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The subject of the influence of the seismic excitation on limit loads of footings is revisited, with emphasis on the
moment load. The kinematic approach of limit analysis is employed using two collapse mechanisms allowing
footing rotation and one with pure translational kinematics. Two of the mechanisms have novel elements, not
presented in earlier literature. The paper is focused on the resistance of the soil weight to activating a mechanism
of failure, which can be best cast in terms of the seismic bearing capacity factor N;. Seismic loads from the
superstructure are interpreted as those caused by a three-mass model, each mass with its own seismic coefficient.
The notion of generalized loads is used to present the yield locus for the footing in terms of the gravity force,
horizontal force, and moment. The non-symmetric components of the load are interpreted as seismically acti-
vated. The approach yields a strict upper bound to the magnitude of the load vector causing failure. Of the three
failure mechanisms considered none yields the best (least) solutions for all combinations of loads. In general, the
two mechanisms with footing rotation perform better for large moments, whereas the translational mechanism
yields better results when moments are small. However, even in the absence of a moment load, the rotational

mechanism can yield better estimates of the limit load when the seismic coefficient is relatively large.

1. Introduction

Structures affected by ground motion in seismic regions are sub-
jected to inertial loads which must be transferred to the foundation soil,
in addition to gravity loads. Similarly, the distributed gravity load in the
soil will be amended by distributed inertial forces, leading to an overall
complex loading of the foundation soil. As the ground motion is time-
dependent, the inertial loads are dependent on time. Collapse of a
foundation footing is predicated on the formation of a failure mecha-
nism in the foundation soil, and the design of footings requires selecting
a size large enough to prevent the formation of the plastic mechanism.
The design requires selecting an appropriate load combination that in-
cludes both the gravity and inertial loads. The latter are time-dependent,
but a customary approach is to consider both to be steady, with the
inertial load components in some proportion to the peak acceleration of
the ground motion.

The findings in this study are useful in both the safety assessment of
footings subjected to combined, non-symmetric static loads, and to loads
induced by ground shaking during seismic excitation. In the presenta-
tion of the results emphasis is placed on the latter, as the impact of the
moment load induced by the superstructure subjected to shaking is often
overlooked when considering seismic load combinations. A part of the
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novelty in this paper is in the interpretation of the multiplicity of seismic
load combinations, even though a detailed dynamic analysis of the su-
perstructure is not attempted.

The early attempts solving for seismic bearing capacity of strip
footings considered both the superstructure and the foundation soil to be
subjected to the same seismic acceleration (e.g., Sarma & lossifelis,
1990, Richards et al., 1993). This approach ignores phenomena such as
ground motion amplification and a variety of possible motion-induced
load combinations from the superstructure. The differences in motion
phase on different components of a structure were ignored in the early
studies, and even more importantly, the impact of the seismically
induced moment load on a footing was not accounted for in these early
efforts. Attempts to take moment load into account have been made
mainly in offshore foundations, but not necessarily in the context of
ground motion. When interpreting the failure state of a footing, a limit
state envelope involving interaction of vertical, horizontal and moment
loads can be adopted as in the concept of generalized loads and veloc-
ities introduced by Prager (1959) to analyze structures such as beams,
frames and plates. This path will be explored in this paper.

The tools used in the early approaches to seismic bearing capacity
were the limit equilibrium method and kinematic limit analysis, the latter
rendering a rigorous upper estimate to the bearing capacity of strip
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Fig. 1. (a) Schematic of a three-mass model of the superstructure, and (b) load combinations governed by combinations of mass accelerations.

footings subjected to seismic loads. There is substantial literature
available regarding the capacity of soils to carry non-symmetric loads,
though many of the papers relate to loads that are not necessarily caused
by seismic events. For example Nova & Montrasio (1991) and Gottardi &
Butterfield (1993) developed yield loci in terms of generalized load on a
footing that included independent force components and moment.
Salencon & Pecker (1995) provided upper and lower estimates of limit
loads including inclined and eccentric forces on footings resting on
undrained soils. Analyzing the impact of seismic loads on resistance of
non-cohesive soils, Dormieux & Pecker (1995) indicated that while the
major influence comes from the structural loads, the soil inertial load
should not be neglected. Using earlier developed mechanisms, Paolucci
& Pecker (1997) presented seismic limit loads for footings with inclined
and eccentric loads. They also indicated that the impact of the inertial
loads from the superstructure is more significant than that from the soil
inertia. Non-symmetric loads on foundation soils were the subject of
research related to offshore structures. Bransby & Randolph (1998)
constructed the yield locus for offshore skirted foundations in the gen-
eral load space. Soubra (1999) provided seismic bearing capacity factors
using a simple multi-block mechanism in kinematic limit analysis,
though omitting the impact of moments. Hjiaj et al (2004) used finite
element limit analysis to obtain solutions to bearing capacity of footings
on Mohr-Coulomb soils under inclined loading.

More recent investigations of the subject recognize that during
earthquake shaking the accelerations affecting the superstructure and
the foundation soil are not the same (Cascone & Casablanca, 2016; Pane
et al., 2016). These newer studies also employ numerical methods to
search for the bearing capacity of footings subjected to seismic loads,
such as finite element analysis and the finite difference approach. To
avoid a large number of charts with bearing capacity for a variety of
different load combinations, both Pane et al. (2016) and Cascone &
Casablanca (2016) used the concept of an influence factor or a seismic
reduction factor. This made it possible to isolate the effect of seismic
lateral loads of the superstructure from the effect of soil shaking.
However, such a procedure needs to be exercised with caution as it uses
a superposition of different effects, which is not universally permissible
when the behavior of the system is non-linear.

In his note on the seismic effects on footings resting on undrained
soils, Pender (2018) brought up an interesting observation indicating
the negligible impact of soil shaking on the bearing capacity of un-
drained soils. This aspect, however, does not fall under the purview of

this paper, as it focuses on pressure dependent soils without any cohe-
siveness. This introduction is to provide some background to the study
presented, but it is not meant to be a comprehensive literature survey;
for a more detailed bibliography of the subject, the reader is directed to
the list of references in the paper by Pane et al. (2016).

This paper introduces novel elements into the seismic bearing ca-
pacity analysis, in particular, the direct consideration of the seismic
moment in bearing capacity analysis; it explores new mechanisms of
foundation soil failure, and it identifies the specific regions on the yield
locus associated with the specific modes of foundation soil failure when
subjected to non-symmetric loads.

2. Problem statement

The resistance of foundation soils to loads is typically considered as a
superposition of three components: first, the soil cohesiveness and the
effort needed to overcome the shear resistance of soil during formation
of a plastic mechanism; second, the resistance of the overburden that
needs to be displaced if the failure is to take place; and third, the
component owed to the soil gravity force opposing the failure. The
minima of the three resistance components are typically calculated
independently and the superposition is used to determine the total ca-
pacity of footings to carry the loads. This method, attributed to Terzaghi
(1943), though earlier suggested by Keverling Buisman (1940), uses an
approximation allowing the three components to be determined using
different collapse mechanisms. While this introduces some inconsis-
tency into the solution, such an approach is conservative, as the sum of
the three minimum resistance components cannot be larger than the
minimum of their sum.

This paper is focused only on the resistance of the foundation soil
weight to carry gravity loads and inertial forces from the superstructure,
as well as the inertial forces induced in the soil by shaking. Despite of the
dynamic character of the seismic forces, they will be considered steady
loads in the analysis. Horizontal inertial forces, associated with propa-
gation of S-waves, will be considered, but the vertical shaking will be
ignored in the analysis as they are induced by P-waves of a different
frequency (Gazetas et al., 2009). The overburden and the cohesiveness
of the soil are not considered in this study, however a full array of in-
plane loads is considered. The outcome sought in this study is best
characterized by factor N; used in the three-term bearing capacity
expression, accounting for the impact of seismic loads. The mechanisms
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utilized in this study allow addressing the bearing capacity components
owed to the soil cohesion and overburden by including appropriate work
rate terms in the work balance equation, but the influence of cohesion
and overburden was not part of the study.

The strength of the soil is described by the pressure-dependent Mohr-
Coulomb function with its deformation governed by the normality flow
rule. The scale of the problem is defined by the width of a long footing,
and the plane-strain solution to the problem in terms of generalized limit
loads (two components of the force and a moment) will be sought.

The method selected for solving the problem is the kinematic
approach of limit analysis. This method is predicated on the normality
flow rule and the convexity of the yield criterion of the soil. It uses a
theorem, which can be conveniently stated as follows: the rate of in-
ternal work in any kinematically admissible mechanism is not smaller
than the work rate of true external loads in that mechanism

/ ik + / TpdL > / TokdS, + / Xokdv &)
\4 L Se 14

The two terms on the left-hand side include the rate of internal work in
the continually deforming soil and along the velocity discontinuities,
and the right-hand side represents the work rate of external forces, with
T; being the boundary stress and X; is a volume-distributed load, such as
the gravity load. The consequence of this theorem is that an active limit
load calculated using any kinematically admissible mechanism is a strict
upper bound to the true load causing failure. The most accurate upper
bound to the active limit load is found from a mechanism that yields the
minimum of the load. This requires selecting a mechanism that is sen-
sitive to the loads involved and optimizing its geometry to arrive at the
least upper bound.

3. Loads

The most common approach to the assessment of seismic load ca-
pacity of footings has been based on using a quasi-static load, in some
relation to the peak acceleration of the ground motion, as alluded to
earlier. In addition, a strong assumption is made typically that the
horizontal acceleration affecting the superstructure is in phase with the
acceleration in the foundation soil, with matching magnitudes of ac-
celerations. In the following we will concentrate first on interpretation
of possible loads transferred to the footing from the superstructure, but
without a dynamic analysis of the latter. Fig. 1(a) shows schematically a
superstructure modeled as three equal masses m. As a result of the dy-
namic motion of the footing and the structure, the three masses are
allowed to move with different horizontal velocities and accelerations,
but no vertical motion is included. Different combinations of motion of
the three masses are considered allowing multiplicity of combinations of
horizontal seismic force and a moment on the footing. This 3-mass
model was selected as it is the least complex model allowing the
seismic forces or seismic moments (or both) on the superstructure to
cancel out for non-trivial combinations of mass accelerations. The au-
thors are not aware of such a model being used by others to interpret
possible combinations of seismic loads.

Each mass in the model produces gravity load W, with total gravity
load on the footing being P = 3 W. Assume each mass being subjected to
a different horizontal acceleration, defined by a respective seismic co-
efficient k; (i = 1, 2, 3). Finding these accelerations in relation to the
ground motion would require a detailed dynamic analysis of the su-
perstructure. However, this structural example model is used here only
to demonstrate that different combinations of horizontal accelerations
lead to distinctly different combinations of loads, with the potential
failure mechanism being dependent on that combination. For the to-
pology of the system in Fig. 1(a), horizontal seismic load T and seismic
moment M transferred to the foundation footing are
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T = W(k; + kz + ks) = 3Wk = Pk

(2)
M= %Wh(kl + 3ky + 5ks) = éPh(kl + 3k, + 5ks)

where W is the weight associated with each mass, and k is the average of
the three mass seismic coefficients: k = (k1 + k2 + k3)/3. The condi-
tions for the loading combination T > 0 and M < 0 (see coordinate
system in Fig. 1) are easily found from inequalities k; +ky +k3 > 0 and
k1 + 3ks + 5k3 < 0, leading to the following set of two inequalities

kz k3
ko Th!
3
ko S5ky 1
k< a3

The criteria in Eq. (3) are plotted in Fig. 1(b) as two straight lines, and
they discriminate between two distinct types of loading indicated by the
inserts in Fig. 1(b), marked as load combinations A and C for which
sgn(T-M) =+1 and loads B and D for which sgn(T-M) = —1.

Thus a rich variety of loads is theoretically possible, out of which the
realistic combinations would follow from a dynamic analysis of the su-
perstructure interacting with the ground motion. It is hypothesized that
the two distinct types of loading (A, C and B, D) are likely to induce
different failure mechanisms in the foundation soil. The two inequalities
(3) plotted as lines in Fig. 1(b) represent seismic loads with either zero
horizontal force or zero moment. Their cross-section at E defines a
combination of the three seismic coefficients (ko/k; = -2, ks/k; = 1)
where, despite non-zero accelerations, no inertial load from the super-
structure is transferred to the footing. In the analysis of bearing capacity,
seismic coefficients k;, ks, k3 are distinct from the seismic coeffi-
cient applied to the soil, k;.

The footing loading classified as A and C were considered earlier, for
example, by Paolucci & Pecker (1997) and Michalowski & You (1998a),
whereas loads B and D were addressed to a lesser extent (Narita &
Yamaguchi, 1989; Michalowski & You, 1998a), and a new failure
mechanism was developed in this study to capture a better upper bound
solution to limit loads B and D. While the dynamic analysis of the su-
perstructure was not attempted, the distinction between different load
combinations in Fig. 1(b) are likely to be associated with the modal
response of the structure to seismic excitation. Load combinations
denoted as B and D may occur for higher-order modes that are likely to
be associated with vibration periods corresponding to larger spectral
accelerations. Loads B and D are likely to be dependent not only on the
structural response, but also on the frequency content of the ground
motion.

When the three masses in Fig. 1(a) are subjected to horizontal ac-
celerations, the induced lateral inertial forces will be transferred directly
to the soil through a mat foundation or will be distributed across an
array of spread footings. However, a portion of the seismic moment
produced by the horizontal inertial forces in the superstructure may be
transferred to the foundation soil as vertical force-couples on pairs of
spread footings, causing an increase/decrease in vertical forces on in-
dividual footings (not disturbing the total vertical gravity load from the
superstructure), and only a small portion of the moment may transfer as
moments on individual footings. Assessment of seismically-induced
loads transferred from the superstructure to the foundation soil is not
a subject of this paper. Rather, it is the non-symmetric combination of
limit loads on a footing that is of interest here, as well as indicating how
the seismic loads may relate to the generalized yield criterion (yield
locus). Special attention will be paid to possible variation in failure
modes (collapse mechanisms), dependent on the combination of loads.
The use is made of a three-dimensional interaction surface, or the
generalized yield condition (Prager, 1959).
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Fig. 2. Mechanism A (combined rotation-translation failure): (a) collapse mechanism, (b) hodograph, and (c) example volume element in region ADFA used for
calculating the work rate of gravity and seismic forces in the soil.
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4. Plastic mechanisms

Three mechanisms of soil collapse are considered. The basic load, in
the absence of seismic shaking, is the gravity load from the superstruc-
ture. The inertial forces induced by shaking in the soil and in the su-
perstructure contribute to the loss of symmetry in the loading. First the
load from the superstructure alone is considered. Because the inertial
loads are treated as steady, finding the limit combinations of non-
symmetric loads with inertial components, in addition to gravity
loads, is no different than finding a generalized yield locus for a footing
loaded with combinations of non-symmetric static loads, including
moment M, horizontal force T, and vertical force P.

Combinations of positive and negative forces and moments are
illustrated graphically in Fig. 1(b) in order to distinguish among
different combinations of loads. In the following three figures illus-
trating three plastic mechanisms, all loads are marked as positive,
consistently with the coordinate system used and shown in the figures.

The first mechanism is shown in Fig. 2 and it will be referred to as
Mechanism A. It encompasses a rotating portion, including the footing
and soil region CDAC beneath, both rotating about point O with angular
velocity w. The soil internal friction angle is ¢ and the footing-soil
interface friction angle is ¢,,. Velocity v¢ at point C is inclined at angle
¢ to kinematic discontinuity CD, and at ¢,, to the footing-soil interface,
conforming to associativity of plastic deformation. As region CDAC
rotates as rigid, line CD is a log—spiral section of kinematic discontinuity
CDEFG.

As line CDEFG is smooth, no other discontinuities are present in the
mechanism. Point D is an inflection point, and while OC and AE are
parallel, velocities v¢ and vg are parallel and equal in magnitude. Point A
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Mechanism C

Fig. 4. Mechanism C (multi-block translation pattern): (a) mechanism, (b)
fragment of multi-block mesh, and (c) hodograph.

is a singular point and line DEF is a log-spiral, but region ADEFA is
subjected to continual shear (not rigid rotation). The velocity at point A
spans a fan of velocities changing in magnitude and direction, illustrated
in the hodograph as log-spiral AA*, Fig. 2(b). Finally, triangular region
AFGA is subjected to a combination of translation and simple shear.
Velocities in the entire mechanism are illustrated in the hodograph
shown in Fig. 2(b).

The mechanism in Fig. 2(a) is fully defined by 3 independent vari-
ables, for example, two coordinates of center of rotation O and angle .
However, as the geometry of the mechanism needs to be optimized in
order to obtain the best (the least) estimate of the limit load, it is more
convenient to select three angles as the independent variables, and an-
gles a, 5, and y were selected. This mechanism is similar to that used by
Salencon & Pecker (1995) for undrained soils, and it was used earlier for
analyzing spread footings on drained soils subjected to combined loads
(Michalowski & You, 1998a); it is utilized here to consider non-
symmetric loads in the context of seismic impact.

The second mechanism is illustrated in Fig. 3. It shows a dual-
rotation motion pattern, and it will be referred to as Mechanism B.
This mechanism has not been considered in earlier literature. It consists
of two soil blocks rotating about separate centers O and Q, separated by
planar velocity discontinuity surface BC originating from footing corner
B. Block ACBA rotates about point O with angular velocity w. The second
block, BCDB, rotates with velocity w about point Q. Curve AC is a section
of log-spiral ACF, and CD is a section of log-spiral ECD.

As the motion of the two blocks is defined by rotation about two
different centers, planar surface BC separating the two blocks is a ki-
nematic discontinuity with velocity jump vector [v], perpendicular to a
line passing through O and Q. The plastic mechanism is separated from
the soil at rest with kinematic discontinuity ACD (ACD has a discon-
tinuous derivative at C). Velocities in Mechanism B are illustrated in the
hodograph in Fig. 3(b). The mechanism in Fig. 3(a) is fully defined by 4
independent variables, for example, the coordinates of rotation centers
O and Q. It was convenient to define points O and Q using two sets of
angles: oy, By, and oy, Po, as illustrated in Fig. 3(a). Note that once
rotation centers are defined, only one point C exists on log-spiral ACF
that renders the mechanism admissible. This point is found from the
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condition that velocity jump vector [v] on BC must be orthogonal to line
passing through points O and Q.

Both Mechanism A and Mechanism B provide rotation of the footing,
making them sensitive to the seismic moment load. However, the two of
them are likely to deliver a better bearing capacity under different load
conditions, i.e., Mechanism A is expected to be more effective with loads
marked A and C in Fig. 1(b), whereas Mechanism B is expected to yield a
better (lower) limit load under load combinations B or D (i.e., where
force T in Fig. 3(a) is negative).

The third mechanism considered is purely translational, with the
footing and block ABCA moving with unique velocity vagc, Fig. 4(a).
This mechanism is not sensitive to moment loads, as the work of the
moment on pure translation is nil, but it is sensitive to the seismic
horizontal load, and it is expected to yield the best solution under some
combinations of loads, particularly those with small or zero moment.
Adjacent to block ABCA is a group of blocks contained by piece-wise
linear curves AC and AD. Except for the triangular blocks sharing
common singular point A, all other blocks in that region are quadran-
gles. Each block moves as rigid with its own velocity, and it is separated
from adjacent blocks with straight-line kinematic discontinuities, as
illustrated in Fig. 4(b). The velocity field in region ADEA has two distinct
families of piece-wise linear kinematic discontinuities, which divide the
field into rigid blocks. The hodograph in Fig. 4(c) illustrates the block
velocities and the discontinuity vectors at their interfaces. Inclination of
each straight-line segment of a velocity discontinuity is governed by its
own angle that is an independent variable constrained by kinematic
admissibility of the mechanism. The number of independent variables in
Mechanism C then depends on the number of blocks. If the total number
of blocks is n and the number of blocks bordering block ABCA along
piece-wise linear flank AC is a, then the total number of independent
variables can be found from formula 2(n —1) + a. This formula includes
a—1 variables needed to define the location of points along AC. For
example, the mechanism in Fig. 4 has 36 blocks, and the number of
independent variables is 2(36 —1) + 5 = 75.

5. Results
5.1. Calculating limit loads

The purpose of this study is to determine the yield locus of the
footing in terms of generalized loads (two components of the force and a
moment), and indicate how this locus relates to different modes of
failure and to possible seismic loads. No cohesion in the soil and no
overburden are considered, and the study is focused on the resistance of
the soil weight to carry non-symmetric loads. This part of foundation soil
resistance to load is typically contained in bearing capacity factor N,
(here with superscript s); therefore, the yield locus in the load space will
be developed first, and then charts will be shown with factor N; for some
range of internal friction angle of the soil and some variation of non-
symmetric load characteristics.

The upper bound to an active force causing failure of a structure can
be calculated from the theorem in Eq. (1). Application of this inequality
is straightforward for a single-parameter loading, but in general, the
footing can be loaded with three independent loads: vertical force P,
horizontal force T, and moment M. If the non-symmetry of loading is
introduced by the seismic action alone, then both T and M can be cast as
functions of gravity load P and the characteristics of the ground motion
as well as those of the superstructure, as indicated in Eq. (2). However,
finding mass accelerations in the model requires dynamic analysis of the
structure, which is beyond the scope of this study. Consequently, the
calculations will be performed for a given horizontal acceleration k
applied to the superstructure (average of seismic coefficients of all
masses in the superstructure model) and given moment through
enforcing constant eccentricity of the gravity load. Such loads can be
interpreted as contained within two planes in load space P, T, M, as
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MA

¢ = atan(e/B)

T

Fig. 5. Proportional or single-parameter loading path OS in P, T, M load space.

illustrated in Fig. 5. The cross-section of the two planes illustrates the
proportional, one-parameter loading path. Consequently, using Eq. (1)
one can formulate a problem with given k and e/B, and one unknown,
namely the upper bound to limit vertical load P. A solution to this
problem yields one point on a surface in the P, T, M space, referred to as
the footing’s yield locus. This surface determines the combinations of
loads P, T and M that define the limit state of the footing. One needs
multiple calculations for a variety of k and e/B combinations to obtain
multiple points on the yield locus allowing construction of the entire
surface. In the following, this process is described for the specific
problem in this paper.

Because no cohesion is considered in the soil, the normality flow rule
predicts no work dissipation in the soil, and the left side of inequality (1)
becomes zero, consequently

/Tivfdst +y/nivde <0 )]
St \4

Superscript k refers to the kinematically admissible velocity field. The
first term in inequality (4) includes all loads on the footing (T; being the
stress vector on the footing-soil interface S;), whereas the work rate of
the soil weight is described in the second term (with n; being the unit
vector in the direction of gravity). This term can be evaluated in any
mechanism by taking a volume integral of expression yv(—sind +
kscosd), where y is the soil unit weight, v is the magnitude of the velocity
vector, k; is the seismic coefficient in the soil, and 6 is illustrated in Fig. 2
(c). Considering Mechanism A in Fig. 2(a), components of the velocity
vector of the footing center Q are: V2 =wlsing and v§2 =
® (B/2 — Icosp) , where [ is distance OB in Fig. 2(a). Inequality (4) can
now be written for Mechanism A as

ij,2 + Pkv? + Pew + y/v( — sinf + kscos0)dV < 0 5)
\4

or

v, (sind — kscosd) dV

p < —7Jyv (— sind + kycosd) dV _
v+ kg tew

(6)

0} [g — l(cosp — ksinp) + e

where V is the volume of the entire mechanism CDEFGAC, k is the
average seismic coefficient as defined in Eq. (2), and ks is the seismic
coefficient applied to the foundation soil. The right-hand side of
inequality (6) yields the upper bound to the limit of one-parameter
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loading P calculated using Mechanism A. All velocities in the mecha-
nism are linear functions of order one of angular velocity @, hence the
estimate of P is independent of w.

Following the same procedure, the respective expressions were
developed for the remaining two mechanisms. The formula for Mecha-
nism B is developed in the Appendix A, and given in Eq. (15), whereas
the following expression was developed for Mechanism C

Y (sing; — kycosg;) AV;
Vapc[sin(p — ¢) + kcos( — )]

)

where n is the number of blocks in the mechanism, v4p¢ is the velocity
magnitude of the block immediately beneath the footing, 6; is an angle
that velocity of block j makes with axis x (measured counterclockwise),
is an angle (independent variable) shown in Fig. 4(a), and v; and AVj are
the velocity magnitude and the volume of block j, respectively.

The details of optimizing the mechanisms in order to obtain the least
upper bounds to the limit loads on footing are given in Appendix A.

5.2. Yield locus

Points on the yield locus are determined by the mechanism yielding
the least limit load vector in load space P, T, M. It was convenient to find
points on the yield locus by a series of computations for constant average
superstructure seismic coefficient k (stationary plane A in Fig. 5), with
varied moment or eccentricity e of force P (varied plane B, defined by
angle £ in Fig. 5).

First, the footing yield locus was determined for the case with the
seismic load from the superstructure alone (k # 0) and no seismic load in
the soil (ks = 0). This yield surface then is no different than the surface
for static non-symmetric limit loads, and it is shown in Fig. 6(a). The
yield locus is shown in the dimensionless load space P/yB2, T/yB%, M/
yBS. The internal friction of the soil was taken in calculations as ¢ = 30°;
no bonding on the footing-soil interface was considered, and the inter-
face friction angle was taken in the amount of 2/3 of ¢, i.e., ¢, = 20°.

The red portion of the surface shows the region governed by the
rotation-translation Mechanism A. As the limit analysis was employed,
deformation of the soil in the analysis was governed by the normality
flow rule. Consequently, the yield locus in terms of loads P, T, and M is
the plastic potential for generalized velocities, here two components of
displacement velocity and a rotation (angular velocity) of the footing.
Generalized velocities are illustrated by vectors p orthogonal to the yield
locus. As the yield locus is presented in the dimensionless space, the
generalized velocity components reside in the conjugate velocity space
with coordinates multiplied by the respective norms used to produce the
dimensionless load space.

The rotation appears to be the dominant velocity component in the
upper-middle portion of the yield locus. Point H indicates a point with
loads caused by seismic action with coefficients ki, ko, k3, defined by
point H in Fig. 1(b), with coordinates ky/ky, k3/k;, of 1.4 and 1.2,
respectively, k; = 0.056 and the 3-mass superstructure model charac-
terized by h/B = 0.988.

The gray vertical surface in Fig. 6(a) is associated with the failure
mode in Mechanism C. This section of the yield locus is parallel to the
moment axis, and generalized velocity vector p is parallel to plane T, P, i.
e., it does not have an angular velocity component. This is consistent
with the purely translational mode represented by Mechanism C. The
edge where the two sections intersect does not have a unique derivative.
A point on this edge indicates a yield load point with non-unique
deformation, where the location of rotation center O in Fig. 2(a)
moves deeper and deeper into the soil, causing the plastic Mechanism A
to transform progressively into translational Mechanism C, the case
interpreted by Koiter (1953) with his flow rule applicable to singular
points on the plastic potential.

Portions of the yield locus in Fig. 6(a) marked as blue show the
combinations of the loads causing the footing failure illustrated by
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Fig. 6. Yield locus for a strip footing: (a) non-symmetric load from superstructure only (k # 0, ks = 0), (b) both superstructure and the soil subjected to inertial forces

(ks = k # 0), (c) cross-sections T = const., and (d) cross-sections M = const.
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Mechanism B in Fig. 3(a). These sections of the surface reside predom-
inantly in regions where the product of the moment and the horizontal
force is negative, sgn(T-M) = —1 (see also shaded areas in Fig. 1(b)).
These regions are mostly obscured in the view of the first octant of the
load space in Fig. 6(a).

A small white oval region close to the origin of the load space is
associated with surface sliding of the footing. Because the normality
flow/sliding is enforced, the sliding vector (normal to the yield locus) is
not parallel to the horizontal footing-soil interface, but has a dilative
component. There is a short interface (edge) on the yield locus where the
regions associated with surface sliding (white) and translational Mech-
anism C (gray) join. The derivative along this edge is not unique, indi-
cating that either surface sliding or translational mechanism can occur
for the same load combination. Terminal points of this edge are then
singular points where, in addition, the kinematics of failure consistent
with either Mechanism A (when M > 0) or Mechanism B (when M < 0)
can be activated.

The impact of the seismically activated inertial force in the soil is
illustrated in Fig. 6(b). The case considered is one with seismic coeffi-
cient in the soil ks equal to the average seismic coefficient k in the 3-mass
model. Not surprisingly, the yield locus accounting for seismic coeffi-
cient in the soil is leaner than that in Fig. 6(a).

Cross-sections of both yield loci with planes T = const. are shown in
Fig. 6(c). Red, blue and black relate to the three mechanisms A, B, and C,
respectively. Solid lines show cross-sections with no seismic acceleration
in the soil, ks = 0, whereas the dashed lines indicate cross-sections where

ks = k. Vertical segments (P = const.) of the cross-sections indicate ki-
nematics consistent with either translational mechanism C or surface
sliding. Both point H and point G are on the cross-section T/yB> = 0.4,
with G defined for combination T-M < 0, for which Mechanism B yields
the least failure load. Point G can be identified on the graph in Fig. 1(b)
as ko/k; = 1.1, ks/ky = 1.2, with k; = 0.167 and the 3-mass super-
structure model characterized by h/B = 1.543.

Fig. 6(d) shows cross-sections of the two yield loci with planes of
constant moment. It is not surprising that when M = 0, much of the
cross-section is bound by the limit determined from translational
Mechanism C, particularly when ks = k. The load combination favoring
surface sliding is demonstrated by the straight-line segments starting
from the origin of the load space (M = 0).

5.3. Factor N, for spread footings
This study focuses on the resistance of granular foundation soils to

loads, owed to the weight of the soil. The results illustrated as yield loci
can be interpreted in terms of resistance factor N;. This factor is used in

calculations of the last component of the three-term bearing capacity
formula for spread footings

1
P, =57BN, ®

Superscript s is used to indicate that this factor accounts for the non-
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symmetric loads caused by seismic excitation. All charts will be pre-
sented for horizontal seismic coefficient k applied to the superstructure
and equal in value coefficient ks applied to the soil (ks = k).

Earlier efforts to assess seismic bearing capacity did not focus on the
moment load. Therefore, when comparing the results Meyerhof’s hy-
pothesis will be used, which suggests that the footing width be reduced
by double eccentricity to account for the moment. The use of this hy-
pothesis will be termed the “B-reduction” method. For some cases this
hypothesis can be derived from purely mechanical considerations
(Michalowski & You 1998b).

The first set of results is shown in Fig. 7. The two charts show factor
N; as a function of average seismic coefficient k defined in Eq. (2), for an
internal friction angle of the soil ranging from 45° down to 20°. Ec-
centricity was taken as e/B = 0.2 in calculating all results in Fig. 7, and
the seismic coefficient applied to soil ks = k. This is the case where both
the moment and the horizontal force are positive, i.e., seismic coefficient
k and eccentricity e are also both positive. Of all results presented in
Fig. 7 only the limit analysis based on Mechanism A is sensitive to the
moment load. The remaining four solutions are not dependent on the
moment load, and to make them comparable to the Mechanism A so-
lution, all were modified by Meyerhof’s hypothesis of B-reduction. The
other four solutions are: (1) the one based on Mechanism C, (2) a simple
translational mechanism consisting of an assembly of triangular blocks
(Michalowski, 1997, Soubra, 1999), (3) finite difference method (FLAC)
as reported by Pane et al. (2016), and (4) the method of characteristics
as reported by Martin (2005), though available only for k = 0. It appears
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that Mechanism A yields the least solution to seismic factor Ny, despite
using the B-reduction method for all other solutions.

The set of results in Fig. 8 differs from that in Fig. 7 in that the
moment is now negative. Mechanism B now yields better results than
Mechanism A does, but overall, it is the finite difference method (Pane
et al., 2016) with the B-reduction hypothesis that yields best results for
low values of seismic coefficient k, whereas for higher values of k,
Mechanism C with the B-reduction and Mechanism B yield least upper
bounds to factor N;. The method of characteristics results are available
only for k = 0 (Martin, 2005), and they are consistent with the finite
difference method.

The charts in Fig. 9 represent Factor N; for given k = 0.3 and positive
moment with e/B ranging up to 0.4, and in Fig. 10 for negative moment
with e/B ranging from 0 to —0.4. When the horizontal force and the
moment are both positive, Fig. 9, the best solution is obtained from
Mechanism C with the B-reduction method when the eccentricity is
small (typically when e/B < 0.1 and 30° < ¢ < 45°), and Mechanism A
yields the least (best) solution for larger eccentricities. Not surprisingly,
all cases where the B-reduction procedure was used show a linear de-
pendency of N; on eccentricity e/B. This is because in the presence of a
moment load Meyerhof’s hypothesis requires reduction of the footing
width by 2e, which produces the linear relationship of the bearing ca-
pacity factor N; on eccentricity e. When the horizontal force is positive
and the moment is negative, Fig. 10, then Mechanism C with the
B-reduction method yields the least solution for small eccentricities, and
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Mechanism B appears to yield the least results for larger eccentricities.

Finally, in the absence of moment load (M = 0 line in Fig. 1(b)), the
best (least) solution to Nf, is found from the finite difference method
(Pane et al., 2016) for low magnitudes of seismic coefficient k, and from
limit analysis with Mechanism C for larger values of k, Fig. 11. It is
surprising, however, that Mechanism A which accounts for rotation of
the footing, becomes competitive when seismic coefficient becomes
relatively large, e.g., k > 0.36 and ¢ = 30°. This point was also raised
when the yield locus in Fig. 6(a) was discussed.

5.4. Comments on accuracy and finite element limit analysis approach

An analytical approach in limit analysis, explored in this paper, has
been successful in solving many stability problems in geotechnical en-
gineering (e.g., Chen, 1975). In the last decades a finite element
approach implemented in limit analysis has become widely utilized.
First introduced by Lysmer (1970), this approach was discussed in more
detail by Sloan (2013) in his 2011 Rankine Lecture. Advantages of this
method are in a larger flexibility when considering non-homogeneous
soils and complex geometries, in an ease in providing both the upper-
and the lower-bound solutions, and in being better suited to three-
dimensional collapse mechanisms. Comparison of early upper-bound
bearing capacity results of strip footings on two-layer clays using both
the finite element and the analytical approach showed that more accu-
rate results are found by one method or the other, depending on the
specific soil parameters and problem geometry (Merifield et al., 1999;

10

Michalowski, 2002). Calculations of the upper-bound bearing capacity
factor N, presented by Sloan & Yu (1996) revealed substantially higher
upper-bound values than those from Mechanism C offered in this paper;
for example, for ¢ = 30°, Mechanism C with 150 blocks yields N, =
16.474 vs. about 20, read from the chart in Sloan & Yu (1996). Mech-
anism C introduced in this paper yields the best value of the analytical-
approach upper-bound limit analysis to date. Sloan & Yu used a model
with 800 elements in their calculations; for the purpose of comparison
the authors recalculated this example for ¢ = 30° using the finite
element limit analysis Optum G2 model with 100k elements (OptumCE,
2024), and obtained a value of 15.246 for upper-bound N,, and a lower-
bound value of 14.722. Not surprisingly, the finite element-based
outcome depends very much on the number of elements used and
adjusting the mesh (re-meshing) to the problem at hand. This upper
bound is more than 20 % better than the early one in Sloan & Yu (1996),
but only 7 % better than the one found using Mechanism C.

In order to shed some light on accuracy and the similarity of mech-
anisms used in the analytical approach and those generated using the
finite-element approach, two examples are presented for seismic load
cases A and D (Fig. 1(b)). The bearing capacity is sought for a strip
footing on granular soil with a shear angle of ¢ = 35°, no cohesion, but
with overburden g given as q/yB = 2.0. Considering overburden in the
analysis required the work rate of the overburden to be included in the
work rate balance equation. This analysis involved simultaneous
calculation of bearing capacity due to soil weight and overburden, un-
like the typical separate calculations of components with cohesion,
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Fig. 10. Factor N for constant k = 0.3 and e < 0 (k; = k).

overburden, and foundation soil weight. For Case A loading, the hori-
zontal seismic coefficient k = 0.3 is applied to the soil, the superstruc-
ture, and overburden load g, and the load eccentricity is e = 0.2B; k =
-0.3 for Case D. The shear strains in the velocity field generated by
Optum G2 are shown in Fig. 12(a) with red indicating the maximum
shear strain rates and dark blue being zero. The color scale indicates
distinct features in the velocity field, but the magnitudes of shear strain
rates are meaningful only when compared to the rate of loads (not
indicated here). The contours of the velocity field in the analytical
approach is shown in Fig. 12(b) (Mechanism A from Fig. 2), but with
superimposed relative velocities from the Optum G2 solution. These
velocities are consistent with those in the mechanism in Fig. 2(a),
illustrated also in the hodograph, Fig. 2(b). It may be worth noticing that
the velocity discontinuity separating the moving soil from the soil at rest
is somewhat diffused in the finite-element approach, while it is a strong
discontinuity in the analytical approach. Mechanism A yields the
dimensionless average bearing capacity of p/yB = 21.621, whereas the
upper-bound outcome from Optum G2 was found to be 21.435 (100k
elements), a difference of less than 1 %. A difference of a little more than
4 % was obtained using the numerical lower-bound approach: p/yB =
20.710.

The second comparative example is loading Case D, with seismic
coefficient of k = -0.3, all other data the same. The shear strain rates
from Optum G2 are shown in Fig. 13(a) indicating a band of localized
shear starting from one corner of the footing, separating the moving soil
from the ground at rest. Another shear band extends from the second

11

corner and separates two rigid blocks. This is quite consistent with ki-
nematic discontinuities in Mechanism B occupying about the same
geometric location as the shear bands found in the finite element
approach. Of the three mechanisms considered in this paper Mecha-
nism B yields the best upper bound for loading Case D,p/yB = 24.614,
vs. p/yB = 23.953 found from the finite element approach (100 k ele-
ments), with a roughly 2.5 % difference. The finite element lower-bound
outcome was p/yB = 23.510. Comparison of results in this section in-
dicates that while the finite element limit analysis approach using a
substantial number of elements and mesh adaptive technique yields
slightly better results, both approaches are acceptable for geotechnical
engineering purposes.

6. Conclusions

e A three-mass model of the superstructure considered provides a
wealth of possible seismic loads on foundation soils, and it was found
useful when interpreting the quasi-static loads owed to seismic
excitation. However, moments produced by seismically excited su-
perstructures and transferred to the foundation soil cannot be
determined with confidence without dynamic analysis of the
structure.

e A yield locus of a strip footing can be effectively produced in the
space of generalized loads by considering a variety of failure modes.
Contrary to typical procedures assuming a cigar-shaped loci, the
yield locus developed in the paper is not smooth, it contains singular
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edges (and points) indicating load combinations where a change of
failure mode is permissible. The limit load surface, or the yield locus,
constitutes a potential for footing permanent displacement and
rotation.

Of the three mechanisms used in the analysis two have novel ele-
ments. Mechanism B is a dual-rotation pattern with two rotating
blocks separated by a planar kinematic discontinuity. This mecha-
nism produces favorable results when the moment and the horizontal

Appendix A

Implementing Mechanism B in limit analysis

Computers and Geotechnics 172 (2024) 106405

force on the footing are of opposite sign (in the coordinate system
used). The authors are not aware of the dual-rotation mechanism
having ever been used in the subject literature. Mechanism C has
translational kinematics and it is a significant improvement over the
mechanisms used earlier in limit analysis.

The primary outcome of the study are the solutions to bearing ca-
pacity factor N; for different combinations of gravity load, the

seismic horizontal force and the moment. When using kinematic
limit analysis and considering moment load, the footing must un-
dergo plastic rotation, otherwise, the mechanism will not be sensitive
to the moment load. Using Meyerhof’s (B-reduction) hypothesis is
one way to adapt moment-insensitive solutions to moment loads. The
results from three mechanisms used in this paper were compared to
the outcomes from the finite difference method, limit analysis with a
simple translational mechanism, and the method of characteristics
available in the literature. The limit analysis outcome with Mecha-
nism A yields the best (least) results in terms of NS/ for the widest
range of combination of non-symmetric (here seismic) loads, and so
does Mechanism C with the B-reduction procedure. Mechanism B
yields the best N; in a limited range of load combination where the
seismic horizontal force and the moment are of opposite signs, the
average seismic coefficient is relatively high, and the magnitude of
vertical load eccentricity is larger than 0.2 (or algebraically smaller
than —0.2). Translational Mechanism C (with the B-reduction pro-
cedure) gives best results among all solutions for small moment
loads. The finite difference method appears to be giving the best
solutions when seismic horizontal force and moment are of opposite
signs and when seismic coefficient k is low. There is no one mecha-
nism that would yield the best solution for all load combinations.
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Recognizing that the results in the paper are illustrated only for a rough grid of parameters, additional details are provided about the calculation
procedure for Mechanism B, in the hope that readers might find it useful in developing their own tools when in need of more comprehensive results.
For a more detailed description of Mechanism A, readers are encouraged to read papers by Paolucci & Pecker (1997) and Michalowski & You (1998a),
whereas remarks on construction of multi-block mechanisms, such as that in Mechanism C, can be found in Chen (1975).

The upper bound to the bearing capacity is calculated from inequality (1), written here algebraically as
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where Wp and W, are the work rates of vertical limit force P and soil weight, respectively. The left-hand side of inequality (1) is zero as a consequence
of the absence of the cohesive component of the strength. Introducing geometrical quantities

ro = O_A
T = @ = roe(g"’”l)‘a"‘f’ (10)
L 0B S

sing,;

the rate of work of the limit load on the footing can be calculated from the following expression

Wp = Po g — l(cosp, + ksinf;) + e 1)

where the limit combination of loads is: P, T = Pk, M = Pe. Symbol w is the angular velocity about points O and Q, B is the footing width, e is the
eccentricity of vertical load P, and angle f; is marked in Fig. 3. Referring again to Fig. 3, the second term in inequality (9) can be found as the sum of
the work rates of the two rigid rotation regions: ACBA and DCBD. In region ACBA the work of gravity and seismic work can be calculated as

W.;QCBA — W;{COA _ W;{BOA _ W;I/SCOB (12)

with
Wacoa = (UV"(S) (fl + kit )

where k; is the seismic coefficient for the soil, and

1

hi= 3(1 + 9tan2g) [

3tangcosty, + sindy)e> %)% _ 3tanpcosa; — sina; |

(13)
1
= 30T omng) [(3tangsingy — costy)e> '™ — 3tangsina; + cosa; |

Introducing the Cartesian coordinate system at point O (Fig. 3(a)) and defining the centroids of areas ABOA and BCOB as (XABOA,)_/ABOA) and (EBCOB,
yBCOB), the last two terms in Eq. (12) can be calculated as

W;{BOA = wy(Xapoa + ks¥asoa)Aasoa
a4
W2 — wy (Xscos + ks¥cos) Asocs
In a similar manner, work rate W2 in region DCBD can be calculated. Utilizing Eq. (9), the upper bound to limit load P is found as
WACBA + WDCED
" y y (15)

w |8 —1(cosp, +ksing;) + e

Minimization of force P

Expressions in Egs. (6), (7) and (15) were used in computations of the footing yield locus in space P, T, M. As the loading was reduced to one-
parameter loading, the limit value of vertical load P was calculated first, and associated limit values of T and M were determined from: T =P k
and M = Pe, as per Eq. (2) (see also Eq. (5)). The procedure starts from constructing the first kinematically admissible mechanism of type A, B or C.
This involves assuming the first set of admissible independent variables; for example, for Mechanism A these are angles a, , and . Next, these in-
dependent variables are altered sequentially, one-by-one, by increment A until the minimum of calculated force P is reached. Each time a single
independent variable is altered, the kinematic admissibility of the mechanism must be reevaluated. This process is illustrated in the flowchart in
Fig. 14. Symbol x; in the flowchart denotes j™ independent variable in a given mechanism, xj (j =1, 2, 3...m), where m is the number of independent
variables in the mechanism.

In this process of minimization, increment A was reduced from its maximum (initial value) of 2.43° to the minimum of 0.01° in 5 three-fold
reduction steps. Mechanism B is fully defined by four independent variables (a1, 1, a2, f2), but Mechanism C has a larger number of independent
variables, as it includes a substantial number of kinematic discontinuities (interfaces between the blocks), and each linear segment of a discontinuity is
defined by an independent variable angle of inclination. The number of independent variables in Mechanism C is dependent on the number of blocks,
and an expression for the number of variables was developed in the previous Section.
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