
Accelerating Homomorphic Comparison Operations for
Thresholding Using an Asymmetric Input Range and Input Scaling

Sunwoong Kim
Rochester Institute of Technology

Rochester, New York, USA

sskeme@rit.edu

Wonhee Cho
Seoul National University

Seoul, South Korea

wony0404@snu.ac.kr

ABSTRACT

In a cyber-physical system (CPS), the interconnection of cyber and

physical components occurs through a network. This structure,

particularly cyber components and networks, makes it susceptible

to malicious attacks. One of the solutions to this CPS security issue

is to employ end-to-end homomorphic encryption (HE) that allows

direct computations on encrypted data. Despite its promise, HE

only supports basic operations, such as addition and multiplication,

which limits its application areas. Numerical methods have been

presented to perform a comparison operation in the HE domain.

However, they suffer from a slow processing speed due to an in-

herently high number of iterations. To accelerate a homomorphic

comparison operation, this paper introduces a novel approach that

scales inputs using an asymmetric input range in thresholding.

Additionally, parallelism in HE-based multilevel thresholding is

explored and exploited through the use of a parallel processing ap-

plication programming interface for further acceleration. Compared

to a previous comparison operation method, the proposed method

achieves comparable accuracy with fewer iterations, resulting in

a 48% reduction in execution time on an edge computing device.

Furthermore, employing an additional thread using parallelism

increases this reduction to 63%.
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1 INTRODUCTION

A cyber-physical system (CPS) typically consists of cyber com-

ponents such as cloud servers and edge computing devices for
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information processing, physical components like sensors and ac-

tuators, and communications between cyber and physical compo-

nents. However, its openness and connectivity make it susceptible

to malicious attacks [21]. Therefore, extensive research has been

conducted on enhancing privacy and security for CPS. Implement-

ing general encryption and decryption techniques in CPS requires

the decryption of encrypted data on cyber components, leaving

secret keys and decrypted data vulnerable to potential attackers.

One of the solutions to address this challenge is employing ho-

momorphic encryption (HE). This technique enables direct com-

putation of encrypted data without the need for decryption [7].

Therefore, there is no need to store secret keys on cyber compo-

nents, and sensitive information remains protected from attackers.

Compared to alternative cryptography techniques, HE requires less

data transmissions between cyber and physical components. Due to

these capabilities, HE has found extensive application across vari-

ous real-world domains, including machine learning [15], genomics

research [20, 22], managing infrastructures [3], password process-

ing [9], speech processing [11], and image processing [19, 24, 26].

HE schemes are categorized into two types: bit-wise and word-

wise schemes. Typically, word-wise schemes exhibit better perfor-

mance in arithmetic operations over large-scale encrypted data

than bit-wise schemes [17]. Within word-wise HE schemes, there

is a further classification based on the data type of plaintext data.

For instance, the BFV scheme is tailored for plaintext integers [12],

whereas the CKKS scheme, which is used in this paper, is designed

for plaintext real/complex numbers [5].

Despite its promise, HE encounters several issues that hinder its

practical application. One significant challenge is the limited types

of operations over encrypted data. Although addition, subtraction,

and multiplication are commonly supported in many word-wise

HE schemes, the requirements of numerous real-world applica-

tions extend beyond these basic operations. Specifically, one of the

frequently used operations is a comparison operation. To employ

this operation in the HE domain, numerical methods have been

devised to approximate a comparison operation using additions,

subtractions, and multiplications [6, 8].

HE hides plaintext data using noise, and the level of noise in-

creases with each operation over a ciphertext (also called homo-

morphic operation). When this level exceeds a certain threshold,

decryption fails to produce correct results. In particular, homomor-

phic multiplication, considerably slower than homomorphic addi-

tion and subtraction, significantly amplifies noise levels. Therefore,

the number of homomorphic multiplications is defined as depth

and carefully managed. The numerical methods for a comparison

operation have iterations, each involving multiple multiplications,

thus leading to slow processing speed and depth-related challenges.
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Several studies have explored efficient approximate comparison

operations in the HE domain [23, 26]. However, the research re-

mains insufficient. Specifically, there is a scarcity of studies focusing

on lightweight methods tailored to accelerate approximate compar-

ison operations by leveraging application-specific features. Such

approaches are particularly advantageous for cyber components

constrained by limited hardware resources and network bandwidth.

The contributions of this paper are as follows:

• We modify inputs of a numerical method for a comparison

operation used in thresholding. In particular, an asymmetric

input range characteristic is used to reduce the required

iterations of a numerical method. It leads to a reduction in

the execution time and a decrease in depth consumption

while achieving comparable accuracy.

• We explore parallelism in multilevel thresholding that in-

volves comparison operations for further acceleration. To

exploit this parallelism, a parallel processing application pro-

gramming interface is utilized.

• We evaluate the HE-based 3-level thresholding with our pro-

posed methods, in terms of depth, accuracy, and execution

time, on a workstation and an edge computing device. Our

proposed methods improve the feasibility of integrating HE

into real-time CPS.

2 BACKGROUND

2.1 Homomorphic Encryption

A word-wise HE scheme consists of the following operations:

• KeyGen(𝜆): takes a security parameter 𝜆 and generates a

secret key sk, a public key pk, and an evaluation key evk.

• Enc(𝜇, pk): encrypts a plaintext message 𝜇 into a ciphertext

ct using a provided public key.

• Dec(ct, sk): decrypts a ciphertext ct into a plaintext message

using a secret key.

• HomAdd(ct1, ct2, evk): performs addition between cipher-

texts ct1 and ct2 of messages 𝜇1 and 𝜇2 using an evaluation

key and produces a ciphertext of a message 𝜇1 + 𝜇2.

• HomMul(ct1, ct2, evk): performs multiplication between ci-

phertexts ct1 and ct2 of messages 𝜇1 and 𝜇2 using an evalu-

ation key and produces a ciphertext of a message 𝜇1 · 𝜇2.

Besides, subtraction of ciphertexts is available through a variant

of HomAdd, and one of the operands in homomorphic operations

can be a plaintext message (e.g., homomorphic multiplication be-

tween a ciphertext and a plaintext constant). These operations are

implemented in open-source libraries, such as Microsoft SEAL [25],

EPFL Lattigo [1], Zama TFHE [27], and OpenFHE [2].

Many word-wise HE schemes support encoding with packing

techniques, which include multiple plaintext messages into a single

ciphertext, to improve processing speed. For example, the CKKS

scheme allows 𝑁 /2 messages within a ciphertext when the poly-

nomial degree, which is a parameter of this scheme, is set to 𝑁 . A

homomorphic operation on a ciphertext processes multiple mes-

sages in a single instruction/multiple data manner.

With each homomorphic operation, the magnitude of noise

grows. Bootstrapping is a procedure to refresh this noise, and HE

using this technique is called fully HE [14]. However, due to its

Algorithm 1 Comp(𝑥,𝑦;𝑛,𝑑) [8]

Input: normalized real numbers 𝑥,𝑦 ∈ [0, 1]

Input: the number of iterations 𝑛,𝑑 ∈ N

Output: approximate 1 if 𝑥 > 𝑦, 0 if 𝑥 < 𝑦, and 1/2 otherwise

1: 𝑎 ← 𝑥 − 𝑦

2: for (𝑖 = 1; 𝑖 ≤ 𝑑 ; 𝑖 = 𝑖 + 1) do

3: 𝑎 ← 𝑓𝑛 (𝑎)

4: end for

5: return (𝑎 + 1)/2

(a) (b)

Figure 1: Two types of approximate sign functions used in

Comp [8]. (a) when 𝑛 = 2 (b) when 𝑛 = 3.

significant computational overhead, bootstrapping proves imprac-

tical for numerous real-time CPS. This paper, in alignment with

this consideration, opts against the use of bootstrapping, focusing

instead on minimizing total depth.

2.2 Homomorphic Comparison Operation

To perform logical and non-polynomial operations, which are not

basic operations supported in word-based HE schemes, several

studies have adopted numerical methods. Specifically, Cheon et

al. presented a numerical method for comparison operation [8].

Algorithm 1 shows the approximate comparison operation referred

to as Comp. It involves a nested loop. The outer loop has 𝑑 iterations,

and the inner loop corresponds to an approximate sign function 𝑓𝑛
with 𝑛 iterations (𝑓𝑛 (𝑎) ≈

𝑎
|𝑎 |

). The definition of 𝑓𝑛 (𝑎), which is an

increasing function in [-1, 1], is as follows:

𝑓𝑛 (𝑎) =

𝑛
∑︁

𝑗=0

1

4𝑗
·

(

2 𝑗

𝑗

)

· 𝑎(1 − 𝑎2) 𝑗 . (1)

In this previous work, a mixed composition 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑔 is

introduced as a replacement for 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑓 to accelerate conver-

gence. The polynomial function 𝑔𝑛 exhibits a sharper slope than 𝑓𝑛 ,

but its function values oscillate within the intervals [1 − 𝜏, 1] and

[−1,−1 + 𝜏], where 𝜏 is a small constant. Therefore, 𝑔𝑛 is employed

during the first iteration (𝑖 = 1), with 𝑓𝑛 taking over thereafter

(𝑖 > 1). 𝑔𝑛 (𝑎)’s with 𝜏 of 1/4 introduced in [8] are as follows:

• 𝑔1 (𝑎) = −
1359
210
· 𝑎3 + 2126

210
· 𝑎

• 𝑔2 (𝑎) =
3796
210
· 𝑎5 − 6108

210
· 𝑎3 + 3334

210
· 𝑎

• 𝑔3 (𝑎) = −
12860
210
· 𝑎7 + 25614

210
· 𝑎5 − 16577

210
· 𝑎3 + 4589

210
· 𝑎

• 𝑔4 (𝑎) =
46623
210
·𝑎9− 113492

210
·𝑎7 + 97015

210
·𝑎5− 34974

210
·𝑎3 + 5850

210
·𝑎

Fig. 1 compares the graphs of 𝑓𝑛 (𝑎) and 𝑔𝑛 (𝑎) where 𝑎 ∈ [−1, 1].

In some real-world applications, such as thresholding for images,

one of the inputs to be compared by Comp is a constant. Suppose
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that𝑦 of Algorithm 1 is a (normalized) constant 𝑡 ∈ (0, 1). The range

of 𝑎 in Algorithm 1 then changes from [−1, 1] to [−𝑡 , 1 − 𝑡]. When

using 𝑓𝑛 (𝑎), it limits the range of comparison output values from

[0, 1] to [𝑐𝑚𝑖𝑛 , 𝑐𝑚𝑎𝑥 ] where 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 stand for Comp(0, 𝑡 ;𝑛,𝑑)

and Comp(1, 𝑡 ;𝑛,𝑑), respectively. The values of 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 can

be computed in advance. The optimal outcomes when employing

Comp involve attaining values that closely approach 0 and 1 while

minimizing the number of iterations. Transforming the range of

comparison output values for 𝑎 ∈ [−𝑡 , 1−𝑡] back to [0, 1] results in a

sharper slope for the approximate sign function, which helps reduce

the number of iterations. Based on this, Shyi and Kim [26] proposed

a shifting-and-scaling-based fast convergence (SSFC) method, of

which equation is presented in (2).

Comp-SSFC(𝑥, 𝑡 ;𝑛,𝑑) =
Comp(𝑥, 𝑡 ;𝑛,𝑑) − 𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

. (2)

Compared to the original Comp, Comp-SSFC requires one more mul-

tiplication with a constant 1/(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛), increasing the total

depth by 1 in the HE domain.

3 FAST CONVERGENCE METHOD

Comp-SSFC enables fast convergence when the number of iterations

is small. However, as the number increases, the gain decreases

because the value of 𝑐𝑚𝑎𝑥 and the value of 𝑐𝑚𝑖𝑛 become closer to 1

and 0, respectively. In this case, the added computation and depth

consumption becomeworthless. Furthermore, an error occurs when

the value of 𝑥 is near 𝑡 (i.e., 𝑎 ≈ 0) because of the shift. This error

is amplified as iterations progress.

To solve these problems, we propose a lightweight input scaling-

based fast convergence method for an approximate comparison op-

eration, which is referred to as Comp-ISFC. In contrast to Comp-SSFC,

which conducts post-processing on comparison outputs, Comp-ISFC

scales comparison inputs prior to executing the operation, which

compresses the approximate sign graph along the 𝑎 axis. The for-

mula for the proposed method for scaling inputs of 𝑔𝑛 (𝑎), which is

denoted by𝑤𝑛 (𝑎), is shown in (3).

𝑤𝑛 (𝑎) = 𝑔𝑛 (
𝑎

𝑘
) . (3)

The value of 𝑘 is determined based on the value of 𝑡 as follows:

𝑘 =

{

1 − 𝑡, if 0 ≤ 𝑡 < 1/2,

𝑡, otherwise.
(4)

For a constant 𝑡 , 1/𝑘 is pre-applied to the coefficients of 𝑔𝑛 (𝑎).

Therefore, Comp-ISFC has almost identical computational complex-

ity as the original Comp.

Fig. 2 compares 𝑔2 and𝑤2. Specifically, Figs. 2(a) and 2(b) present

comparisons for 𝑡 smaller than 0.5 and 𝑡 greater than 0.5, respec-

tively. Our 𝑤𝑛 shows a steeper slope than 𝑔𝑛 near the origin, re-

sulting in a faster convergence towards 1 or −1. However, due to

oscillations in its function values, 𝑤𝑛 does not always present a

more accurate result than 𝑔𝑛 . The gray arrows in Fig. 2 represent

the "reverse" area. However,𝑤𝑛 is located near 1 (between 1−𝜏 and

1) or −1 (between −1 and −1 + 𝜏 ) in this area. As𝑤𝑛 (𝑎) is an input

for 𝑓𝑛 in subsequent iterations, it satisfies 𝑓𝑛 (𝑤𝑛 (𝑎)) ≈ 𝑓𝑛 (1) = 1

or 𝑓𝑛 (𝑤𝑛 (𝑎)) ≈ 𝑓𝑛 (−1) = −1. Therefore, 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑤 shows

higher accuracy than 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑔 when using the same number

of iterations.

(a) (b)

Figure 2: Comparison of the 𝑔𝑛 and𝑤𝑛 functions. (a) when 𝑡

is smaller than 0.5 (b) when 𝑡 is greater than 0.5.

(a) (b)

Figure 3: Comparison of the 𝑓𝑛 and 𝑣𝑛 functions. (a) when 𝑛

is 2 (b) when 𝑛 is 3.

To further enhance the convergence speed, Comp-ISFC applies

input scaling to 𝑓𝑛 as well. The blue graphs in Fig. 3 depict 𝑓2 (𝑎) and

𝑓3 (𝑎). When 𝑎 exceeds the range [−1, 1], 𝑓𝑛 (𝑎) deviate from 1 or −1.

Nonetheless, they are maintained in proximity to 1 or −1 to some

extent, particularly when 𝑎 lies within [−𝑠 , 𝑠]. Therefore, 𝑓𝑛 (𝑎) is

modified as described by (5), and Comp-ISFC uses the composition

𝑣 ◦ · · · ◦ 𝑣 ◦𝑤 instead of 𝑓 ◦ · · · ◦ 𝑓 ◦ 𝑔.

𝑣𝑛 (𝑎) = 𝑓𝑛 (𝑠 · 𝑎) . (5)

The green graphs in Fig. 3 represent 𝑣2 and 𝑣3. The value of 𝑠 is

empirically set to 1.2 and is pre-applied to the coefficients of 𝑓𝑛 .

4 MULTITHREADING FOR THRESHOLDING

In this paper, Comp-ISFC is applied to multilevel image thresholding

in the HE domain. The same method in [24] is used: 1) multiple

comparison operations with different thresholds are performed;

2) the comparison results are added together (e.g., the ideal sum

is 0+0, 1+0, or 1+1 if two comparison operations are used for 3-

level thresholding); 3) the sum is multiplied by a constant (e.g., 127

is used for 3-level thresholding, with each pixel intensity value

represented as 0, 127, or 254). In this method, the total depth does

not increase even if the number of thresholds increases because

comparison operations are not performed in series.

To accelerate this application, we explore various levels of paral-

lelism. The first level of parallelism arises in multiple comparison

operations. These operations take the same input pixels but differ-

ent thresholds, which enables them to be executed concurrently.

The second level pertains to multiple ciphertexts generated from

the same image. Specifically, when the number of pixels in an im-

age exceeds the maximum limit accommodated by a ciphertext, the

image is divided into smaller sub-images. They are then encoded
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and encrypted into multiple independent ciphertexts, allowing for

parallel processing. The third level of parallelism exists within the

loop for the approximate sign functions.

Listing 1 presents the pseudocode of Comp-ISFC with OpenMP

directives [10]. It exploits the second and third parallelism lev-

els. HomSub and HomMulPlain stand for homomorphic subtraction

between ciphertexts and homomorphic multiplication between a

ciphertext and a plaintext constant, respectively. TermCal that in-

volves HomMul and HomMulPlain computes innermost loop results,

minimizing depth accumulation. Here are brief explanations about

the OpenMP directives used in this pseudocode:

• omp parallel for: distributes iterations of a loop among

available threads.

• omp parallel for collapse(2): parallelizes a nested loop.

• omp barrier: synchronizes threads.

• omp critical: executes only one thread at a time.

Leveraging these multiple levels of parallelism enables the concur-

rent execution of a substantial number of threads. This is particu-

larly advantageous for cloud servers with large hardware resources

and a cluster of edge computing devices.

1 #pragma omp parallel for

2 for (c=0; c<ct_no; c++) { # ct_no: no. ciphertexts

3 A[c] = HomSub(X[c], T); # X: input pixel , T: threshold

4 }

5 #pragma omp barrier

6 for (i=1; i≤d; i++)

7 #pragma omp parallel for collapse (2)

8 for (c=0; c<ct_no; c++) {

9 for (j=0; j≤n; j++) {

10 R1[j][c] = TermCal(A[c], C[j], j); # C: coefficient

11 #pragma omp critical

12 R2[c] = HomAdd(R2[c], R1[j][c]);

13 }

14 A[c] = R2[c];

15 }

16 #pragma omp barrier

17 #pragma omp parallel for

18 for (c=0; c<ct_no; c++) {

19 R3[c] = HomAdd(A[c], 1);

20 R4[c] = HomMulPlain(R3[c], 0.5); # result

21 }

22 #pragma omp barrier

Listing 1: Pseudocode of Comp-ISFC with OpenMP directives.

5 EVALUATION

5.1 Experimental Setup

In this section, Comp-ISFC is evaluated in HE-based 3-level thresh-

olding. The overall evaluation process is illustrated in Fig. 4, where

HE-based 3-level thresholding with the previous and proposed

approximate comparison operations is highlighted in gray. This

process is conducted on a workstation with Intel XeonW-2295 with

18 cores and 128 GB RAM. In addition, evaluation in an edge device

scenario is conducted using a Raspberry Pi 5, equipped with a 64-bit

quad-core ARM Cortex-A76 processor and 8 GB RAM [13].

For the implementation using CKKS functions, we employ the

Microsoft SEAL open-source library (version 3.6) [25]. The HE

parameters we consider include the security level 𝜆, polynomial

degree 𝑁 , and coefficient modulus bit count log𝑞. The security level

is set to 128 bits, which is one of the most popular in contemporary

real-world applications based on HE [7]. We set 𝑁 to 215 to ensure

Figure 4: Overall evaluation process.

(a) (b) (c) (d)

Figure 5: Input test images. (a) cameraman (b) lake (c) pirate

(d) woman.

Table 1: Total Depth in HE-based 3-Level Threshoding

𝑑 2 3 4

𝑛 2-3 4 2-3 4 2-3 4

Original Comp [8] 9 12 12 15 15 19

Comp-SSFC [26] 10 13 13 16 16 20

Comp-ISFC (this work) 9 12 12 15 15 19

ample depth. Our chosen security level and 𝑁 result in log𝑞 being

885-bits, enabling a maximum depth of approximately 20 [4].

Considering this maximum depth, 𝑑 and 𝑛 of the approximate

comparison operations are configured within the range of 2-4. For

all previous and proposed approximate comparison operations in

this section, 𝑔𝑛 or𝑤𝑛 is executed during the first iteration, while

𝑓𝑛 or 𝑣𝑛 is executed during subsequent 𝑑 − 1 iterations.

As input images, four 512×512 gray-scale standard test images

(cameraman, lake, pirate, and woman) are used, which are shown in

Fig. 5 [16]. Each pixel intensity in these images is represented using

8 bits. With 𝑁 of 215, each image is encoded and encrypted into

16 (= 512 × 512/215−1) ciphertexts. For 3-level thresholding, two

threshold values, 85 and 170, are selected. To meet the input range

requirements of the approximate comparison operations, these

thresholds are normalized to 0.33 and 0.67, respectively. Each pixel

intensity obtained by thresholding with approximate comparison

operations has a value close to 0, 127, or 254 as in [24].

To evaluate the accuracy of HE-based 3-level thresholding com-

pared to the original non-HE-based approach using precise compar-

ison operation, the popular peak signal-to-noise ratio (PSNR) and

structural similarity index measure (SSIM) are used [18]. In partic-

ular, SSIM is used to evaluate the perceptual image quality, given

that the resulting pixel intensity values by HE-based thresholding

closely approximate 0, 127, and 254.

5.2 Depth

The total depths in HE-based 3-level thresholding are shown in

Table 1. The depth consumed in the approximate sign functions

increases proportionally with ⌈log2 (𝑛 + 1)⌉ in our implementations,
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Table 2: PSNR Comparison in HE-based 3-Level Threshoding

𝑑 𝑛

Cameraman Lake Pirate Woman

[8] [26]
this work

[8] [26]
this work

[8] [26]
this work

[8] [26]
this work

D1 D2 D1 D2 D1 D2 D1 D2

2 2 16.92 16.93 18.01 18.60 17.41 17.47 19.06 19.99 17.30 17.33 18.67 19.38 18.38 18.43 20.26 21.20

2 3 18.23 18.23 19.74 20.50 19.36 19.42 21.23 22.14 18.92 18.94 20.56 21.32 20.59 20.64 22.51 23.38

2 4 19.56 19.57 21.24 22.07 21.04 21.04 22.94 23.88 20.37 20.38 22.03 22.82 22.31 22.32 24.13 24.98

3 2 18.77 18.77 20.38 21.86 20.05 20.05 21.99 23.88 19.53 19.53 21.20 22.67 21.32 21.32 23.23 24.86

3 3 21.32 21.32 23.11 24.86 23.06 23.06 24.95 26.62 22.11 22.11 23.79 25.37 24.23 24.23 25.99 27.59

3 4 23.48 23.48 25.31 26.86 25.32 25.32 27.13 28.66 24.13 24.13 25.83 27.28 26.34 26.34 28.07 29.55

4 2 21.32 21.32 23.11 25.42 23.06 23.06 24.95 27.46 22.11 22.11 23.79 26.06 24.23 24.23 25.99 28.32

4 3 24.87 24.87 26.56 28.84 26.70 26.70 28.35 30.54 25.42 25.42 27.00 29.07 27.66 27.66 29.26 31.40

4 4 27.44 27.44 29.02 30.68 29.21 29.21 30.74 32.34 27.81 27.81 29.22 30.58 30.09 30.09 31.59 33.13

Table 3: SSIM Comparison in HE-based 3-Level Threshoding

𝑑 𝑛

Cameraman Lake Pirate Woman

[8] [26]
this work

[8] [26]
this work

[8] [26]
this work

[8] [26]
this work

D1 D2 D1 D2 D1 D2 D1 D2

2 2 0.654 0.668 0.702 0.742 0.517 0.520 0.594 0.688 0.404 0.406 0.513 0.619 0.337 0.338 0.429 0.615

2 3 0.725 0.726 0.774 0.790 0.631 0.643 0.754 0.801 0.560 0.577 0.693 0.741 0.486 0.518 0.714 0.793

2 4 0.769 0.770 0.807 0.822 0.749 0.750 0.830 0.861 0.684 0.685 0.777 0.813 0.713 0.714 0.829 0.864

3 2 0.746 0.746 0.790 0.817 0.681 0.681 0.794 0.862 0.621 0.621 0.733 0.811 0.589 0.589 0.778 0.866

3 3 0.809 0.809 0.844 0.871 0.834 0.834 0.892 0.910 0.780 0.780 0.849 0.876 0.831 0.831 0.894 0.888

3 4 0.851 0.851 0.890 0.920 0.902 0.902 0.940 0.961 0.860 0.860 0.907 0.935 0.903 0.903 0.939 0.959

4 2 0.809 0.809 0.844 0.894 0.834 0.834 0.892 0.947 0.780 0.780 0.849 0.914 0.831 0.831 0.894 0.945

4 3 0.881 0.881 0.915 0.949 0.933 0.933 0.957 0.976 0.897 0.897 0.931 0.958 0.932 0.932 0.956 0.973

4 4 0.930 0.930 0.952 0.970 0.966 0.966 0.977 0.986 0.943 0.943 0.961 0.973 0.961 0.961 0.976 0.984

resulting in variations as 𝑛 changes from 3 to 4. Additionally, the

total depth in a comparison operation grows as 𝑑 increases. As

described in Sections 2.2, Comp-SSFC demands an additional depth,

when compared to the original Comp. In contrast, Comp-ISFC does

not require this as the multiplications with 1/𝑘 and 𝑠 are pre-applied

to the coefficients of the approximate sign functions.

5.3 Accuracy

Tables 2 and 3 show the PSNR and SSIM results in HE-based 3-level

thresholding. The proposed work includes two distinct designs: D1

uses 𝑓 ◦ · · · ◦ 𝑓 ◦𝑤 for approximate comparison operations, while

D2 uses 𝑣 ◦ · · · ◦ 𝑣 ◦𝑤 .

In general, the application of Comp-SSFC produces slightly better

results compared to the application of the original Comp for 𝑑 = 2.

However, as 𝑑 increases, the gain becomes negligible because 𝑐𝑚𝑖𝑛

and 𝑐𝑚𝑎𝑥 approach 0 and 1, respectively.

Comp-ISFC presents a notable enhancement in both PSNR and

SSIM values across all cases. On average, applying Comp-ISFC (D2)

yields PSNR values that are 13%, 15%, and 14% higher for 𝑑 of 2,

3, and 4, respectively, compared to applying the original Comp. In

terms of SSIM, the application of Comp-ISFC shows an increase of

31%, 15%, and 8% for 𝑑 values of 2, 3, and 4, respectively.

Considering the same 𝑑 , the results achieved by Comp-ISFC are

in most cases better than those of the previous works using one

larger 𝑛. This implies a reduction in total depth while achieving a

similar or slightly better accuracy.

When consuming the same depth, (𝑑, 𝑛) = (3, 3) shows higher

accuracy compared to (𝑑, 𝑛) = (2, 4). Similarly, (𝑑, 𝑛) = (4, 3) presents

higher accuracy than (𝑑, 𝑛) = (3, 4). This observation proves the

claim in [8] that 𝑑 has a greater impact on accuracy than 𝑛.

5.4 Execution Time

In this subsection, the execution time results (in minutes) in HE-

based 3-level thresholding are presented. Fig. 6 shows the results

on the workstation, and the number of threads changes from 1 to 8.

Due to space constraints, the results for 𝑛 = 3 are not included.

As 𝑑 increases while maintaining 𝑛, the outer loop of the approx-

imate comparison operations undergoes more iterations. Conse-

quently, the results show nearly linear growth. As 𝑛 increases from

2 to 4 while maintaining 𝑑 , all experimental cases (with different

approximate comparison operations, 𝑑 values, and thread counts)

present similar increase rates, 3.23× on average. Increasing the

thread count enhances processing speed. However, the improve-

ment is not exactly linear. Specifically, compared to the case where

a single thread is used, the average execution time increases by

1.68×, 3.09×, and 5.60× when the number of threads is 2, 4, and 8,

respectively. This is due to factors such as thread synchronization,

communication overhead, and shared resources.

Compared to the implementation using the original Comp, the

implementation using Comp-ISFC results in a mere 2% increase in

average execution time. When compared to the implementation

using Comp-SSFC, the proposed work reduces the average execution
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Figure 6: Execution time (minutes) on a workstation.

Figure 7: Execution time (minutes) on a Raspberry Pi.

time by 12%. This reduction stems from the fact that Comp-SSFC

requires an additional multiplication.

Fig. 7 presents the execution time results of HE-based 3-level

thresholding performed on the Raspberry Pi. Using a single thread

shows a 3.06× slower processing speed than that achieved on the

workstation. Using two threads enhances the processing speed by

47%. When scaling up to 4 threads, the processing speed becomes

slower. This slowdown may be attributed to contention for limited

hardware resources and synchronization overhead.

Compared to the single-thread implementation using the orig-

inal Comp with 𝑛 of 4, that using Comp-ISFC with 𝑛 of 3, showing

comparable accuracy, results in a 48% enhancement in execution

time on the Raspberry Pi. When the number of threads increases

to 2, this improvement increases to 63%.

6 CONCLUSION

This paper presents a novel method that exploits an asymmetric

input range and scales inputs for an approximate comparison op-

eration. It reduces the number of iterations and execution time

while showing comparable accuracy. Consequently, this method ex-

pands the feasibility of privacy-preserving real-world applications

executed on cyber components of CPS. Furthermore, this paper

explores parallelism inherent in HE-based multilevel thresholding

involving comparison operations and implements it using OpenMP.

In the experiments conducted with the Raspberry Pi, it was ob-

served that increasing the number of threads beyond 2 resulted

in a contrary effect. Therefore, as part of future work, we plan to

explore the utilization of a Raspberry Pi cluster for the application.
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