it is not meant to be a comprehensive literature survey; 
for a more detailed bibliography of the subject, the reader is directed to 
the list of references in the paper by Pane et al. (2016). 

This paper introduces novel elements into the seismic bearing ca
pacity analysis, in particular, the direct consideration of the seismic 
moment in bearing capacity analysis; it explores new mechanisms of 
foundation soil failure, and it identifies the specific regions on the yield 
locus associated with the specific modes of foundation soil failure when 
subjected to non-symmetric loads. 

2. Problem statement 

The resistance of foundation soils to loads is typically considered as a 
superposition of three components: first, the soil cohesiveness and the 
effort needed to overcome the shear resistance of soil during formation 
of a plastic mechanism; second, the resistance of the overburden that 
needs to be displaced if the failure is to take place; and third, the 
component owed to the soil gravity force opposing the failure. The 
minima of the three resistance components are typically calculated 
independently and the superposition is used to determine the total ca
pacity of footings to carry the loads. This method, attributed to Terzaghi 
(1943), though earlier suggested by Keverling Buisman (1940), uses an 
approximation allowing the three components to be determined using 
different collapse mechanisms. While this introduces some inconsis
tency into the solution, such an approach is conservative, as the sum of 
the three minimum resistance components cannot be larger than the 
minimum of their sum. 

This paper is focused only on the resistance of the foundation soil 
weight to carry gravity loads and inertial forces from the superstructure, 
as well as the inertial forces induced in the soil by shaking. Despite of the 
dynamic character of the seismic forces, they will be considered steady 
loads in the analysis. Horizontal inertial forces, associated with propa
gation of S-waves, will be considered, but the vertical shaking will be 
ignored in the analysis as they are induced by P-waves of a different 
frequency (Gazetas et al., 2009). The overburden and the cohesiveness 
of the soil are not considered in this study, however a full array of in- 
plane loads is considered. The outcome sought in this study is best 
characterized by factor Ns

γ used in the three-term bearing capacity 
expression, accounting for the impact of seismic loads. The mechanisms 

Fig. 1. (a) Schematic of a three-mass model of the superstructure, and (b) load combinations governed by combinations of mass accelerations.  
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utilized in this study allow addressing the bearing capacity components 
owed to the soil cohesion and overburden by including appropriate work 
rate terms in the work balance equation, but the influence of cohesion 
and overburden was not part of the study. 

The strength of the soil is described by the pressure-dependent Mohr- 
Coulomb function with its deformation governed by the normality flow 
rule. The scale of the problem is defined by the width of a long footing, 
and the plane-strain solution to the problem in terms of generalized limit 
loads (two components of the force and a moment) will be sought. 

The method selected for solving the problem is the kinematic 
approach of limit analysis. This method is predicated on the normality 
flow rule and the convexity of the yield criterion of the soil. It uses a 
theorem, which can be conveniently stated as follows: the rate of in
ternal work in any kinematically admissible mechanism is not smaller 
than the work rate of true external loads in that mechanism 
∫

V
σk

ijε̇
k
ijdV +

∫

L
Tk

i [v]
k
i dL ≥

∫

St

Tivk
i dSt +

∫

V
Xivk

i dV (1)  

The two terms on the left-hand side include the rate of internal work in 
the continually deforming soil and along the velocity discontinuities, 
and the right-hand side represents the work rate of external forces, with 
Ti being the boundary stress and Xi is a volume-distributed load, such as 
the gravity load. The consequence of this theorem is that an active limit 
load calculated using any kinematically admissible mechanism is a strict 
upper bound to the true load causing failure. The most accurate upper 
bound to the active limit load is found from a mechanism that yields the 
minimum of the load. This requires selecting a mechanism that is sen
sitive to the loads involved and optimizing its geometry to arrive at the 
least upper bound. 

3. Loads 

The most common approach to the assessment of seismic load ca
pacity of footings has been based on using a quasi-static load, in some 
relation to the peak acceleration of the ground motion, as alluded to 
earlier. In addition, a strong assumption is made typically that the 
horizontal acceleration affecting the superstructure is in phase with the 
acceleration in the foundation soil, with matching magnitudes of ac
celerations. In the following we will concentrate first on interpretation 
of possible loads transferred to the footing from the superstructure, but 
without a dynamic analysis of the latter. Fig. 1(a) shows schematically a 
superstructure modeled as three equal masses m. As a result of the dy
namic motion of the footing and the structure, the three masses are 
allowed to move with different horizontal velocities and accelerations, 
but no vertical motion is included. Different combinations of motion of 
the three masses are considered allowing multiplicity of combinations of 
horizontal seismic force and a moment on the footing. This 3-mass 
model was selected as it is the least complex model allowing the 
seismic forces or seismic moments (or both) on the superstructure to 
cancel out for non-trivial combinations of mass accelerations. The au
thors are not aware of such a model being used by others to interpret 
possible combinations of seismic loads. 

Each mass in the model produces gravity load W, with total gravity 
load on the footing being P = 3 W. Assume each mass being subjected to 
a different horizontal acceleration, defined by a respective seismic co
efficient ki (i = 1, 2, 3). Finding these accelerations in relation to the 
ground motion would require a detailed dynamic analysis of the su
perstructure. However, this structural example model is used here only 
to demonstrate that different combinations of horizontal accelerations 
lead to distinctly different combinations of loads, with the potential 
failure mechanism being dependent on that combination. For the to
pology of the system in Fig. 1(a), horizontal seismic load T and seismic 
moment M transferred to the foundation footing are 

T = W(k1 + k2 + k3) = 3Wk = Pk

M =
1
2

Wh(k1 + 3k2 + 5k3) =
1
6

Ph(k1 + 3k2 + 5k3)

(2)  

where W is the weight associated with each mass, and k is the average of 
the three mass seismic coefficients: k = (k1 + k2 + k3)/3. The condi
tions for the loading combination T > 0 and M < 0 (see coordinate 
system in Fig. 1) are easily found from inequalities k1 +k2 +k3 > 0 and 
k1 + 3k2 + 5k3 < 0, leading to the following set of two inequalities 

k2

k1
> −

k3

k1
− 1

k2

k1
< −

5k3

3k1
−

1
3

(3)  

The criteria in Eq. (3) are plotted in Fig. 1(b) as two straight lines, and 
they discriminate between two distinct types of loading indicated by the 
inserts in Fig. 1(b), marked as load combinations A and C for which 
sgn(T⋅M) = +1 and loads B and D for which sgn(T⋅M) = −1. 

Thus a rich variety of loads is theoretically possible, out of which the 
realistic combinations would follow from a dynamic analysis of the su
perstructure interacting with the ground motion. It is hypothesized that 
the two distinct types of loading (A, C and B, D) are likely to induce 
different failure mechanisms in the foundation soil. The two inequalities 
(3) plotted as lines in Fig. 1(b) represent seismic loads with either zero 
horizontal force or zero moment. Their cross-section at E defines a 
combination of the three seismic coefficients (k2/k1 = -2, k3/k1 = 1) 
where, despite non-zero accelerations, no inertial load from the super
structure is transferred to the footing. In the analysis of bearing capacity, 
seismic coefficients k1, k2, k3 are distinct from the seismic coeffi
cient applied to the soil, ks. 

The footing loading classified as A and C were considered earlier, for 
example, by Paolucci & Pecker (1997) and Michalowski & You (1998a), 
whereas loads B and D were addressed to a lesser extent (Narita & 
Yamaguchi, 1989; Michalowski & You, 1998a), and a new failure 
mechanism was developed in this study to capture a better upper bound 
solution to limit loads B and D. While the dynamic analysis of the su
perstructure was not attempted, the distinction between different load 
combinations in Fig. 1(b) are likely to be associated with the modal 
response of the structure to seismic excitation. Load combinations 
denoted as B and D may occur for higher-order modes that are likely to 
be associated with vibration periods corresponding to larger spectral 
accelerations. Loads B and D are likely to be dependent not only on the 
structural response, but also on the frequency content of the ground 
motion. 

When the three masses in Fig. 1(a) are subjected to horizontal ac
celerations, the induced lateral inertial forces will be transferred directly 
to the soil through a mat foundation or will be distributed across an 
array of spread footings. However, a portion of the seismic moment 
produced by the horizontal inertial forces in the superstructure may be 
transferred to the foundation soil as vertical force-couples on pairs of 
spread footings, causing an increase/decrease in vertical forces on in
dividual footings (not disturbing the total vertical gravity load from the 
superstructure), and only a small portion of the moment may transfer as 
moments on individual footings. Assessment of seismically-induced 
loads transferred from the superstructure to the foundation soil is not 
a subject of this paper. Rather, it is the non-symmetric combination of 
limit loads on a footing that is of interest here, as well as indicating how 
the seismic loads may relate to the generalized yield criterion (yield 
locus). Special attention will be paid to possible variation in failure 
modes (collapse mechanisms), dependent on the combination of loads. 
The use is made of a three-dimensional interaction surface, or the 
generalized yield condition (Prager, 1959). 
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4. Plastic mechanisms 

Three mechanisms of soil collapse are considered. The basic load, in 
the absence of seismic shaking, is the gravity load from the superstruc
ture. The inertial forces induced by shaking in the soil and in the su
perstructure contribute to the loss of symmetry in the loading. First the 
load from the superstructure alone is considered. Because the inertial 
loads are treated as steady, finding the limit combinations of non- 
symmetric loads with inertial components, in addition to gravity 
loads, is no different than finding a generalized yield locus for a footing 
loaded with combinations of non-symmetric static loads, including 
moment M, horizontal force T, and vertical force P. 

Combinations of positive and negative forces and moments are 
illustrated graphically in Fig. 1(b) in order to distinguish among 
different combinations of loads. In the following three figures illus
trating three plastic mechanisms, all loads are marked as positive, 
consistently with the coordinate system used and shown in the figures. 

The first mechanism is shown in Fig. 2 and it will be referred to as 
Mechanism A. It encompasses a rotating portion, including the footing 
and soil region CDAC beneath, both rotating about point O with angular 
velocity ω. The soil internal friction angle is ϕ and the footing-soil 
interface friction angle is ϕw. Velocity vC at point C is inclined at angle 
ϕ to kinematic discontinuity CD, and at ϕw to the footing-soil interface, 
conforming to associativity of plastic deformation. As region CDAC 
rotates as rigid, line CD is a log–spiral section of kinematic discontinuity 
CDEFG. 

As line CDEFG is smooth, no other discontinuities are present in the 
mechanism. Point D is an inflection point, and while OC and AE are 
parallel, velocities vC and vE are parallel and equal in magnitude. Point A 

Fig. 2. Mechanism A (combined rotation-translation failure): (a) collapse mechanism, (b) hodograph, and (c) example volume element in region ADFA used for 
calculating the work rate of gravity and seismic forces in the soil. 

Fig. 3. Mechanism B (dual-rotation collapse): (a) mechanism, and 
(b) hodograph. 
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is a singular point and line DEF is a log-spiral, but region ADEFA is 
subjected to continual shear (not rigid rotation). The velocity at point A 
spans a fan of velocities changing in magnitude and direction, illustrated 
in the hodograph as log-spiral AA*, Fig. 2(b). Finally, triangular region 
AFGA is subjected to a combination of translation and simple shear. 
Velocities in the entire mechanism are illustrated in the hodograph 
shown in Fig. 2(b). 

The mechanism in Fig. 2(a) is fully defined by 3 independent vari
ables, for example, two coordinates of center of rotation O and angle ψ . 
However, as the geometry of the mechanism needs to be optimized in 
order to obtain the best (the least) estimate of the limit load, it is more 
convenient to select three angles as the independent variables, and an
gles α, β, and ψ were selected. This mechanism is similar to that used by 
Salençon & Pecker (1995) for undrained soils, and it was used earlier for 
analyzing spread footings on drained soils subjected to combined loads 
(Michalowski & You, 1998a); it is utilized here to consider non- 
symmetric loads in the context of seismic impact. 

The second mechanism is illustrated in Fig. 3. It shows a dual- 
rotation motion pattern, and it will be referred to as Mechanism B. 
This mechanism has not been considered in earlier literature. It consists 
of two soil blocks rotating about separate centers O and Q, separated by 
planar velocity discontinuity surface BC originating from footing corner 
B. Block ACBA rotates about point O with angular velocity ω. The second 
block, BCDB, rotates with velocity ω about point Q. Curve AC is a section 
of log-spiral ACF, and CD is a section of log-spiral ECD. 

As the motion of the two blocks is defined by rotation about two 
different centers, planar surface BC separating the two blocks is a ki
nematic discontinuity with velocity jump vector [v], perpendicular to a 
line passing through O and Q. The plastic mechanism is separated from 
the soil at rest with kinematic discontinuity ACD (ACD has a discon
tinuous derivative at C). Velocities in Mechanism B are illustrated in the 
hodograph in Fig. 3(b). The mechanism in Fig. 3(a) is fully defined by 4 
independent variables, for example, the coordinates of rotation centers 
O and Q. It was convenient to define points O and Q using two sets of 
angles: α1, β1, and α2, β2, as illustrated in Fig. 3(a). Note that once 
rotation centers are defined, only one point C exists on log-spiral ACF 
that renders the mechanism admissible. This point is found from the 

condition that velocity jump vector [v] on BC must be orthogonal to line 
passing through points O and Q. 

Both Mechanism A and Mechanism B provide rotation of the footing, 
making them sensitive to the seismic moment load. However, the two of 
them are likely to deliver a better bearing capacity under different load 
conditions, i.e., Mechanism A is expected to be more effective with loads 
marked A and C in Fig. 1(b), whereas Mechanism B is expected to yield a 
better (lower) limit load under load combinations B or D (i.e., where 
force T in Fig. 3(a) is negative). 

The third mechanism considered is purely translational, with the 
footing and block ABCA moving with unique velocity vABC, Fig. 4(a). 
This mechanism is not sensitive to moment loads, as the work of the 
moment on pure translation is nil, but it is sensitive to the seismic 
horizontal load, and it is expected to yield the best solution under some 
combinations of loads, particularly those with small or zero moment. 
Adjacent to block ABCA is a group of blocks contained by piece-wise 
linear curves AC and AD. Except for the triangular blocks sharing 
common singular point A, all other blocks in that region are quadran
gles. Each block moves as rigid with its own velocity, and it is separated 
from adjacent blocks with straight-line kinematic discontinuities, as 
illustrated in Fig. 4(b). The velocity field in region ADEA has two distinct 
families of piece-wise linear kinematic discontinuities, which divide the 
field into rigid blocks. The hodograph in Fig. 4(c) illustrates the block 
velocities and the discontinuity vectors at their interfaces. Inclination of 
each straight-line segment of a velocity discontinuity is governed by its 
own angle that is an independent variable constrained by kinematic 
admissibility of the mechanism. The number of independent variables in 
Mechanism C then depends on the number of blocks. If the total number 
of blocks is n and the number of blocks bordering block ABCA along 
piece-wise linear flank AC is a, then the total number of independent 
variables can be found from formula 2(n −1) + a. This formula includes 
a −1 variables needed to define the location of points along AC. For 
example, the mechanism in Fig. 4 has 36 blocks, and the number of 
independent variables is 2(36 −1) + 5 = 75. 

5. Results 

5.1. Calculating limit loads 

The purpose of this study is to determine the yield locus of the 
footing in terms of generalized loads (two components of the force and a 
moment), and indicate how this locus relates to different modes of 
failure and to possible seismic loads. No cohesion in the soil and no 
overburden are considered, and the study is focused on the resistance of 
the soil weight to carry non-symmetric loads. This part of foundation soil 
resistance to load is typically contained in bearing capacity factor Ns

γ 

(here with superscript s); therefore, the yield locus in the load space will 
be developed first, and then charts will be shown with factor Ns

γ for some 
range of internal friction angle of the soil and some variation of non- 
symmetric load characteristics. 

The upper bound to an active force causing failure of a structure can 
be calculated from the theorem in Eq. (1). Application of this inequality 
is straightforward for a single-parameter loading, but in general, the 
footing can be loaded with three independent loads: vertical force P, 
horizontal force T, and moment M. If the non-symmetry of loading is 
introduced by the seismic action alone, then both T and M can be cast as 
functions of gravity load P and the characteristics of the ground motion 
as well as those of the superstructure, as indicated in Eq. (2). However, 
finding mass accelerations in the model requires dynamic analysis of the 
structure, which is beyond the scope of this study. Consequently, the 
calculations will be performed for a given horizontal acceleration k 
applied to the superstructure (average of seismic coefficients of all 
masses in the superstructure model) and given moment through 
enforcing constant eccentricity of the gravity load. Such loads can be 
interpreted as contained within two planes in load space P, T, M, as 

Fig. 4. Mechanism C (multi-block translation pattern): (a) mechanism, (b) 
fragment of multi-block mesh, and (c) hodograph. 
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illustrated in Fig. 5. The cross-section of the two planes illustrates the 
proportional, one-parameter loading path. Consequently, using Eq. (1) 
one can formulate a problem with given k and e/B, and one unknown, 
namely the upper bound to limit vertical load P. A solution to this 
problem yields one point on a surface in the P, T, M space, referred to as 
the footing’s yield locus. This surface determines the combinations of 
loads P, T and M that define the limit state of the footing. One needs 
multiple calculations for a variety of k and e/B combinations to obtain 
multiple points on the yield locus allowing construction of the entire 
surface. In the following, this process is described for the specific 
problem in this paper. 

Because no cohesion is considered in the soil, the normality flow rule 
predicts no work dissipation in the soil, and the left side of inequality (1) 
becomes zero, consequently 
∫

St

Tivk
i dSt + γ

∫

V
nivk

i dV ≤ 0 (4)  

Superscript k refers to the kinematically admissible velocity field. The 
first term in inequality (4) includes all loads on the footing (Ti being the 
stress vector on the footing-soil interface St), whereas the work rate of 
the soil weight is described in the second term (with ni being the unit 
vector in the direction of gravity). This term can be evaluated in any 
mechanism by taking a volume integral of expression γv ( −sinθ +

kscosθ), where γ is the soil unit weight, v is the magnitude of the velocity 
vector, ks is the seismic coefficient in the soil, and θ is illustrated in Fig. 2 
(c). Considering Mechanism A in Fig. 2(a), components of the velocity 
vector of the footing center Ω are: vΩ

x = ω lsinβ and vΩ
y =

ω (B/2 − lcosβ) , where l is distance OB in Fig. 2(a). Inequality (4) can 
now be written for Mechanism A as 

PvΩ
y + PkvΩ

x + Peω + γ
∫

V
v( − sinθ + kscosθ)dV ≤ 0 (5)  

or 

P ≤
−γ

∫

Vv ( − sinθ + kscosθ) dV
vΩ

y + kvΩ
x + e ω =

γ
∫

Vv (sinθ − kscosθ) dV

ω
[

B
2 − l(cosβ − ksinβ) + e

] (6)  

where V is the volume of the entire mechanism CDEFGAC, k is the 
average seismic coefficient as defined in Eq. (2), and ks is the seismic 
coefficient applied to the foundation soil. The right-hand side of 
inequality (6) yields the upper bound to the limit of one-parameter 

loading P calculated using Mechanism A. All velocities in the mecha
nism are linear functions of order one of angular velocity ω, hence the 
estimate of P is independent of ω. 

Following the same procedure, the respective expressions were 
developed for the remaining two mechanisms. The formula for Mecha
nism B is developed in the Appendix A, and given in Eq. (15), whereas 
the following expression was developed for Mechanism C 

P ≤
γ
∑n

j=1 vj
(
sinθj − kscosθj

)
ΔVj

vABC[sin(β − ϕ) + kcos(β − ϕ) ]
(7)  

where n is the number of blocks in the mechanism, vABC is the velocity 
magnitude of the block immediately beneath the footing, θj is an angle 
that velocity of block j makes with axis x (measured counterclockwise), β 
is an angle (independent variable) shown in Fig. 4(a), and vj and ΔVj are 
the velocity magnitude and the volume of block j, respectively. 

The details of optimizing the mechanisms in order to obtain the least 
upper bounds to the limit loads on footing are given in Appendix A. 

5.2. Yield locus 

Points on the yield locus are determined by the mechanism yielding 
the least limit load vector in load space P, T, M. It was convenient to find 
points on the yield locus by a series of computations for constant average 
superstructure seismic coefficient k (stationary plane A in Fig. 5), with 
varied moment or eccentricity e of force P (varied plane B, defined by 
angle ξ in Fig. 5). 

First, the footing yield locus was determined for the case with the 
seismic load from the superstructure alone (k ∕= 0) and no seismic load in 
the soil (ks = 0). This yield surface then is no different than the surface 
for static non-symmetric limit loads, and it is shown in Fig. 6(a). The 
yield locus is shown in the dimensionless load space P/γB2, T/γB2, M/ 
γB3. The internal friction of the soil was taken in calculations as ϕ = 30◦; 
no bonding on the footing-soil interface was considered, and the inter
face friction angle was taken in the amount of 2/3 of ϕ, i.e., ϕw = 20◦. 

The red portion of the surface shows the region governed by the 
rotation-translation Mechanism A. As the limit analysis was employed, 
deformation of the soil in the analysis was governed by the normality 
flow rule. Consequently, the yield locus in terms of loads P, T, and M is 
the plastic potential for generalized velocities, here two components of 
displacement velocity and a rotation (angular velocity) of the footing. 
Generalized velocities are illustrated by vectors ṗ orthogonal to the yield 
locus. As the yield locus is presented in the dimensionless space, the 
generalized velocity components reside in the conjugate velocity space 
with coordinates multiplied by the respective norms used to produce the 
dimensionless load space. 

The rotation appears to be the dominant velocity component in the 
upper-middle portion of the yield locus. Point H indicates a point with 
loads caused by seismic action with coefficients k1, k2, k3, defined by 
point H in Fig. 1(b), with coordinates k2/k1, k3/k1, of 1.4 and 1.2, 
respectively, k1 = 0.056 and the 3-mass superstructure model charac
terized by h/B = 0.988. 

The gray vertical surface in Fig. 6(a) is associated with the failure 
mode in Mechanism C. This section of the yield locus is parallel to the 
moment axis, and generalized velocity vector ṗ is parallel to plane T, P, i. 
e., it does not have an angular velocity component. This is consistent 
with the purely translational mode represented by Mechanism C. The 
edge where the two sections intersect does not have a unique derivative. 
A point on this edge indicates a yield load point with non-unique 
deformation, where the location of rotation center O in Fig. 2(a) 
moves deeper and deeper into the soil, causing the plastic Mechanism A 
to transform progressively into translational Mechanism C, the case 
interpreted by Koiter (1953) with his flow rule applicable to singular 
points on the plastic potential. 

Portions of the yield locus in Fig. 6(a) marked as blue show the 
combinations of the loads causing the footing failure illustrated by 

Fig. 5. Proportional or single-parameter loading path OS in P, T, M load space.  
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Fig. 6. Yield locus for a strip footing: (a) non-symmetric load from superstructure only (k ∕= 0, ks = 0), (b) both superstructure and the soil subjected to inertial forces 
(ks = k ∕= 0), (c) cross-sections T = const., and (d) cross-sections M = const. 
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Mechanism B in Fig. 3(a). These sections of the surface reside predom
inantly in regions where the product of the moment and the horizontal 
force is negative, sgn(T⋅M) = −1 (see also shaded areas in Fig. 1(b)). 
These regions are mostly obscured in the view of the first octant of the 
load space in Fig. 6(a). 

A small white oval region close to the origin of the load space is 
associated with surface sliding of the footing. Because the normality 
flow/sliding is enforced, the sliding vector (normal to the yield locus) is 
not parallel to the horizontal footing-soil interface, but has a dilative 
component. There is a short interface (edge) on the yield locus where the 
regions associated with surface sliding (white) and translational Mech
anism C (gray) join. The derivative along this edge is not unique, indi
cating that either surface sliding or translational mechanism can occur 
for the same load combination. Terminal points of this edge are then 
singular points where, in addition, the kinematics of failure consistent 
with either Mechanism A (when M > 0) or Mechanism B (when M < 0) 
can be activated. 

The impact of the seismically activated inertial force in the soil is 
illustrated in Fig. 6(b). The case considered is one with seismic coeffi
cient in the soil ks equal to the average seismic coefficient k in the 3-mass 
model. Not surprisingly, the yield locus accounting for seismic coeffi
cient in the soil is leaner than that in Fig. 6(a). 

Cross-sections of both yield loci with planes T = const. are shown in 
Fig. 6(c). Red, blue and black relate to the three mechanisms A, B, and C, 
respectively. Solid lines show cross-sections with no seismic acceleration 
in the soil, ks = 0, whereas the dashed lines indicate cross-sections where 

ks = k. Vertical segments (P = const.) of the cross-sections indicate ki
nematics consistent with either translational mechanism C or surface 
sliding. Both point H and point G are on the cross-section T/γB2 = 0.4, 
with G defined for combination T⋅M < 0, for which Mechanism B yields 
the least failure load. Point G can be identified on the graph in Fig. 1(b) 
as k2/k1 = 1.1, k3/k1 = 1.2, with k1 = 0.167 and the 3-mass super
structure model characterized by h/B = 1.543. 

Fig. 6(d) shows cross-sections of the two yield loci with planes of 
constant moment. It is not surprising that when M = 0, much of the 
cross-section is bound by the limit determined from translational 
Mechanism C, particularly when ks = k. The load combination favoring 
surface sliding is demonstrated by the straight-line segments starting 
from the origin of the load space (M = 0). 

5.3. Factor Nγ for spread footings 

This study focuses on the resistance of granular foundation soils to 
loads, owed to the weight of the soil. The results illustrated as yield loci 
can be interpreted in terms of resistance factor Ns

γ. This factor is used in 
calculations of the last component of the three-term bearing capacity 
formula for spread footings 

pγ =
1
2

γBNs
γ (8)  

Superscript s is used to indicate that this factor accounts for the non- 

Fig. 7. Factor Ns
γ for constant eccentricity e/B = 0.2 and ks = k.  

Y.S. Kim and R.L. Michalowski                                                                                                                                                                                                              



Computers and Geotechnics 172 (2024) 106405

9

symmetric loads caused by seismic excitation. All charts will be pre
sented for horizontal seismic coefficient k applied to the superstructure 
and equal in value coefficient ks applied to the soil (ks = k). 

Earlier efforts to assess seismic bearing capacity did not focus on the 
moment load. Therefore, when comparing the results Meyerhof’s hy
pothesis will be used, which suggests that the footing width be reduced 
by double eccentricity to account for the moment. The use of this hy
pothesis will be termed the “B-reduction” method. For some cases this 
hypothesis can be derived from purely mechanical considerations 
(Michalowski & You 1998b). 

The first set of results is shown in Fig. 7. The two charts show factor 
Ns

γ as a function of average seismic coefficient k defined in Eq. (2), for an 
internal friction angle of the soil ranging from 45◦ down to 20◦. Ec
centricity was taken as e/B = 0.2 in calculating all results in Fig. 7, and 
the seismic coefficient applied to soil ks = k. This is the case where both 
the moment and the horizontal force are positive, i.e., seismic coefficient 
k and eccentricity e are also both positive. Of all results presented in 
Fig. 7 only the limit analysis based on Mechanism A is sensitive to the 
moment load. The remaining four solutions are not dependent on the 
moment load, and to make them comparable to the Mechanism A so
lution, all were modified by Meyerhof’s hypothesis of B-reduction. The 
other four solutions are: (1) the one based on Mechanism C, (2) a simple 
translational mechanism consisting of an assembly of triangular blocks 
(Michalowski, 1997, Soubra, 1999), (3) finite difference method (FLAC) 
as reported by Pane et al. (2016), and (4) the method of characteristics 
as reported by Martin (2005), though available only for k = 0. It appears 

that Mechanism A yields the least solution to seismic factor Ns
γ, despite 

using the B-reduction method for all other solutions. 
The set of results in Fig. 8 differs from that in Fig. 7 in that the 

moment is now negative. Mechanism B now yields better results than 
Mechanism A does, but overall, it is the finite difference method (Pane 
et al., 2016) with the B-reduction hypothesis that yields best results for 
low values of seismic coefficient k, whereas for higher values of k, 
Mechanism C with the B–reduction and Mechanism B yield least upper 
bounds to factor Ns

γ. The method of characteristics results are available 
only for k = 0 (Martin, 2005), and they are consistent with the finite 
difference method. 

The charts in Fig. 9 represent Factor Ns
γ for given k = 0.3 and positive 

moment with e/B ranging up to 0.4, and in Fig. 10 for negative moment 
with e/B ranging from 0 to −0.4. When the horizontal force and the 
moment are both positive, Fig. 9, the best solution is obtained from 
Mechanism C with the B–reduction method when the eccentricity is 
small (typically when e/B < 0.1 and 30◦ < ϕ < 45◦), and Mechanism A 
yields the least (best) solution for larger eccentricities. Not surprisingly, 
all cases where the B–reduction procedure was used show a linear de
pendency of Ns

γ on eccentricity e/B. This is because in the presence of a 
moment load Meyerhof’s hypothesis requires reduction of the footing 
width by 2e, which produces the linear relationship of the bearing ca
pacity factor Ns

γ on eccentricity e. When the horizontal force is positive 
and the moment is negative, Fig. 10, then Mechanism C with the 
B–reduction method yields the least solution for small eccentricities, and 

Fig. 8. Factor Ns
γ for constant eccentricity e/B = - 0.2 and ks = k.  
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Mechanism B appears to yield the least results for larger eccentricities. 
Finally, in the absence of moment load (M = 0 line in Fig. 1(b)), the 

best (least) solution to Ns
γ is found from the finite difference method 

(Pane et al., 2016) for low magnitudes of seismic coefficient k, and from 
limit analysis with Mechanism C for larger values of k, Fig. 11. It is 
surprising, however, that Mechanism A which accounts for rotation of 
the footing, becomes competitive when seismic coefficient becomes 
relatively large, e.g., k > 0.36 and ϕ = 30◦. This point was also raised 
when the yield locus in Fig. 6(a) was discussed. 

5.4. Comments on accuracy and finite element limit analysis approach 

An analytical approach in limit analysis, explored in this paper, has 
been successful in solving many stability problems in geotechnical en
gineering (e.g., Chen, 1975). In the last decades a finite element 
approach implemented in limit analysis has become widely utilized. 
First introduced by Lysmer (1970), this approach was discussed in more 
detail by Sloan (2013) in his 2011 Rankine Lecture. Advantages of this 
method are in a larger flexibility when considering non-homogeneous 
soils and complex geometries, in an ease in providing both the upper- 
and the lower-bound solutions, and in being better suited to three- 
dimensional collapse mechanisms. Comparison of early upper-bound 
bearing capacity results of strip footings on two-layer clays using both 
the finite element and the analytical approach showed that more accu
rate results are found by one method or the other, depending on the 
specific soil parameters and problem geometry (Merifield et al., 1999; 

Michalowski, 2002). Calculations of the upper-bound bearing capacity 
factor Nγ presented by Sloan & Yu (1996) revealed substantially higher 
upper-bound values than those from Mechanism C offered in this paper; 
for example, for ϕ = 30◦, Mechanism C with 150 blocks yields Nγ =

16.474 vs. about 20, read from the chart in Sloan & Yu (1996). Mech
anism C introduced in this paper yields the best value of the analytical- 
approach upper-bound limit analysis to date. Sloan & Yu used a model 
with 800 elements in their calculations; for the purpose of comparison 
the authors recalculated this example for ϕ = 30◦ using the finite 
element limit analysis Optum G2 model with 100k elements (OptumCE, 
2024), and obtained a value of 15.246 for upper-bound Nγ, and a lower- 
bound value of 14.722. Not surprisingly, the finite element-based 
outcome depends very much on the number of elements used and 
adjusting the mesh (re-meshing) to the problem at hand. This upper 
bound is more than 20 % better than the early one in Sloan & Yu (1996), 
but only 7 % better than the one found using Mechanism C. 

In order to shed some light on accuracy and the similarity of mech
anisms used in the analytical approach and those generated using the 
finite-element approach, two examples are presented for seismic load 
cases A and D (Fig. 1(b)). The bearing capacity is sought for a strip 
footing on granular soil with a shear angle of ϕ = 35◦, no cohesion, but 
with overburden q given as q/γB = 2.0 . Considering overburden in the 
analysis required the work rate of the overburden to be included in the 
work rate balance equation. This analysis involved simultaneous 
calculation of bearing capacity due to soil weight and overburden, un
like the typical separate calculations of components with cohesion, 

Fig. 9. Factor Ns
γ for constant k = 0.3 and e > 0 (ks = k).  
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overburden, and foundation soil weight. For Case A loading, the hori
zontal seismic coefficient k = 0.3 is applied to the soil, the superstruc
ture, and overburden load q, and the load eccentricity is e = 0.2B; k =
-0.3 for Case D. The shear strains in the velocity field generated by 
Optum G2 are shown in Fig. 12(a) with red indicating the maximum 
shear strain rates and dark blue being zero. The color scale indicates 
distinct features in the velocity field, but the magnitudes of shear strain 
rates are meaningful only when compared to the rate of loads (not 
indicated here). The contours of the velocity field in the analytical 
approach is shown in Fig. 12(b) (Mechanism A from Fig. 2), but with 
superimposed relative velocities from the Optum G2 solution. These 
velocities are consistent with those in the mechanism in Fig. 2(a), 
illustrated also in the hodograph, Fig. 2(b). It may be worth noticing that 
the velocity discontinuity separating the moving soil from the soil at rest 
is somewhat diffused in the finite-element approach, while it is a strong 
discontinuity in the analytical approach. Mechanism A yields the 
dimensionless average bearing capacity of p/γB = 21.621, whereas the 
upper-bound outcome from Optum G2 was found to be 21.435 (100k 
elements), a difference of less than 1 %. A difference of a little more than 
4 % was obtained using the numerical lower-bound approach: p/γB =

20.710. 
The second comparative example is loading Case D, with seismic 

coefficient of k = -0.3, all other data the same. The shear strain rates 
from Optum G2 are shown in Fig. 13(a) indicating a band of localized 
shear starting from one corner of the footing, separating the moving soil 
from the ground at rest. Another shear band extends from the second 

corner and separates two rigid blocks. This is quite consistent with ki
nematic discontinuities in Mechanism B occupying about the same 
geometric location as the shear bands found in the finite element 
approach. Of the three mechanisms considered in this paper Mecha
nism B yields the best upper bound for loading Case D,p/γB = 24.614, 
vs. p/γB = 23.953 found from the finite element approach (100 k ele
ments), with a roughly 2.5 % difference. The finite element lower-bound 
outcome was p/γB = 23.510. Comparison of results in this section in
dicates that while the finite element limit analysis approach using a 
substantial number of elements and mesh adaptive technique yields 
slightly better results, both approaches are acceptable for geotechnical 
engineering purposes. 

6. Conclusions  

• A three-mass model of the superstructure considered provides a 
wealth of possible seismic loads on foundation soils, and it was found 
useful when interpreting the quasi-static loads owed to seismic 
excitation. However, moments produced by seismically excited su
perstructures and transferred to the foundation soil cannot be 
determined with confidence without dynamic analysis of the 
structure.  

• A yield locus of a strip footing can be effectively produced in the 
space of generalized loads by considering a variety of failure modes. 
Contrary to typical procedures assuming a cigar-shaped loci, the 
yield locus developed in the paper is not smooth, it contains singular 

Fig. 10. Factor Ns
γ for constant k = 0.3 and e < 0 (ks = k).  
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Fig. 11. Comparison of least solutions Ns
γ in the absence of moment load (ks = k).  

Fig. 12. Comparison of mechanisms for loading Case A: (a) strain rate field 
from finite element approach (red/blue − max/min), and (b) contours of 
optimized Mechanism A with superimposed velocities from the finite element 
limit analysis. 

Fig. 13. Comparison of mechanisms for loading Case D: (a) strain rate field 
from finite element approach (red/blue − max/min), and (b) contours of 
optimized Mechanism B with superimposed velocities from the finite element 
limit analysis. 
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edges (and points) indicating load combinations where a change of 
failure mode is permissible. The limit load surface, or the yield locus, 
constitutes a potential for footing permanent displacement and 
rotation. 

• Of the three mechanisms used in the analysis two have novel ele
ments. Mechanism B is a dual-rotation pattern with two rotating 
blocks separated by a planar kinematic discontinuity. This mecha
nism produces favorable results when the moment and the horizontal 

force on the footing are of opposite sign (in the coordinate system 
used). The authors are not aware of the dual-rotation mechanism 
having ever been used in the subject literature. Mechanism C has 
translational kinematics and it is a significant improvement over the 
mechanisms used earlier in limit analysis. 

• The primary outcome of the study are the solutions to bearing ca
pacity factor Ns

γ for different combinations of gravity load, the 
seismic horizontal force and the moment. When using kinematic 
limit analysis and considering moment load, the footing must un
dergo plastic rotation, otherwise, the mechanism will not be sensitive 
to the moment load. Using Meyerhof’s (B-reduction) hypothesis is 
one way to adapt moment-insensitive solutions to moment loads. The 
results from three mechanisms used in this paper were compared to 
the outcomes from the finite difference method, limit analysis with a 
simple translational mechanism, and the method of characteristics 
available in the literature. The limit analysis outcome with Mecha
nism A yields the best (least) results in terms of Ns

γ for the widest 
range of combination of non-symmetric (here seismic) loads, and so 
does Mechanism C with the B-reduction procedure. Mechanism B 
yields the best Ns

γ in a limited range of load combination where the 
seismic horizontal force and the moment are of opposite signs, the 
average seismic coefficient is relatively high, and the magnitude of 
vertical load eccentricity is larger than 0.2 (or algebraically smaller 
than −0.2). Translational Mechanism C (with the B-reduction pro
cedure) gives best results among all solutions for small moment 
loads. The finite difference method appears to be giving the best 
solutions when seismic horizontal force and moment are of opposite 
signs and when seismic coefficient k is low. There is no one mecha
nism that would yield the best solution for all load combinations. 
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Appendix A 

Implementing Mechanism B in limit analysis 

Recognizing that the results in the paper are illustrated only for a rough grid of parameters, additional details are provided about the calculation 
procedure for Mechanism B, in the hope that readers might find it useful in developing their own tools when in need of more comprehensive results. 
For a more detailed description of Mechanism A, readers are encouraged to read papers by Paolucci & Pecker (1997) and Michalowski & You (1998a), 
whereas remarks on construction of multi-block mechanisms, such as that in Mechanism C, can be found in Chen (1975). 

The upper bound to the bearing capacity is calculated from inequality (1), written here algebraically as 

Fig. 14. Flowchart for minimization of force P.  
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0 ≥ WP + Wγ (9) 

where WP and Wγ are the work rates of vertical limit force P and soil weight, respectively. The left-hand side of inequality (1) is zero as a consequence 
of the absence of the cohesive component of the strength. Introducing geometrical quantities 

r0 = OA

rh = OC = r0e(θh−α1)tanϕ

l = OB = r0
sinα1

sinβ1

(10)  

the rate of work of the limit load on the footing can be calculated from the following expression 

WP = Pω
[
B
2

− l(cosβ1 + ksinβ1) + e
]

(11)  

where the limit combination of loads is: P, T = Pk, M = Pe. Symbol ω is the angular velocity about points O and Q, B is the footing width, e is the 
eccentricity of vertical load P, and angle β1 is marked in Fig. 3. Referring again to Fig. 3, the second term in inequality (9) can be found as the sum of 
the work rates of the two rigid rotation regions: ACBA and DCBD. In region ACBA the work of gravity and seismic work can be calculated as 

WACBA
γ = WACOA

γ − WABOA
γ − WBCOB

γ (12)  

with 

WACOA = ωγr3
0
(
f1 + ksf s

1
)

where ks is the seismic coefficient for the soil, and 

f1 =
1

3(1 + 9tan2ϕ)

[
(3tanϕcosθh + sinθh)e3(θh−α1)tanϕ − 3tanϕcosα1 − sinα1

]

f s
1 =

1
3(1 + 9tan2ϕ)

[
(3tanϕsinθh − cosθh)e3(θh−α1)tanϕ − 3tanϕsinα1 + cosα1

]
(13)  

Introducing the Cartesian coordinate system at point O (Fig. 3(a)) and defining the centroids of areas ABOA and BCOB as 
(
xABOA, yABOA

)
and 

(
xBCOB,

yBCOB
)
, the last two terms in Eq. (12) can be calculated as 

WABOA
γ = ωγ

(
xABOA + ksyABOA

)
AABOA

WBCOB
γ = ωγ

(
xBCOB + ksyBCOB

)
ABOCB

(14)  

In a similar manner, work rate WDCBD
γ in region DCBD can be calculated. Utilizing Eq. (9), the upper bound to limit load P is found as 

P = −
WACBA

γ + WDCBD
γ

ω
[

B
2 − l(cosβ1 + ksinβ1) + e

] (15)  

Minimization of force P 

Expressions in Eqs. (6), (7) and (15) were used in computations of the footing yield locus in space P, T, M. As the loading was reduced to one- 
parameter loading, the limit value of vertical load P was calculated first, and associated limit values of T and M were determined from: T = P k 
and M = Pe, as per Eq. (2) (see also Eq. (5)). The procedure starts from constructing the first kinematically admissible mechanism of type A, B or C. 
This involves assuming the first set of admissible independent variables; for example, for Mechanism A these are angles α, β, and ψ. Next, these in
dependent variables are altered sequentially, one-by-one, by increment Δ until the minimum of calculated force P is reached. Each time a single 
independent variable is altered, the kinematic admissibility of the mechanism must be reevaluated. This process is illustrated in the flowchart in 
Fig. 14. Symbol xj in the flowchart denotes jth independent variable in a given mechanism, xj (j = 1, 2, 3…m), where m is the number of independent 
variables in the mechanism. 

In this process of minimization, increment Δ was reduced from its maximum (initial value) of 2.43◦ to the minimum of 0.01◦ in 5 three-fold 
reduction steps. Mechanism B is fully defined by four independent variables (α1, β1, α2, β2), but Mechanism C has a larger number of independent 
variables, as it includes a substantial number of kinematic discontinuities (interfaces between the blocks), and each linear segment of a discontinuity is 
defined by an independent variable angle of inclination. The number of independent variables in Mechanism C is dependent on the number of blocks, 
and an expression for the number of variables was developed in the previous Section. 
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